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Abstract

Combinatorial optimization problems like the Traveling Salesman Problem (TSP) pose

significant challenges in fields such as manufacturing and operations research, prompt-

ing continuous efforts to discover more efficient solutions. The application of Machine

learning algorithms, particularly Deep Reinforcement Learning (DRL), has emerged as

a promising approach by enabling algorithms to autonomously learn solutions without

relying on predefined rules.

This research explores the impacts when employing different embedding techniques

(simple linear, simple convolutional, enhanced linear with multiple layers and nor-

malization, enhanced linear with additional complexity) and attention mechanisms

(Pointer Network and Self Attention) using an Actor-Critic algorithm to solve TSP

sizes of 10, 20, 50 and 100 nodes.

Moreover, this research examines the outcomes of different parameters in the model

setup, including batch size, epsilon value for action selection, the number of RNN lay-

ers, the number of glimpses for the Pointer Network decoder, and the number of

heads for the Self-Attention decoder. Through meticulous parameter tuning, it iden-

tifies configurations with the attention mechanism and embeddings that offer the best

trade-off between performance and computational efficiency. In addition, it provides

an analysis of training times, emphasizing the importance of balancing computational

resources with model accuracy.

Overall, this research presents an extensive evaluation of the DRL approach imple-

mented. Key findings indicate that the Pointer Network consistently delivers superior

performance in comparison to the use of Self-Attention as the attention mechanism

across most TSP instances. It also founf that the simple convolutional embedding

performed consistently more effectively in the experiments than all other implemented

embeddings. While the implemented approach didn’t outperform some of the bench-

mark models, it demonstrated competitive performance, coming specially close to the

LKH-3 benchmark results.
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Chapter 1

Introduction

The TSP (Travelling Salesman Problem), considered a ‘classic’ combinatorial opti-

mization problem in the field of operations research [53], entails finding the shortest

route possible that visits the whole set of cities [28]. The complexity of the TSP lies

in its combinatorial nature, this means that as the number of cities increases, the

number of possible routes increases factorially. Thus, making exhaustive search im-

practical even for relatively small instances. The TSP is an NP-hard problem meaning

that there is no known algorithm that can solve all instances in polynomial time [53].

The significance of TSP extends beyond theoretical interests as it’s constantly used

to model many real-world problems ranging from delivery logistics and manufactur-

ing [43, 51, 13, 28] to network design [33].

Combinatorial optimization problems can be solved in a variety of ways, like by ap-

plying exact, heuristic, or metaheuristic methods [17]. When applying exact methods

to solve combinatorial optimization problems we have a guarantee to find the optimal

solution. However this is often computationally expensive and impractical for very

large instances due to the NP-hard nature of the problem. Meanwhile, solving combi-

natorial problems through heuristic methods can generate a good enough answer but

cannot guarantee an ideal result, making them the next best alternative when exact

solutions are computationally infeasible. Finally, metaheuristic methods as solvers for

combinatorial optimization problems can balance between exploration and exploita-

tion to find high-quality solutions within reasonable timeframe. They are designed to

guide other heuristics to explore the solution space more effectively [17].

In attempt to solve the TSP in the most approximately efficient manner, researchers

have explored various heuristic and approximation algorithms such as simulated an-
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nealing [12] and ant colony optimization [62], each offering a trade-off between solution

quality and computational efficiency. Practical applications of these methods reflect

a pragmatic approach, aiming for solutions that are both quick and good enough for

real-world use.

Beyond heuristic and approximation algorithms, industry solvers have made sig-

nificant contributions to the practical resolution of the TSP. Notably, CPLEX, Gurobi

and LKH-3 are at the forefront of this effort. Both CPLEX and Gurobi are powerful

exact solvers that stand out in solving linear programming, mixed-integer program-

ming, and quadratic programming problems. CPLEX, developed by IBM [30], is a

high-performance mathematical programming solver, regarded for its ability to han-

dle complex constraints and large datasets efficiently, making it a staple in industries

requiring optimal logistical and routing solutions. Gurobi’s solver is recognized for its

high performance, and it’s often the solver of choice in both academic research and

industry applications [26]. Additionally, LKH-3 (Lin-Kernighan-Helsgaun) [22], is an

advanced implementation of the Lin-Kernighan heuristic developed by Keld Helsgaun,

a solver that incorporates powerful local search techniques and strategic exploration

of the solution space.

Common approaches such as exact and heuristic methods are less effective in dy-

namic and large-scale systems due to their incapacity to learn from data, handle

uncertainty, and require substantial manual tuning. Recent advances in solving the

TSP problem and its variations have been achieved through the application of ML

models [3, 50, 49, 5]. These ML approaches can be seen as metaheuristic methods be-

cause they don’t guarantee an optimal solution but aim to find high-quality solutions

through learning and adaptation. They offer a new way for tackling combinatorial

optimization problems by leveraging the ability of ML algorithms to learn patterns

and make decisions based on features of the problem instance.

For example, supervised learning techniques can be used to train models on known

optimal or near-optimal solutions, enabling the model to generalize to new instances [9,

59, 50, 16]. However, traditional ML methods sometimes struggle with the combina-

torial nature and size of problems such as the TSP [5].

To handle these challenges, RL (Reinforcement Learning) has been increasingly

been used [14, 59]. This is due to its ability to learn efficient policies for decision-

making without requiring explicit instructions on how to perform tasks. RL involves

an agent that learns to make a sequence of decisions by interacting with an environment

and receiving feedback in the form of rewards [52]. Specifically in context of the TSP,

the agent learns to construct routes by selecting the next city to visit based on the
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current state. The reward for the agent is related to the total (shortest) route length.

This approach allows the agent to learn effective policies for constructing high-quality

routes over time.

Building on RL, DRL (Deep Reinforcement Learning) has shown even greater

promise [23, 4, 15, 44, 14, 65]. DRL combines the decision-making framework of RL

with the representational power of deep learning. By using neural networks, DRL can

handle the high-dimensional state and action spaces typical of large TSP instances [1,

59]. Once trained, a neural network can generate solutions in a fraction of the time

it would take to compute them using traditional optimization methods. For instance,

techniques like Deep Q-Networks, Policy Gradient methods, and A-C (Actor-Critic)

algorithms [52] have been adapted to the TSP, where the neural network approximates

the value function or policy, enabling the agent to learn complex strategies for route

construction [23, 4, 15, 44, 14, 65].

Transformers, originally designed for natural language processing, have shown re-

markable flexibility and effectiveness in solving combinatorial optimization problems

like the TSP [54, 4, 11, 35, 47]. Their integration with DRL has opened new directions

of study showing great advancements in solution quality [21, 18, 64, 47, 60]. This is

a consequence of the combination of the sequential decision-making process of DRL,

with the parallel processing capabilities of transformers. Transformers, with their Self-

Attention mechanisms, enable the DRL to consider the entire input sequence context

at each step, enhancing the agent’s ability to make informed decisions.

Transformers consist of two main parts, an encoder, and a decoder. An encoder

processes the input sequence and produces a set of embeddings that capture relation-

ships between entities. The decoder generates the output sequence by focusing on

both the encoder’s output and the previously generated tokens, using a defined atten-

tion mechanism [32]. The embeddings and the attention mechanism are the two main

components that can alter the behaviour of a transformer.

The TSP can be modeled as a sequence-to-sequence problem where the input se-

quence is the list of cities and the output sequence is the ordered route, showing the

transformation of one sequence into another optimal sequence through learned rep-

resentations and attention mechanisms. Embeddings specifically translate the cities

of the TSP problem (input data) into continuous vector representations in a high-

dimensional space, allowing the model to capture the relative positions and distances

between cities.

This continuous representation is needed for the model to absorb information and

choose the most optimal route. The attention mechanism allows the model to focus
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on specific cities that are more relevant at each step of constructing the route. The

model can prioritize certain cities over others by calculating attention scores, which

allows it to improve the quality of the solutions it generates.

There are several types of attention mechanisms that can be implemented in a

transformer [2, 38, 45], this research is centered on the implementation of Pointer

Networks and Self-Attention mechanism in order to compare their effectiveness in

solving sequence-to-sequence problems like the TSP.

PN (Pointer Networks) [56] use attention to sequentially select elements from the

input set, this is ideal for the TSP because its goal is to construct an ordered sequence

of visits. The PN points to the next city to visit based on the current state, learning a

policy for route construction that minimizes the total distance traveled. Self-Attention,

on the other hand, allows the model to consider the relationships between all pairs of

cities simultaneously, rather than focusing on a single pair at a time [54]. This holistic

view allows the model to capture complex dependencies and interactions between

cities [61, 43].

The Self-Attention variation implemented for this research is the multi-head Self-

Attention [45]. This type of Self-Attention allows the decoder to compute multiple sets

of attention scores in parallel. It allows the model to focus on different parts of the

input sequence by computing attention scores across multiple heads, each capturing

different aspects of the relationships between tokens. We’ve added a masking that

maintains the autoregressive property required for sequence generation, not allowing

the model to regenerate past the current decision point.

The primary distinction between the Self-Attention and PN mechanisms is that the

PN concentrates on selecting and ordering elements from the input sequence based on

the current state to form the output, essentially producing a reordered subset of the

input sequence. Whereas Self-Attention computes attention scores for each token

in relation to all other tokens, applies a mask to ensure that only available tokens

are considered during prediction. Then, it generates context vectors that incorporate

information from relevant preceding tokens and based on all these factors it selects the

output sequence. The attention scores between the two mechanisms are also different

as Self-Attention computes scores between all pairs of elements within the sequence

and the PN computes scores between the decoder state and the encoder outputs to

select input elements.

This study aims to demonstrate the strengths and weaknesses of four alternative

embedding methods and two attention mechanisms in the context of a DRL imple-

mentation to solve the TSP problem. This study provides a thorough analysis on
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the impact of the embedding and attention mechanism on the model’s solution qual-

ity, computation efficiency and ability to generalize. To ensure its robustness and

relevance, it analyzes the previously mentioned approaches against three industry-

standard benchmarks, presenting an understanding of how the methodologies compare

to commonly accepted standards in the field.

Building on the various experiments designed for this research, it also presents

an investigation into the impacts of parameter tuning per TSP instance implemented

(10, 20, 50, 100). Therefore observing the experiment’s generalization capabilities in

different instance size of the TSP problem with the different configurations and in the

most optimal setting to compare them to the benchmark models.

In the next sections we will continue by exploring the related work in Chapter 2.

This is followed by Chapter 3, Methodology, which explains the details of the method-

ology implemented. Chapter 4, Experiments and Results explores the experimental

setup along with the analysis of the results obtained. Chapter 5; Conclusion, opens a

discussion referring back to the results, discusses the limitations and summarizes the

contributions of the study.
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Chapter 2

Literature Review

The TSP (Travelling Salesman Problem) and its variants have long been important

topics of research [53] due to their critical importance in obtaining solutions for logistic

and transportation systems [17, 6]. Understanding and solving these problems is of

academic and practical relevance, as more dependable, scalable, and efficient solutions

are required to address the complex and dynamic nature of today’s routing challenges

[65, 58, 47, 41]. These long-standing problems keep finding new approaches because

of the rapid evolution in fields like ML (Machine Learning) [14, 28, 43, 51].

The application of ML has led to significant advancements in optimization tech-

niques. It has introduced new heuristic and metaheuristic models that leverage data-

driven insights to solve instances of the TSP and its variants more efficiently [2]. These

models range from training on historical data to recognize patterns and predict near-

optimal solutions, to using techniques like supervised learning, reinforcement learning,

and clustering algorithms that present improvement in initial solution guesses and en-

hance local search strategies [57, 50, 3].

The ability of DL (Deep Learning) to model complex, high-dimensional data has

transformed the method of solving the TSP. Specifically, DRL (Deep Reinforcement

Learning) has shown promise as it combines RL (Reinforcement Learning)’s decision-

making framework with DL’s powerful representation learning [8]. Models like Deep Q-

Networks (DQN) and policy gradient methods have been employed to train agents that

can iteratively improve TSP solutions through trial and error, guided by reward signals

that encourage shorter route lengths [19, 20, 24]. These approaches have achieved

remarkable success in solving large and complex TSP instances by learning to make

sequence choices that generalize well to unseen problems [39, 60].
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Alongside DRL methods, the introduction of transformers has marked a new era in

tackling the TSP. Introduced by Vaswani et al. in 2017 [54] transformers were initially

designed for natural language processing tasks. But because they use Self-Attention

mechanisms to capture long-range dependencies in sequential data they have been

implemented in combinatorial problems such as the TSP due to their ability to model

global interactions. Transformers are particularly suitable for solving the relationship

between cities since it needs to be considered as a whole in order to produce more

optimal results. Recent studies have applied transformer architectures to the TSP,

using their capacity to handle variable-length input sequences and capture intricate

patterns [5, 60, 47].

There are two main components that affect the behavior of a transformer. Firstly,

the embeddings, because they provide a dense, low-dimensional representation of high-

dimensional data, capturing the underlying relationships between different entities [54],

Secondly, the attention mechanism, that let’s the transformer focus on other elements

within the same sequence [32].

In the context of the TSP, embeddings represent the cities or nodes in a way that

preserves their spatial and relational properties. By embedding the cities into a contin-

uous vector space, transformers can process and understand the complex interactions

and dependencies between them [44]. This allows the model to encode important fea-

tures such as distances, connectivity, and other relevant attributes that influence the

optimization process. Consequently, embeddings facilitate the transformer’s ability to

generalize and learn from smaller instances of the TSP and apply this knowledge to

solve larger, more complex instances, enhancing both the efficiency and accuracy of

the solutions generated, as seen in recent studies [31].

The second main component in the decision making process of the transformer

is the attention mechanism [2], specifically the Self-Attention mechanism. The Self-

Attention mechanism allows each element of the input sequence to dynamically focus

on other elements within the same sequence to compute its representation. Altering

the attention mechanism can significantly change the behavior of the transformer

by modifying how dependencies between elements are captured and processed. For

example, variations in the attention mechanism can influence the model’s ability to

prioritize certain inputs over others.

Recent studies have explored multiple modifications to the attention mechanism

to improve performance on combinatorial problems and DRL tasks [45]. For example,

Kool et al. [32] introduced the attention model for solving the TSP, demonstrating that

fine-tuning the attention mechanism could lead to more efficient solutions. Similarly,
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research by Bello et al. [4] showed that combining Self-Attention with RL significantly

improved the performance of neural combinatorial optimization models.

The introduction of multi-head attention in transformers, as detailed by Vaswani

et al. [54], allows the model to attend to different parts of the sequence simultaneously,

capturing a richer set of dependencies and improving overall performance. Studies like

that of Xu et al. [60] have further refined these techniques, exploring the impacts of

varying the number and configuration of attention heads on the model’s effectiveness

in handling complex sequences.

