
Leiden University

ICT in Business and
the Public Sector

Contributing to open-source software projects:

Risks and risk mitigation strategies for companies

Okke Moison
s1814702

April 23, 2024

First supervisor: Dr. W. Heijstek
Second supervisor: Drs. J.B. Kruiswijk

MASTER THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Abstract

Introduction

Open-source software projects are widely used by companies. However, those
companies do not always contribute to these projects. Even companies that
use a project extensively and develop software to improve it do not always
contribute that software. While prior research has found benefits and challenges
to contributing, no research has been performed specifically looking at the risks
and risk mitigation strategies for contributing to open-source software projects
that are not owned or controlled by the company that contributes. Addressing
this gap in the literature can give companies the necessary understanding of
these risks, strategies to mitigate those risks and the tools to contribute to
open-source projects with confidence.

Methodology

Fourteen semi-structured interviews have been conducted with industry experts.
These experts range from software developers who work with and contribute to
open-source projects to managers who make decisions on open-source policy
within their company. They work with different types of open-source software
and are employed at companies both small and large. In accordance with the
grounded theory approach, the interview transcripts have been coded in two
rounds to generate the theory presented in the results.

Results

Nine risk categories emerged from the interviews: brand image damage, rejected
contributions, financial, intellectual property, licenses, security, sustainability,
business customers and not contributing. These categories are each divided
into sub-risks. For most of these, one or more risk mitigation strategies have
been found. These are explained in detail, and for every risk category its risks
and corresponding mitigation strategies have been visualised.

Discussion

Not contributing code that has been developed for open-source projects and
instead maintaining it internally, emerged as one of the biggest risks surround-
ing open-source development. Following this, the risk that contributions by
the company are rejected also has a high impact. Other risks had less impact,
or were found to have risk mitigation strategies that reduced those risks sig-
nificantly. Risk mitigation strategies that were found to have an impact on
multiple risks, or on overall risk reduction, were clear communication internally
and with the open-source communities, creation of policy supported by tool-
ing and education of employees and implementing an internal review process of
contributions.



Conclusion

In practice, the results can be used to draft policy for contributing to open-
source software projects. The general mitigation strategies can form the basis
for this. With the most impactful risk categories in mind, along with the fact
that not contributing code that has been developed usually carries a large risk
as well, a well-rounded policy can be developed. Other risks, while potentially
harmful still, have a lower impact or apply to certain companies to a lesser
extent, and should be considered on a case-by-case basis.

Future work could focus on understanding the exact costs of developing code
for open-source projects and not contributing it and on how to build influence
in communities. Specific risks that are interesting for future research are the
sustainability of small projects and the reasons that open-source maintainers
reject contributions.

3



Contents

1 Introduction 6
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Consuming open-source software . . . . . . . . . . . . . . . . . . 6
1.3 Contributing to open-source software . . . . . . . . . . . . . . . . 6
1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9
2.1 Open-source in practice . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Benefits of Contributing . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Reduced Costs . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Complementary Services and Products . . . . . . . . . . . 10
2.2.3 Leverage External Knowledge and Talent . . . . . . . . . 10
2.2.4 Employees Satisfaction and Recruitment . . . . . . . . . . 11
2.2.5 Increase Influence . . . . . . . . . . . . . . . . . . . . . . 11
2.2.6 Increased Learning . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Highly Restrictive Licenses . . . . . . . . . . . . . . . . . 12
2.3.2 Restrictive Licenses . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Permissive Licenses . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Risks of Contributing . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Intellectual Property . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Community . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Brand Image . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.5 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.6 Financial . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.7 Not Contributing . . . . . . . . . . . . . . . . . . . . . . . 14

3 Method 16
3.1 Qualitative Research Method . . . . . . . . . . . . . . . . . . . . 16
3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Participant Selection . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Results 18
4.1 Chapter overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Interviews and Coding . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Contribution Strategies . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Brand Image Damage . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Rejected Contributions . . . . . . . . . . . . . . . . . . . . . . . . 25
4.6 Financial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 Intellectual Property . . . . . . . . . . . . . . . . . . . . . . . . . 32

4



4.8 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.10 Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.11 Business Customers . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.12 Not Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.13 General Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Discussion 53
5.1 Interpreting the Results . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Answering the Research Question . . . . . . . . . . . . . . . . . . 58

6 Conclusion 60
6.1 Application in practice . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A Interview Questions 65

B Codebook 68

List of Figures

1 Mitigation strategies for the causes of brand image risks . . . . . 24
2 Mitigation strategies for the causes of rejected contribution risks 28
3 Mitigation strategies for the causes of financial risks . . . . . . . 31
4 Mitigation strategies for the causes of intellectual property risks . 34
5 Mitigation strategies for the causes of license risks . . . . . . . . 37
6 Mitigation strategies for the causes of security risks . . . . . . . . 39
7 Mitigation strategies for the causes of sustainability risks . . . . 41
8 Mitigation strategies for the causes of business customer risks . . 45
9 Mitigation strategies for the causes of the risks of not contributing 49
10 General risk mitigation strategies . . . . . . . . . . . . . . . . . . 52

List of Tables

1 Interviewee descriptions . . . . . . . . . . . . . . . . . . . . . . . 19

5



1 Introduction

1.1 Background

Open-source software (OSS) is an important part of the software landscape.
Popular projects, such as Linux, Python and Mozilla Firefox, have gathered
large user bases. Although OSS started as a fringe movement in the software
community, it has become a professionalised area over time (Fitzgerald, 2006).

1.2 Consuming open-source software

For companies, using open-source software offers some valuable benefits. The
fact that OSS is often free to use and that users can read, change and redis-
tribute the source code are some of the obvious benefits these products provide
(Morgan & Finnegan, 2007; Open Source Initiative, 2007). Other, perhaps less
obvious, benefits of consuming mature OSS products include: Potentially higher
reliability and security when compared to proprietary software (AlMarzouq et
al., 2005; Morgan & Finnegan, 2007) and increased collaboration and innova-
tion (Andersen-Gott et al., 2012; Lin̊aker & Regnell, 2020; Morgan & Finnegan,
2007; Munir et al., 2016). Additionally, research by Nagle (2019) found that a
company can increase its productivity by increasing the amount of free OSS it
uses, if those projects complement the existing software ecosystem of the com-
pany. However, companies do need the internal capabilities to make use of the
benefits open-source software projects offer (Morgan & Finnegan, 2007; West &
Gallagher, 2006).

There are some risks and disadvantages to consuming OSS. Whereas pro-
prietary software vendors often offer technical support as part of a software
purchase, open-source projects rarely provide a way to acquire support (AlMar-
zouq et al., 2005; Morgan & Finnegan, 2007). OSS projects may not have a
roadmap or a clear release schedule, making it difficult to understand the de-
velopment direction of the software (Morgan & Finnegan, 2007; Munir et al.,
2016).

1.3 Contributing to open-source software

One of the unique characteristics of open source software is that it is possible
to change the source code. In fact, it is possible to change the code and then
donating this change to the project. This is called “contributing”. If the per-
son or organisation in charge of the project find the contribution useful and
according to their quality standards, it may be integrated in the source code
of the project. This has several benefits for a company. For example, any
contribution that is accepted by an open-source project will be maintained by
other developers working on that project (Andersen-Gott et al., 2012; Kendall
et al., 2016; Munir et al., 2016). Additionally, by contributing a company can
become a more attractive employer and it can scout new talent in open-source
communities that it is active in (Lerner et al., 2006; Lin̊aker & Regnell, 2020).

6



1.4 Problem Statement

Contributing to open source projects does comes with risks and challenges.
These risks include, among other things, intellectual property loss, misalignment
between the project direction and the company needs (Lin̊aker & Regnell, 2020;
Munir et al., 2016), and additional investment of resources (Butler et al., 2019).
Although there has been research into what risks exist around contributing to
open-source software, there has been little research into ways to mitigate those
risks. Lin̊aker and Regnell (2020) do propose mitigation strategies for the risks
they found, but this is limited to at most a few sentences per risk. As they
note in their conclusion: more validation and generalisation is needed to create
a framework on this topic. Additionally, as Butler et al. (2019) mention, most
research focuses on a scenario where the company has a controlling interest in
- or even ownership of - the project they contribute to. This means they could
more easily reduce some risks, as they have more influence over the project. On
the other hand there is limited literature about the scenario where a company
does not have this influence. In this case a company contributes to a project
that they do not own and where they do not have a controlling interest in the
project. Although it is possible that these companies have an important position
in the project and can exert influence, they cannot steer the direction of the
project by themselves (Butler et al., 2019; Lin̊aker & Regnell, 2020). Research
that does take this scenario into account (Lin̊aker & Regnell, 2020; Lundell et
al., 2021; Munir et al., 2016) combine it with the scenario where the company
does have a controlling influence, so it does not look into it in isolation. Butler
et al. (2019) do do that, but they focus mostly on work practices developers use
when they contribute, not on risks and challenges.

Here we find a gap in the literature: there is little knowledge about risk
mitigation strategies for companies that contribute to projects that they do not
own or control.

1.5 Objectives

The objective of this thesis is to create an understanding about risk mitigation
strategies for contributing to open-source software projects. As mentioned be-
fore, specifically those projects that are not owned by the company itself will
be considered. If such strategies are found, companies that work with open-
source software can decrease the risk of contributing. Consequently, they may
contribute code to projects that would otherwise have been kept proprietary.

To reach this objective, the research question will be:

How can companies mitigate the risks of contributing to open-source software
projects they do not control?

7



1.6 Thesis Overview

In this chapter, the topic was introduced, the objectives were explained and
the research question was presented. Chapter 2 will cover earlier research into
this topic to support the research question and show where it fits in the field.
Additionally this chapter will feature a more in-depth look into the benefits
and risks in OSS. Chapter 3 will cover the method through which the research
question will be answered. Chapter 4 will show the results of the performed
research and these discoveries will be discussed further in Chapter 5. Finally,
the thesis will be concluded in Chapter 6.

8



2 Related Work

In this section, an overview is given on how open-source software works in
practice. Then, the benefits and risks around open source software will be
discussed. After that the benefits of contributing to OSS are explained. Finally,
the risks around contributing, mentioned first in chapter 1.4, are discussed in
more detail.

2.1 Open-source in practice

An open-source project can be started by anyone, whether that is a single per-
son, a group of people or a company. The ones who started the project are
usually the core developers (or “maintainers”) for a project: they have final say
about the source code and the direction of development. If the project is useful
to others, a community can form around it. All users – even those who only use
the software and do not contribute – are seen as members of the community.
Some of those, the active users, will report bugs and issues with the software and
suggest new features. Some of the active users may become developers if they
have the technical skills for it. They fix bugs and create new features, which
they make available to the core developers. The core developers can then decide
whether or not to add those contributions to the source code. Some developers
may move on to become core developers in time (AlMarzouq et al., 2005).

Although the details may differ for each project, the contribution and release
process is often similar to the following (AlMarzouq et al., 2005; Butler et al.,
2019):

1. A request is made for a new feature. It is discussed in the community and
by the core developers.

2. When a consensus about the requirements is reached, a developer – po-
tentially the requester, but not necessarily – implements the feature along
with tests and other requirements set by the project rules.

3. The developer opens a pull request so the core developers know the feature
is implemented. They will then review and test the code.

4. If changes need to be made, steps 2 and 3 will be repeated until the code
is deemed acceptable by the core developers. If so, it is merged with the
development build of the software.

5. Finally, the feature is included in the next release package of the software,
along with any other new features or bug fixes added to the development
build.

Bug fixes are usually handled in a similar way, but usually require less dis-
cussion.

9



2.2 Benefits of Contributing

There are many benefits to contributing to open-source software projects. Un-
derstanding these benefits is helpful when considering the risks: without a reason
to contribute in the first place, looking at the risks is not very useful.

2.2.1 Reduced Costs

When a piece of software is contributed to a project, it may be added to the main
code base. If this happens, the company that contributed this piece of software is
no longer responsible for maintaining it. From that point on, the core developers
will maintain it (Andersen-Gott et al., 2012; Butler et al., 2019; Kendall et al.,
2016). On the other hand, when a feature is kept private, the maintenance
efforts and new releases of the project from the community cannot take that
feature into account. Consequently, any new release may break compatibility
with that feature, incurring unexpected cost of updating the code to fit with the
new release. If instead this feature had been contributed and integrated into the
project, it would have been compatible with the new release as it would have
been part of the code base during the development and maintenance effort by
the community (Butler et al., 2019; Kendall et al., 2016).

2.2.2 Complementary Services and Products

Although it is hard to generate revenue from an open-source project directly –
the source code is freely available after all – a strategy that can be employed
is to offer complementary products or services. A common example is to offer
consultancy or technical support services for a project. A company could also
decide to develop extensions or plug-ins for an OSS project, which – if the
open-source license allows for it – it would be able to keep proprietary and sell.
Any other company can offer these services as well, with a low barrier to entry
as they have access to the same information. An advantage in knowledge and
experience gained through contributing to the project can lead to a competitive
advantage over others (Andersen-Gott et al., 2012; Lerner et al., 2006)

2.2.3 Leverage External Knowledge and Talent

Generally, when code is contributed to a project it is reviewed by other devel-
opers in the community (Butler et al., 2019; Fitzgerald, 2006). This can be
valuable feedback, because core developers are experts on the project. This
feedback is not available if code is not contributed. Additionally, anything that
has been contributed is open to others in the community to extend and improve
upon. This can lead to more value, without additional cost or effort (Andersen-
Gott et al., 2012).

