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Abstract 
The rapid innovations of artificial intelligence (AI) in navigation systems have revolutionized 

route generation, yet research into the factors that influence user adaptation remains limited. 

This study aims to bridge this gap by exploring key factors that impact drivers' willingness to 

follow AI-generated routes. A survey was designed and distributed that examined the following 

five formulated factors: number of traffic lights, number of roundabouts, distance on highway, 

number of gas/charging stations, and distance of a scenic route. The results were then 

processed using the Bradley-Terry model and bootstrap resampling method. These analyses 

identified that stoplights and roundabouts were avoided, while highways, stations, and scenic 

routes were preferred in relation to travel time. Notably, it was also found that drivers of electric 

cars were significantly more influenced by the availability of stations than those driving petrol 

vehicles. These findings provide insights into the human-AI interaction in navigation. It also 

underlines the importance of incorporating these factors and personalisation into the design of 

future AI navigation systems to enhance user adaptation.   
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1.  Introduction 
Artificial intelligence (AI) has become a cornerstone of the modern-day navigation, generating 

routes and optimising them based on real-time information. Both in the professional context as 

well as the private setting it has become essential in guiding individuals to their destinations 

efficiently (Dikshit, 2023). Reliance on AI-generated routes has only increased with 

advancements in technology, and this trend is only expected to continue as algorithms improve 

further. Therefore, the factors considered by AI in generating these routes are vital to ensuring 

that they are both optimal and beneficial for the user (Zhang, 2023).  

Previous studies aim to identify the factors that influence the trustworthiness of AI in general to 

better understand what motivates people to adopt these technologies (Choung, 2022). 

Additionally, methods have been developed to improve cooperation between AI and humans 

(Ramchurn, 2021). With regard to AI routing specifically, existing research focuses 

predominantly on the technological perspective and the possible risks of over-reliance on these 

navigation systems (Cummings, 2004). On the contrary, the research on the human perspective 

and desires is limited. This study aims to expand the understanding of users of these systems to 

improve the way routes are generated. The insights gained could be utilised to incorporate the 

user experience more effectively into the algorithms. This leads to the following research 

question:  

How can AI-generated routes be improved to better adapt to user needs? 

The thesis will address this question by first formulating the various factors that potentially 

influence the suitability of routes. Subsequently, a survey will be conducted to assess the 

effects of each factor. Finally, the results will be analysed using the Bradley-Terry model and 

bootstrapping method to determine the effect of the different factors on users' willingness to 

adopt the generated routes. 

2. Related work 
2.1 Adaptation and trustworthiness of AI 
As AI emerges as a new technology, the interaction between humans and AI is increasingly 

being studied. Zhao et al. (2022) examined the importance of adaptation in human-AI 

cooperation, emphasising how AI systems that can adapt to humans produce more effective 

collaborations. This is supported by Endsley et al. (2021), who highlighted that ability of AI to 

dynamically adjust its support contributes to an increase in confidence and trust. It is crucial to 



explore the broader aspects that contribute to trust in AI systems, as it inherently tied to the 

perceived adaptability of AI technology. 

Trust is a cornerstone of humanity’s relationship with AI, according to Siau & Wang (2018) and 

Choung et al. (2022). The acceptance and progression of AI technologies depends on the 

confidence of users. Systems that are perceived to be more trustworthy are utilized more. 

Therefore, trust is generally seen as a beneficial attribute and key component to incorporate in 

AI systems (Reinhardt, 2023). However, trust is not static and continuously develops through 

ongoing developments and interactions (Choung, 2022; Endsley, 2021). Consequently, research 

on the trustworthiness of AI has been conducted focusing on the elements that influence the 

trust and adaptation. From these studies, a comprehensive set of attributes is identified that 

shape the user’s trust in AI technologies more broadly. 

One significant component that influences trust is the ethical and fair behaviour of AI systems 

(Endsley, 2021; Zhao, 2022). Trustworthiness in AI is closely associated with several ethical 

principles and understanding them provides a foundation for examining factors that shape user 

trust. Fairness is paramount in this; a fair AI system avoids biases and ensures equitable 

treatment of all users to prevent inequalities. Accountability is another factor an ethical AI 

system should adhere to, ensuring liability is clearly defined, if any issues should arise. Issues 

and harm in general should be prevented to build and maintain trust in AI (Reinhardt, 2023).  

Transparency in AI systems is another important factor in the acceptance of these systems, 

closely associated with the concept of ethical AI (Choung, 2022; Reinhardt, 2023; Siau, 2018). 