Other than the Self-Attention mechanism there’s also the PN (Pointer Networks)

which are a type of neural network architecture specifically designed to address prob-

lems where the output is a sequence of positions in the input [56]. Unlike traditional

sequence-to-sequence models, which generate output tokens from a fixed vocabulary,

PN produce output by pointing to elements in the input sequence.

PN are a promising venue of research for solving the TSP using DRL given their

architecture is inherently well-suited for tasks where the output sequence needs to

directly correspond to elements in the input, such as the case in the TSP. They effec-

tively learn to point to the next city to visit based on the current state, dynamically

constructing the route.

Also, integrating PN with DRL combines the strengths of both approaches as DRL

enables the model to learn optimal policies through interactions with the environment,

providing a framework for learning effective strategies for route construction. This is

particularly beneficial for TSP, as it allows the model to improve its performance

through trial and error, guided by a reward signal that incentivizes shorter routes.

Research has shown that combining PN with DRL can lead to significant perfor-

mance improvements. For instance, Bello et al. [4] demonstrated that a model trained

with a combination of PN and RL outperforms traditional methods on various com-

binatorial optimization tasks, including the TSP [4]. This approach builds on the

sequential decision-making capability of RL and the input-output alignment of PN,

resulting in a powerful model for solving TSP instances.

Nazari, et al. [44] addressed some limitations of traditional PN in handling dy-

namic environments. They proposed a method made up of an integration of a RNN

(Recurrent Neural Network) with an advanced attention mechanism attempting to

dynamically update the state of the network based on changes in customer demands

and vehicle status, specifically made to solve the VRP problem. The discussion on

computational efficiency and scalability in their paper is limited, encouraging future

research to expand on these aspects by exploring the computational overhead caused
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by the recurrent and attention-based components of the model.

Recent developments in DRL show a promising direction towards addressing these

limitations. Below, in Table 2.1, is the comparison of the State-of-the-Art papers on

the subject. For example, the use of advanced neural architectures that incorporate

dynamic graph neural networks (GNNs) and attention mechanisms can potentially

enhance the model’s responsiveness to real-time changes in problem parameters as

used in Liang et al. [34]. These models adapt to the changing state of the problem and

also learn from a diverse range of scenarios, improving their generalization capabilities

across different instances of the problem.

Additionally, the integration of metaheuristic components with DRL frameworks

has shown potential in navigating the vast solution spaces more effectively [17, 7].

Those hybrid approaches use the strengths of heuristic optimizations to provide initial

good-quality solutions and refinements. DRL continuously adapts and improves the

decision-making process based on interactive learning from the environment [17].

Innovative embedding techniques have also emerged, improving the way input data

is represented and processed by these models. Positional encoding, a common feature

in transformer models, has been refined to better capture the spatial relationships

inherent in the TSP [11]. Additionally, graph-based embeddings [55] have been intro-

duced, where cities are treated as nodes in a graph, and edges represent the distances

between them. This representation allows the model to naturally incorporate the

structure of the problem.

Recent developments in DRL have introduced sophisticated techniques such as

Proximal Policy Optimization (PPO) [48] and Soft Actor-Critic (SAC) [27], which

have shown great promise in stabilizing training and improving the performance of

DRL agents. These methods have been adapted to work in conjunction with trans-

former architectures to tackle the TSP more effectively. For instance, PPO’s clipping

mechanism helps in maintaining stable policy updates, which is crucial when train-

ing large models like transformers. Similarly, SAC’s entropy maximization encourages

exploration, ensuring that the agent doesn’t get stuck in local optima.
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Table 2.1: Comparison of Papers on state-of-the-art methods for solving TSP and its variants, all but the first paper have been

published from 2020 onwards. This table highlights the algorithm variant to be solved, along with the algorithm used

to solve it and some of the inner components that are contained in the attention mechanism, embedding layers and the

transformer’s decoder and encoder layers. If there was no explicit information found in the paper about the structure

implemented the cell contains a ‘-’ symbol.

Nazari et al.

[44]

TSP, CVRP,

SVRP, Split

Delivery

Problems

RL A-C Glimpse +

PN/Beam

Search

1-D Conv. Linear RNN No

Gao, et al.

[23]

VRP,

CVRPTW

RL A-C GAT Node and

Edge

GRU-based Mod. GAN

da Costa, et

al. [14]

TSP RL PG PN LSTM Custom GCN

Zhao, et al.

[65]

VRP,

VRPTW

RL Adaptive A-

C

Basic Yes LSTM Yes

Wu, et al.

[59]

TSP, CVRP RL A-C Self Linear + Po-

sition

Node pair se-

lection

No

Xu, et al. [61] TSP, CVRP,

SDVRP, OP,

PCTSP

RL PG Self Batch nor-

malization

+ Gate

aggregation

Attentive

Aggregation

Module

No

Paper TSP/VRP

Variant(s)

Field Algorithm Attention Embedding Decoder Encoder

Continued on next page
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Table 2.1: Comparison of Papers on state-of-the-art methods for solving TSP and its variants, all but the first paper have been

published from 2020 onwards. This table highlights the algorithm variant to be solved, along with the algorithm used

to solve it and some of the inner components that are contained in the attention mechanism, embedding layers and the

transformer’s decoder and encoder layers. If there was no explicit information found in the paper about the structure

implemented the cell contains a ‘-’ symbol. (Continued)

Liu, et al.

[36]

TSP for

ALMRRC

ML Seq2Seq - Word2Vec - -

Mo, et al.

[43]

TSP for

ALMRRC

ML Custom

Attention

ASNN for

Pair-Wise +

PN

Seq2Seq LSTM LSTM

Zhao, et al.

[66]

MOTSP RL GPN Self + PN Feature Yes Pointer and

Graph

Liang, et al.

[34]

MTSP,

MinMax-

MTSP,

Bounded-

MTSP

RL B&B and

BiGNN

Self - Yes GNN

Goh, et al.

[24]

TSP RL REINFORCE Self 1-D Conv. Sinkhorn Basic Trans-

former

Fellek, et al.

[20]

CVRP RL PPO GATv2 Node and

Edge

Yes No

Paper TSP/VRP

Variant(s)

Field Algorithm Attention Embedding Decoder Encoder

Continued on next page

1
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Table 2.1: Comparison of Papers on state-of-the-art methods for solving TSP and its variants, all but the first paper have been

published from 2020 onwards. This table highlights the algorithm variant to be solved, along with the algorithm used

to solve it and some of the inner components that are contained in the attention mechanism, embedding layers and the

transformer’s decoder and encoder layers. If there was no explicit information found in the paper about the structure

implemented the cell contains a ‘-’ symbol. (Continued)

Chen and

Luo [8]

TSP, CVRP RL PPO Synthetic Node Yes Yes

Zhang, et al.

[63]

TSP RL REINFORCE Sparse Node No No

Fellek, et al.

[19]

TSP RL PPO Gated Graph Node and

Edge

Yes GNN

Wang, et al.

[58]

VRP, CVRP RL Adaptive A-

C

MHA Node and

Edge

Yes GAN

Ouyang, et

al. [46]

TSP RL eMAGIC Custom - Yes GNN and

MLP

Fellek, et al.

[21]

VRP RL PPO EEMHA Node and

Edge

Yes Yes

Vo, et al. [57] TSP RL Branch-and-

Cut

No MLP No GNN

Fang, et al.

[18]

TSP, CVRP RL PG Custom Dynamic Multi-view Nested-view

Paper TSP/VRP

Variant(s)

Field Algorithm Attention Embedding Decoder Encoder

Continued on next page
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Table 2.1: Comparison of Papers on state-of-the-art methods for solving TSP and its variants, all but the first paper have been

published from 2020 onwards. This table highlights the algorithm variant to be solved, along with the algorithm used

to solve it and some of the inner components that are contained in the attention mechanism, embedding layers and the

transformer’s decoder and encoder layers. If there was no explicit information found in the paper about the structure

implemented the cell contains a ‘-’ symbol. (Continued)

Ma, et al.

[40]

TSP, CVRP RL NeuOpt Custom MLP RDS Yes

Ke, et al. [31] TSP, CVRP RL Custom E-GAT and

E-MHA

Edges KL E-GAT and

E-MHA

Cheng, et al.

[10]

TSP RL PG MHA and

SHA

Yes SHA MHA

Luo, et al.

[37]

TSP, CVRP ML SIL Yes Node Yes Yes

Min, et al.

[42]

TSP ML GNN SAG Yes GNN GNN

Zhao, et al.

[64]

TSP RL gSaS MHA Yes Yes Yes

Grinsztajn,

et al. [25]

TSP, CVRP,

KP, JSSP

RL Poppy Yes Yes Yes Yes

Hottung, et

al. [29]

TSP, CVRP,

JSSP

RL EAS Yes Yes Yes Yes

Paper TSP/VRP

Variant(s)

Field Algorithm Attention Embedding Decoder Encoder

Continued on next page

1
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Table 2.1: Comparison of Papers on state-of-the-art methods for solving TSP and its variants, all but the first paper have been

published from 2020 onwards. This table highlights the algorithm variant to be solved, along with the algorithm used
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Chapter 3

Methodology

This section defines the methodologies used for the Traveling Salesman Problem, the

Actor-Critic Deep Reinforcement Learning algorithm, and the architectural elements

in charge of the decision-making process, which together constitute the proposed ap-

proach in this study. First, in Section 3.1 we define the TSP (Travelling Salesman

Problem). Section 3.2 describes the Actor-Critic algorithm, including the precise DRL

methodology used to solve the TSP and the evaluation metrics of the approach. The

significance and concept of embeddings are explained in Section 3.3. Section 3.4.1

focuses on the Pointer Network, explaining its functionality and architectural details.

Section 3.4.2 explores the function and underlying architecture of Transformers and

Self-Attention. Finally, Section 3.5 examines the overall architectural framework as

well as the data flow in the decision making process.

3.1 The Travelling Salesman Problem

The TSP is a classic optimization problem in combinatorial optimization. It seeks

to determine the shortest possible route that visits a complete set of cities (nodes)

exactly once and returns to the origin depot (base location). We use the definition for

the TSP provided by Nazari [44] for this study. The problem is defined as follows:
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3.2. The Travelling Salesman Problem

Definition 3.1 (TSP (Travelling Salesman Problem)). The main objective of this

problem is to minimize the total length of the route. The input comprises a order-

invariant sequence (set) of N nodes representing cities to be visited s = {x1, x2, . . . , xN}
located in a 2-D space (latitude and longitude), each node (city) represented by 2-D

coordinates. The output a is a permutation of these nodes (a1, a2, . . . , aN ), where ai

identifies the index of the ith node in the sequence. The task starts at an arbitrary

depot node xa1 , and the ‘salesman’ or agent must visit each node exactly once. The

exception is the depot node, which the salesman will return to last. The minimization

equation is defined as:

Minimize L(a|s) = |xaN
− xa1 |2 +

N∑
i=1

|xai+1 − xai |2 (3.1)

In the context for this study, the problem is modeled as a Reinforcement Learn-

ing scenario where the input is a specific problem instance, and an episode consists

of an encoding-decoding cycle that produces the complete solution for the provided

sequence, named the node permutation a.

Before the start of an episode, the nodes are encoded into fixed node embeddings,

which we will explain how in Section 3.3, for the duration of that episode. The

decoding process unfolds over a set number N of timesteps. Where at each timestep t,

the agent selects a node that has not yet been visited, with the action at representing

the index of this node in the provided sequence. The state st contains the set of nodes

s and information about the transition dynamics, such as a mask, of what nodes have

been visited already. The mask for visited nodes is explained in the Environment

Subsection 3.2.1.

The reward, defined and allocated at the conclusion of each episode, is given by

the negative Euclidean distance of the chosen sequence, denoted as −L(a|s). Given

the state s, the goal is to develop a policy that can produce the node permutation a

to optimize the episodic reward −L(a|s). This negation of the reward facilitates the

objective of achieving the sequence with the shortest possible distance between nodes.

The policy is parameterized by θ and is expressed as follows:

pθ(a|s) =

N∏
t=1

pθ(at|st, a1:t−1) (3.2)
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Chapter 3. Methodology

3.2 The Actor-Critic Algorithm

The Actor-Critic algorithm, originally defined and created by Sutton and Barto in

1992 [52] is a type of RL that combines both policy-based and value-based approaches.

Policy-based methods directly learn a policy that maps states to actions, while Value-

based methods focus on learning the value function without explicitly learning a pol-

icy [52]. This is specially important for a problem like the TSP as the search space

can grow exponentially with the number of cities and this algorithm allows for contin-

uous updates to both the policy and the value estimate. The Actor-Critic algorithm

allows the agent to adapt more fluidly to changes in the problem dynamics compared

to purely policy-based or value-based methods.

There are two main components of the Actor-Critic algorithm, the ‘actor’ and the

‘critic’. Both components make up the agent in our approach. They work simulta-

neously to improve the decision-making of the agent. The ‘actor’ network proposes

actions, in this case a sequence of selected nodes (cities) in a route, while the ‘critic’

network evaluates these actions by estimating the value function, which reflects the

expected reward of taking an action given a particular state [52]. This approach im-

proves learning efficiency and decision quality by continuously updating policies based

on feedback from the ‘critic’, helping to identify optimal routes.

In our implementation of the Actor-Critic algorithm, both the actor and critic com-

ponents are parameterized using deep neural networks. It uses the features of DL to

effectively manage complex feature interactions within the TSP, such as geographical

distributions and route dependencies. On Algorithm 1 we have defined the algorithm

as implemented in this study.

Algorithm 1 starts by setting up of the environment and parameters, such as the

data generator and reward function. We see then the iterative computation of action

probabilities using the actor network, followed by action selection and environment

state updates. These steps allow the agent to explore and exploit the solution space

effectively. After taking an action, the critic network computes the TD error (called

advantage in Figure 3.1), that measures the difference between predicted and actual

outcomes, guiding the network weights’ updates. Both actor and critic iterate until

they reach a terminal state.