10



2.2.4 Employees Satisfaction and Recruitment

Lin̊aker and Regnell (2020) found that contributing to OSS projects improves
branding towards employees. Both for current employees and for attracting new
employees, being able to contribute to open-source projects is a benefit. Being
active in open-source communities is not only useful to attract employees, it can
also be a useful tool for scouting of new talent (Lerner et al., 2006).

For employees, there are multiple benefits to contributing to open-source
software. Employees like it when the code they worked on will stay useful and
in use. Contributing it to an open-source project ensures the community can
take advantage of it, whereas it may be deprecated or removed from the prod-
uct portfolio of a company when it is no longer deemed useful (Kendall et al.,
2016). The fact that open-source contributions are usually peer-reviewed and
the contributor receives feedback, offers developers the opportunity to learn and
improve their skills, which motivates them (Oreg & Nov, 2008). Another motiva-
tion for contributing is the opportunity to build a reputation in the open-source
community (Oreg & Nov, 2008). Finally, employees may want to contribute out
of altruism or because they feel feel it is the right thing to do to give back to the
open-source projects they use for free (Lin̊aker & Regnell, 2020; Oreg & Nov,
2008).

2.2.5 Increase Influence

Engaging with the community and contributing regularly can increase the in-
fluence of a company in the project. That company may then influence the
direction of the project and the priority of feature development (AlMarzouq
et al., 2005; Kendall et al., 2016).

2.2.6 Increased Learning

Companies can learn from being are actively involved in the development of
open source projects. Besides the technical skills developers can pick up, a
deeper understanding of the software itself can be acquired (AlMarzouq et al.,
2005).

2.3 Licenses

Open-source software projects almost always have a licence attached to them.
This license prescribe what users can and cannot do with the source code. Al-
though an depth explanation of all licences that are in use is outside the scope
of this project, the most common ones will be discussed. The different types
of open-source licenses can be divided into three categories: highly restrictive
licenses, restrictive licenses and permissive licenses (Lerner & Tirole, 2005).

11



2.3.1 Highly Restrictive Licenses

One of the earliest open-source licenses is the GNU General Public License
(GPL). This license is known for its stipulation that the source code should be
made available for any distribution, and that any derived work may only be
distributed under the same license (De Laat, 2005).

This first clause, that the source code should be made available for any dis-
tribution of the software under the license, makes GPL restrictive (Lerner &
Tirole, 2005). This feature of open-source licensing is sometimes called ”copy-
left”, as a counterpart to copyright. (De Laat, 2005; Lerner & Tirole, 2005). It
should be noted however, that this does not mean that all changes should be
made publicly available: only the recipients of the software have to receive the
source code (Henkel, 2006). This means that changes that are distributed only
for internal use in a company can be kept private.

The second clause, that derived works should be distributed only under the
same license, makes GPL a highly restrictive license (Lerner & Tirole, 2005).
This clause means in effect that any changes made to the source code under
GPL that is then distributed, should be distributed under GPL as well (De Laat,
2005). It is sometimes referred to as a ”viral” license. The reach of this feature
is broad: it does not only cover changes to or extensions of the original program,
it also includes all programs that link to the software (Lerner & Tirole, 2005).
That means that under the terms of the license the source code of proprietary
software can be forced to be revealed if it links with a library under GPL.

2.3.2 Restrictive Licenses

Restrictive licenses are licenses that do have copyleft clauses, but that have a
weaker viral clause, or no viral clause at all (Lerner & Tirole, 2005). Restrictive
and highly restrictive licenses are sometimes called weak and strong copyleft
licenses respectively. Two well-known licenses in this category are Lesser GPL
(LGPL) and the Mozilla Public License (MPL).

The LGPL is a variation on the GPL. It permits the distribution of software
that links to LGPL software without it needing to carry an LGPL license itself
(De Laat, 2005; Lerner & Tirole, 2005).

The MPL goes a step further: while modifications to source files under
the MPL should be made available under similar copyleft rules as the (L)GPL
licenses, not all modifications have to be opened. As long as modifications are
kept in separate files (and the original source code under the MPL license is
made available) the separated files do not have to be licensed under MPL and
can be kept proprietary (De Laat, 2005).

2.3.3 Permissive Licenses

Other licenses, that are neither viral nor copyleft, are called unrestrictive or
permissive licenses (Lerner & Tirole, 2005). The most common ones are the
Berkeley Software Distribution License (BSD), the Apache License and the MIT
License (De Laat, 2005; Lundell et al., 2021).

12



These licenses have in common that they allow any use of the software,
including but not limited to modifying, distributing and selling the software,
without the copyleft or viral conditions. This means that the source code of
software licensed under a permissive license can be used in a proprietary product
without having to publish any source code (De Laat, 2005).

2.4 Risks of Contributing

As discussed in chapter 1.4, contributing to open source software projects comes
with risks. There may be differences in the type or severity of risks between OSS
projects that are owned or controlled by the company, versus projects where the
company does not have such control. Logically, having influence in a project
reduces some risks, while owning a project may come with additional risks. As
this thesis is concerned with the scenario where a company does not control a
project, this will be the focus of this chapter. However, differences in severity
and types of risks – if known – will be mentioned.

2.4.1 Intellectual Property

There are multiple risks concerning intellectual property. One risk is that con-
tributing some feature damages the competitive advantage of the company, be-
cause competitors can use it as well. Deciding what can be contributed and
when is thus an important part of the contribution process (Lin̊aker & Regnell,
2020; Munir et al., 2016). Giving away sensitive or patentable intellectual prop-
erty is a risk as well. Others may abuse this by starting lawsuits, so building
a defensive patent portfolio is important to protect the company against that
(Lin̊aker & Regnell, 2020).

2.4.2 Community

There is a risk that the direction the company wants to go in with the open
source project does not align with the direction the community wants the project
to go. Consequently, features the company develops may not get accepted and
integrated in the project (Lin̊aker & Regnell, 2020). This forces the company
to maintain an internal fork or to abandon the features they want.

For companies that do not only contribute to projects of others, but also
release their own projects as open-source, there is a risk that no community is
formed. Of course a company can invest in garnering attention for the project,
and if the software is useful and of high quality this risk is reduced, but there
is always a chance that there are not enough people interested in contributing
(AlMarzouq et al., 2005). This is not of immediate concern of companies that
only contribute to projects and do that do not start their own.

2.4.3 Brand Image

Contributing to OSS may pose a risk to the brand image of the company. It
is possible that software that they released is used for nefarious purposes, as

13



any use is allowed under open source licenses, which may reflect poorly on the
company (Lin̊aker & Regnell, 2020). This risk is higher for projects that the
company owns, as its name is more clearly attached to it.

2.4.4 Security

As with any software development process, introducing security problems is a
risk. However, because the source code is then contributed and opened, those
issues may be exposed. Additionally, it is possible to expose valuable data by
accidentally sharing, for example, a database key (Lin̊aker & Regnell, 2020).

2.4.5 License

There are many different open-source licenses and some of them can be com-
plicated, so not complying to a license is a risk (Lin̊aker & Regnell, 2020). As
discussed in Chapter 2.3, compliance to licenses often revolves around distri-
bution of software and whether or not source code should then be opened as
well. Consequently, the risk is using code from an OSS project under a (highly)
restrictive license when it is intended to keep the newly developed software
proprietary: the proprietary code can then be forced to be distributed as well.

2.4.6 Financial

There may be more costs involved when contributing to open-source software
when compared to keeping code internal. Open-source projects expect code that
fits with their source code, so anything that is contributed should be generalised
(AlMarzouq et al., 2005; Lin̊aker & Regnell, 2020). Additionally, there may
be multiple rounds of code review from the project before a contribution is
accepted, leading both to delays in integration and more development hours
(Butler et al., 2019). Adjusting the development process of the company to this
review process may be required, leading to even higher costs (AlMarzouq et al.,
2005).

2.4.7 Not Contributing

Although contributing may come with additional costs, not contributing brings
the risk of additional costs as well. When a feature is contributed and accepted,
it is integrated into the source code of the project and will be included in the
maintenance efforts of the community. This means that any new releases will
take this feature into account as well. On the other hand, if it is not contributed,
the task of maintaining falls on the company. Additionally, if the open source
project releases a new version, the company may have to expend extra effort to
make sure the feature still works with the new release. All this can lead to an
increase in complexity and cost for the company (Butler et al., 2019; Lin̊aker &
Regnell, 2020).

14



Additionally, if there are not enough contributors for a project, the health
of the community may decline. Not contributing is thus a risk to the health of
the project (Lin̊aker & Regnell, 2020).

15



3 Method

3.1 Qualitative Research Method

To answer the research questions posed in chapter 1.5, a qualitative research
approach was chosen. Specifically, the grounded theory method will be used
to perform this research, with data collection through semi-structured expert
interviews. The grounded theory approach aims to construct a substantive
theory which is applicable in practice. Through analysis of the data – in this case
by coding the interviews and comparing the data found in different interviews
– this theory emerges (Merriam & Tisdell, 2015).

3.2 Data Collection

Semi-structured interviews are a data collection method to gather structured
data, while allowing for flexibility to divert from the script for in-depth discus-
sion with interviewees. This fits the goal of this study well, since the subject of
risk mitigation is a complex issue (Kallio et al., 2016).

A case study approach can provide more in-depth data compared to a semi-
structured interview approach. However, interviews have the advantage of gath-
ering a broader view on the risks and mitigation strategies that exist, as more
different companies can be reached.

Another option for data collection would have been through a survey. Al-
though this would allow for more participants and thus possibly an even broader
view on the subject, it may also lead to more shallow answers. Here the option
to easily ask follow-up questions is a benefit of the interview format over a sur-
vey format. It ensures that answers obtained are in-depth enough to provide
useful data.

Considering these arguments, semi-structured interviews were chosen for the
method of data collection. For this topic it provides a good balance between a
broad view and in-depth data.

The interview guide and its justification can be found in Appendix A.

3.3 Participant Selection

To gather valuable data, selection criteria for participants were defined as fol-
lows: Participants should contribute to open-source software projects not con-
trolled by their company, or they should be involved with such projects on the
management or policy level. Participants who work directly with open-source
are expected to understand the operational risks of contributing well. Those
who are involved with contributing to open-source on the management or pol-
icy level are expected to have knowledge of business risks involved with OSS.

Participant selection was done through random sampling. Two strategies
were employed to source participants. Discord – a popular social media and
communication platform – hosts multiple servers for open-source projects 1.

1https://discord.com/open-source

16



Here, developers and users can discuss the project, talk about new features and
report bugs they encounter. In these servers a message was sent explaining the
research goal and asking for participants. Only servers for projects with business
use cases were approached. People who were interested were asked about their
fit to the selection criteria and invited for an interview if they did.

The second approach was through LinkedIn messages. Here, a search was
performed with the terms “open source” and “open source software”. From the
results, persons with job titles related to open-source software were approached
to join for an interview. Similar to the approach through Discord, their fit to
the selection criteria was assessed before an interview invite was sent.

Additionally, snowball sampling was attempted, but yielded no results.

3.4 Coding

Coding of the interview transcripts will be done in two rounds. In the first round,
open coding is applied to mark as much potentially interesting data as possible.
During this process, categories and sub-categories will emerge. Anything that
may be of value is coded and categorised. Afterwards, selective coding is applied
to refine the categories and sub-categories. Only those categories useful for
development of the theory remain. This way, no useful data is missed, while
leaving only the interesting data for theory development.

17



4 Results

4.1 Chapter overview

In this chapter, the results of the applied method will be discussed. First,
information on the interviews will be given, followed by a short explanation of
different ways the companies that the participants work for contribute. Then
each risk and its mitigation strategies are presented, and finally the overall
results will be discussed.

4.2 Interviews and Coding

Fourteen interviews were performed, with an average length of 45 minutes. In
Table 1 relevant information about the interviewees is shown.

In the coding process of the interviews that were conducted, nine categories
of risks were found. The code book including code frequency can be found in
Appendix B.

4.3 Contribution Strategies

In general, when contribution to open-source software is discussed, it is implied
that this entails new features or bug fixes. However, there are different ways
to contribute. Reporting bugs that are found in the project is one way to do
that. Especially if a company does not have the time or knowledge required to
fix a bug by themselves, an extensive bug report is a valuable way to help out
maintainers.

Another way to contribute without code is with documentation. Whether
it is fixing mistakes, updating the text for new releases or including details
that are missing, documentation contributions can be done by anyone with an
understanding of the software.

Although open-source software is usually free, people do spend time and
resources developing it. Some of this work is done as part of a paid job for a
company, but most work – especially on smaller projects – is still done voluntar-
ily. Supporting developers of projects with grants or sponsorships helps these
projects grow and persist. Joining or hosting events and conferences centred
around an open-source project or open-source in general is a way to contribute
as well. Financial support could also be used as an incentive for open-source
developers to work on features that the company might need.