Users tend to prefer AI systems that can explain their actions and the rationale behind their 

decisions (Turmunkh, 2022). The ability of an AI system to provide understandable and clear 

explanations for its decisions enhances users’ feelings of being informed and confident, 

resulting in increased trust. 

However, these factors alone are not sufficient. Human involvement in AI processes also 

improves user perception. The human Favouritism Rationale, as described by Inie (2024), 

argues that AI systems that incorporate human input will show more human like characterises 

or more human centric benefits which results in preference for these systems by users (Vogels, 

2023). Consequently, AI technology should be designed from the perspective of the end user. 

This involvement can be in a variety of stages ranging from the initial programming phase to the 

continuous monitoring and interaction (Okamura & Yamada, 2020). Additionally, the design of 

the interface plays a vital role in fostering trust. Research suggests that the trust of a system is 



enhanced by an intuitive and user-friendly interface, making it more approachable for users 

(Lee, 2004). Effective design should prioritize clarity and usability to improve the satisfaction. In 

car navigation the relevant factors would be important to display for instance.  

Moreover, the research has demonstrated that consistent and reliable performance of AI 

systems is key to sustaining trust. Users are more likely to trust systems that perform well under 

varying conditions and consistently meet their expectations (Choung, 2022; Siau, 2018). 

Reliability ensures that users can depend on the system, which is particularly important in 

applications such as car navigation where accuracy and consistency are critical. 

2.2 The technological aspect of AI routing adaptation  
Studies on AI routing often emphasise the technological aspects beyond mere reliability. Dikshit 

et al. (2023) explored how AI can enhance transportation efficiency by incorporating vast 

amounts of real data into route generating algorithms. The system has a comprehensive view of 

the traffic conditions by integrating data from various sources including GPS devices, traffic 

cameras, and sensors. The real data can also be utilised to predict and avoid future 

bottlenecks, further enhancing the user experience.  

Real-time data, similarly, plays an essential role in dynamic route adjustment through the Road 

Condition Monitoring (RCM) (Ranyal, 2022). RCM focuses on analysing the status of the road 

infrastructure as it is affected by heavy traffic, harsh weather conditions, aging, poor 

construction quality, and lack of appropriate maintenance. By processing data of multiple 

sources, including drones, the system can optimize travel paths. This not only leads to more 

efficient and safer routes for the end-user but also contributes to reduced carbon emissions.  

The optimization and safety improvements brought by real-time data are directly tied to the 

overall user experience, which is vital for the adaptation of AI-generated routes. Based on the 

Technology Acceptance Model (TAM), Ge (2023) identified perceived usefulness (PU) and 

perceived ease of use (PEOU), in addition to trust, as significant predictors of user’s intentions 

to utilize AI navigations systems. Effective experience design can enhance these crucial factors 

to influence the users’ attitudes positively (Lee, 2004). Therefore, a user-friendly interface 

should be designed to cater to the PU and PEOU, showing relevant factors to the user. 

Zhang et al. (Zhang, 2023) outlined a framework that incorporates the previously mentioned 

real-time traffic data, road conditions, and user preferences into dynamically generated routes. 

The case study in this paper demonstrates how this framework reduces travel time and 

improves user satisfaction by providing adaptive and personalized AI routing solutions. This 



shows the importance of understanding these factors to create a reliable and user-centric 

navigation system. 

These navigation systems are still prone to errors however, as it can overlook factors or 

miscalculated values. This introduces the risk of over-reliance, where a human user disregards 

other information fully trusting the automated output of the system. The human tendency to rely 

on automated computer-generated solutions is known as automation bias and should be kept 

in mind during the designing process. These risks can be addressed by supporting user 

situational awareness and encouraging active monitoring and critical assessment (Cummings, 

2004; Okamura & Yamada, 2020).  

2.3 Perspective of the end-user 
The development of AI navigation systems thus has increasingly focused on the perspective of 

the user to responsibly enhance trust. The study by Wang et al. (Wang, 2022) provides the Driver 

Preference-Based Route Planning (DPRP) Model for achieving this objective. This system 

collects drivers' preferences and utilizes them to recommend optimal routes. Various attributes 

were considered in the study. There were divided into attributes that had a positive effect: 

• Scenery 

• Radius of curvature 

• Number of Lanes 

• Lane width 

And attributes that had a negative effect: 

• Distance 

• Congestion 

• Traffic flow number of pedestrians and bicycles 

• Congestion rate 

• Separation of motor vehicles and non-motor vehicles 

• Cost of time 

• Fuel consumption 

• Toll fee 

• Number of traffic lights 

• Intersections 

• Turns 

The preferences are collected from big data and direct driver input, allowing the system to 

assign a weight to each attribute. Then a “road resistance” value is calculated from which the 



routes with the lowest value are recommended to the user. By employing this method, the DPRP 

model is able to provide route suggestions that are both personalised and efficient. 