There are different processes involved in training and evaluating the model. While

the evaluation phase evaluates the model’s performance on test data, the training

phase concentrates on optimizing the network parameters. As a result, the agent

learns how to construct short routes by validation of the learned policies.
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3.2. The Actor-Critic Algorithm

Algorithm 1 Reinforcement Learning Agent for TSP using Actor-Critic Architecture

1: Input: a differentiable policy parameterization π(a|s, θ)
2: Input: a differentiable state-value function parameterization v̂(s, w)
3:

4: Initialize:
5: Environment, Data Generator, Reward Function, Training or Evaluation Mode
6: Actor and Critic networks using deep neural network layers θ and w
7: Optimizers for actor Oθ and critic Ow

8: Embedding and attention mechanisms parameterized
9:

10: Actor-Critic Model:
11: Convert input to embeddings
12: Repeat for each decision step:
13: Compute action probabilities π(a|s, θ)
14: Select action a, update environment state s′

15: Calculate TD error δ = r + γv̂(s′, w) − v̂(s, w)
16: Update θ and w using gradients ∇θδ and ∇wδ
17: Record rewards r, actions a, and states s
18: until terminal state is reached
19: Return rewards and state evaluations
20:

21: Training Step:
22: Obtain predictions from Actor-Critic Model
23: Calculate advantages, actor loss Lθ, and critic loss Lw

24: Update model parameters θ and w via backpropagation
25: Apply updates using Oθ and Ow

26:

27: Evaluation Method:
28: Use batch of data sets for model evaluation through Actor-Critic Model
29: For each batch:
30: Predict actions and states
31: Compute and log rewards r
32: Optionally update model based on performance metrics
33:

34: Execution Loop:
35: While task not completed:
36: Fetch data, update model through Training Step, evaluate performance with

Evaluation Method
37: Return results and update logs
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Chapter 3. Methodology

3.2.1 Environment

The implemented environment is specifically designed to set up and manage the

state dynamics of the TSP. It is initialized with parameters such as the number of

nodes (cities) and their dimensions (coordinates). The data generator creates two-

dimensional coordinates randomly to imitate the geographical structure of cities. It’s

parameterized by batch size. Allowing for the simultaneous analysis of multiple prob-

lem cases while improving computing efficiency. The state class is used to store a mask

tensor that tracks the nodes visited during the exploration process. At each step the

model updates the state based on the agent’s actions.

3.2.2 Early Stopping Mechanism

We incorporated an early stopping mechanism in the agent’s training to increase both

the efficiency and adaptability of our approach.

This mechanism continuously monitors the model’s performance and terminates

training if there is no significant improvement in the solution quality after a predefined

number of iterations. The early stopping criteria is based on the model’s performance

and it’s assessed at regular intervals. If the model’s performance plateaus, showing no

further improvement in the rewards obtained, the training stops to prevent overfitting

and conserve computational resources.

The best model is always saved if a better score is obtained. This guarantees

that the training process is both time-efficient and resource-efficient, focusing com-

putational efforts only on iterations that contribute to the model’s learning. The

early stopping mechanism is particularly helpful in handling large-scale TSP instances,

where prolonged training times are impractical, thereby making the DRL model more

adaptive and suitable for real-world applications. We specifically saw an improvement

of up to 85% in time reduction once implemented, allowing us to train certain TSP

model instances for as little as a few minutes. We show the results in Section 4.

3.2.3 Action selection

At the action selection we have two priorities: actions need to be both explored and

exploited efficiently. Our implementation starts by converting the action logits into a

probability distribution using the softmax function (seen in Equation 3.3), which makes

the logits sum to one, forming a valid probability distribution over possible actions.

We obtain the record of the previously the visited positions to prevent reselection of
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3.3. The Actor-Critic Algorithm

previous nodes. We return the adjusted probabilities and the indices of the selected

actions.

We support two strategies for action selection: epsilon-greedy and stochastic. An

epsilon-greedy algorithm primarily selects the action with the highest probability but

based on an epsilon value it occasionally picks a random action, the epsilon value

decreases over time to shift from exploration to more exploitation of the known best

actions. Conversely, the stochastic method selects actions based on the probability

weights directly, allowing for proportional exploration of the action space.

Definition 3.2 (Softmax function). In this function zi is the i-th element of the input

vector z. K is the total number of elements in vector z. e is the base of the natural

logarithm. The output of the equation is a probability distribution over K different

possible outcomes.

σ(zi) =
ezi∑K
j=1 e

zj
(3.3)

3.2.4 Evaluation metrics

As the model needs to award high scores to the shortest routes and bad scores for

longer routes we defined the reward for the selected route by the agent as the negative

value of the total (euclidean) distance traveled. This approach for calculating the

reward inversely ties the length of the route with the actor’s reward, favoring the use

of shorter, more efficient routes.

Definition 3.3 (Reward Function Definition). Given a route selected by the agent,

the reward is calculated based on the total Euclidean distance traveled. We denote the

sequence of coordinates that define the route as {(x1, y1), (x2, y2), . . . , (xn, yn)} where

(xi, yi) is the coordinate of the i-th point in the route, and there are n points in total.

The Euclidean distance between two consecutive points (xi, yi) and (xi+1, yi+1) is

given by:

d(i, i + 1) =
√

(xi+1 − xi)2 + (yi+1 − yi)2

The total distance D for the entire route is the sum of the distances between all

consecutive points. The reward R for the route is defined as the negative value of the

total distance:

R = −
N−1∑
i=1

d(i, i + 1) (3.4)
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Chapter 3. Methodology

Embedding 1 Simple Linear Embedding

1: Initialization: Number of input features, Embedding dimension
2: Define a linear layer to project input features to the embedding dimension
3: Forward Pass:
4: Flatten input to apply the linear layer
5: Return output

Embedding 2 Simple Convolutional Embedding

1: Initialization: Embedding dimension, kernel size
2: Define a 1D convolution layer with specified in-channels, out-channels, and ker-

nel size
3: Forward Pass:
4: Apply single convolutional layer
5: Return output

3.3 Embedding input data

Embedding the input data is important as it allows the model to transform raw

data into a more interpretable representation that captures inherent patterns present.

Learning from higher-dimensional spaces often involves complex features that can be

challenging to abstract. However, the process of embedding the input data simplifies

their representation, enhancing the model’s ability to effectively extract and utilize the

relevant information. Embeddings help reduce the dimensionality of the input space

without significant loss of information, enabling models to train faster and often with

better generalization to new, unseen data.

We have chosen to evaluate four embedding techniques to determine the best con-

ditions for our model. Our testing approach includes two basic embeddings and two

advanced. In the basic embeddings, the input is processed through a single linear

or convolutional layer. The advanced methods, on the other hand, involve embed-

ding the input data through multiple neural network layers and incorporating batch

normalization for potential enhanced performance.

On our first approach illustrated in Embedding 1 we created a simple linear em-

bedding that offers a straightforward, less computationally intensive alternative. This

embedding option linearly transforms the input features into an embedding space,

prioritizing speed and simplicity over the extraction of complex features. While it

may not capture as detailed information as the multi-layer approaches, it serves as a

baseline to assess the necessity and impact of more complex embedding methods.

In Embedding 2 we define an alternate version for the simple linear embedding
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3.3. Embedding input data

Embedding 3 Enhanced Linear Embedding with Multiple Layers and Normalization

1: Initialization: Number of channels, Embedding dimension
2: Define three convolutional layers with padding
3: Each convolution followed by batch normalization and ReLU activation
4: Implement dropout after final convolution
5: Add residual connection to adjust dimensions if necessary
6: Forward Pass:
7: Apply convolutions, ReLU activations, and batch normalization sequentially (3

times)
8: Apply dropout
9: Add output from the last convolutional layer to the residual path output

10: Return output

method but instead of a linear embedding we apply a single-layer 1 dimension convo-

lution, transforming the input data into a higher-dimensional space to capture local

dependencies within the sequence. The purpose of this approach is also to serve as a

baseline to observe the impact of the following more complex methods.

For the third and fourth embedding methods, we employ multiple convolutional

layers in an effort to identify the most efficient approach that provides enhanced con-

textual understanding of the data.

Embedding 3 shows our first enhanced embedding approach, this approach uses

multiple convolutional layers with padding, batch normalization, and ReLU activations

to enhance the feature extraction process. Padding is added because it ensures that the

spatial dimensions of the feature maps are preserved after each convolution operation,

this helps in capturing fine details from the input features throughout the network.

Batch normalization is applied after each convolutional layer to normalize the output,

allowing for higher learning rates and improving the overall robustness and perfor-

mance of the model. ReLU activations introduce non-linearity to the model, enabling

it to learn complex patterns and representations and it helps mitigate the vanishing

gradient problem. A dropout layer is included to mitigate the risk of overfitting, and

a residual connection is added to facilitate training of deeper networks.

Embedding 4 presents the second version of our enhanced embedding approach, this

version simplifies the structure compared to the first but retains significant complexity.

It includes ReLU activations after convolutional layers and a residual connection that

helps maintain the network’s learning capability over deeper architectures. This allows

the network to learn more complex features without significant information loss during

propagation through the network layers.
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Chapter 3. Methodology

Embedding 4 Enhanced Linear Embedding with Additional Complexity

Initialization: Number of channels, Embedding dimension
Initialize the first convolution layer with ReLU activation
Prepare second convolution layer and a residual connection for dimension adjust-

ment
Forward Pass:

Pass through the first layer and ReLU activation
Apply the second convolution layer
Combine with the output from the residual connection
Return output

We have summarized the implemented embeddings once more in Table 4.2 for the

reader’s convenience and to facilitate easier recall of the embedding techniques used.

3.4 Attention Mechanism

Attention mechanisms help the RL agent make better-informed, context-aware deci-

sions, specially important when trying to solve the TSP. The use of attention mech-

anisms allows for efficient processing of complex, variable-length input sequences and

helps agents learn and generalize from diverse problem instances. In this next sec-

tion we will introduce the two approaches we implemented and experimented in order

to obtain better results with more contextual decision making as well as enhanced

learning of complex patterns for solving the TSP.

3.4.1 Pointer Networks

Unlike traditional approaches that might use heuristics or manually defined rules for

selecting the next city, PN (Pointer Networks) [56] with attention mechanisms learn

to solve the problem end-to-end by pointing to elements in the input sequence. This

is achieved through a softmax layer that computes a probability distribution over the

input positions, effectively selecting elements from the input as the output. In the

context of the TSP, PN leverage the attention mechanism to sequentially select cities

based on the current partial route i.e., the sequence of cities already visited. At each

step, the model points to the next city to visit by computing attention scores over the

cities that have not yet been visited. The attention mechanism dynamically adjusts

to focus on different input cities as the sequence grows, determining the most logical

next city based on the current context.
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3.4. Attention Mechanism

PN can often find near-optimal solutions much faster than classical methods, es-

pecially as the problem size grows. But they may require substantial computational

resources for training. Another great advantage for which we have implemented the

PN as one of the attention mechanism approach is that a trained model with PN can

adapt to different instances of TSP (varying numbers of cities, distances, etc.) without

needing changes in the algorithm or reprogramming, as long as the model is robustly

trained on a diverse set of problems.

Glimpses

As an additional feature for the PN implementation, we have decided to implement

Glimpses. A glimpse in the context of a PN is the result of the attention mechanism

applied at a particular decoding step. It computes a weighted sum of the features of all

input elements, where the weights are determined by the attention scores. These scores

measure how much the current output (at a given step of decoding) should ‘attend’

to each input element. The attention mechanism itself is often realized through a soft

attention model, which allows for differentiable operations and end-to-end training of

the network.

At each step in the decoding process, the PN calculates attention scores for each

element in the input sequence. This can be seen in line 13 of Algorithm 1 where

we obtain the action probabilities, or action scores. These scores are derived based

on the current state of the decoder and the entire input sequence. This involves a

compatibility function that assesses how well the features of the input at a given

position match the current decoder state.

Inside the PN, the glimpse is computed as a weighted sum of the input features,

where the weights are the attention scores computed in the previous step. Each feature

of the input contributes to the glimpse proportionally to its attention score, allowing

the decoder (PN in this case) to focus more on relevant parts of the input.

3.4.2 Transformers and Self-Attention

Although originally designed for natural language processing tasks, transformers can

be used for handling sequential data. Specifically for combinatorial problems like the

TSP as they can effectively process sequences of cities, learning the dependencies and

context necessary for optimizing travel routes. The main component of transformers is

the attention mechanism, specifically Self-Attention, which allows the model to focus

on different parts of the input sequence when making predictions. In the context of
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the TSP, this means a transformer can dynamically decide which cities (nodes) are

most relevant when planning the next step in a route. Consequently understanding

complex relationships and dependencies between cities, such as distance, cost, or other

constraints.

Contrary to a ‘normal’ attention mechanism as presented by Bahdanau, et al. [2],

the Self-Attention mechanism introduced by Kool, et al. [32] allows each element of

the input sequence to dynamically focus on other elements within the same sequence

to compute its representation. This is done by computing a weighted sum of the other

elements, where the weights are determined by a learned similarity measure.

We are using multi-head Self-Attention to capture different aspects of the rela-

tionships between tokens. Transformers use heads which are multiple Self-Attention

mechanisms to operate in a different subspace of the input representations. Their

outputs are concatenated and linearly transformed. This allows the model to learn

multiple relationships in the data. Another great quality of transformers is that they

are highly scalable because of their architecture and the use of Self-Attention. This

makes them well-suited for handling larger datasets and more complex TSP scenarios,

where the number of cities and the relationships between them can increase for more

complex problem solving.

It is important to note that the Self-Attention mechanism in transformers evaluates

the entire input sequence simultaneously, which means the model learns to consider

global context and long-range dependencies among cities. This is very important in

TSP because the optimal route might depend on understanding the entire network of

cities rather than just local neighbors.

3.5 Architectural overview

We’ve used the paper published by Nazari et al. [44] as inspiration for our implementa-

tion, but we have included multiple changes, including the early stopping mechanism,

the optimization of the architecture (embeddings and attention mechanisms) as well

as a transition from the TensorFlow 1 library to the more robust and flexible Py-

Torch framework, which we believe improved the model’s handling of dynamic data

structures and increase computational efficiency.
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3.5. Architectural overview

3.5.1 Dataset

We used the data generator created by Nazari, et al. [44] to generate and maintain the

datasets required for the TSP solution testing and training. A single batch of randomly

selected training data can be produced using this generator, with each batch being

defined by predetermined parameters such batch size and number of cities (nodes).

Each data entry within the batch is composed of randomly generated coordinates in a

two-dimensional space, effectively simulating various city (node) locations. The gener-

ator can also compile datasets that customized for testing or training. These datasets

are created according to predetermined criteria, such as the quantity of problems and

whether the data will be used for testing or training.

The creation process of the dataset involves options to either generate new data or

load existing data for TSP scenarios, this is because we create new random data for

the training mode while we load a dataset for the testing stage in order to make sure

that the test data remains unchanged across various experimental runs, provided that

the same seed and parameters are used.

If a new dataset is required for testing, it is produced with random two-dimensional

coordinates for each node across all problem instances. A seed parameter has been

incorporated in order to control the randomness, ensuring the reproducibility of data

generation and results.