18



Interview Job title Company Main OSS Development Source

1 Senior back-end engineer Software consultancy Various Discord
2 Software developer Software firm Web development software Discord
3 Technical lead Embedded software firm Embedded Linux Discord
4 Owner & software developer Startup software consultancy iOS app development software Discord
5 Owner & consultant Startup software consultancy iOS app development software Discord
6 Senior software engineer Open-source software firm Linux and LDAP Discord
7 Lead contributor support Open-source software firm DevOps software Discord
8 Senior software engineer Open-source software firm Web development software Discord
9 Open-source software engineer Software firm Various LinkedIn
10 Open-source engineer Open-source software firm App development software LinkedIn
11 Engineering manager Big Tech firm Linux based operating system LinkedIn
12 Open-source engineer Open-source software firm Database software LinkedIn
13 Software consultant Freelance Various LinkedIn
14 OSPO program manager Big Tech firm Various LinkedIn

Table 1: Interviewee descriptions

19



If a company wants a certain feature added to the project, but does not
want to develop it themselves, they could hire a third party to do so. The third
party can then contribute the feature to the project. It is also possible for a
company to hire a third party for development and then contribute the features
themselves.

If a company is an active contributor to a project, there are ways to increase
involvement in a project. As each contribution has to be reviewed, a company
can choose to get involved with this process and review the code of other con-
tributors. It can also help in other maintenance tasks that are necessary in large
software projects.

Another way to get involved is by engaging with the community. This can
involve discussion about the direction of the project and feature and release
planning. It may be desirable to attain an official position as core developer
to exert influence in these discussions. Engaging with the community can also
involve offering technical support and answering question from other developers
working on the project, or from users who need help understanding how the
software works.

4.4 Brand Image Damage

Contributing to open-source software projects can lead to damage to the brand
image of the company. There are two aspects to this risk. The first is conduct of
employees in the community and the quality of their work. The second aspect
is on the policy side. It concerns the types of projects that the company decides
to contribute to, or whether it decides not to contribute.

Because work and communication in open-source is public, there is a risk
that the brand image is damaged by unprofessional conduct from employees.
As employees usually contribute with an account that is connected to their
company, or at least carries their own name, it is trivial to connect them to the
company they work for. So if an employee does something that is not acceptable
it can reflect poorly on the company. Five interviewees saw this as a risk. There
are different ways in which this risk can occur. As the discussion in open-source
communities is public, any comments that are made by an employee can lead
to damage to the company brand:

“You do need to be respectable and professional with people, espe-
cially within open-source because those discussions are even more
public.”

As one interviewee noted, improperly engaging with questions in the com-
munity or on the mailing list of projects can pose a risk as well. Incorrect or
incomplete answers reflect poorly on the employee and thus on the company:

“I have seen people that just want exposure and they just answer
whatever pops into their head, just for their name to be out there, but
I try to be careful with that because I want to maintain our expertise
level.”

20



Four interviewees talked about the importance of professional communica-
tion in open-source communities. Creating awareness among employees that
they have a public facing role where they are seen as representatives of the
company can help in this aspect:

“(...) and just trying to make more people aware that this is a
thing: that you represent yourself, that you represent your company
in these spaces and you want to ensure that you are behaving in line
with the expectations set by the community.”

Employees might not have knowledge of the specific code of conduct set by
communities where developers are active or even the general expectations in
open-source. Offering education on these topics can then reduce the risk of
misconduct in open-source communities:

“The best way as a company to reduce that risk is to educate em-
ployees how to behave publicly, it is not really different than public
PR training or speaker training.”

Similarly, four interviewees found that low quality contributions or contri-
butions that introduce security issues can be a risk factor to the company.
Open-source projects expect contributions to be of a certain standard and often
have requirements around style and the process of contributing as well. Conse-
quently, not delivering contributions that are up to standard can lead to a poor
brand image in the community. However, four other interviewees did not agree
with that. They found that low quality contributions – at least in some commu-
nities – are an expected part of open-source development. In their experience,
the open-source communities they worked with were very lenient and under-
standing about mistakes. Contributions to projects that are of poor quality are
rejected without it reflecting poorly on the company:

“Some [communities] feel like: everyone makes mistakes, it is not
really an issue.”

One interviewee had not found any issues with personal mistakes being con-
nected with the company, as they found that open-source communities only
looked at the individual:

“One thing that I really like in the open source community is that
they look to you as individuals, not as a company. So the company
that’s behind you is your employer, but they don’t treat you as your
employer.”

To reduce the risk of brand image damage because of code that is not up
to the standards the community expects, one interviewee noted the value of
educating developers on the importance of following community specific stan-
dards. Two other interviewees said they thoroughly review the code internally

21



before making it public. Although there is a review process within the commu-
nity when code is contributed, the inclination to lean on that to find mistakes
can lead to damage to the brand. Testing and reviewing the code beforehand
reduces the risk:

“So I do consider that you need to be careful and try to, you know,
be respectful with their standards, take the time and read what they
ask and make sure the code is properly indented, that it follows their
standards and that it is properly tested and stuff like that.”

Two interviewees noted that holding employees accountable for their actions
helps to reduce this risk. Though penalties may not be appropriate for minor
issues, having a discussion on improper conduct in open-source communities can
help in creating a better understanding of how to behave in these public spaces.

On the policy side, brand risk can also occur when a company contributes
to a dubious project, as three interviewees spoke about. If a project, or the
leadership of a project, becomes controversial – whether that is due to the type
of software, certain business ties or unacceptable statements online – it can
reflect poorly on the companies that contribute to that project. Sponsorships
or other monetary contributions are particularly susceptible to this risk, as the
name and logo of sponsors are usually visible on the website of the project. This
makes the connection from a company to the project immediately clear, even
to those who do not dive into the code contribution history of the project.

Two interviewees found vetting projects before contributing is a good way to
mitigate this risk. This process should include analysis of the quality standards
of the project, but also a look into the project owners and important developers
in the community. This is not a one-and-done process either. Potential issues
with persons in the community can emerge over time. It may be worth it to
follow the project, project owners and important contributors on their social
media platforms so the company does not get surprised if someone involved
starts behaving in an unacceptable way. As one interviewee explained about
the process of their company when choosing a project to sponsor or contribute
to:

“We are very fond of standards: code coverage, quality control,
stuff like that, and projects we sponsor need to comply to that as
well. (...) We also look at: who is the person or the group behind
this [project]? How are they on social media? (...) For each project
we look at: what is this project? How does it work? What kind of
people are involved? Which people are associated with it?”

This risk may even occur if an employee contributes to such a project on
their own time:

“So the risk for us in terms of brand is that if someone went and
contributed to software that is harming people, then yes, we do have
a problem.”

22



However, it may not be a viable solution to restrict the projects an employee
can contribute to. As another interviewee said:

“So there is the people component and I think that’s always going
to be there because you can’t control what people do and it’s also: we
want people to have the freedom to be themselves too.”

A strategy to reduce the risk of employees contributing to controversial
projects on their own time is not immediately clear. It may be a solution
to incorporate education on vetting projects for these types of issues into the
communication education mentioned before.

Another risk to the image of a company is not contributing back to projects
(this topic is discussed in more detail in Chapter 4.12). A company that uses
a project and keeps all their development for it private may be frowned upon
by the community. This is especially true if the company makes money off the
project:

“If you’re monetising from an open source project you are expected
to contribute back. (...) If you continue that pattern [of not con-
tributing] eventually the community might start frowning upon it,
they may start being less responsive to you, so if you ever need help
with something or you ever need something upstream or you want to
contribute, they might start being less responsive.”

Although the risks mentioned in this chapter can influence public opinion
of the company, the consequences are strongest in the open-source communities
themselves. As the interviewee spoke about in the quote above, the community
may be less helpful to the company, which may endanger the benefits open-
source offers. Additionally, potential employees may think a company is less
attractive if it is controversial in the open-source community:

“The brand damage is more towards finding new employees”

Six interviewees went a step further, they found that contributing to open-
source projects was almost always a benefit to brand image:

“I think from my experience, my perspective, generally contributing
back to open source only ever improves a brand image. Especially if
you’re a tech company contributing back to open source projects. ”

They believe the fact that the company is active in open-source and wants
to contribute is appreciated enough to offset any mistakes that are made. This
is good marketing towards business customers, which will be discussed in more
detail in Section 4.11. It is also appreciated by employees. According to six
interviewees, developers like contributing because they can improve their skills,
increase their visibility and marketability because of contributions, and because
open-source projects are often fun to work on. This can also be used to attract
new talent.

23



“Contributing to open source contributes immensely to the quality
and the knowledge and in general it contributes a lot to the team. The
team becomes better in development because they experience this in
open source.”

Figure 1 shows a visualisation of the causes of brand image risks and the
associated risk mitigation strategies.

Figure 1: Mitigation strategies for the causes of brand image risks. In paren-
theses: number of interviewees that encountered the risk or mitigation strategy.

24



4.5 Rejected Contributions

With every contribution, there is a risk that it is not accepted. The choice
to reject a contribution lies with the core developers of a project. Although
a contribution may be rejected for technical reasons, this is trivial to solve by
fixing the issues and resubmitting. This usually leads to acceptance of the
contribution. In the remainder of this chapter, total rejection without option to
resubmit will be discussed.

All interviewees agreed that there is a risk that contributions are not ac-
cepted, but not all of them agreed on the severity of that risk. Rejection can
have multiple causes.

First, it is important to consider the size of the contribution according to
three interviewees. Small contributions take less time to review and have a lower
impact on the project, so those are easier for maintainers to consider and thus
more likely to be accepted. It may then be rewarding to break up larger features
into smaller ones that can be proposed one at a time. Over time, the company
gains more influence and expertise in the project, larger features become more
likely to be accepted.

“If I just went in and said: I want to rewrite this project’s complete
user interface, that is a big gamble for that project. But if we’ve
been contributing for years and we come along and we’re a known
quantity, we can back up the words we’re saying, someone will say:
“Alright if you want to contribute the money to rewrite our user
interface, we’ll let you and we will work with you.” So I think that
it is always worth it to continue to build those relationships and make
the effort to work with those upstreams.”

A feature can also be rejected because the community does not find it useful.
This may be the case for features that do not have a use case that is broad
enough, according to one interviewee.

“I can say that mainly the kind of features that will be rejected by
the community or the maintainers are: if it is not well designed, and
really you are building a feature for your company and not a feature
for the project itself.”

Any feature that is accepted by a project will be maintained by the core
developers of that project. Because of that, features should be worth the time
and effort to review and maintain, otherwise they will be rejected according to
five interviewees.

The other reason for rejection is that the proposed feature is not in line with
the direction the maintainers want the project to go in. Features may be rejected
more often if communication between the developer and the maintainers is poor.
Four interviewees who are active as open-source maintainers spoke about the
struggle of receiving pull requests without prior communication. This leads
to wasted time on the side of the developer and frustration on the end of the
maintainers.

25



“There’s been a lot of cases where somebody shows up and proposes
something and then they take the time to learn how to implement
the feature, without waiting to find out whether we liked the feature
or not. And then the contribution just sits there, because we say:
“Well, we didn’t want that actually.””

To mitigate the risk of rejected contributions, there are a few steps a com-
pany can take. Ten interviewees found that good communication with the com-
munity and maintainers is important. Discussion on potential contributions
should be had before development is started, and should be continued through-
out the development and contribution process.

“One of the best ways is kind of talk about what you’re planning to
do before you do any work. It’s a lot quicker to spend half an hour
writing out a proposal or a kind of very detailed GitHub issue saying:
“This is we want and this is how we plan to implement it.” Rather
than spending a week building out and then to get rejected. Because
then you can have those conversations upfront rather than wasting
all that time.”

As the interviewee noted, creating a proposal is much less time intensive than
developing a feature first. This proposal should explain the intent of feature and
its use cases. It may be beneficial to add a proof of concept as well.

Additionally, by first proposing implementation, others in the community
can voice their support. When additional community members back the pro-
posal, maintainers will more readily accept it. However, if it does seem like the
company is the only one that would benefit – in which case the contribution
would usually be rejected – discussing the proposal with community members
and maintainers presents an opportunity to work out a way the proposal would
benefit both. Going through these discussions before starting development will
prevent wasted time spend on rebuilding the contribution.

Three interviewees noted that discussions of this kind help understand the
needs of the community and the project. This understanding can in turn aid
in the process of further development for the project and reduce the risk of
misalignment with the project.

After a while, when developers in the company gain expertise in the project,
this process of proposing and contributing becomes easier. While developers
and the company are unknown to the community when they first start con-
tributing, if they are able to show their commitment and growing expertise to
the community, contributions are more likely to be accepted according to three
interviewees.

“In the beginning it is going to be harder but you are continue to
do it and eventually people are going to start trusting you and are
going to start seeing you as expert on the field and pull requests
and contributions are going to go smoother the more and more you
contribute.”

26



A good way to start is to keep the number of developers who are directly
involved with the project low. This way, the maintainers and community will
get to know them, while they will be able to gain experience with the project.
When a good relationship is built and the developers gain experience with the
project, additional people can be introduced.

The next step to decrease this risk is to have a developer apply to become
a maintainer. This not always an option, some projects may not accept new
maintainers. It is also a decision that should not be taken lightly. Becoming a
maintainer means that a developer will have responsibilities in the project that
are not directly beneficial to the company. They will be involved in discussion
about contributions from others, as well as in the reviewing process. These
obligations take time away that could be spend on development or other tasks
relevant to the company. On the other hand, having an employee as main-
tainer does give the company influence in the direction of the project, and six
interviewees found that contributions will be more easily accepted.