The factors that should be considered and the extent of their influence is further researched by 

Amirgholy et al. (Amirgholy, 2017), looking into similar factors as used in the DPRP model. The 

study used a survey too to determine the impact of each factor, asking the participants to rank 

the importance of each attribute. A distinction was made between weekdays and weekends. 

First, the study discovered that the different variables do not correlate, thus they can be seen 

independent from each other. Scenic quality was found to be more significant on weekends, 

while the travel time and the cost of the trip was more important on weekdays. Additionally, the 

road safety was consistently ranked as important. Amirgholy et al. (2017) showed, in a different 

part of the survey, that 27% of participants chose other routes than the one the AI navigation 

system suggested, highlighting the need to understand user’ preferences. 

There also factors that originate from the user that impact the adaptation of AI route 

recommendations. Samson et al. (2019) identify several of these factors: 

• Practicality and sensibility were found to be the most influential one, being considered 

94.12% of the time by users. 

• Familiarity with the recommended routes were taken into account 86,15% of the time. 

• Suitability of the road concerning safety only influenced the decision of the user 26,80% 

of the time. 

• Drivers also use social networking sites and their community to seek information that is 

not provided by car navigation. 

• The urgency of the trip is another factor identified that influences the user’s choice to 

follow the recommended route generated by AI. 

Consequently, the paper suggests context aware recommendations to ensure that the 

navigation aligns with the driver and his or her needs. 

2.4 The relevance of this study 
As described earlier, there are numerous attributes influencing the decision of a user to choose 

a route. This results in users not following the path with shortest travel time in 60% of cases 

according to a study by Zhu and Levinson (2015). The study further underlines that more 

research is needed into the factors that have an impact on user adaptation. This study aims to 

expand that knowledge, adding to the understanding of these factors. Eventually, this could 

lead to greater consideration of attributes in the design process of AI systems that generate 

routes, resulting in increased user adaptation.  



The importance of the adaptation of AI routing is furthered emphasized by van Rooijen et al. 

(2008), who examined the impact of navigation systems on traffic safety in the Netherlands. 

Combining results from a literature survey, database analysis, user survey, and instrumented 

vehicle, they found that navigation systems reduce driving errors and improve navigational 

efficiency. This conclusion is supported by evidence of improved driving behaviour, reduced 

stress, and a decrease in both the number and cost of damage claims.    

3. Hypotheses 
3.1 Determining factors and the associated hypotheses 
Firstly, the research process starts with determining the possible factors that influence the 

Adaptation of AI-generated routes. Building on the related work discussed earlier, the research 

identifies the following five factors to investigate, each accompanied by a hypothesis. The 

hypotheses all have a null hypothesis to be able to test if they are statistically significant; how 

this is determined is explained further in section 4.4.  

1. Number of stoplights: In the Driver Preference-Based Route Planning (DPRP) Model by 

Wang et al. (2022), it is shown that the number of stoplights negatively impact the user 

preference for a route. This is crucial to investigate further as traffic lights are profoundly 

found on routes, in particular in urban areas. Therefore, the hypothesis is as follows: 

o Null hypothesis (H0): The number of stoplights does not influence the user’s 

willingness to adapt the route. 

o Alternative hypothesis (H1): The number of stoplights influences the user’s 

willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

§ 20 min ≤ Time ≤ 32 min 

§ 30 km ≤ Distance ≤ 50 km 

§ 0 ≤ Stoplights ≤ 8 

§ 0 ≤ Roundabouts ≤ 8 

§ 0 km ≤ Scenic route ≤ 12 km 

2. Number of roundabouts: Wang et al. (2022) mentioned intersections and turns as 

negative factor, indicating roundabouts could be of also of negative impact. However, 

the study on the impact of roundabouts is minimal, while the number of roundabouts is 

only increasing due to their improvement of safety at intersections (Dijkstra, 2014; Lazo, 

2022). This highlights the importance of testing this factor in user adaptation, leading to 

the following hypothesis: 



o Null hypothesis (H0): The number of roundabouts does not influence the user’s 

willingness to adapt the route. 