3.5.2 Overview of the Data Flow

Our approach1 as shown in Figure 3.1 runs through several scenarios, these are train-

ing, testing and saving. During training we go through the defined number of training

steps or until the early stopping gets activated. In each step of the training loop,

the reinforcement learning agent begins by retrieving the next batch of data, which

represents different scenarios within the TSP. The agent then interacts with the en-

vironment to perform actions and observes the results in terms of both immediate

rewards and new state transitions. From these interactions, the agent obtains mea-

surements of rewards and estimates of state-value functions. The rewards provide

direct feedback from the environment on the effectiveness of the actions taken, while

the state-value functions, generated by the critic, offer an estimate of the expected

1This study has relied on approaches that are replicable. Given the documentation and descriptions
provided we’re certain that the experiments conducted are therefore verifiable by external sources and
that the improvements to current frameworks implemented can be reproduced by other researchers for
future research. The code developed for this research is available at: https://github.com/nathsmo/
Main-Code/
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Figure 3.1: This figure outlines our approach, encapsulating the key phases of training,
testing, and model saving. During the training phase, the agent retrieves batches of TSP
scenarios, interacts with the environment to execute actions, and observes results to gain
rewards and state-value estimates. These interactions help the agent calculate advantages
and adjust actor and critic models to enhance decision accuracy. Testing intervals allow for
performance evaluations without learning, ensuring the policy’s effectiveness. Model param-
eters are periodically saved to secure progress and facilitate future training or deployment in
similar TSP settings. The defined procedure for the Agent is shown in Figure 3.2

.

returns from the current state under the agent’s policy.

Using the observed rewards and the critic’s state-value estimates, the agent calcu-

lates the advantage, indicating how much better an action is compared to the baseline

performance predicted by the critic. This advantage informs the calculation of losses

for both the actor and the critic. The actor loss encourages actions leading to higher

than expected returns, and the critic loss is minimized to refine the accuracy of the

state-value predictions. Following this, the agent performs a backward pass to compute

gradients, applies gradient clipping to stabilize training, and updates the parameters

using optimizers for both the actor and critic.

The training process is interrupted periodically to evaluate the agent’s performance

using test data, as well as to keep record of the steps without improvement for the early

stopping mechanism. The evaluation begins with resetting the environment to ensure

consistency in testing. The agent processes the test data without performing any

learning updates, generating rewards and state-value estimates. The average rewards

over the test batch are then calculated to assess the effectiveness of the agent’s current

29



3.5. Architectural overview

policy.

To protect the progress made during training and allow for further analysis or

continued training in the future, the agent’s model parameters are saved at established

intervals. This involves saving the weights of the neural networks that make up the

actor and the critic, enabling the model to be reloaded later to either continue training

or deploy the trained model in a similar TSP setting.

The agent operates in a series of steps until all nodes in the problem space are vis-

ited. Initially, the agent embeds the input using one of four possible embedding tech-

niques, indicated in Figure 3.2 with a star. This embedding is meant to transform data

into a representation that captures essential features necessary for decision-making.

Once the input is embedded, the agent resets the environment. This reset is needed

at the start of each new episode to ensure the environment is in a standard initial state,

free from remains of previous episodes’ data. Following the reset, the agent updates

its internal mask to keep track of visited nodes, ensuring the route remains valid under

TSP constraints.

The core of the agent’s decision-making process involves generating action logits,

which are probabilities indicating the next best node to visit. This is achieved through

either a PN or a Self-Attention mechanism both which have been previously explained,

as they are part of our approach they have been indicated by a yellow star symbol too

in Figure 3.2.

Using the action logits and the current mask the agent selects its next action. This

action selection involves applying a policy, such as ϵ-greedy or stochastic, balancing

exploration and exploitation. After completing its route, the agent receives a reward

calculated based on the total route created from the chosen actions. The reward typ-

ically reflects the efficiency of the route, with shorter routes receiving higher rewards.

This reward signals to the agent how the actions and the constructed route performed.

Simultaneously, the critic component of the agent assesses the actions by creating

a state-value function result from the last hidden layer of the actor’s network. This

state-value function estimates the expected return from the current state after taking

the action.

Finally, the agent returns both the obtained reward and the estimated state-value.

This dual output helps in fine-tuning the agent’s decision-making abilities by adjusting

the actor and critic networks based on the discrepancies between expected and actual

returns, thus enhancing the agent’s ability to solve the TSP scenario more efficiently

over time.
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Chapter 3. Methodology

Figure 3.2: Workflow of the Reinforcement Learning Agent implemented in this study.
This diagram outlines the sequential steps undertaken by the agent, from input embedding
and environment reset to node visitation tracking, decision-making through attention mech-
anisms, action selection, reward acquisition, and state-value estimation by the critic. The
process iterates until all nodes are visited, emphasizing the agent’s strategy to optimize route
efficiency under TSP constraints. The stars denote the altered parts for this study.
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Chapter 4

Experimental setup and

results

In this chapter, we go into the experimental setup and procedures used to evaluate

the performance of our reinforcement learning agent. The process for the parameter

selection is also included here. A series of baseline tests, experimental setups, and

result analysis are presented to compare our approach compared to the benchmark

models selected in the last sections.

4.1 Baselines and Implementation evaluation

In order to evaluate the performance of our approach, we obtained the performance

from external benchmark models that currently adhere to industry standards. They

include both exact and heuristic methods. Observing the performance of this bench-

marks is important as they are key to placing the performance of our approach within

the larger framework of industry standards. The results were generated from three

separate software programs well-known for their ability to solve TSP cases: Gurobi

Optimizer [26], the IBM ILOG CPLEX Optimization Studio [30] and the Elkai [22]

Python library, which implements the LKH 3 algorithm.

The Gurobi Optimizer [26] and IBM ILOG CPLEX Optimization Studio [30] are

known for their powerful linear, integer, and quadratic programming capabilities. They

were used to build a baseline with its advanced algorithms. Using them for our compar-

ison helps validate our approach efficiency against a leading mathematical optimization
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solver highly optimized for performance. The third solver implemented was the Elkai

Python library which is an implementation of the LKH-3 solver. It’s an open-source

heuristic solver for the TSP well-known for providing near-optimal solutions to big,

difficult routing problems. The Elkai [22] version of LKH-3 used offers a more heuristic

benchmark in addition to Gurobi and CPLEX’s exact methods. The results of the

benchmark models according to the TSP instance size are summarized in Table 4.1.

The evaluation framework of our study and the implemented benchmarks are made

up of three key aspects. First, comparing the results of the experiments from this

study to those produced by the classical heuristical solvers such as Gurobi and IBM’s

CPLEX. Secondly, by comparing the optimality gap between them, representing how

close the implemented approach can get to the best possible solution under given

constraints. Lastly, by comparing the computational time needed for each experiment.

We aim to evaluate our approach given these metrics.

Model TSP 10 TSP 20 TSP 50 TSP 100
CPLEX 2.85 3.84 5.69 7.77
Gurobi 2.85 3.84 5.69 7.77
LKH3 3.50 6.20 15.20 30.24

Table 4.1: Benchmark performance comparison for TSP instances.

4.2 Experimental setup

In our experimental setup, we experimented with several variations to identify the

most critical parameters in our model and therefore to obtain the most optimal con-

figurations. Specifically, we investigated the following parameters: the batch size, the

epsilon value for action selection, the number of RNN layers, the number of glimpses

for the pointer network decoder, and the number of heads for the self-attention de-

coder. While we know it’s not feasible to test every possible parameter. However,

we have carefully selected the parameters we believe to be the most influential on

the model’s performance. Furthermore, we observed a notable impact on the model’s

performance as a result of this parameter tuning.

In all of our experiments we tested the performance in training and testing of both

attention mechanisms (Pointer Network and Self-Attention) with our 4 embeddings

for all TSP instance sizes (10, 20, 50 100). For the sake of clarity and convenience, we

have included Table 4.2 that summarizes the embeddings discussed in the Section 3.3.
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Embedding Name
1 Simple Linear Embedding
2 Simple Convolutional Embedding
3 Enhanced Linear Embedding with Multiple Layers and Normalization
4 Enhanced Linear Embedding with Additional Complexity

Table 4.2: Summary of the different Embedding types presented in Section 3.3.

4.2.1 Batch size

We started the parameter tuning with the batch size of the model as it can influence

the stability and speed of the training process which is very important for our study

as, given the amount of tests we must perform we want to make sure that all the

parameters tuned can push the model to be the most optimal it can be in a quick

amount of time. Adjusting the batch size is also important for managing memory

usage, as larger batches use more memory and smaller batches use less. The batch

size also affects the model’s ability to generalize, as smaller batches can introduce

more noise during training, acting as a regularizer. All of the experiments were tested

with various batch sizes (64, 128, 256) to determine their impact on the performance

and training efficiency of both attention mechanisms with different embeddings in all

TSP instance sizes (10, 20, 50 100).

Table 4.3 shows the performance of the algorithm with for TSP 10 instance when

implemented with the Pointer Network as the attention mechanism. We can see in

Table 4.3 that batch size of 64 with embedding 2 provides the best training and testing

results, with a moderate training time. In batch size 128, although embedding 2 has

the best training average, embedding 1 achieves the best testing result. For batch

size 256, embedding 1 has the best testing result. In terms of training times we can

observe from these results that there is a general trend that smaller batch sizes (64)

tend to have shorter training times but slightly higher variability in results compared

to larger batch sizes (256).

For this experiment embedding 2 achieved the best average training result (3.95)

in batch size 128 but there was a 0.15 reward reduction in embedding 1 showing that

maybe a batch size large can generalize better. We also obtained a near-optimal testing

result (3.85) in this same a batch size, coming very close to the benchmark model of

LKH-3 as seen in Table 4.1.

Batch size of 128 produces competitive training and testing results with less vari-

ability than the other batch sizes. For example, the gap between results in batch size

64 can vary from .20 to .40 points while in batch 128 they vary from 0.08 to 0.35.
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Decoder Pointer Network
Batch Size Embedding 1 2 3 4

64

Train R. (avg) 4.43 3.69 4.33 4.20
Test R. 4.00 3.86 4.64 3.82
Training Time 0:05:06 0:04:30 0:04:28 0:04:45

128

Train R. (avg) 4.30 3.95 4.44 4.22
Test R. 3.85 3.88 4.60 4.05
Training Time 0:06:09 0:06:02 0:06:37 0:06:08

256

Train R. (avg) 4.47 4.20 4.54 4.25
Test R. 3.91 3.95 4.53 4.06
Training Time 0:10:55 0:10:13 0:10:59 0:10:43

Table 4.3: Training and Testing Results for TSP 10 with Various Embeddings and Batch
Sizes for Pointer Network as attention mechanism.

Decoder Self Attention
Batch Size Embedding 1 2 3 4

64

Train R. (avg) 4.32 4.28 4.34 4.31
Test R. 4.85 4.81 4.85 4.86
Training Time 0:08:33 0:07:12 0:08:30 0:08:27

128

Train R. (avg) 4.40 4.44 4.47 4.41
Test R. 4.67 4.64 4.61 4.59
Training Time 0:09:30 0:09:55 0:07:46 0:08:03

256

Train R. (avg) 4.52 4.53 4.55 4.49
Test R. 4.64 4.58 4.61 4.64
Training Time 0:10:34 0:10:19 0:09:13 0:10:48

Table 4.4: Training and Testing Results for TSP 10 with Various Embeddings and Batch
Sizes for Self Attention as attention mechanism.

The training times for a batch size of 64 are also shorter compared to larger batch

sizes, almost all training in under 5 minutes, significantly less than the training times

observed for batch sizes of 128 and 256. We chose batch size of 128 to continue the

experiments for the TSP 10 with Pointer Network as it showed consistent performance,

a moderate training time efficiency, and a consistent model generalization.

Table 4.4 shows the performance of the algorithm with the Self-Attention as the

attention mechanism for the TSP 10 instance. The average training results for batch

size 256 show the lowest reward obtained during testing, specifically when using em-

bedding 2, this embedding also has the best results of the model when using batch

size 64. From the general results obtained between all batch sizes we can observe a

lower variability in results obtained using batch size 256.

From test results with batch size 256, embedding 2 achieves the best testing result

(4.58), followed by batch size 128 with embedding 4. When comparing the results of

the other batch sizes, batch size 256 consistently provides better a more stable and

better testing performance. The training times for batch size 256 are the highest
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Decoder Pointer Network
Batch Size Embedding 1 2 3 4

64

Train R. (avg) 9.13 7.31 9.47 8.50
Test R. 7.73 7.67 9.73 7.81
Training Time 0:08:04 0:09:11 0:06:29 0:10:27

128

Train R. (avg) 8.58 7.75 9.50 8.38
Test R. 7.51 7.49 9.83 7.80
Training Time 0:11:54 0:12:27 0:16:03 0:13:35

256

Train R. (avg) 9.24 8.76 8.90 8.90
Test R. 7.67 7.65 9.08 8.20
Training Time 0:25:34 0:19:33 0:22:32 0:22:32

Table 4.5: Training and Testing Results for TSP 20 with Various Embeddings and Batch
Sizes for Pointer Network as attention mechanism.

from all the tested batch sizes but yet they are still manageable. While batch size 64

sometimes shows shorter training times (e.g., 2 at 0:07:12), it does not significantly

outperform in terms of test results, making batch size 256 a better trade-off between

time and performance.

Seeing its effectiveness in producing a model that generalizes well to unseen data

we decided to keep proceed with batch 256 for the experiments of the TSP 10 instance

that use the Self-Attention as the attention mechanism.

Table 4.5 shows the results of the different batch sizes implemented for the TSP

20 instance using the Pointer Network as the attention mechanism. From this table

we can observe that batch size might not influence as much the results as the type

of embedding applied to it. It seems that embedding 1 produces a gap from 1.04

to 1.57 between the training and the testing rewards. While all other embeddings

don’t produce as big gaps between the testing and the training results. The batch size

nonetheless does change the training time for the model, as small batch sizes (64) have

lower training times than bigger batch sizes (256), pattern that gets inversed when

using Self-Attention as the attention mechanism as we’ll see in a moment.

Seeing as the results of the individual embeddings don’t vary a lot our choice for

the batch size was guided by the training time and the better testing performance

obtained with that time, therefore choosing the proceed with a batch size of 128 for

the TSP 10 instance using Pointer Network as the attention mechanism.