“If you have an employee in your company that is a maintainer in
that project you can also reduce that risk. So making sure that you
are really embedded in it, that you understand how those decisions
are made, and that you get in on that maintainership or stewardship
of that project”

If none of the above solutions work and the feature is definitely necessary,
the project can be forked. Eight interviewees saw this as a potential solution.
In that case, the company has to maintain the feature itself and merge any
new releases from the main project with the forked project. Although this is
definitely possible, there are some risks involved. This will be discussed in more
detail in Section 4.12. In short, however, forking a project means the feature
does not receive support or maintenance from the project, any new feature may
conflict with it and developers will need to spend time merging any new releases
with the fork.

Figure 2 shows a visualisation of the causes of risks involving rejected con-
tributions and the associated risk mitigation strategies.

27



Figure 2: Mitigation strategies for the causes of rejected contribution risks. In
parentheses: number of interviewees that encountered the risk or mitigation
strategy.

28



4.6 Financial

Whether there is a financial risk involved in contributing to OSS was a point of
contention between interviewees. The discussion came mostly from the question
on whether or not there was a risk that contributing would mean investing more
development hours. Six interviewees did think so: conforming to the standards
set by the community, generalising features, discussing the problem and rework-
ing code that was returned after review were aspects that were mentioned. One
interviewee noted that for some of the technical standards it may be possible to
use tooling, such as a linter, to reduce the extra work load.

“If you’re going to open-source something, you know a lot of people
will look at it so you just make sure that you are a lot more precise
in the code you write; taking care that everything is tested well, etc.
Patching bugs as well, that takes about three times as long in open-
source I think, that really does take extra time but then you do know
that it is correct.”

As discussed in Chapter 4.5, discussing new contributions and gathering
support for features is expected when working in open-source, so that takes
time as well.

In addition to the extra time that is spent on developing and communicating,
it is important to have in mind what the opportunity cost of these hours is. Two
interviewees noted that time spent on upstreaming could have been spent on
some other feature or issue, so that is a consideration that should be taken into
account.

One interviewee noted that while this is indeed an issue in practice, in theory
most of these issues should be part of the internal development process as well.
In their opinion, these extra costs are not part of contributing to open source,
but part of a well working development cycle.

“(. . . ) only I always refute that part of needing the extra time that is
necessary to make your code public, because if there was apparently
a need for extra time, then we didn’t do it correctly internally.”

In their view, there would be no additional costs involved at all. In the same
vein, one other interviewee said that their company has an “upstream first”-
strategy. Everything they develop is with open-source in mind. The result of
this strategy is that they do not have to rewrite their code if they decide they
want to contribute a feature, as it is already generalised, tested and conform to
the standards of the open-source project.

Four interviewees found that there is a risk that the contribution process
takes a long time. There is no way to predict when a feature will be accepted
and when it will be added to a new release. Although this may not cost many
man hours, it may mean creating a workaround or an internal fork, so the feature
or bug fix can be used within the company without waiting for it to be accepted.
This is a hard issue to solve, as it depends entirely on the core developers of the
project.

29



According to one interviewee, there may be infrastructure costs involved,
such as testing infrastructure, in some open-source projects. If a company is
paying for these costs – either because they began the project or because they
starting donating this infrastructure – and they want to decrease this investment
without impairing the project, it may be a solution to create more awareness
among other companies that these costs exist. This may not be a known fact,
and if others are made aware, they may take on some of these costs.

Five interviewees considered the financial gains of contributing to open-
source to be greater than the costs. The main benefit four of them mentioned
was that everything that is accepted by a project will be maintained by that
project. The company itself takes on no costs for that in the future.

Some also noted that the use of open-source software already saves costs
that would otherwise have been incurred. For example, even though a company
might spend development time to fix a bug in a project that would then be
contributed for free, at the same time there are other companies and users in the
community who fix others bugs for free that the company benefits from as well.
Additionally, the upfront cost of developing or purchasing a software product
is saved as well when using open-source. Following this logic, contributing to
an open-source project may involve some costs, but the costs saved from using
that project at all are much higher.

“The extra development time we spend to learn that one extra
change, in a way, is us contributing our money and time for the
benefit we’ve gained of all of the hundred, if not thousands hours of
development time that has already gone into that project.”

Figure 3 shows a visualisation of the causes of financial risks and the asso-
ciated risk mitigation strategies.

30



Figure 3: Mitigation strategies for the causes of financial risks. In parentheses:
number of interviewees that encountered the risk or mitigation strategy.

31



4.7 Intellectual Property

Nine interviewees thought there were risks around intellectual property when
contributing to open-source software projects. These risks arise in several forms.
The first is in the discussion what proprietary code should and should not be
shared. When working in open-source software, the balance between sharing
or not sharing something than can be contributed is not always easy to find.
Usually there are advantages and disadvantages to both, and the best decision
may not immediately be clear. The risk then, is that the wrong choice is made.
The risks that are involved with not contributing something will be discussed
in more detail in 4.12. The risks that come with contributing while it was not
the correct choice will be described here.

Three interviewees noted that when proprietary code is shared, the ability
to generate direct revenue from it is lost.

“The first thing I think that companies face, especially if its an IP
driven company, is the risk of proprietary IP that is not ready to
be open sourced, or let’s say IP that was going to be exploited and
monetised, being put out under a license in open source which sort
of freely grants those IP rights. And I think that’s one of the biggest
risks that I think not just [company] but any company out here would
face.”

Whether or not this is a risk, depends on the way a company generates
revenue. If it is product based company, the risk is much higher than if it
is a service based company. One interviewee mentioned that their company
sometimes chooses to monetise a feature first, and then contribute it at a later
date. This may be a good choice if a middle road has to be found.

Five interviewees found that it is possible to lose competitive advantage by
contributing a feature or bug fix that should have been kept internal.

“There is a risk there that engineers want to donate engineering
time, work on open source, whereas management tends to be more
careful about giving away that kind of unique selling points or giving
away the stuff that makes that company. And so there is a risk there
that engineers will submit stuff that might kind of blur the lines a
little bit.”

The same can happen when comments in the contributed code say too much
about upcoming features or products, according to three interviewees. If com-
petitors read these, they may have the ability to have an answer to the releases
the company has planned. Developers – assuming they interact with the open-
source community themselves – could easily make either of these mistakes. Five
interviewees found that to reduce this risk, it is useful to have a discussion on
what can and cannot be shared before any interaction with a community takes
place. Furthermore, one interviewee noted that the risk can be further reduced
by requiring contributions to be reviewed internally before they are sent to the
project.

32



“Each contribution to open source needs to be registered, that means
which project you are contributing, if you are originating a new
project as well, you should go to the intellectual property analysis
to see if there is something that could be patentable for the company
or not.”

While these discussions do reduce the risk of any intellectual property being
exposed when it should not, it does make the process of contributing more
difficult and time consuming. This is a consideration that should be weighed
against these risks.

Another issue is the ownership of the intellectual property. Because different
countries have different laws, it is outside the scope of this thesis to go in depth
on those issues. However, four interviewees considered it a risk that either
employees – or business customers, if a company develops software for others
– disagree with the company on who owns the intellectual property. This can
be even harder if an employee is hired because of their work on an open-source
project, especially if it is a project they have started themselves. If developers
work on projects in their free time that are in the same field as the company
operates in, issues around ownership of ideas and intellectual property can also
arise.

To prevent these problems, two interviewees proposed that companies can
include these topics in their contracts with employees. In these clauses, own-
ership of code developed during work hours and outside of work hours should
be included. It should be clear when a developer can contribute without issue
and when they should check with the employer, both as an employee and as a
volunteer in their own time. These clauses could also include when and to which
projects developers should contribute with their work accounts and when they
should not. They could also include an avenue for an employee to discuss with
the company whether some contribution can be made.

In contracts with business customers, it should be made clear which company
owns the code, and under whose name this code will be contributed.

Finally, a company may encounter issues with patent trolls according to an
interviewee. These persons or companies claim ownership of a piece of soft-
ware and take companies to court to extort money from them. According to
this interviewee, companies can reduce this risk by defensively patenting their
contributions. Another interviewee mentioned this as a good practice in general.

Figure 4 shows a visualisation of the causes of intellectual property risks
and the associated risk mitigation strategies. Note that some risk mitigation
strategies were mentioned more often than their respective risk. This means
some interviewees did discuss the way their company handles an issue, and that
they did not see the issue as a risk. This will occur in later chapters as well.

33



Figure 4: Mitigation strategies for the causes of intellectual property risks. In
parentheses: number of interviewees that encountered the risk or mitigation
strategy.

34



4.8 License

Ten interviewees considered licenses to be a risk factor when contributing to
open-source projects. There are many licenses and contributor license agree-
ments – additional licenses that are relevant for contributors but not for con-
sumers –, which differ from project to project. It is crucial to understand what
these licenses mean and what the consequences of using projects with these
licenses are.

As discussed in 2.3, there are (highly) restrictive licenses that make it manda-
tory to contribute changes to the source code or to open up entire software
projects that use the open-source project if it is distributed. Four interviewees
mentioned that this is something they see as a risk. If a single developer is
not careful in their choice of libraries, they risk having to open up the entire
software project.

“The real risk is when you allow your engineers to pull in any
project or any dependency that might have something like a GPL or
that kind of license where you really do risk exposing your companies
source code, because those licenses say that if you have a dependency
that has that license then that code also has to be open sourced.”

While it may be tempting to ignore this issue, as there is a chance that
not conforming to a license is never discovered, the consequences can be dire.
This risk is greater if a company not only consumes this software, but also
contributes to it, as it is to be expected that they use it in one of their own
projects. Especially for larger corporations it may be harder to get away with.
One interviewee mentioned that because of the high downside, investors do
really want companies to comply. As such, there is a risk – besides the risk of
having to make all code public – that financial opportunities are lost if license
terms are not followed.

Permissive licenses are easier to work with, they require very little of devel-
opers that use projects under their terms. However, anyone else can use the
source code contributed to these projects in any way they wish, which three
interviewees saw as a potential risk. Anything that is contributed to it can be
reused in proprietary software of others.

“Apache and MIT, all awesome, but also permissive, which means
if I put something out someone can fork it and do whatever they
want to do with it.”

Projects that do not have a license attached to them also form a risk, ac-
cording to one interviewee. In that case it is unclear who owns what code and
how the software can be used. They recommend not using those projects.

Seven interviewees found that to mitigate the risks around licenses, it is
important that the company is aware of what types of licenses exist and what
they entail. Developers who work with open-source software should be aware
of the different licenses as well. Four of those interviewees said they work with

35



legal experts to vet licenses. They can also support developers when they need
information on licenses.

Six interviewees noted that it is possible to choose specific licenses that
developers are allowed to use ahead of time. This can be defined either as a
company-wide policy, or for each project separately. In exchange for flexibility,
the company makes sure that projects with licenses that pose a risk are not
used. To support this, package managers can be used that enforce these rules.

When working on a project where open-source projects with (highly) re-
strictive licenses are used, extra care should be taken to mitigate potential
risks. One interviewee argued that clear separation between proprietary code
and open-source code should be enforced. This ensures no open-source code
under such a license contaminates the proprietary code. In addition, if two de-
velopers work on similar projects, one of which is open-source and one of which
is proprietary, there is a risk of cross-contamination which can be reduced by
making sure they do not work together. Finally, one interviewee found that
reviewing all code that is contributed can reduce the risk. A review is then not
only focused on code quality requirements, but also on adherence to the license.

Figure 5 shows a visualisation of the causes of license risks and the associated
risk mitigation strategies.

36



Figure 5: Mitigation strategies for the causes of license risks. In parentheses:
number of interviewees that encountered the risk or mitigation strategy.

37



4.9 Security

Five interviewees thought there was no more risk of introducing security issues
into the code than in proprietary software. Two even found that open-source
projects carry less risk of introducing security vulnerabilities. Because con-
tributed code is reviewed by maintainers of the project, there is a bigger chance
that security issues in it are caught according to them.

This does mean however, that there still is a chance of introducing security
flaws. Seven interviewees saw this as a possibility, but as noted before they
found that the impact of this is similar to proprietary software in terms negative
consequences directly related to the issue. However, there are some differences
in risk regarding indirect consequences. For both open-source and software that
is sold, security vulnerabilities can lead to negative impact on the brand image,
as discussed in Chapter 4.4. For internal software this risk is lower – unless
customers or other stakeholders are greatly affected by it. This risk may be
larger for security vulnerabilities that are introduced in open-source projects,
as even issues that are not exploited can be found by other parties. This could
lead to a negative impact on the brand image of the company that contributed
the part of the software that exposed a security issue.

“As a company, you really need to know what you are doing. If you
are the one that introduces a security bug, and of course that has
happened, that has happened multiple times, then that hurts.”

Five interviewees found that another potential security risk is the expo-
sure of information, login credentials, private keys or customer information. As
discussed in Chapter 4.7, leaking proprietary information in contributions can
happen. While the mitigation steps explained there are applicable in this case
as well, exposing this type of information can have a higher impact than expos-
ing some intellectual property. Because of that, more rigorous prevention may
be necessary.

According to four interviewees, the way of reducing these risks is implement-
ing a review process before anything is contributed. Whether it is proofreading
a proposal or an in-depth code review for a feature that will be contributed,
another pair of eyes will catch mistakes that the creator might not have found.

“You can make sure that your pull requests are reviewed by people
who have knowledge of the system, knowledge of those open source
projects and that they have security knowledge.”

The risk can also be reduced by offering security training to developers ac-
cording to two interviewees. Awareness about potential issues will help devel-
opers prevent mistakes proactively. Two interviewees also discussed that the
attitude of developers towards potential security issues could either be a risk
factor, or something that reduces the risk. There are also security tools and
scanners that can be used to mitigate the risk, as noted by seven interviewees.
Using these tools as support for employees during the development and review
processes will help them catch potential issues.

38



Usually, the project has a review process for contributions as well. Before
any code is added to the production version of the software, maintainers will
consider potential issues. According to six interviewees, this is an additional
barrier against security vulnerabilities. Finding a healthy project with a capable
team is thus important, according to one interviewee. It does not help with
leaked information, as that will be out there from the moment a pull request is
created.

Figure 6 shows a visualisation of the causes of security risks and the associ-
ated risk mitigation strategies.

Figure 6: Mitigation strategies for the causes of security risks. In parentheses:
number of interviewees that encountered the risk or mitigation strategy.

39



4.10 Sustainability

Four interviewees brought up that, as with any software, there is a risk with
open-source projects that they will cease to be supported at some point. As
three of them noted, this is a larger risk in smaller projects. If a project has
a small amount of maintainers, it may cease development if they lose one or
multiple of them. The risk is even greater for projects that are maintained by
a single person. However, if the project has backing by one or more companies,
it can be a signal that it is healthy and will exist for longer, according to one
interviewee. They also noted that projects that were accommodated by large
cloud vendors were more likely to continue development as well.

Many widely used open-source software projects are ran volunteers on their
own time. Some of those volunteer developers spend a lot of time on those
projects, without much return. One interviewee feared that these types of
projects may fail because larger corporations use these projects without compen-
sating the developers. While it may be feasible for some to continue developing
these projects, it is not always sustainable. This interviewee, along with one
other, found the easiest way to reduce this risk is to offer monetary support to
these maintainers so it is financially viable for them to continue with the project
These donations can either be a one-time donation or continuous support.

Two interviewees found another sustainability risk in the fact that employees
can change roles or move to another company. This can be a risk on both the
consuming and contributing side. If the employee of a company works on an
open-source project as part of their job, it is to be expected that they will stop
that work when they leave. If that happens, a project – especially a smaller one
– suddenly loses a contributor and their knowledge, which can negatively impact
future development. This can negatively impact the reputation of the company
and hamper continued cooperation if it is not handled well. Introducing another
employee to the project before the current employee moves to another role or
company can mitigate this, according to one interviewee. Another possibility
is to allow the employee to contribute with a personal account instead of one
linked to the company if they want. In that case, they may be able to continue
development, even in their new role according to one interviewee. Finally, the
choice can be made not to introduce an employee to the project at all and
instead supporting the project financially.

“Maybe the more prudent route would be not dedicating an FTE,
but take that money, give it as a grant, which has a structured scope,
one year contract for the project that is guaranteed because it is not
connected to the employment or the role of any individual.”

On the other side of the equation, if a company uses a project that has few
maintainers, some of which maintain it as part of their job, there is a risk as well.
If one of those maintainers, or the single maintainer, leave their company, the
project they rely upon may cease development. Two interviewees fount that to
mitigate this risk, a company should choose projects that have multiple active
maintainers.

40



One interviewee noted that if a project does stop being developed, a company
can choose to fork the project and continue it themselves. This is an advantage
over proprietary software, where a company that uses it has no choice but to
switch to some other software.

Figure 7 shows a visualisation of the causes of sustainability risks and the
associated risk mitigation strategies.

Figure 7: Mitigation strategies for the causes of sustainability risks. In paren-
theses: number of interviewees that encountered the risk or mitigation strategy.

41



4.11 Business Customers

As shown in table 1, multiple interviewees are part of software consultancy
companies. Those interviewees mentioned risks that are involved in that part of
the software development business. Although not all companies will encounter
these risks, they will be discussed here nonetheless.

Two interviewees considered the contracts and non-disclosure agreements
(NDA) that are usually signed with business customers as a potential risk factor.
Issues can arise when developers are not made aware of exactly what they can
and cannot share in open-source communities. They should also be aware of this
when developing for their own company. However, with a third party involved
potential legal disputes and fees increase the severity of this risk.

“So the main risk I see, as an employee from my current position,
is about contract terms and NDAs. Where one side wants one thing,
another side commits to that thing and then individual employees
are starting without knowing these details about the agreements to
be proactive. It is open source, (...) everyone can see it, and such
activity can have opposite consequences of what the contract terms
where about initially.”

It is important to consider the expectations around contribution from both
companies. For the developing company, it is generally beneficial to contribute,
as it reduces certain risks (as will be discussed in Section 4.12). Additionally,
contributing to open-source projects is good for business to business marketing,
according to seven interviewees. On the other hand, the customer company may
want to keep some or all of the software as proprietary code so their competitors
do not receive the benefits that they have just paid for. It is also possible they
want to delay contributing to open-source projects so their competitors do not
know what they are working on.

“For the software on the custom things you develop for a customer,
so especially as a service company, the customer decides whether that
can be opened up or not.”

Although only two interviewees saw contract issues as a risk, four intervie-
wees noted that it was important for the two companies to come to a clear
agreement on what can and cannot be contributed. They should then stay in
touch so they can clarify if it is unclear at any point during development. Part of
this discussion may involve convincing the customer that contributing to open-
source benefits them as well. Explaining all the benefits and risks involved with
contributing – or not contributing – may convince the customer that opening
(part of) the software is indeed the right choice.

“The customer may think [contributing is risky], but open-source
does have a lot of benefits, you don’t have to maintain it yourself for
example, so why wouldn’t you want to give back? So we do always
try to convey our point of view to the customer.”

42



One interviewee noted that even if the customer did not mind that something
would be contributed, they might not want to pay for the time it takes to do
so.

“So you know we encounter a bug in the open source project, “so
yeah can you guys fix that for us?, of course we fix it, we get paid
for that, but “hey do you mind if I contribute back to the project?”
and they say: “sure you can do that but not on our time”. So that
is one big risk: customers do not want to pay for us to go back and
contribute to the open source projects.”

If this is an issue for a company it can – if it has the option – choose to only
work with companies that do pay for the time that is spend on contributing,
according to one interviewee. This interviewee found that another way to deal
with this issue is to offer a discount to customers if that means the code can
be contributed. One other concurred, though they saw this as a normal part of
the discussion with clients, not as a risk factor. Offering a discount is a trade-
off that can be worth it to build a portfolio for the company and to position
themselves as experts, as it can lead to more customers down the road.

“For example we don’t charge the full price for the project, we absorb
some of the costs, but on the other hand we can use that time and
push it to the project. And we absorb that cost, but on the other end
we position ourselves as experts on the project so that eventually can
bring us more customers.”

One interviewee said they deal with the issue by just not fixing a bug if the
customer does not want to pay for it and it is not breaking anything important.
Finally, one interviewee noted that they think the hours spend on fixing bugs
that were an issue for a customer should be invoiced either way as it is not really
important whether the bug is in the proprietary code of the company or in the
open-source code.

“I mean, if I solve a bug in their codebase it is for sure invoiceable
hours, but solving a bug in third party software which was a problem
for a customer should still be invoiceable I think.”

One interviewee noted that this discussion may not always be an issue. Com-
panies may not care about the small details in the development process, as long
as certain deadlines for the entire project are met. In that case, the choice to
spend time on contributing small fixes and supporting tools may be left to the
project manager and not the customer.

“The client pays for some big roadmap item delivered and usually
does not care about small details.”

There are some benefits that are specific to software consultancy or support
companies. One of those benefits is building a brand as an expert in the field,

43



as discussed in Chapter 4.4 as well. This can lead to other companies that use
the open-source software to consider the company if they need some bug fixed
or feature developed.

“(...) contributing back to the open source project makes you look
like an expert and is an indirect way of marketing yourself as an
expert, and eventually we have had customers come to us and say:
“Hey, we noticed you developed this part, we would like some help,
are you open for work?”.”

Three interviewees found the same to be true for support contracts as well.
Open-source projects generally do not have a support system that proprietary
software packages do have, as there is not always a single owner. The community
around it is usually happy to help, but because they do it for free this support
can be inconsistent and varying in quality. However, companies often want
some way of receiving the support they need. Because of that, there is room for
companies that understand the project to fill that demand.

“Customers come to us because they want support, they want to
be able to pick up a phone and say: “we have a problem, can you
help?”. So for us it is not the intellectual property that matters, it is
the ability to answer that phone call and have that intelligence within
developers and that experience and knowledge.”

Figure 8 shows a visualisation of the causes of business customer risks and
the associated risk mitigation strategies.

44



Figure 8: Mitigation strategies for the causes of business customer risks. In
parentheses: number of interviewees that encountered the risk or mitigation
strategy.

45



4.12 Not Contributing

Although all risks that were discussed in previous chapters emerged when con-
tributing to open-source, there are also risks that come up when the decision is
made not to contribute. While it is perfectly valid – and not inherently risky
– to only consume open-source software, this chapter considers the case where
a company does develop code for a project and then decides not to contribute
it. These risks also arise when software cannot be contributed due to rejection
by the project maintainers, as discussed in Chapter 4.5. Then, the company
can choose to either patch the feature – if that is possible with that particular
project – or to maintain an internal fork of the project.

One risk of not contributing software that has been developed to an open-
source project, is the fact that the company misses out on the benefits of open-
source. First, two interviewees noted that the software is not reviewed by mem-
bers of the community. This means missing out on their expert view on the
code, with potentially lower quality or missed issues as a result.

Another loss, one that nine interviewees mentioned, is the fact that features
that are not contributed are not maintained by the community. This is a cost
that can be avoided by contributing the code. The risk here is that code that
is maintained by the company may become incompatible with new releases of
the open-source project. At that point, even more time has to be spend to
realign the feature with the main project, or the software cannot be updated.
Especially when the project releases security updates, there may be a need to
do this abruptly. Three interviewees saw that as a potential risk.

“If you patch the project or fork the project, you’re going to be out
of date, you’re not going to have security updates. Updating is going
to be really hard, because if you’re patching you are going to need
to figure out how to merge things yourself and I don’t think that’s a
good use of time.”

Seven interviewees found that with time, this technical debt increases. A
feature that fits well into a project right now, may diverge from the direction of
the project down the line. If a company is dependent on that feature, they will
need to continuously put time and effort into that feature to keep it up to date.
This may be doable for one or a few features on a single project, but the scope
of this issue will grow as more features for more projects are kept private.

“I know from experience from a previous company I worked for: the
moment you [create a fork and maintain it yourself ] for one project,
it’s okay. However, if all your dependencies are forked stuff, then it
will cost a you a lot of time and a lot of money to maintain that.”

One interviewee found that the cost of integrating a fork with each update
can become so vast, that it is cheaper and easier to split off from the project
entirely. Then the company is responsible for the maintenance and upkeep of
the entire fork. Consequently, the company can then no longer extract value
from the open-source project itself.

46



One way to mitigate the risk of rising time investment and costs to maintain
a fork – and to reduce the risk of having to split the fork from the main project
– is to keep the tech debt as low as possible. This is not a trivial task. One
element of this process is to update the fork regularly and to keep it as close to
the main project as possible. The less the two diverge, the less time and effort it
takes to keep the fork up to date. It is important to support the developers who
do this by giving them the time to work on this, according to three interviewees.
One interviewee added that custom features should be documented and that the
documentation should be kept up to date with new development.

One way to get out in front of this, is to choose projects that use a plugin
architecture, as two interviewees noted. For those projects, it is easier to main-
tain features that are not contributed, as they can be included as a plugin. This
reduces the amount of work it takes to maintain the feature, as there is less
risk of conflicts and complicated merging. However, this will not be possible
for all types of software and it should only be one part of the selection of an
open-source project.

One interviewee mentioned that another way to reduce this risk is to build a
feature that will not be contributed into the proprietary software of the company,
if that is possible. In that case, the company will not have to maintain a separate
fork for the project.

As five interviewees noted, it may be worth reconsidering whether it is worth
it to keep code internal. The decision to not contribute something is easily made,
it is cheaper, it is straightforward and it carries little immediate risk. However,
there are perpetual long term costs involved in maintaining and merging the fork
or patch. Reconsidering whether the decision was not made prematurely and
comparing the costs and risks involved in contributing versus not contributing
can mitigate the risk of making the wrong choice.

“I think you do sit down and start thinking what to do: what is the
cost of maintaining my fork? Versus what is the benefit of main-
taining that fork? (...) And if the benefits of the fork outweigh the
costs, you just kind of suck it up, right? But in general I think con-
sistently trying to get things upstream as much as possible is the best
risk mitigation strategy.”

As one interviewee noted, there may be an inclination to add features or
change something just because it is possible. If the decision is made that a
feature will not be contributed, the company should consider whether it is worth
it to develop and maintain it at all. Just because it can be done, does not mean
that it should be done, as maintaining a separate fork or patch can be costly,
as discussed before.

“But you don’t necessarily have to change something, maybe it is
also okay to reduce risk to change as a company towards what those
open source programs can actually do, instead of to say: “we will
change it because we can”. I think many companies, and then I do

47



speak from some experience, let themselves go into “it is changeable
so will we do that”.”

If a company is active in the open-source community, but never or rarely
contributes, there may be even more negative consequences. Two interviewees
found that there is a risk that the community will respond less actively to
requests for support. If they do not receive contributions in return for the time
they spend helping the company, they will be less willing to help in the future.
This may lead to less understanding of the project and its development direction
for the developers, which increases the difficulty of developing for the project.
Additionally, it may be bad for the brand image of the company as discussed in
Chapter 4.4. Especially other people in the open-source community – including
potential employees – may have issues with non-contributing companies.