Table 4.6 shows the results of the different batch sizes implemented with the Self-

Attention as the attention mechanism for the TSP 20 instance. As we noted before it

seems that when using the Self-Attention as the attention mechanism the batch size

influences considerably the training time as small batch sizes (64) have higher training

times than bigger batch sizes (256).
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Decoder Self Attention
Batch Size Embedding 1 2 3 4

64

Train R. (avg) 9.31 9.38 9.43 9.39
Test R. 8.80 8.89 8.79 8.77
Training Time 0:34:19 0:42:37 0:32:00 0:33:15

128

Train R. (avg) 9.48 9.47 9.41 9.49
Test R. 7.78 6.51 7.83 6.80
Training Time 0:19:39 0:19:04 0:19:33 0:17:14

256

Train R. (avg) 9.58 9.60 9.64 9.62
Test R. 6.67 6.45 8.38 8.20
Training Time 0:15:32 0:18:58 0:13:39 0:12:30

Table 4.6: Training and Testing Results for TSP 10 with Various Embeddings and Batch
Sizes for Self Attention as attention mechanism.

We can also see in the table that two out of the three batch sizes’ best results

come from embedding 2. Both in batch size 128 and 256 they get very close to the

benchmark model LKH-3 as seen in Table 4.1. Which we’ll discuss in later sections.

The variablility shown in the results of Table 4.6 show that all testing results are

considerably lower than the training reward obtained. Specifically batch size 128 and

256 seem to have 2 out of 4 embeddings with results very close to an optimal result.

Seeing as the lowest training time and best results can be found in batch size 256 we

decided to implement size 256 as the optimal batch size to continue testing for TSP

20 instance with Self-Attention as the attention mechanism.

Table 4.7 shows the results from the TSP 50 instance using the Pointer Network

as the attention mechanism. In order to determine the most optimal batch size to use

in this model configuration we took a look at the training times from each batch size

implemented. As we can see the bigger the batch size implemented in the model that

used Pointer Network, the higher the training time becomes.

From Table 4.7 we can also see a very obvious behaviour, as embedding 2 always

obtains the most optimal results. No matter the batch size the testing results seem to

have very little difference between them, what does have a great difference specifically

for this embedding (2) is that the bigger the batch size, the higher the training rewards.

Embeddings 3 and 4 seem to also have very consistent training and testing results

across all batch sizes. Embedding 1 is the only one that breaks the pattern.

From the results obtained in Table 4.7 we decided that the most optimal imple-

mentation for the TSP 50 instance with Pointer Network as the attention mechanism

is the batch size 64. This choice balances good performance metrics with the testing

results and lower training times.

Table 4.8 shows the implementation of the TSP 50 instance with Self-Attention as
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Decoder Pointer Network
Batch Size Embedding 1 2 3 4
64 Train R. (avg) 21.43 16.94 23.81 22.61

Test R. 18.77 18.25 24.20 19.75
Training Time 0:23:19 0:21:37 0:26:12 0:27:39

128 Train R. (avg) 21.32 17.33 23.79 22.61
Test R. 19.37 18.57 23.40 19.58
Training Time 0:46:09 0:48:56 0:43:54 0:54:23

256 Train R. (avg) 22.20 19.72 24.21 22.08
Test R. 18.40 18.30 23.88 19.81
Training Time 1:22:10 1:45:34 1:39:30 1:13:34

Table 4.7: Training and Testing Results for TSP 50 with Various Embeddings and Batch
Sizes for Pointer Network as attention mechanism.

Decoder Self Attention
Batch Size Embedding 1 2 3 4

64

Train R. (avg) 24.67 24.71 24.56 24.67
Test R. 19.97 20.08 19.69 20.92
Training Time 0:57:03 0:57:42 0:52:10 0:53:42

128

Train R. (avg) 24.90 24.86 24.93 24.92
Test R. 19.27 19.45 19.55 19.29
Training Time 1:05:01 1:29:09 1:22:34 1:29:40

256

Train R. (avg) 25.06 25.09 25.12 25.16
Test R. 19.48 19.47 19.44 19.61
Training Time 1:52:08 1:56:14 1:34:36 1:34:11

Table 4.8: Training and Testing Results for TSP 50 with Various Embeddings and Batch
Sizes for Self Attention as attention mechanism.
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Decoder Pointer Network
Batch Size Embedding 1 2 3 4

64

Train R. (avg) 50.12 49.87 51.34 50.76
Test R. 46.55 38.34 44.85 48.17
Training Time 0:34:23 0:46:25 0:59:32 0:59:05

128

Train R. (avg) 46.18 32.11 46.74 46.85
Test R. 36.25 32.41 44.70 43.07
Training Time 2:39:50 1:55:35 3:02:46 2:59:45

256

Train R. (avg) 43.70 35.46 49.29 46.28
Test R. 36.75 35.15 44.27 41.60
Training Time 3:16:09 4:44:11 3:40:37 5:13:10

Table 4.9: Training and Testing Results for TSP 100 with Various Embeddings and Batch
Sizes for Pointer Network as attention mechanism.

Decoder Self Attention
Batch Size Embedding 1 2 3 4

64

Train R. (avg) 49.51 50.28 53.44 51.23
Test R. 46.55 48.34 46.85 48.17
Training Time 2:03:53 1:53:25 1:54:20 1:30:20

128

Train R. (avg) 50.76 50.58 50.68 50.73
Test R. 45.52 45.59 45.42 45.29
Training Time 2:16:48 2:25:30 2:29:43 2:48:27

256

Train R. (avg) 51.03 51.01 50.93 51.06
Test R. 45.78 45.65 45.67 44.68
Training Time 2:55:08 3:22:53 3:35:03 4:34:25

Table 4.10: Training and Testing Results for TSP 100 with Various Embeddings and Batch
Sizes for Self Attention as attention mechanism.

the attention mechanism. In this table we see the same pattern as in when the model

is implemented with Pointer Network as a decoder. As the batch size increases, so

does the training time. From the results of the table se can see that the training time

more than doubled between batch size 64 and batch size 256.

From the training performance in batch size 64 we can see that all embeddings

show similar performance (around 24.56 to 24.71). This is a pattern that also follows

in batch 128 (around 24.86 to 24.93), and batch 256 (around 25.06 to 25.16). The best

testing result comes from the implementation of the model with batch size 128 with

embedding 1 with a score of 19.24, followed twice by embedding 3 that has the best

results in batch size 64 and batch size 256. The training times also mostly remain

consistent throughout the different batch sizes.

The best testing scores as a group appear to be from batch size 128, and having

observed that the other parameters remain consistent across batch sizes we have chosen

batch size 128 to continue experimenting the TSP 50 instance with Self-Attention as

the attention mechanism.
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Table 4.9 shows the implementation for the TSP 100 instance with the Pointer

Network as the attention mechanism. From the table we can see that the performance

does tend to get better as the batch size increases, this can be seen constantly in all

of the embeddings implemented. The time for training also increases as the batch size

increases, which is not optimal if we want a balance between time for training and

results.

Batch size 128 with embedding 2 shows the best balance of performance and train-

ing time. Even though the results do change as the batch size increases, we do see

a bigger jump from the results found in batch size 64 to the results in batch 128,

especially for embeddings 1 and 2. Given that the improvement in performance with

batch size 256 is marginal it doesn’t justify the significantly longer training times.

Considering the balance between performance and training efficiency, we have chosen

to continue training with batch 128 for the TSP 100 instance when using the Pointer

Network as the attention mechanism.

Table 4.10 shows the results for the implementation of Self-Attention as the atten-

tion mechanism for the TSP 100 instance. There seems to be a similar performance

across all embeddings and batch sizes. The best result from batch size 64 is from

embedding 1 with 49.51 during training and 46.55 during testing. The best results

in all other batch sizes seem to be in training for embedding 2 and for testing for

embedding 4.

The training time seems to constantly grow as the batch size also increases. but

the testing performance overall happens in batch size 128 were all the embedding had

similar performance (45.29 to 45.59). Batch size 256 had significantly longer training

times, with 1 being the shortest (2:55:08) and 4 the longest (4:34:25).

Observing that batch size 128 shows similar performance to batch size 256 but with

significantly shorter training times. This marginal improvement in performance with

batch size 256 doesn’t justify the substantial increase in training time, and so therefore

we can conclude that batch size 128 offers good efficiency with the best performance

and shorter training times for the next experiments for TSP instance size 100 with

Self-Attention as the attention mechanism.

We present a summary of the chosen the batch sizes per TSP instance size in

Table 4.11.
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Batch size
Model TSP 10 TSP 20 TSP 50 TSP 100
Pointer Network 128 128 64 128
Self-Attention 256 256 128 128

Table 4.11: Summary of the optimal batch sizes for the TSP instance sizes implemented.

4.2.2 Epsilon

The epsilon variable is a parameter that measures the exploration vs exploitation factor

in learning algorithms as we saw in Section 3.2. In order to avoid overfitting, we want

to select an epsilon value attempting to balance the model’s capacity to generalize from

training data to testing data. A higher epsilon value promotes greater exploration in

the early phases of training, enabling the model to attempt a wide range of actions

and collect a variety of outcomes. An epsilon value of 0 means that the RL agent

always exploits the best possible action.

We hope that by having a moderate exploration value the model is able to keep

away of local optima and learn more about the environment around it. In our imple-

mentation we gradually lower the epsilon as training continues encouraging the agent

to use the learnt policy to improve and maximize performance. The epsilon parameter

makes sure that the model efficiently learns the optimal policy by applying both the

exploration of new actions and the exploitation of known actions.

We have implemented 3 epsilon values in our experiments (0-no exploration, 0.1-

moderate exploration, 0.3-high exploration). As we have selected the batch size pre-

viously, from this point onwards we utilized the selected batch size as seen in the

summary Table 4.11.

In Table 4.12 we can see the performance of the model with different epsilon values

for the implementation of the Pointer Network as the attention mechanism for TSP

10 instance. We can observe that embedding 2 always performs the best during the

training but as the epsilon increases embedding 4 beats embedding 2 during the testing

of the model. The training times of all three implementations with different epsilon

show similar training time ranging from as little as 2:24 to 6:33 minutes.

The performance presented on Table 4.12 demonstrates that for the TSP 10 in-

stance, as the epsilon increases so does the testing score, performing worse than the

experiments with higher epsilon values. Given that the training time remains consis-

tent through the epsilon values and the the performance worsens we have chosen to

opt for the epsilon value 0 for the TSP 10 instance with the Pointer Network, therefore
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Decoder Pointer Network
Epsilon Embedding 1 2 3 4

0
Train R. (avg) 4.43 3.69 4.34 4.20
Test R. 3.90 3.70 4.24 3.79
Training T. 0:05:02 0:04:48 0:06:33 0:05:08

0.1
Train R. (avg) 4.43 3.69 4.34 4.20
Test R. 4.01 3.86 4.65 3.82
Training T. 0:05:06 0:05:23 0:06:00 0:05:18

0.3
Train R. (avg) 4.43 3.69 4.34 4.20
Test R. 4.10 4.00 4.55 3.97
Training T. 0:03:57 0:04:48 0:06:10 0:02:24

Table 4.12: Training and Testing Results for TSP 10 with Various Embeddings and Epsilon
Values for Pointer Network as attention mechanism

Decoder Self Attention
Epsilon Embedding 1 2 3 4

0
Train R. (avg) 4.40 4.44 4.47 4.41
Test R. 4.71 4.67 4.68 4.59
Training T. 0:08:24 0:09:35 0:07:26 0:08:05

0.1
Train R. (avg) 4.40 4.44 4.47 4.41
Test R. 4.67 4.64 4.61 4.59
Training T. 0:08:28 0:11:07 0:07:27 0:07:24

0.3
Train R. (avg) 4.40 4.44 4.47 4.41
Test R. 4.62 4.53 4.55 4.50
Training T. 0:08:06 0:10:14 0:06:26 0:07:08

Table 4.13: Training and Testing Results for TSP 10 with Various Embeddings and Epsilon
Values for Self Attention as attention mechanism

completely prioritizing the exploitation of known actions rather than exploration.

Table 4.13 shows the performance of the TSP 10 instance when using the Self-

Attention as the attention mechanism. From the performance it appears that all

results appear constant no matter the epsilon value applied. There is therefore a

common trend where embedding 1 obtains the best result during the training while

embedding 4 obtains the best result during the testing.

The testing results do vary from the different epsilon values applied, we can even

notice that the test performance is actually higher as the epsilon value is greater. This

shows that specifically for the implementation of the Self-Attention as the attention

mechanism in the model, this attention mechanism actually performs better when it

explores beyond the know best value. As for the training time, it has a downwards

trend as the epsilon value increases.

From this results we can conclude that the optimal choice for the epsilon value for

the TSP 10 instance with the Self-Attention mechanism as the attention mechanism

is the 0.3 value, as it enhances the most the performance of the model.

43



4.2. Experimental setup

Decoder Pointer Network
Epsilon Embedding 1 2 3 4

0
Train R. (avg) 8.46 7.29 9.51 7.63
Test R. 7.18 7.14 8.40 7.57
Training T. 0:13:58 0:13:16 0:14:35 0:14:00

0.1
Train R. (avg) 8.46 7.29 9.51 7.63
Test R. 7.67 7.44 9.07 8.04
Training T. 0:15:54 0:15:26 0:19:38 0:20:30

0.3
Train R. (avg) 8.46 7.29 9.51 7.63
Test R. 8.33 8.23 9.65 8.70
Training T. 0:22:02 0:21:23 0:23:35 0:22:44

Table 4.14: Training and Testing Results for TSP 20 with Various Embeddings and Epsilon
Values for Pointer Network as attention mechanism

On Table 4.14 we present the performance of the model for TSP 20 instance when

using the Pointer Network as the attention mechanism. In the table we can see that the

training rewards again seem to remain constant across all epsilon values implemented.

Specifically, we see that embedding 2 consistently outperforms other embeddings in

both training and testing performance across all epsilon values. We must note that

have been seeing this pattern for the implementation with Pointer Network as the

attention mechanism from past experiments, this could indicate that the 2 embedding

is particularly effective for the Pointer Network in solving TSP instances.

From table 4.14 we observe that as the epsilon value increases, there is a noticeable

decline in testing performance, indicating that higher epsilon values might negatively

impact the generalization ability of the model. The training times also increase with

higher epsilon values. This could be due to the model requiring more iterations or

adjustments to converge when epsilon values are higher, therefore the early stopping

mechanism won’t be used as the model slowly reaches the best performance.

We can notice that embedding 1 and 3 have consistently higher training and testing

errors compared to 2 and 4, showing that they may not be as suitable for this problem

or model configuration. We will talk more about this in the later sections of this

study. We also note that ehe differences in performance between embeddings are more

pronounced at lower epsilon values, with embedding 2 significantly outperforming

others. At higher epsilon values, performance differences between embeddings become

less different.

From all this we can conclude that the optimal epsilon value for the implementation

of the TSP 10 instance with Pointer Network as the attention mechanism appears to

be 0, particularly with the 2 embedding, as it provides the best balance of best training

and testing results with relatively shorter training times.
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Decoder Self Attention
Epsilon Embedding 1 2 3 4

0
Train R. (avg) 9.47 9.54 9.48 9.52
Test R. 8.78 8.76 8.84 8.90
Training T. 0:19:03 0:19:57 0:20:06 0:21:33

0.1
Train R. (avg) 9.47 9.54 9.48 9.52
Test R. 7.75 7.76 7.80 7.88
Training T. 0:16:01 0:16:36 0:16:20 0:14:48

0.3
Train R. (avg) 9.47 9.54 9.48 9.52
Test R. 6.57 6.68 7.55 7.60
Training T. 0:14:06 0:14:56 0:13:55 0:11:04

Table 4.15: Training and Testing Results for TSP 20 with Various Embeddings and Epsilon
Values for Self Attention as attention mechanism

On Table 4.15 we can see the performance of the model for TSP 20 instance with

Self-Attention as the attention mechanism. We can observe that across all epsilon

values, the performance metrics for training and testing are quite similar among the

different embeddings. This could be because no single embedding drastically outper-

forms the others for the Self-Attention mechanism on the TSP 20 instance.

We can observe that as the epsilon value increases from 0 to 0.3, there is a slight but

consistent decrease in the testing performance, indicating that a higher epsilon value

might help the model generalize better, specifically for the Self-Attention mechanism.

This is a pattern we’ve seen in previous tables.

In the training times we see a decrease as epsilon values increase. This suggests

that higher epsilon values may allow the model to converge faster during training,

potentially making them more efficient in terms of computational resources and time.

Embedding 2 shows shorter training times compared to other embeddings, indicating

it might be more computationally efficient. The optimal configuration in terms of

testing performance seems to be at epsilon 0.3 with the 4 embedding, which has the

lowest testing value. For training performance, all embeddings perform similarly with

no significant difference across epsilon values.

In Table 4.16 we can see the performance of the model for the TSP 50 instance

when using the Pointer Network as the attention mechanism. In this table we can see

that the training times increase with higher epsilon values. This repeats itself as we

also saw with TSP 20 instance. From the training performance we see that embedding

2 embedding consistently shows the best training performance across all epsilon values,

achieving the lowest training values (16.90 to 17.05). As for the testing we see that

for epsilon value 0, embedding 2 obtains the best testing performance with a value

of 17.06. For epsilon values 0.1 and 0.3, embedding 1 obtains the best testing values
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Decoder Pointer Network
Epsilon Embedding 1 2 3 4

0
Train R. (avg) 18.77 17.05 22.91 20.41
Test R. 20.49 17.06 21.79 25.93
Training T. 0:29:59 0:22:08 0:25:39 0:29:42

0.1
Train R. (avg) 19.03 17.04 23.67 19.02
Test R. 18.36 18.79 19.81 20.12
Training T. 0:48:29 0:51:17 0:59:28 0:35:11

0.3
Train R. (avg) 19.03 16.90 22.91 20.41
Test R. 20.86 21.38 23.57 22.56
Training T. 1:08:55 1:07:20 1:14:30 0:53:55

Table 4.16: Training and Testing Results for TSP 50 with Various Embeddings and Epsilon
Values for Pointer Network as attention mechanism

Decoder Self Attention
Epsilon Embedding 1 2 3 4

0
Train R. (avg) 24.55 24.53 24.48 24.67
Test R. 19.84 19.80 20.01 20.12
Training T. 0:35:21 0:54:34 0:41:55 0:31:34

0.1
Train R. (avg) 24.55 24.53 24.48 24.67
Test R. 20.11 19.85 20.00 20.10
Training T. 0:32:32 0:36:23 0:30:28 0:30:08

0.3
Train R. (avg) 24.55 24.53 24.48 24.67
Test R. 19.95 19.88 19.60 19.85
Training T. 0:20:16 0:17:16 0:18:49 0:18:04

Table 4.17: Training and Testing Results for TSP 50 with Various Embeddings and Epsilon
Values for Pointer Network as attention mechanism

(18.36 and 20.86 respectively).

From the general performance we can see that the change in the epsilon value

signal that a moderate exploration value (epsilon 0.1) obtains the best results for all

the embeddings. The training time increases as the epsilon increases. we can also

note from the table that there is high consistency in training performance across all

embeddings from all epsilon values, perhaps indicating robustness to changes in epsilon

during training.

From all this we opted to choose the optimal configuration in terms of both training

and testing performance with an epsilon value of 0. While it might not be the most

efficient parameter in terms of training time it does appear to set a balance that

produces better results than the alternative epsilon values. Therefore concluding that

the epsilon value 0 is the chosen value for the TSP 50 instance that uses the Pointer

Network as the attention mechanism.

On Table 4.17 we observe the implementation of the model when using the Self-

Attention as the attention mechanism for the TSP 50 instance and experimenting with
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the epsilon values. From this table we can note that the training performance remains

consistent across different epsilon values, showing that the use of the Self-Attention

decoder leads to stable results when training, even with changes in the epsilon. From

this stable results we can say that embedding 3 consistently shows the best training

performance across all epsilon values, achieving the lowest training result (24.48).

On the other hand we can see that the testing results show a different story as

the results from the implementation of epsilon values 0 and 0.1 show that embedding

2 has the best testing performance, but at epsilon 0.3, 3 achieves the best result

(19.60), showing it adapts well to a higher epsilon. It also shows that as much as we

obtain stable results when training, the that the epsilon value does affect the network

architecture when seeing untested data. We can also observe that as epsilon increases,

there is a general trend of improved testing performance, this can be particularly

seeing with embedding 3 at epsilon 0.3. Suggesting that higher epsilon values might

help the model generalize better.

As for the training times we can see that they significantly vary among the embed-

dings. Embedding 4 generally has the shortest training times across all epsilon values

but the general trend is that the higher the epsilon values the shorter the model takes

to train. For example, at epsilon 0.3, training times are the shortest across all embed-

dings, which could be due to faster convergence and therefore a faster activation of

the early stopping mechanism implemented.

Given that this epsilon value achieves the best testing performance with relatively

efficient training times, we can assume that the implementation for the TSP 50 in-

stance with Self-Attention as the attention mechanism is most efficient with a higher

exploration value, therefore using epsilon value 0.3.

Table 4.18 show the performance of the model when using the Pointer Network as

the attention mechanism for the TSP 100 instance. from the results of the table we

can see that the testing performance shows more variability, particularly with higher

epsilon values. But the training performance remains constant across different epsilon

values for all embeddings, suggesting that the training process is robust to changes in

epsilon.

The training times generally increase with higher epsilon values, showing it in the

results of all the implemented embeddings. From the testing results we can see that as

the epsilon value increases, there is a noticeable deterioration in testing performance

for all embeddings also. For example, the testing score for embedding 2 increases

from 31.84 at epsilon 0 to 38.74 at epsilon 0.3, suggesting that higher epsilon values

might negatively impact generalization specifically for when implementing the Pointer
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Decoder Pointer Network
Epsilon Embedding 1 2 3 4

0
Train R. (avg) 36.63 32.59 45.81 37.01
Test R. 32.66 31.84 40.00 34.81
Training T. 2:01:09 1:51:06 2:26:09 2:53:01

0.1
Train R. (avg) 36.63 32.59 45.81 37.01
Test R. 36.87 32.04 44.94 40.88
Training T. 2:39:23 1:55:03 3:02:08 2:56:00

0.3
Train R. (avg) 36.63 32.59 45.81 37.01
Test R. 42.84 38.74 49.19 45.01
Training T. 2:30:33 2:04:00 3:09:34 3:04:17

Table 4.18: Training and Testing Results for TSP 100 with Various Embeddings and
Epsilon Values for Pointer Network as attention mechanism

Decoder Self Attention
Epsilon Embedding 1 2 3 4

0
Train R. (avg) 50.71 50.58 50.68 50.76
Test R. 45.03 45.58 45.60 45.18
Training T. 2:05:42 2:03:07 2:04:40 2:03:39

0.1
Train R. (avg) 50.71 50.58 50.68 50.76
Test R. 45.08 45.64 45.60 45.21
Training T. 2:07:28 2:07:07 2:15:14 2:31:08

0.3
Train R. (avg) 50.71 50.58 50.68 50.76
Test R. 45.19 45.55 45.51 45.24
Training T. 2:09:23 2:20:07 2:31:44 3:01:22

Table 4.19: Training and Testing Results for TSP 100 with Various Embeddings and
Epsilon Values for Self Attention as attention mechanism

Network as the attention mechanism.

Embedding 2 consistently achieves the best training performance across all epsilon

values, with the lowest training value (32.59) and also the lowest testing value with

scores ranging from 31.84 to 38.74. This shows that embedding 2 can be very effective

in both training and generalization. This is a pattern that we have also been seeing

in other TSP instances of the study.

Given all of this we consider that the optimal configuration in terms of both training

and testing performance appears to be the epsilon value of 0. As the implementation

of the Pointer Network as the attention mechanism seems to obtain its best scores

when it exploits the known best actions in the model. This epsilon also has the lowest

training time which is advantageous when dealing with an instance size such as this

one.

On Table 4.19 we can see the results of the implementation of the Self-Attention

as the attention mechanism for the TSP 100 instance. From the highlighted results its

obvious that embedding 2 outperforms other embeddings in terms of training errors,
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Epsilon value
Model TSP 10 TSP 20 TSP 50 TSP 100
Pointer Network 0 0 0 0
Self-Attention 0.3 0.3 0.3 0

Table 4.20: Summary of the epsilon results for all TSP instance sizes.

making it a strong candidate for the Self-Attention mechanism. But that embedding 1

shows the best performance in testing errors, showing the potential of the embedding

when applied to the model.

From the training performance we can say that it remains constant across different

epsilon values for all embeddings. And also as we’ve seen before that its only the testing

performance that changes, showing small variations as the epsilon value increases.

We’ve seen this pattern in other TSP instances. While the testing values remain

relatively stable across different epsilon values there does seen to be a detereorating

effect on some embedding such as embedding 2 and 4, but the change is very small

to be impactful. The optimal configuration in terms of both training and testing

performance appears to be the the epsilon value of 0. As this value achieves a strong

training performance with the most efficient training times.

In Table 4.20 we summarize the chosen parameters for the epsilon value across all

the TSP instances implemented in this study.

4.2.3 RNN layers

The number of RNN layers can significantly impact the model’s ability to capture

complex temporal dependencies. Adding more layers can help the model learn intricate

sequential data, making it better suited for handling complex tasks. However, this

comes with potential drawbacks. More layers can lead to overfitting, longer training

times and higher resource consumption. In this section we go through the process of

finding the right balance of the amount of RNN layers in the model.

The anlysis is separated by the type of attention mechanim used. In the use of the

Pointer Network as the attention mechanism we present the analysis of the number of

RNN layers and the number of glimpses. For the use of Self-Attention as the attention

mechanism we present the analysis of the number of RNN layers with a number of

heads. The subsequent experiments are designed and conducted based on the optimal

configurations selected from the prior experimental results.
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Pointer Network
RNN Embedding 1 2 3 4

1
Train R. (avg) 4.43 3.69 4.34 4.20
Test R. 3.90 3.70 4.24 3.79
Training T. 0:05:09 0:04:39 0:05:28 0:04:50

2
Train R. (avg) 4.39 3.73 4.35 4.01
Test R. 3.78 3.83 4.77 3.90
Training T. 0:06:23 0:06:01 0:07:09 0:06:42

Table 4.21: Training and Testing Results for TSP 10 with Various Embeddings and RNN
configuration when using the Pointer Network as the attention mechanism with no additional
glimpses.

4.2.4 Glimpses for the Pointer Network

Similarly to the RNN layers the number of glimpses can affect the model’s capacity

to focus on different parts of the input sequence. Therefore optimizing this parameter

is very important as it can augment the model’s accuracy by ensuring it adequately

attends to relevant input features.

On Table 4.21 we can see the performance of the model when using the Pointer Net-

work as the attention mechanism for the TSP 10 instance with no additional glimpses

(0). From the table we can observe that embedding 2 consistently achieves the best

training performance across both RNN configurations, with the lowest training reward

(3.69 and 3.73). The performance during testing does change between embedding 2

and 1 which suggest that simpler embeddings are more suitable for this configuration

of the model.

We can notice that the number of RNN does provoke an increase in the values dur-

ing testing. Training times also increase with higher RNN layers across all embeddings.

This trend shows that more complex RNN configurations require more computational

time for convergence. The optimal configuration given this factors is the use of a

single RNN layer when using no glimpses with the Pointer Network as the attention

mechanism in the TSP 10 instance.

On Table 4.22 we present the results of the model with the use of the Pointer Net-

work as the attention mechanism for the TSP 10 instance with 3 additional glimpses.

Again we can see that for the training performance embedding 2 consistently achieves

the best results no matter the RNN layer number. But that it is embedding 1 that

obtains the best results during testing.

There does appear to be a slight impact again with the training times, as they

generally increase with more complex RNN configurations across all embeddings. Still

embedding 2 consistently has shorter training times compared to other embeddings,
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Pointer Network
RNN Embedding 1 2 3 4

1
Train R. (avg) 4.23 3.78 4.40 4.22
Test R. 3.75 3.90 4.59 3.99
Training T. 0:09:03 0:04:40 0:09:56 0:08:50

2
Train R. (avg) 4.32 3.89 4.32 4.12
Test R. 3.70 3.75 4.65 4.07
Training T. 0:10:57 0:09:19 0:10:47 0:11:01

Table 4.22: Training and Testing Results for TSP 10 with Various Embeddings and RNN
configuration when using the Pointer Network as the attention mechanism with 3 additional
glimpses.

making it more efficient in terms of computational resources. Contrary to the training

performance the testing results become better with an added RNN layer but at slightly

longer training time.

The performance therefore suggests that the optimal configuration in terms of both

training and testing performance is the use of 2 RNN layers is slightly more effective

for generalization with this configuration of the TSP 10 instance with Pointer Network

with 3 glimpses.

On Table 4.23 we can see the performance of the model when using the Pointer Net-

work as the attention mechanism for the TSP 20 instance with no additional glimpses

(0). We again can notice the slight increase in training time with the additional RNN

layer across all embedding’s results. For both the training and testing performance the

table shows how embedding 2 consistently achieves the best results across both RNN

configurations. From the training performance we can observe that while the perfor-

mance does increase there is a noticeable improvement in the testing results, showing

that the use of 2 RNN layers is more effective for generalization of this instance.

For this experiment also embedding 1 has shorter training times compared to other

embeddings, but it doesn’t perform as well in terms of training and testing results. The

optimal configuration in terms of both training and testing performance is therefore the

use of 2 RNN layers when employing the Pointer Network as the attention mechanism

with no glimpses for the TSP 10 instance, as the slight increase in training time is

compensated by the enhancement of the model scores.