“I think it’s kind of expected you know? If you’re monetising from
an open source project you are expected to contribute back. Because
it is not illegal to make money out of an open source project, there
are conditions in that you can even extend that open source project
and sell that extension. There are licenses that allow that. But if you
continue that pattern eventually the community might start frowning
upon it.”

By not contributing a company also does not interact as much with a com-
munity. They do not show their expertise in the project and they do not build
relationships with the maintainers. Consequently, it will be harder for them to
build influence in the project according to three interviewees.

“If you really rely on something and you don’t contribute there’s
always going to be a risk: that it goes in a direction you don’t want
it to, or that it becomes incompatible, or that it goes away, all of that
can happen.”

No direct ways to mitigate these specific risks was found. The only possible
solution would be to reconsider contributing, as stated above.

Figure 9 shows a visualisation of the causes of the risks of not contributing
and the associated risk mitigation strategies.

48



Figure 9: Mitigation strategies for the causes ofthe risks of not contributing.
In parentheses: number of interviewees that encountered the risk or mitigation
strategy.

49



4.13 General Mitigation

Besides the specific risk mitigation strategies explained in the previous chapters,
there are some actions that can be taken to reduce open-source risk in general.

Educating employees on how to use and properly contribute to open-source
software is vital according to four interviewees. Knowledgeable software de-
velopers will make less mistakes when interacting with and contributing to
open-source software. Understanding how open-source works and what risks
are involved helps employees work on it with confidence.

As seven interviewees noted, communication is another factor in reducing
the risk around open-source. Expectations management is the first part of this,
both within the company and between the company and open-source projects.
Communication with the open source projects that will be contributed to will
prevent unnecessary discussions down the line. Clearly stating what will be con-
tributed and whether help is needed in doing so will manage expectations on the
side of the project. Asking for feedback ahead of time on planned contributions
will manage expectations on the company side.

“The other thing would be to talk to the maintainers of the project
and find out if there is any specifics to be aware of. Especially for
technical and perhaps legal things, talking to the specific maintainers
is probably a good idea.”

One interviewee mentioned that this communication will be easier if employ-
ees work as a developer on a certain project full-time. Embedding an employee
in a project this way creates a strong connection between company and project.

Within the company, there should be clear communication on the specific
goals and expectations for contributing. Whether contributing is a goal in and
of itself, or whether it is just a means to an end should be discussed or instructed
clearly. It should be clear what can and cannot be contributed and what can and
cannot be discussed in communities. Whether both bug fixes and features can
be contributed should be decided as well. Interviewees did not agree on whether
there was a different level of risk for contributing features or contributing bug
fixes. Some interviewees found contributing bug fixes to carry less risk, as those
are often smaller contributions. However, other interviewees found that it was
just as risky as contributing features.

One interviewee found that a dedicated open-source program office can be a
valuable factor in enabling this communication. Not only can they function as a
link between employees working on open-source and as a source of information
when employees need information, they can also serve as advocates for open-
source within the company. Additionally they can be an important factor in
license compliance and community management.

If there is no expertise on open-source software within the company, it can be
a good idea it to consider hiring advisers to inform the company on the choices
that should be made according to five interviewees. Outside experts can help set
up an open-source program office, create guidelines and teach employees what
they need to know before starting to contribute to open-source.

50



As nine interviewees argued, formalising a policy or guidelines for the open-
source strategy – including risk mitigation measures – is important for the com-
pany. With this policy, it will be easier for employees to understand what they
can and cannot do, and what they have to do to reduce risks. This policy can
also include smaller points of discussions, such as which accounts – personal or
company-owned – should be used when contributing, and how much and what
due diligence should be performed before a project is contributed to. The policy
should also readily be available for employees to check whether they are follow-
ing them correctly. Additionally, other decisions that were made and things
that employees learned while working with open-source should be documented
for later reference as well.

“I’d say that clear policies are the best way. So encouragement from
senior management that contributing to open source is good helps
enable those things. Otherwise people are generally a bit worried
about contributing because they are not sure about the process and if
it’s allowed.”

Six interviewees said that policy can be supported by tooling. It should be
considered what tools are available and how strict the tools should be. If stricter
tools are used, it will become harder to contribute and the process will become
less flexible. So while strict tools do reduce risk the most, it will come at a
cost. It should therefore be balanced around risks that occur often or are high
impact. Two interviewees also mentioned that employees should also be trusted
to follow the policy without enforcing it entirely with tools.

Figure 10 shows a visualisation general risk mitigation strategies.

51



Figure 10: General risk mitigation strategies. In parentheses: number of inter-
viewees that encountered the risk mitigation strategy.

52



5 Discussion

5.1 Interpreting the Results

Not Contributing

It is notable that all interviewees spoke about the risks of not contributing.
While it was expected that some would be against this practice for ethical
reasons, the business related reasons predominated. The main issue that was
mentioned was the cost of maintaining a patch or fork. This was found by
Butler et al. (2019) and Lin̊aker and Regnell (2020) as well. Not contributing
also means losing out on some of the benefits that open-source software offers.
The company has to maintain the code itself, receives no code review from the
experts on the project and it creates an ever-growing technical debt. Each new
release of the open-source software forces the company to spend time updating
its fork or patch to avoid incompatibility, or it has to choose to diverge from
the project entirely. While this may not be an issue for a few important and
valuable changes, the more changes for which this is the case, the bigger the
problem grows. This becomes especially bothersome if the reasoning behind not
contributing, or even developing the the feature in the first place, becomes less
clear or less important over time. Keeping a fork or patch private for a longer
period could make it impossible to find a path back towards merging with the
main project. In those cases the choice to diverge entirely can be made, but
then the entire task of maintaining the fork falls on the company. This can
incur enormous costs over time, which outweigh the initial benefits of keeping
the code private. For this reason, it is important to reconsider contributing a
change to the code, even if it seems to be too valuable to contribute. Only when
the benefits really outweigh the cost should the code be kept private. Even then,
if the feature becomes less valuable or the cost of integrating it with the main
code of the project becomes too cumbersome, it can be valuable to contribute
it at a later point.

Rejected Contributions

Related to the choice of not contributing code is the risk that contributions are
rejected. When one does want to contribute and receives a rejection, the cost
of maintaining a fork will be larger than the benefits. That makes this risk
important to mitigate. This was also clear from the interviews, as all partic-
ipants found at least some risk in rejected contributions. The most common
reason for a rejection was a misalignment between the feature that a company
wanted – or had already developed – and the direction the maintainers wanted
the project to go in. Lin̊aker and Regnell (2020) found this risk as well. Some-
times there will be no solution for this problem. However, there are mitigation
steps that can be taken. Communicating what you want to develop, explaining
the reason it should be added and showing a proof of concept is most likely
done with internal stakeholders already. Expanding this to maintainers and
other members of the open-source community provides valuable feedback on

53



whether a feature will be accepted. If it is not, this feedback and subsequent
discussion will steer the development into a direction that is acceptable for both
parties. Further down the road, when a relationship with the maintainers has
been built by multiple accepted contributions, this process will become easier
as trust between the maintainers and company grows. For projects that are
particularly important for the company, it can be worth it to attempt to have
an employee become a maintainer, but it should be noted that this does come
with responsibilities as well as benefits. Additionally, if the project is small,
it may be a risk to the existence of the project if the employee leaves or their
role in the company changes. It should be decided ahead of time how this will
be handled. Introducing a successor to the project early can prevent this issue.
The second reason contributions can be rejected, which is a novel finding, is
that maintainers may not want to review it at all. They have no obligation to
look into a feature. Reasons to refuse a review could be that the feature that is
presented is too specific to the company, its use case not clear, the amount of
code too large or the contributor unknown and uncommunicative. These issues
can also be avoided by communicating early and professionally, again proving
its importance.

Licenses

While license risks do exist, these risks should not be difficult to prevent. These
risks are well known, licenses are an important part of the open-source soft-
ware landscape. The risk that software has to be made publicly available due
to the use of copyleft licenses has a high impact, but it is also prevented by
avoiding the use of software that is under these types of licenses. On the other
hand, the fear that contributed software can be used freely by anyone – without
them having to open up their software – can be avoided by only using copyleft
licenses and avoiding permissive licenses. Both can be enforced by tools that
check the licenses of any open-source project used in development of new soft-
ware. Augmented by the education of developers and other stakeholders on the
importance of proper license compliance should mitigate the risk of using the
wrong licenses.

Intellectual Property

Intellectual property protection is another high-impact area. This can be an
issue for companies who generate revenue from their product portfolio. However,
it can also mean a loss of competitive advantage for service based companies.
Both risks occur when code was contributed or information exposed when it
should not have been. The decision whether or not to contribute a feature
should be considered carefully, as discussed by Lin̊aker and Regnell (2020) and
Munir et al. (2016) as well. Generally, the benefits outweigh the costs of keeping
code private more often for product based companies, as they can generate
revenue from it directly. It can also happen that mistakes by employees or
forced contribution due to a license cause code to be contributed that should

54



not have been. Both of these risks are be mitigated by clear communication
on contribution guidelines, education of developers and other stakeholders and
internal code reviews.

It is also important that ownership of intellectual property is established
in contracts with employees – and with business customers if applicable. This
was a novel finding. While not many interviewees mentioned this risk, the ones
who did stressed that this can be a high impact area, as it can potentially cause
conflicts between the company and its employees. Especially if contributors were
hired for their work on open-source projects that a company finds interesting,
the boundary between contributions as employee and contributions as a private
individual can be hard to define. Continuous communication between employees
who contribute in their own time and the company is good practice to stay ahead
of issues like this.

Brand Image Damage

A novel finding was that contributing to projects that are themselves contro-
versial – or run by a controversial company or person – can cause damage to a
brand. This may occur if the project makes questionable partnership choices,
or people heavily involved become controversial. Proper vetting of projects and
the people involved, before contributing and periodically while working with the
project, can prevent issues in this area.

Another novel finding was that improper conduct in communities poses a
risk to the brand image. Even though this is not an issue of damage to the
brand in general, a bad reputation inside open-source communities can have
a direct negative impact. Poor communication, demanding too much or not
contributing can lead to a poor relationship with maintainers and the commu-
nity. This in turn leads to less goodwill when contributing features or asking for
support. Educating employees on proper conduct in open-source communities
and contributing regularly is vital to build and maintain a mutually beneficial
relationship.

Lin̊aker and Regnell (2020) found that companies fear brand image damage
as a result of misuse of the software the company has released as open-source.
However, during this research this risk was not found. They did consider com-
pany owned projects as well in their research, while the scope of this research
only concerns contributions to projects that are not owned by the company.
As contributing companies are less visible than the owner of an open-source
project, the risk may be lower or nonexistent.

Other Risks

In a vacuum, contributing a feature comes with additional costs. It takes time
to generalise the feature, adapt it to the standards of the community and dis-
cuss it with maintainers. Then, waiting for the review and potentially redoing
some work takes time as well. AlMarzouq et al. (2005), Butler et al. (2019), and
Lin̊aker and Regnell (2020) also found these risks. However, this is not a com-

55



plete view of the situation. While developing a single feature may incur costs,
other members of the community are working on features that do not cost the
company anything. This saves the company the cost of having to develop those
features. Furthermore, the company does not have to pay an upfront or licensing
fee for the software. The additional costs can also be lowered by developing as
if any change to the code will be contributed. Although it does not reduce the
time spend on discussions, it reduces the costs of generalisation. If the company
can then also deploy the feature they developed with a temporary fork, it does
not matter that they have to wait until their feature is integrated into the main
project. For this to work, the company may need to invest in changing their
development process to fit with open-source development. However, these are
one-time costs. Finally, and as discussed before, keeping features private can
incur much higher costs over time. Even if the company decides that a feature
should not be contributed, the fact that it is developed and generalised to fit
with the project as closely as possible, means that it can be kept closer to the
main project and thus save maintenance costs.

Security topics yielded less risk than expected. As Lin̊aker and Regnell
(2020) found as well, there are fears that contributing code to open-source
projects exposes security vulnerabilities. However, with proper internal reviews,
security tools and training for employees, this risk can be reduced. Additionally,
the fact that the maintainers of a project review the code and more members of
the community look at it as well, means that any flaw that has been introduced
can be caught more quickly. The other potential issue is exposing information
or data. This risk can be reduced by the same mitigation strategies. All in all,
there should not be more security risks concerned with contributing code than
there are with keeping the code private.

Some novel risks around working with open-source software for business
customers were found. Discussing these potential issues ahead of time with the
customer will mitigate most of these risks. If the business customer wants more
control over contributions, they and the company should stay in contact during
development so potential contributions can be discussed on a case-by-case basis.

Finally, there is an interesting finding compared to Lin̊aker and Regnell
(2020). They found that not contributing to a project may have a negative
impact on its health, as it needs contributors to survive. On the other hand,
interviewees in this research also warned about the opposite: projects becoming
too dependent on the contributions by the company. While this sounds like
a contradiction, both can be true. A company has to be careful and find a
balance between contributing to a project to keep it healthy and preventing it
from becoming too dependent on the company.