On Table 4.24 we present the results of the model with the use of the Pointer Net-

work as the attention mechanism for the TSP 20 instance with 3 additional glimpses.

We see again in this table the same pattern as in Table 4.23 as embedding 2 achieves

the best training and testing performance across both RNN configurations. We can

also notice again that the training times generally increase with additional RNN layers.
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Pointer Network
RNN Embedding 1 2 3 4

1
Train R. (avg) 7.62 7.23 9.30 7.67
Test R. 7.19 6.85 8.63 7.81
Training T. 0:08:30 0:10:38 0:11:07 0:09:11

2
Train R. (avg) 7.79 7.28 9.37 7.70
Test R. 7.02 6.65 9.97 7.63
Training T. 0:11:16 0:12:28 0:14:23 0:10:48

Table 4.23: Training and Testing Results for TSP 20 with Various Embeddings and RNN
configuration when using the Pointer Network as the attention mechanism with no additional
glimpses.

Pointer Network
RNN Embedding 1 2 3 4

1
Train R. (avg) 8.02 7.34 8.84 8.58
Test R. 7.34 7.13 8.99 8.07
Training T. 0:18:02 0:19:48 0:20:04 0:19:39

2
Train R. (avg) 7.52 7.15 9.35 7.64
Test R. 7.59 6.87 9.39 7.32
Training T. 0:19:09 0:25:45 0:21:56 0:23:30

Table 4.24: Training and Testing Results for TSP 20 with Various Embeddings and RNN
configuration when using the Pointer Network as the attention mechanism with 3 additional
glimpses.

From the results we can see that the training performance for embedding 2 improves

slightly from 7.34 to 7.15 and in testing from 7.13 to 6.87, a patter that is only repeated

with embedding 4 but with results that are slightly less favorable. Embeddings 1 and

3 seem to get worse results when the RNN layers are increased.

The optimal configuration for this TSP 20 instance with Pointer network as the

attention mechanism and the use of 3 additional glimpses was more in favour of the

marginally better results from embeddings 2 and 4 as the results suggest that 2 RNN

layers is generally better for testing performance.

On Table 4.25 we can see the performance of the model when using the Pointer Net-

work as the attention mechanism for the TSP 50 instance with no additional glimpses

(0). In this model configuration we see again that the best training and testing per-

formance comes from embedding 2 across both RNN configurations. The training

time again increases with additional RNN layers although given the size of the TSP

instance it does increase even more considerably than in previous experiments with

smaller TSP instances.

The training performance for the 2 embedding improves slightly from 17.30 to 17.04

when moving from 1 to 2 RNN layers, while the performance of other embeddings

shows more variability as they tend to have better training results but worse testing
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Pointer Network
RNN Embedding 1 2 3 4

1
Train R. (avg) 18.33 17.30 22.21 20.32
Test R. 17.83 17.02 20.73 23.43
Training T. 0:25:08 0:22:42 0:29:23 0:30:45

2
Train R. (avg) 17.38 17.04 21.47 17.97
Test R. 18.99 18.63 21.04 19.02
Training T. 0:36:55 0:38:53 0:40:26 0:37:20

Table 4.25: Training and Testing Results for TSP 50 with Various Embeddings and RNN
configuration when using the Pointer Network as the attention mechanism with no additional
glimpses.

Pointer Network
RNN Embedding 1 2 3 4

1
Train R. (avg) 17.27 19.17 23.52 21.33
Test R. 18.18 18.97 24.35 21.63
Training T. 1:06:13 1:41:42 1:36:35 1:31:09

2
Train R. (avg) 17.48 16.28 23.95 18.13
Test R. 18.25 18.04 24.21 18.97
Training T. 1:17:18 1:45:29 2:04:58 1:34:37

Table 4.26: Training and Testing Results for TSP 50 with Various Embeddings and RNN
configuration when using the Pointer Network as the attention mechanism with 3 additional
glimpses.

results. Given the noticeable increase in the testing value for 2 from 17.02 to 18.63

when moving from 1 to 2 RNN layers, and the increase in training time we have

chosen to use 1 RNN layers as the configuration for this instance. This is because

we have seen that even if the testing performance shows more variability, particularly

with embedding 2, it still consistently achieves the best testing results and has the

potential to optimize the final model configuration.

On Table 4.26 we present the results of the model with the use of the Pointer Net-

work as the attention mechanism for the TSP 50 instance with 3 additional glimpses.

As we’ve seen before the training times increase, even if just slightly, with more com-

plex RNN configurations across all embeddings.

This table has some changes in the performance that we’ve seen in previous in-

stances as embedding 2 only obtains the best testing and training results when the

model consists of 2 RNN layers. Instead when the model only has 1 RNN layer embed-

ding 1 is the better choice. We can see that the training performance for embedding 2

improves significantly from 19.17 with RNN configuration 1 to 16.28 with RNN config-

uration 2, showing the benefit of the second configuration. Even though this pattern

doesn’t follow for the other embeddings we do see an improvement in the scores for

three out of the four embeddings (2, 3, 4) when using 2 RNN layers.
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Pointer Network
RNN Embedding 1 2 3 4

1.0
Train R. (avg) 36.63 34.59 45.81 37.01
Test R. 31.63 30.08 32.78 32.74
Training T. 1:13:35 1:53:36 1:19:17 1:23:05

2.0
Train R. (avg) 34.48 35.19 45.46 45.29
Test R. 31.77 30.92 31.33 33.82
Training T. 2:43:56 2:41:59 2:57:18 2:35:00

Table 4.27: Training and Testing Results for TSP 100 with Various Embeddings and RNN
configuration when using the Pointer Network as the attention mechanism with no additional
glimpses.

Pointer Network
RNN Embedding 1 2 3 4

1.0
Train R. (avg) 36.23 35.95 42.86 39.11
Test R. 31.76 30.86 33.04 34.19
Training T. 4:58:50 4:00:15 4:57:15 3:17:12

2.0
Train R. (avg) 34.40 35.00 46.82 36.99
Test R. 31.82 30.73 40.72 33.54
Training T. 4:09:10 4:36:40 4:00:45 3:17:21

Table 4.28: Training and Testing Results for TSP 100 with Various Embeddings and RNN
configuration when using the Pointer Network as the attention mechanism with 3 additional
glimpses.

The optimal configuration in terms of both training and testing performance ap-

pears to be with the implementation of 2 RNN layers for the TSP 50 instance with

the Pointer Network as the attention mechanism using 3 glimpses.

On Table 4.27 we present the results of the model with the use of the Pointer

Network as the attention mechanism for the TSP 100 instance with no additional

glimpses. We can see that embedding 2 achieves the best performance in testing, with

the both RNN layer configuration. For training embedding 1 performs best with 2

layers and 2 for the single RNN layers. On the other side, the other embeddings, 3

and 4, show higher variability in performance.

Training times are longer across when the 2 RNN layers are implemented. The one

single RNN layer generally produces better training results compared to the 2 RRN

layer configuration. Also, the single RNN layers configuration also shows slightly better

or comparable testing performance. Given all of this, the most optimal configuration

for the TSP 100 instance with the Pointer Network as the attention mechanism with

no additional glimpses is therefore the configuration of a single RNN layer.

On Table 4.28 we present the results of the model with the use of the Pointer Net-

work as the attention mechanism for the TSP 100 instance with 3 additional glimpses.

From the table we can see the same pattern repeated as on Table 4.28. As embed-

54



Chapter 4. Experimental setup and results

Pointer Network TSP 10 TSP 20 TSP 50 TSP 100
0 glimpses 1 2 1 1
3 glimpses 2 2 2 1

Table 4.29: Summary of RNN layers for different TSP instances with 0 and 3 glimpses
using Pointer Network.

ding 2 obtains again the best performance during testing on both configurations and

embedding 1 obtains the best results for the training for the 2 RNN layer configuration.

From the training times we can note that they are somewhat balanced across the

embeddings, with embedding 3 having the shortest training time with a single RNN

layer and embedding 4 having the shortest training time for the 2 RNN layer con-

figuration. The single RNN layer configuration generally produces better training

results compared to the second configuration, just as we’ve seen before. The opti-

mal configuration for the TSP 100 instance when using the Pointer Network as the

attention mechanism with 3 additional glimpses is the use of the a single RNN layer

configuration.

On Table 4.29 we present a summary of the selected RNN layers per experiment

when using the Pointer Network with glimpses as the attention mechanism for all TSP

instances implemented.

4.2.5 Heads for Self-Attention

The number of heads in the self-attention mechanism can determine the diversity

of input representations the model can learn simultaneously. This can improve the

model’s overall performance by capturing various aspects of the data. As we obtained

the results for the comparative analysis to determine the impact of varying the number

of attention heads (1, 2 and 4) on the model’s performance, our findings showed that

the variation in the number of attention heads had no significant effect on the results.

Consequently, the performance metrics, including training and testing errors and the

training time remained consistent across these configurations.

Given this consistency, we have elected to present the results for the configuration

using a single attention head. This choice is made for clarity and simplicity, as the

additional heads did not produce any observable differences in performance. The

consistency across different head configurations suggests that the benefits of multi-

head attention, might be inherently captured by the self-attention mechanism even

with a single head in this specific application.

On Table 4.30 we can obsrve the performance of the model when using Self-
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RNN Self Attention
Embedding 1 2 3 4

1
Train R. (avg) 4.40 4.44 4.47 4.41
Test R. 4.67 4.64 4.61 4.59
Training T. 0:07:42 0:07:03 0:06:36 0:06:42

2
Train R. (avg) 4.44 4.42 4.43 4.45
Test R. 4.68 4.68 4.72 4.64
Training T. 0:06:47 0:06:04 0:07:37 0:07:13

Table 4.30: Training and Testing Results for TSP 10 with Various Embeddings and RNN
configuration when using the Self-Attention as the attention mechanism with a single head.

Attention as the attention mechanism for the TSP 10 instance with one attention

head. From the results we can observe that the training times are relatively stable,

suggesting that both RNN configurations are scalable and efficient for larger datasets

or more complex problems.

Both the training and testing performance remains relatively stable across differ-

ent RNN configurations for each embedding, with slight variations. Embedding 2 is

the one that shows slightly shorter training times, especially in RNN configuration 2

(0:06:04). But overall, training times do not change drastically. This could mean that

the complexity of the number of RNN layers has a limited impact on training times

for this specific setup.

The results from the table suggest that given the lack of change from the amount

of RNN layers that the configuration with 1 RNN layer is generally better for testing

performance. Therefore we will use the 1 RNN layer when using Self-Attention as the

attention mechanism in TSP 10 instance with only 1 head.

On Table 4.31 we can see the performance of the model when using Self-Attention

as the attention mechanism for the TSP 20 instance with one attention head. Just like

we saw for instance TSP 10 we can see that the same patterns emerge as the training

time, training and testing results are very similar and remain constant across all RNN

configurations.

From the results we can see that embedding 1 is the best when training but still

the results seem to be very close together in both the testing and training results. The

training time also remains constant as the model probably converges easily no matter

the RNN configuration. Given all this, we’ve chosen to select the 1 RNN layer as the

metric when implementing the TSP 20 instance with Self-Attention as the attention

mechanism with a single head.

On Table 4.32 we can see the performance of the model when using Self-Attention

as the attention mechanism for the TSP 50 instance with one attention head. The
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RNN Self Attention
Embedding 1 2 3 4

1
Train R. (avg) 9.47 9.54 9.48 9.53
Test R. 8.67 8.72 8.46 8.73
Training T. 0:16:59 0:16:06 0:17:16 0:14:01

2
Train R. (avg) 9.46 9.48 9.53 9.47
Test R. 8.78 8.79 8.77 8.68
Training T. 0:18:39 0:14:28 0:16:27 0:16:34

Table 4.31: Training and Testing Results for TSP 20 with Various Embeddings and RNN
configuration when using the Self-Attention as the attention mechanism with a single head

RNN Self Attention
Embedding 1 2 3 4

1
Train R. (avg) 24.91 24.89 24.96 24.92
Test R. 19.13 19.33 19.44 19.47
Training T. 0:38:13 0:52:57 0:54:08 0:44:34

2
Train R. (avg) 24.92 24.89 24.93 24.93
Test R. 19.42 19.49 19.44 19.46
Training T. 0:47:29 0:52:28 0:56:40 0:44:24

Table 4.32: Training and Testing Results for TSP 50 with Various Embeddings and RNN
configuration when using the Self-Attention as the attention mechanism with a single head

results, both in training and testing, are very close together between all the embedding

and across all RNN configurations.

During the training embedding 1 has obtained the best results and embedding

2 has obtained the best testing results, but still the overall results remain constant

across all configurations and without a big different. We do notice that in the training

time there is a slight increase as the model goes from 1 RNN layer to 2. Taking all

of this into account we’ve chosen to run the model that uses the Self-Attention as the

attention mechanism for TSP 50 instance with a single RNN layer.

Finally, on Table 4.33 we can see the performance of the model when using Self-

Attention as the attention mechanism for the TSP 100 instance with one attention

head. We see the same patterns as the previous tables emerge. The training per-

formance stays constant across the different RNN layer configuration. The testing

performance has a big jump from the training results but the results overall remain

constant across all embeddings. We can notice in the table though that the training

time does increase as the number of RNN layer increases, perhaps requiring more time

to let the model converge or to activate the early stopping mechanism. From this

results we can conclude that the best configuration for the model when using Self-

Attention as the attention mechanism with 1 head for TSP 100 instance is the use of

a single RNN layer.
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RNN Self Attention
Embedding 1 2 3 4

1
Train R. (avg) 50.71 50.58 50.68 50.76
Test R. 45.03 45.57 45.60 45.17
Training T. 1:47:30 2:08:54 2:11:24 2:21:17

2
Train R. (avg) 50.72 50.77 50.65 50.80
Test R. 45.77 45.55 45.42 45.70
Training T. 2:05:50 3:18:06 3:04:11 2:45:31

Table 4.33: Training and Testing Results for TSP 100 with Various Embeddings and RNN
configuration when using the Self-Attention as the attention mechanism with a single head

Self-Attention
RNN layers
TSP 10 TSP 20 TSP 50 TSP 100

1 Head 1 1 1 1

Table 4.34: Summary of RNN layers for different TSP instances with Self-Attention - 1
Head.

On Table 4.34 we summarize the results of the chosen parameters for the model

when using Self-Attention as the attention mechanism for all TSP instances and any

size head. We have to make note again, that as all results remain constant when im-

plemented with different heads in the Self-Attention we therefore have only presented

the results with 1 head to simply for the reader.

4.2.6 Concluding thoughts

In this subsection, we presented the model’s performance for each type of embedding

with both attention mechanisms: Pointer Network and Self-Attention. We started

by evaluating the most optimal batch size as this parameter helps to stabilize the

training process by averaging gradients over a batch of samples, leading to improved

convergence. Smaller batch sizes can provide robust updates but increasing training

time, while larger batches accelerate training at the risk of reduced generalization. We

then continued by analyzing the epsilon value, obtaining the most optimal balance

between exploration and exploitation in order to improve the model’s performance

according to the tested attention mechanism.

While the Self-Attention often prefers a balance between exploration and exploita-

tion, the Pointer Network consistently performed better when employing solely an

exploitation approach in action selection. After, we examined the performance from

the use of either glimpses for the use of the Pointer Network or attention heads for Self-

Attention as the attention mechanism. Our findings showed that the Pointer Network

without glimpses performed better than with three glimpses, while the performance
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Instance TSP 10
Attention Mechanism Pointer Network Self Attention

Batch size 128 256
Epsilon value 0 0.3

RNN layers - 0 glimpses 1 NA
RNN layers - 3 glimpses 2 NA

RNN layers - 1 Head NA 1

Table 4.35: Summary of Parameter Configuration Selection for the TSP 10 Instance

Instance TSP 20
Attention Mechanism Pointer Network Self Attention

Batch size 128 256
Epsilon value 0 0.3

RNN layers - 0 glimpses 2 NA
RNN layers - 3 glimpses 2 NA

RNN layers - 1 Head NA 1

Table 4.36: Summary of Parameter Configuration Selection for the TSP 20 Instance

of Self-Attention remained consistent regardless of the number of heads used.

As we continue to examine and optimize each feature for each TSP instance, we

applied the previously selected features to evaluate the model in its most optimal

configuration. By identifying the optimal configuration of these parameters, the model

can be fine-tuned to achieve the best possible performance. From this process we aspire

to enhance the effectiveness and efficiency of the model individually per TSP instance.

We present a summary of the chosen parameters in Table 4.35 for the TSP 10 instance,

Table 4.36 for the TSP 20 instance, Table 4.37 for the TSP 50 instance, Table 4.38 for

the TSP 100 instance accordingly .

This parameter tuning has helped us to identify configurations that offer the best

trade-off between performance and computational resources. Particularly important

in practical such as ours as the training time and resource consumption is limited. By

recognizing the optimal configuration of these parameters, the model is now fine-tuned

to achieve the best possible performance, allowing for a more meaningful comparison

Instance TSP 50
Attention Mechanism Pointer Network Self Attention

Batch size 64 128
Epsilon value 0 0.3

RNN layers - 0 glimpses 1 NA
RNN layers - 3 glimpses 2 NA

RNN layers - 1 Head NA 1

Table 4.37: Summary of Parameter Configuration Selection for the TSP 50 Instance
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Instance TSP 100
Attention Mechanism Pointer Network Self Attention

Batch size 128 128
Epsilon value 0 0

RNN layers - 0 glimpses 1 NA
RNN layers - 3 glimpses 1 NA

RNN layers - 1 Head NA 1

Table 4.38: Summary of Parameter Configuration Selection for the TSP 100 Instance

with the established benchmark models.

4.3 Summary of performance

We’ve summarized the performance from each attention mechanism and embedding

on Table 4.39 for the TSP 10 instance, Table 4.40 for the TSP 20 instance, Table 4.41

for the TSP 50 instance, and Table 4.42 for the TSP 100 instance.

In Table 4.39 we can see that for the TSP 10 instance both best results came

from the use of the Pointer Network as the attention mechanism, specifically from

the use of embedding 1 with the use of 3 glimpses and from embedding 2 without

any glimpses. In Table 4.40 we can see that again the use of the Pointer Network as

the attention mechanism obtains the best performance with a score of 6.65 and with

the use of embedding 2. On Table 4.41 we see that the pattern continues as the best

performance is also from the use of the Pointer Network as the attention mechanism

and again with embedding 2. Finally, on Table 4.42 we see that again the use of the

Pointer Network as the attention mechanism with 0 glimpses obtains the best result,

specifically with the use of embedding 2.

Another important factor to take into account is the training times. Computa-

tional resources are limited and cost efficiency is an important factor when selecting

an approach to implement in both research and industry scenarios. As efficient re-

source management is important for us we present a summary of training times, the

highlighted times show the best results obtained from each instance, just as in the

previous summary tables. Training times are presented in Table 4.43 for the TSP

10 instance, Table 4.44 for the TSP 20 instance, Table 4.45 for the TSP 50 instance,

Table 4.46 for the TSP 100 instance accordingly.

From Table 4.43 for TSP 10 instance we can see that there is a big gap between

the training time of the experiments that used the Pointer Network as the attention

mechanism with and without glimpses, more than double the training time difference.
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TSP 10

Embedding
Pointer Network Pointer Network Self Attention

0 glimpses 3 glimpses 1 Head
1 3.90 3.70 4.67
2 3.70 3.75 4.64
3 4.24 4.65 4.61
4 3.79 4.07 4.59

Table 4.39: Summary of the performance for all embeddings and attention mechanisms on
TSP 10 instance.

TSP 20

Embedding
Pointer Network Pointer Network Self Attention

0 glimpses 3 glimpses 1 Head
1 7.02 7.59 8.67
2 6.65 6.87 8.72
3 9.97 9.39 8.46
4 7.63 7.32 8.73

Table 4.40: Summary of the performance for all embeddings and attention mechanisms on
TSP 20 instance.

TSP 50

Embedding
Pointer Network Pointer Network Self Attention

0 glimpses 3 glimpses 1 Head
1 17.83 18.25 19.13
2 17.02 18.04 19.33
3 20.73 24.21 19.44
4 23.73 18.97 19.47

Table 4.41: Summary of the performance for all embeddings and attention mechanisms on
TSP 50 instance.

TSP 100

Embedding
Pointer Network Pointer Network Self Attention

0 glimpses 3 glimpses 1 Head
1 31.63 31.76 45.03
2 30.08 30.96 45.57
3 32.78 33.04 45.60
4 32.74 34.19 45.17

Table 4.42: Summary of the performance for all embeddings and attention mechanisms on
TSP 100 instance.
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TSP 10

Embedding
Pointer Network Pointer Network Self Attention

0 glimpses 3 glimpses 1 Head
1 0:05:09 0:10:57 0:07:42
2 0:04:39 0:09:19 0:07:03
3 0:05:28 0:10:47 0:06:36
4 0:04:50 0:11:01 0:06:42

Table 4.43: Summary of Training Time for All Embeddings in the TSP 10 Instance,
highlighted in bold we can see the best performance.

TSP 20

Embedding
Pointer Network Pointer Network Self Attention

0 glimpses 3 glimpses 1 Head
1 0:11:16 0:19:09 0:16:59
2 0:12:28 0:25:45 0:16:06
3 0:14:23 0:21:56 0:17:16
4 0:10:48 0:23:30 0:14:01

Table 4.44: Summary of Training Time for All Embeddings in the TSP 20 Instance,
highlighted in bold we can see the best performance.

TSP 50

Embedding
Pointer Network Pointer Network Self Attention

0 glimpses 3 glimpses 1 Head
1 0:25:08 1:17:18 0:38:13
2 0:22:42 1:45:29 0:52:57
3 0:29:23 2:04:58 0:54:08
4 0:30:45 1:34:37 0:44:34

Table 4.45: Summary of Training Time for All Embeddings in the TSP 50 Instance,
highlighted in bold we can see the best performance.

TSP 100

Embedding
Pointer Network Pointer Network Self Attention

0 glimpses 3 glimpses 1 Head
1 1:13:35 4:58:50 1:47:30
2 1:53:36 4:00:15 2:08:54
3 1:19:17 4:57:15 2:11:24
4 1:23:05 3:17:12 2:21:17

Table 4.46: Summary of Training Time for All Embeddings in the TSP 100 Instance,
highlighted in bold we can see the best performance.
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From Table 4.44 we can see that this difference gets smaller although the general time

increase for all other embeddings remains almost again double between the Pointer

Network configurations. Table 4.45 and Table 4.46 show the same pattern in training

time increase. From all the summary tables we can also see that for TSP instances

10, 20 and 50 the Self Attention experiments have quicker times very close to those of

the use of the Pointer Network as the attention mechanism with any glimpses.

On Table 4.43 and 4.45 we can see that the best performances are the shortest

in their experiment group, while Tables 4.44 and 4.38 show the opposite. Inference

times were not reported because the evaluation of all approaches, including our own

and the benchmark methods, demonstrated negligible latency. Taking into account

when choosing the training time when choosing the optimal configuration is crucial

for efficient resource management. But balancing training times with model accuracy

is key to developing practical, high-performing models.

4.4 Results and Analysis

Table 4.47 presents the comparison of the best performance obtained from our ap-

proach and the performance obtained from the benchmark models. The average re-

wards obtained across different TSP problem sizes using our approach showed a signif-

icant difference in performance compared to the benchmark models. Notably, IBM’s

CPLEX and Gurobi optimizers outperform all other baselines across all tested TSP

instances. Our approach however, shows a consistent and considerable closeness with

the results obtained from the LKH3 model, even beating it in the TSP 100 instance.

There is a pronounced gap between the results from the LKH3 model and the

CPLEX and Gurobi model. This can be because LKH3’s heuristic methods prioritize

computational efficiency and scalability, providing near-optimal solutions quickly. In

contrast, CPLEX and Gurobi’s exact optimization techniques ensure optimal solutions

but require significantly more computational resources and time, especially for larger

instances. The disparity between the performance of the model increases as the TSP

instance increase accordingly.

From the presented performances we know that all of the best model performances

in our approach come from embedding 2, showing that it’s the most optimal embedding

for solving all of the TSP instances presented. This shows that while embedding 2 is

minimalist in design it demonstrates substantial power in capturing complex patterns

and relationships within the data. From the training times we know that our approach

increases its training time as the TSP instance increases, this can be a potential
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TSP 10 TSP 20 TSP 50 TSP 100
CPLEX 2.85 3.84 5.69 7.77
Gurobi 2.85 3.84 5.69 7.77
LKH3 3.50 6.20 15.20 30.24

Our approach 3.70 6.65 17.02 30.08

Table 4.47: Performance Comparison of Our Approach and Benchmark Models

weakness when scaling our model into greater instance sizes.

From the bigger TSP instances (50, 100) we also saw the trend of a stability in av-

erage rewards suggesting that that our embeddings robustly handle increased problem

complexity, or possibly, that this problem size represents a threshold beyond which

the benefits of different embedding strategies converge. Interestingly, for embeddings 3

and 4 with additional features, such as additional heads, don’t produce shorter route

lengths despite having greater complexity and sometimes high training times. This

shows that increased model complexity does not equal improved performance.

We can conclude that while our approach did not outperform CPLEX and Gurobi,

it demonstrated competitive results by coming very close to the performance of LKH3.

This proximity to LKH3, a well-regarded heuristic solver for TSP, highlights the po-

tential of our method. The promising results suggest that, with further refinement

and optimization, our approach could become a viable alternative.
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Chapter 5

Conclusion

In this study, we’ve explored the application of a DRL algorithm with architecture

modifications to solve the TSP, a classic combinatorial optimization problem that

has significant implications in fields like logistics and network design. Our approach

used the Actor-Critic framework, enhanced by various embeddings and two attention

mechanisms and an early stopping mechanism. The experiments were structured to

identify the most optimal parameter combination, aiming to optimize the model’s per-

formance and training efficiency. The Pointer Network and Self-Attention mechanisms

were tested with different embeddings across TSP instances of varying sizes (10, 20,

50, and 100).

In Chapters 1 and 2 we presented some of the latest directions taken with Reinforce-

ment Learning in the context of solving complex combinatorial problems, specifically

for the TSP. Current DRL approaches have experimented with different architectures

in the hopes of obtaining better results than heuristic methods which can help us

understand which features are best to implement to obtain more accurate results in a

shorter time and with varying instance sizes.

From the experiments and results from Chapter 4 we explored the implications of

different attention mechanisms where the Pointer Network performed better than Self-

Attention as the attention mechanism in the model. The experiments highlighted the

nuanced trade-offs between different parameter settings. We can say specifically that

embedding 2 emerged as the most consistently strong performer, particularly with the

Pointer Network.

We presented the impact of the batch size as smaller batch sizes (64) often resulted

in shorter training times but showed higher variability in results. While larger batch
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sizes (128, 256) generally improved stability and performance but increased training

times significantly. For the TSP 100 instance with Pointer Network specifically, batch

size 128 balanced performance and training time well.

During the exploration of the most optimal epsilon values we observed that lower

epsilon values (0) tended to produce better results for the Pointer Network, emphasiz-

ing the importance of exploitation in this context. Higher epsilon values (0.3) improved

the performance of Self-Attention mechanisms by encouraging exploration. From the

experiments with the amount of RNN layers we discovered that the number of RNN

layers had a notable impact on performance. For example, 2 RNN layers generally

improved results for configurations with 3 glimpses in the Pointer Network. However,

single-layer RNNs often sufficed for configurations of the Pointer Network without

additional glimpses.

The use of the Self-Attention as the attention mechanism showed stable perfor-

mance across different RNN configurations, with 1 RNN layer being generally suffi-

cient, yet it never produced better results than those from Pointer Network. Self-

Attention mechanisms generally had quicker training times compared to Pointer Net-

work with 3 glimpses, making them more resource-efficient. Finally, in general we

saw an increase in training times with higher batch sizes and more complex RNN

configurations.

In conclusion, this thesis has explored the application of DRL techniques to solve

the TSP using advanced attention mechanisms and a series of embeddings for encoding.

Through a comprehensive series of experiments, we identified optimal configurations

for batch size, epsilon values, RNN layers, and attention heads. The results demon-

strated that the Pointer Network, particularly without additional glimpses, consis-

tently outperformed other configurations, while the Self-Attention mechanism exhib-

ited stable performance across various TSP setups. Despite our approach not surpass-

ing established solvers like CPLEX and Gurobi, it closely matched the performance of

LKH3, demostrating its potential. We hope that our findings have contributed valu-

able insights into the development of efficient and effective deep reinforcement learning

models for combinatorial optimization problems, opening new avenues of research.
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Acronyms

A-C

Actor-Critic

AI

Artificial Intelligence

AM

Attention Mechanism

CNN

Convolutional Neural Network

DL

Deep Learning

DRL

Deep Reinforcement Learning

LSTM

Long Short-Term Memory

ML

Machine Learning

NLP

Natural Language Processing

NN

Neural Network

PN

Pointer Networks
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ACRONYMS

RL

Reinforcement Learning

RNN

Recurrent Neural Network

TSP

Travelling Salesman Problem

VRP

Vehicle Routing Problem
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