Mitigation

Looking at the bigger picture, some general mitigation strategies can be em-
ployed. Communication about open-source contribution inside the company
should be clear and continuous. For some projects, it may be necessary to dis-
cuss each potential contribution, while for some projects this is not necessary.

56



Individual developer should have a point of contact to discuss contributions.
This can either be a direct superior or a contact at a separate part of the com-
pany, such as an open-source program office. Communication with the open-
source projects that a company works with is important as well. As mentioned
before, this can reduce multiple risks. It has the additional benefit of building
relationships and building influence. Educating employees on these and other
mitigation strategies is vital for these processes to work well. Creating policy
is important, but without educating employees on how it works and what its
benefits are, the policy will not provide benefits. Finally, noninvasive tooling
to support the policies and other risk mitigation strategies noted earlier can be
a very valuable resource. This is especially true for high impact risks that are
easy to mitigate, such as mistakes with licenses and information leaks.

While the the review process was not mentioned by interviewees as a general
risk mitigation strategy, it is an important facet of risk reduction in multiple
categories. While it is common in software development processes to perform
code reviews, reviews for open-source contributions add some dimensions. The
review should consider if the code is up to the standards of the specific commu-
nity. It should check for potential information leaks and intellectual property
that should be kept private or that should be patented. Finally, the review
should consider the license of the project and if contributing to that project fits
with the company guidelines on licenses. If that is done properly, multiple risks
can be reduced by performing reviews.

Final Considerations

The results indicate that contributing is almost always the correct choice. Only
in a situation where keeping the code private has a clear monetary or competitive
advantage, it may be the correct choice not to contribute. Even then, it may
be the case that the costs are higher than the gains in the long run if investing
in the maintenance effort is more expensive.

Additionally, companies should consider the ethics of open-source. It is al-
lowed under some licenses to use the code in any way the user wishes, including
taking it private and selling it. However, unless there is some clear benefit to
keeping the code internal it is both ethical and beneficial to contribute. With-
holding code that costs the company money from others in the community who
may be able to benefit from it goes against the principles of open-source soft-
ware. For restrictive licenses, it is clear that contributing is expected and may
even be required.

The question that remains is why companies do not always contribute code
even if it is more beneficial to open-source it. The most likely reason is a
fear or misunderstanding of open-source software contributions. As discussed,
companies do see risks around contributing. What they may not see, is that
many of these risks are either low-impact, such as brand image damage, or have
straightforward mitigation strategies, such as licenses and intellectual property
risks. Another point of doubt may be the loss of control. When a feature is
contributed and accepted it is then part of the open-source project and will

57



be treated as such. This means the company itself has no way to control its
development direction, unless it has managed to build considerable influence in
the community. However, this loss of control is a fallacy, as not contributing
a feature also means a loss of control. A company that does not contribute
cannot change the development direction of the project and could end up in a
situation where their changes no longer work with the main project code base.
This is unpredictable and could be a big issue if the features are fundamental
to the work of the company. It then has to decide to scrap the features or stay
on an older version of the project. This fork of the project then becomes an
additional code base that the company has to maintain.

One part of risk mitigation that has not been mentioned often, but that
potentially has a big impact: start small. It can be daunting to see the necessary
process changes and commitments. Small, low-impact contributions to open-
source projects may be a way of easing into these processes. Taking a chance
on a smaller piece of software or a bug fix to become familiar with the process
of contributing can help build trust in the process. Then, increasing the size
and amount of contributions slowly can form some idea of the time necessary
to contribute features. This process will become easier and less time-consuming
when experience is gained and a relationship with the project maintainers is
formed. Taking these smaller steps before committing to drastic process changes
can reduce the fear of other stakeholders in the company as well.

5.2 Answering the Research Question

The research question as defined in Chapter 1.5 is: How can companies mitigate
the risks of contributing to open-source software projects they do not control?

To answer this question, interviews were done with experts in the field.
Analysis of these interviews yielded nine risk categories, each existing of multiple
different risks. For each of these risks, one or more mitigation strategies has
been found, as visualised in Figures 1 - 9. Risk mitigation strategies that can
be applied in general were discussed as well and were visualised in Figure 10.

Finally, some risks and mitigation strategies were particularly impactful.
These were discussed earlier in this chapter. The most impactful risks and
mitigation strategies can form the basis of a contribution policy for companies.
The less impactful risks and their mitigation strategies can be considered on a
per-company basis. Some will apply and should be mitigated. For others, the
low impact can be leveraged as a way to lessen the fear around open-source
contributions.

As discussed in this chapter, some findings validated earlier research. The
work by Lin̊aker and Regnell (2020) informed part of the research and interview
direction of this thesis. As they note in their conclusion, further generalisation
and validation of their finding was needed, which this thesis partly provides.
Furthermore, some novel findings were contributed to the field. These findings
broaden the view of risk and risk mitigation strategies for companies that want
to contribute to open-source projects. Finally, this thesis argues in stronger
terms than earlier research that contributing code that has been developed is in

58



most cases more valuable than keeping that code private. While this is under
the condition that the risk mitigation strategies presented in this thesis are
employed properly, this hopefully incentivises companies to contribute more to
open-source software.

59



6 Conclusion

6.1 Application in practice

In practice, not all risks that were discussed in Chapter 4 will be relevant for
every company – most clearly the risks around business customers, as these
are only relevant for consultancy firms and similar companies. Following this,
not all risk mitigation strategies are necessary to implement. In fact, even for
those risks that do apply, it may not be desirable to implement all mitigation
strategies that could reduce that risk. Every company should consider the costs
and implications of implementing each strategy. For example, requiring internal
permission and review for every communication does reduce the risk of leaked
information, but it is also a measure that slows down the development process
and that may irritate employees.

As discussed in Chapter 5.1, there are some risks and mitigation strategies
that were generally found to be high impact. For a company that wants to start
contributing to open-source projects, this is a good starting point. However,
it is still good practice to consider all risks and mitigation strategies that were
discussed in this thesis before contributing, as some of the risks not mentioned
here can still have an impact.

Licenses

A choice should be made on which licenses will be allowed. In general, it should
at least be decided whether highly restrictive, restrictive, permissive licenses,
or a combination of the three are allowed. This choice could be made for each
project separately, or as overarching company policy. Both the advantages
and disadvantages of these license categories discussed in Chapters 2.3 and 4.8
should be taken into account. Once this choice is made, it may be valuable to
decide whether all or some subset of the licenses that fall under each allowed
category are to be used. There may be slight differences between licenses that
qualify one while disqualifying another, even within these categories. However,
restricting access to more licenses does mean restricting access to more – poten-
tially useful – projects. A balance has to be found between restricting licenses
that bring risks and unintended consequences with the flexibility of choosing
projects. Additionally, these choices should be considered even when only con-
suming open-source, as highly restrictive licenses already impact development
processes if proprietary software is linked to it. Finally, it is possible to make
different choices about which licenses are allowed for consumption and which
licenses are allowed for contribution. If this is the case, it should be made very
clear to developers who might want to contribute, as it could be confusing.

Intellectual Property

Deciding how strict intellectual property protection will be enforced should de-
pend on the source of revenue of a company. If it is a service based company, it
can be much less strict, as intellectual property is not its main source of income.

60



However, a product based company should enforce much stricter rules to make
sure profitable intellectual property is not shared accidentally. Such a company
could benefit from internal reviews of pull requests not only to find mistakes
and ensure its quality, but also to decide on whether a piece of software could
instead be monetised. Similarly, clear guidelines supported by tooling to sanitise
code and comments that are to be contributed to remove any potential leaks of
proprietary information can be valuable as well.

Development

To fully benefit from contributing to open-source projects, some changes should
be made in the development process. First, it is good practice to develop any
feature or bug fix as if they will be contributed to the project. This includes
reviewing the code with the standards of the project in mind, but also checking
for valuable intellectual property and license compliance. Not only will this
save time if it is indeed decided that it will be contributed, if it is kept internal
instead it will fit with the project as closely as possible. This reduces the cost
of keeping a fork up to date. Working in this way also reduces the chance that
unexpected costs are incurred because the code has to be rewritten to fit with
the project requirements.

Second, as it is possible that features that are contributed will be added in an
upcoming version release of the project and will not be integrated immediately,
it is important to have a way to deploy the current version including the feature
that was just contributed. This does mean maintaining an internal fork for
some time, but this fork should become obsolete when a new version of the
software is released, thus not incurring the continuous costs that come with
maintaining a fork indefinitely. In return, any feature that is developed can be
used immediately.

Finally, encouraging developers to contribute whenever possible ensures that
no unnecessary internal forks or patches are created. As the path to not con-
tributing is often easier than doing the work of contributing, while it potentially
costs more to maintain it in the future, the company should try to persuade de-
velopers that contributing is the correct choice. Interviewees were very clear
that it is generally the correct choice to contribute. If a decision is made that
contributing is not viable, it should be a deliberate choice that is weighed against
the future costs of maintaining that piece of software internally.

Communication

Communication is key in navigating open-source. Before development of a fea-
ture or bug fix is started, it should be communicated to the community and
project leadership what is planned. They can then propose adjustments to the
proposed plans such that it fits with the project and its development direction.
During development, communicating with the maintainers and others in the
community can be a valuable resource to get help or steer the development in
the expected direction. Keeping these communication channels open reduces

61



the risk of further work down the line, or total rejection of a contribution. Es-
pecially the latter comes with the cost of maintenance in perpetuity and should
be avoided.

For each project, the choice should be made to what extent the company
wants to be involved. To reduce the risk that contributions are rejected and
to exert influence on the direction of development, interviewees recommended
to become more ingrained in the community and to have developers become
maintainers in the project if possible. This is an investment of resources that
should be weighed against the benefits. Increasing communication efforts by
discussing features from others in the community and joining discussions on the
project in general are intermediate steps that could be taken to become more
active and well known in the community.

Inside the company itself, having clear communication channels to ask ques-
tions of those who decide whether contributions can be made is important as
well. If these channels do not exist or are not clear, it is possible that develop-
ers will choose to forego contributing, which leads to creating forks and patches
that need to be maintained, as discussed before. It can be valuable to create an
Open Source Program Office to fulfil this task, among others.

Policy and Tools

The choices that were made and rules that were defined about the topics above,
should be established as policy. This means that is should be clear to all stake-
holders what these decisions are, and why they were taken. This policy should
also be available to reference for employees who need the information.

This policy can, and in some cases should, be supported by tools. For
example, a library manager that lets the user know that a library they want
to use is under a license that cannot be used in their project could save time
and mitigate a risk. While it may be tempting to reduce as much risk as
possible by using tools, this does reduce flexibility and speed in the development
process. A balance has to be found, which may require continuous monitoring
and readjustment to find the best setup for the company.

Education

Properly executing these policies does require education and training initiatives.
The development process of open-source projects differs from proprietary, in-
house development, so introducing the required concepts to developers is nec-
essary. The same is true for other processes that are required of developers
who interact with open-source. Proper communication and expectations man-
agement, license awareness, and rules around sharing or not sharing intellectual
property are most obviously areas that should be considered for this.

62



6.2 Limitations

There are some threats to validity in the design of this research. First, there
may be sampling bias. Although sampling was fairly random – any response
from Discord servers and any response from the LinkedIn search was accepted if
it fit the criteria – there can be self-selection bias in the sample. In both cases,
a large group was asked to join the study, but it is possible that people with
a vested interest in open-source or strong opinions on the topic have a higher
probability of accepting. Considering the nature of open-source software, a topic
people can be very enthusiastic about, the chance that those who responded were
very positive is large. To counteract the effects of this, extra care was taken
during interviews and afterwards during analysis of the interviews to look out
for answers that were only positive or downplayed risks to an unreasonable level.
None of the interviews featured these types of responses.

Another limitation is the reliance of interview questions on earlier research.
This choice reduces discoverability of risks that may not have been found. To
mitigate this, interviewees were asked about risks in general first. However, this
does produce the most obvious answers. Another question at the end of the
interview whether there was anything else the interviewee had to add did lead
to some additions.

Finally, the results as presented may skew the view of the underlying impact
of the risks or mitigation strategies. As can be expected from qualitative re-
search into risks, the most obvious risks mitigation strategies will be mentioned
most often in interviews. On the other hand, risks that occur less often but
have a high impact will not come up as often. In the visual representations,
this nuance is lost. To counteract this, the impact of risks as noted by the
interviewees is taken into account and emphasised in the text of the results and
especially the discussion.

6.3 Future Work

Future work should look into quantifying the risks found in this research. One
aspect that would be particularly interesting is the development of a model to
calculate the future cost of maintenance required for internal forks and patches.
This turned out to be a big risk factor. Estimating these costs and comparing
it to the benefits of keeping it private would help in analysing the choice of
whether or not contributing a piece of software is worth it.

Building influence in a community was mentioned multiple times as a way to
reduce the risk of features getting rejected and the project moving in a direction
that is not in the best interest of the company. While steps that can be taken are
known and have been discussed, it would be interesting to research how much of
an investment it is to build this influence. Additionally, finding to what extent
this influence actually reduces the mentioned risks would be interesting to know
as well.

Finally, while each risk category deserves more individual attention, two
categories emerged that are particularly interesting for future research. The

63



sustainability of projects, especially smaller projects, was found to be a risk
factor that has not been discussed in detail in earlier research. Included in this
topic is the question of why companies apparently do not sponsor projects that
are important to their work, even if the maintainers of the project work with
constrained resources. Additionally, it would be interesting to find what can
be done to make projects with a small team less prone to failure if developers
leave.

Total rejection of contributions was seen as a risk by all interviewees. While
ways to reduce the risk of rejection were discussed in Chapter 4.5, this is a
complex topic that could be expanded upon. It would be an interesting re-
search avenue to discover exactly what reasons for rejection are, besides those
mentioned in this research, and how developers can navigate these issues.

64



A Interview Questions

Here, the list of interview questions used in the semi-structured interviews is
presented. The purpose of each question and potential follow-up questions is
explained.

What is your current job position?

Determine source of expertise of the interviewee and context for their answers.

How many people does your company employ in software
development (or similar)?

Determine context for the answers of the interviewee.

Could you describe the type of software your company gen-
erally develops?

Determine context for the answers of the interviewee.

Does your company make use of Open Source Software?
For what tasks?

Determine context for the answers of the interviewee.

Does your company contribute to these OSS projects?

Establish whether the interviewee’s company contributes to open-source soft-
ware projects and moving towards the topic of the interview.

Does your company also have its own OSS projects? (If so,
please leave those out of consideration for the next ques-
tions)

Determine context for the answers of the interviewee. Make sure the interviewee
understands the direction of the research.

Does your company contribute bug fixes to OSS projects?

Does your company contribute features to OSS projects?

Does your company contribute to OSS projects in other
ways? (documentation, monetary, etc)

Different ways of contributing may carry different risks.

65



Do you think your company faces risks when contributing
to OSS? What risks does your company face when con-
tributing to OSS? How does your company mitigate these
risks?

Determine what the interviewee thinks of as risks when contributing to open-
source software. This open question is asked first as to not lead the interviewee
into a certain direction with questions related to earlier research.

Are these risks different for contributing bug fixing com-
pared to contributing features? And other types of contri-
butions? (if applicable)

Determine whether there is a difference in risk between the different ways of
contributing.

More specifically, does your company encounter...? And
how does it handle...?

- Risks of intellectual property loss?

- Risk of misaligned priorities between company and project?

- Risk of brand image damage?

- Risk of exposing security vulnerabilities?

- Risk due to licenses?

- Risk of extra costs due to increased development time?

- Risks that come with not contributing?

Direct questions into risks that were found from earlier research (Chapter 2).
For each of these questions, the main goal is finding the ways companies use to
mitigate these risks.

How does your company mitigate these risks?

A more general question into risk mitigation. While specific risk mitigation
strategies should have emerged in the questions before this one, anything that
has been left out due to the specific nature of those questions should emerge
here.

66



Is there a difference between company-owned OSS projects
vs non-company-owned OSS projects regarding risk or how
risk is reduced? (If applicable)

Find out if there is indeed a difference between contributing to projects that
the company does not control or own, and contributing to projects that the
company does control or own.

Is there anything I missed?

If there anything that the interviewee has thought of during the interview that
has not come up through a question, they can mention it here.

67



B Codebook

Category\Subcategory Code Frequency Nr. of interviews

brand image\brand image benefits contributing seen as positive 6 6
brand image\brand image benefits employee benefits 6 6
brand image\brand image risk brand image damage 11 9
brand image\brand image risk connection to projects 3 3
brand image\brand image risk incorrect support answers 1 1
brand image\brand image risk introduce security vulnerability 2 2
brand image\brand image risk low quality contributions 6 4
brand image\brand image risk unprofessional conduct 6 5
brand image\brand image risk mitigation employee consequences 2 2
brand image\brand image risk mitigation internal code review 3 2
brand image\brand image risk mitigation professional communication 4 4
brand image\brand image risk mitigation vet projects 2 2
brand image low quality contribution no risk 5 4
business customers\business customer benefits b2b marketing 11 7
business customers\business customer benefits customer wants support 3 3
business customers\business customer risk b2b contract risk 2 2
business customers\business customer risk contribution hours unpaid 2 1
business customers\business customer risk customer wants proprietary 4 3
business customers\business customer risk mitigation choose customers who want contribution 2 1
business customers\business customer risk mitigation discuss with customer 7 4
business customers\business customer risk mitigation dont fix the issues 1 1
business customers\business customer risk mitigation give customer discount 3 2
business customers\business customer risk mitigation invoice hours 1 1
business customers low customer involvement 1 1
contribution strategies bug discovery 3 3

68



contribution strategies client takes contribution credit 1 1
contribution strategies code review 2 2
contribution strategies community engagement 4 3
contribution strategies documentation contribution 8 7
contribution strategies event contribution 5 3
contribution strategies give devs OS time 4 4
contribution strategies give project to foundation 1 1
contribution strategies maintain projects 1 1
contribution strategies make software compatible 1 1
contribution strategies monetary contribution 6 6
contribution strategies support contribution 3 3
financial\financial benefits community maintains contributions 4 4
financial\financial risk contribution integration takes time 6 4
financial\financial risk extra development time 8 6
financial\financial risk infrastructure cost 1 1
financial\financial risk opportunity cost 2 2
financial\financial risk mitigation fix internal process 1 1
financial\financial risk mitigation increase awareness 1 1
financial\financial risk mitigation use linter 1 1
financial gain higher than cost 6 5
general mitigation account management 3 2
general mitigation bug feature risk difference 5 5
general mitigation clear guidelines 21 9
general mitigation communication 9 7
general mitigation culture 4 3
general mitigation developer education 4 4
general mitigation full time project members 1 1
general mitigation gather information on project 2 2

69



general mitigation open source department 2 1
general mitigation outside help 9 5
general mitigation specialize 2 1
general mitigation tooling 14 6
general mitigation trust employees 2 2
intellectual property\ip risk client ip 1 1
intellectual property\ip risk competitive advantage loss 5 5
intellectual property\ip risk employee ip 6 3
intellectual property\ip risk lose potentail revenue 3 3
intellectual property\ip risk mention upcoming projects 4 3
intellectual property\ip risk patent trolls 1 1
intellectual property\ip risk proprietary code 10 9
intellectual property\ip risk mitigation defensive patents 4 2
intellectual property\ip risk mitigation delay contribution 1 1
intellectual property\ip risk mitigation discuss before contribution 6 5
intellectual property\ip risk mitigation include ip in contract 3 2
intellectual property no ip loss risk 4 4
intellectual property no proprietary code 4 2
license contributor licence agreement 3 3
license\license benefits contributions stay open source 1 1
license\license risk bigger company bigger target 1 1
license\license risk licence risks 6 5
license\license risk lose financial opportunities 2 1
license\license risk no license 1 1
license\license risk non commercial only license 1 1
license\license risk required contribution 9 4
license\license risk mitigation choose specific licenses 6 6
license\license risk mitigation legal experts 6 4

70



license\license risk mitigation license awareness 9 7
license\license risk mitigation package manager 1 1
license\license risk mitigation properly attribute code 1 1
license\license risk mitigation review contributions 1 1
license\license risk mitigation seperate code bases 3 1
license no license risk 3 2
not contributing\not contributing benefit cheaper 1 1
not contributing\not contributing risk brand damage 2 2
not contributing\not contributing risk contributing is expected 7 5
not contributing\not contributing risk employees like contributing 1 1
not contributing\not contributing risk incompatability risk 1 1
not contributing\not contributing risk less project understanding 1 1
not contributing\not contributing risk maintanance cost 16 9
not contributing\not contributing risk no community review 2 2
not contributing\not contributing risk no influence 3 3
not contributing\not contributing risk no updates for fork 5 3
not contributing\not contributing risk slow community support 3 2
not contributing\not contributing risk tech debt 8 7
not contributing\not contributing risk mitigation build feature in own app 1 1
not contributing\not contributing risk mitigation plugin architecture 3 2
not contributing\not contributing risk mitigation reconsider contribution 5 5
not contributing\not contributing risk mitigation reduce tech debt 8 5
owned versus external project\benefits external help quickly accepted 1 1
owned versus external project\benefits owned owned company specific 1 1
owned versus external project\benefits owned owned control tooling 2 1
owned versus external project\benefits owned owned determine direction 6 5
owned versus external project\benefits owned owned reject contributions 1 1
owned versus external project risk difference 4 4

71



owned versus external project\risks external external maintainer hestitance 1 1
owned versus external project\risks external maintainers quitting 3 2
owned versus external project\risks external more conflict 1 1
owned versus external project\risks owned community building 6 4
owned versus external project\risks owned responsible party 1 1
owned versus external project\risks owned stay ahead of competitiors 1 1
owned versus external project\risks owned urgent issues 1 1
rejected contributions\rejection risk bad communication 4 4
rejected contributions\rejection risk contribution too large 3 3
rejected contributions\rejection risk misaligned direction 6 4
rejected contributions\rejection risk rejected contribution 15 14
rejected contributions\rejection risk unkown developers 1 1
rejected contributions\rejection risk mitigation become maintainer 6 6
rejected contributions\rejection risk mitigation communicate with community 17 10
rejected contributions\rejection risk mitigation create fork 12 8
rejected contributions\rejection risk mitigation show your expertise 4 3
rejected contributions\rejection risk mitigation understand project needs 3 3
security no difference with proprietary 7 5
security\security benefits oss better security 6 4
security\security risk company information leak 6 5
security\security risk expose customer information 1 1
security\security risk mitigation customer info protection 2 2
security\security risk mitigation developer attitude 2 2
security\security risk mitigation healthy projects 1 1
security\security risk mitigation maintainers review 6 6
security\security risk mitigation review before contributing 5 4
security\security risk mitigation security tools 9 7
security\security risk mitigation security training 2 2

72



sustainability\sustainability risk projects discontinuing 6 4
sustainability\sustainability risk role change employee 2 2
sustainability\sustainability risk single maintainer risk 3 3
sustainability\sustainability risk mitigation fork and maintain 1 1
sustainability\sustainability risk mitigation maintain on personal account 1 1
sustainability\sustainability risk mitigation multiple maintainers 2 2
sustainability\sustainability risk mitigation pay maintainers 2 2

73



References

AlMarzouq, M., Zheng, L., Rong, G., & Grover, V. (2005). Open source: Con-
cepts, benefits, and challenges. Communications of the Association for
Information Systems, 16 (1), 37.

Andersen-Gott, M., Ghinea, G., & Bygstad, B. (2012). Why do commercial
companies contribute to open source software? International journal of
information management, 32 (2), 106–117.

Butler, S., Gamalielsson, J., Lundell, B., Brax, C., Sjöberg, J., Mattsson, A.,
Gustavsson, T., Feist, J., & Lönroth, E. (2019). On company contribu-
tions to community open source software projects. IEEE Transactions
on Software Engineering, 47 (7), 1381–1401.

De Laat, P. B. (2005). Copyright or copyleft?: An analysis of property regimes
for software development. Research Policy, 34 (10), 1511–1532.

Fitzgerald, B. (2006). The transformation of open source software. MIS quar-
terly, 587–598.

Henkel, J. (2006). Selective revealing in open innovation processes: The case of
embedded linux. Research policy, 35 (7), 953–969.

Kallio, H., Pietilä, A.-M., Johnson, M., & Kangasniemi, M. (2016). Systematic
methodological review: Developing a framework for a qualitative semi-
structured interview guide. Journal of Advanced Nursing, 72 (12), 2954–
2965. https://doi.org/https://doi.org/10.1111/jan.13031

Kendall, J. E., Kendall, K. E., & Germonprez, M. (2016). Game theory and open
source contribution: Rationale behind corporate participation in open
source software development. Journal of Organizational Computing and
Electronic Commerce, 26 (4), 323–343.

Lerner, J., Pathak, P. A., & Tirole, J. (2006). The dynamics of open-source
contributors. American Economic Review, 96 (2), 114–118.

Lerner, J., & Tirole, J. (2005). The scope of open source licensing. Journal of
Law, Economics, and Organization, 21 (1), 20–56.

Lin̊aker, J., & Regnell, B. (2020). What to share, when, and where: Balancing
the objectives and complexities of open source software contributions.
Empirical Software Engineering, 25 (5), 3799–3840.

Lundell, B., Butler, S., Fischer, T., Gamalielsson, J., Brax, C., Feist, J., Gus-
tavsson, T., Katz, A., Kvarnström, B., Lönroth, E., et al. (2021). Ef-
fective strategies for using open source software and open standards in
organizational contexts: Experiences from the primary and secondary
software sectors. IEEE Software, 39 (1), 84–92.

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design
and implementation. John Wiley & Sons.

Morgan, L., & Finnegan, P. (2007). Benefits and drawbacks of open source soft-
ware: An exploratory study of secondary software firms. Open Source
Development, Adoption and Innovation: IFIP Working Group 2.13 on
Open Source Software, June 11–14, 2007, Limerick, Ireland 3, 307–312.

74



Munir, H., Wnuk, K., & Runeson, P. (2016). Open innovation in software engi-
neering: A systematic mapping study. Empirical Software Engineering,
21 (2), 684–723.

Nagle, F. (2019). Open source software and firm productivity. Management
Science, 65 (3), 1191–1215.

Open Source Initiative. (2007). Open Source Initiative: the open source defini-
tion. Retrieved August 15, 2023, from https://opensource.org/osd/

Oreg, S., & Nov, O. (2008). Exploring motivations for contributing to open
source initiatives: The roles of contribution context and personal values.
Computers in human behavior, 24 (5), 2055–2073.

West, J., & Gallagher, S. (2006). Challenges of open innovation: The paradox
of firm investment in open-source software. R&d Management, 36 (3),
319–331.

75