o Alternative hypothesis (H1): The number of roundabouts influences the user’s 

willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

§ 20 min ≤ Time ≤ 32 min 

§ 30 km ≤ Distance ≤ 50 km 

§ 0 ≤ Stoplights ≤ 8 

§ 0 ≤ Roundabouts ≤ 8 

§ 0 km ≤ Scenic route ≤ 12 km 

3. Distance on highway: The influence of the distance of highway on the choice of 

individual to opt for a specific route is limited. However, highways are an integral part of 

covering long distances by car. Therefore, the third hypothesis is formulated as follows: 

o Null hypothesis (H0): The distance of highway does not influence the user’s 

willingness to adapt the route. 

o Alternative hypothesis (H1): The distance of highway influences the user’s 

willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

§ 3 hours 30 min ≤ Time ≤ 4 hours 

§ 300 km ≤ Distance ≤ 400 km 

§ 50 km ≤ Highway ≤ 250 km 

§ 4 ≤ Stations ≤ 20 

§ 0 km ≤ Scenic route ≤ 120 km 

4. Number of gas / charging stations: The number of stations could have become a more 

influential factor on users as electric car drivers are more concerned with vehicle’s 

range  (Franke, 2013). Consequently, this motivates to consider the following 

hypothesis:  

o Null hypothesis (H0): The number of gas / petrol stations does not influence the 

user’s willingness to adapt the route. 

o Alternative hypothesis (H1): The number of gas / petrol stations influences the 

user’s willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

§ 3 hours 30 min ≤ Time ≤ 4 hours 

§ 300 km ≤ Distance ≤ 400 km 

§ 50 km ≤ Highway ≤ 250 km 



§ 4 ≤ Stations ≤ 20 

§ 0 km ≤ Scenic route ≤ 120 km 

5. The distance of a scenic route: Scenic views have positive influence on route selection, 

as highlighted by Amirgholy et al. (2017), being valued for the aesthetic value. To further 

investigate how the desire for scenic routes influences the choice of routes the following 

hypothesis is formulated:  

o Null hypothesis (H0): The distance of scenic views does not influence the user’s 

willingness to adapt the route. 

o Alternative hypothesis (H1): The distance of scenic views influences the user’s 

willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

§ 3 hours 30 min ≤ Time ≤ 4 hours 

§ 300 km ≤ Distance ≤ 400 km 

§ 50 km ≤ Highway ≤ 250 km 

§ 4 ≤ Stations ≤ 20 

§ 0 km ≤ Scenic route ≤ 120 km 

3.2 Electric and petrol drivers’ comparison hypotheses 
A critical consideration in this study is the type of vehicle that the user is driving, in particular the 

differences between electric cars and petrol cars. With the surge in electric vehicles sales in 

recent years (Agency, 2024), and their unique concerns associated with range for instance 

(Franke, 2013), it is essential to investigate how these differences may influence the route 

adaptation decision of a user. Therefore, the participants were divided into two groups, one who 

were asked to imagine they are driving a Tesla Model 3 (Electric), the other asked to imagine they 

were driving a Volkswagen Polo (Petrol). This comparison resulted in the following five 

hypotheses; the method for testing their statistical significance is detailed in Section 4.6.  

6. For the difference in factor stoplights: 

o Null hypothesis (H0): There is no difference between drivers of electric cars and 

petrol cars concerning the influence of the stoplights on route adaptation. 

o Alternative hypothesis (H1): There is a difference between drivers of electric cars 

and petrol cars concerning the influence of the stoplights on route adaptation. 

7. For the difference in factor roundabouts: 

o Null hypothesis (H0): There is no difference between drivers of electric cars and 

petrol cars concerning the influence of the roundabouts on route adaptation. 



o Alternative hypothesis (H1): There is a difference between drivers of electric cars 

and petrol cars concerning the influence of the roundabouts on route 

adaptation. 

8. For the difference in factor Highway: 

o Null hypothesis (H0): There is no difference between drivers of electric cars and 

petrol cars concerning the influence of the distance of highway on route 

adaptation. 

o Alternative hypothesis (H1): There is a difference between drivers of electric cars 

and petrol cars concerning the influence of the distance of highway on route 

adaptation. 

9. For the difference in factor in stations: 

o Null hypothesis (H0): There is no difference between drivers of electric cars and 

petrol cars concerning the influence of the stations on route adaptation. 

o Alternative hypothesis (H1): There is a difference between drivers of electric cars 

and petrol cars concerning the influence of the stations on route adaptation. 

10. For the difference in factor scenic views: 

o Null hypothesis (H0): There is no difference between drivers of electric cars and 

petrol cars concerning the influence of the distance of scenic views on route 

adaptation. 

o Alternative hypothesis (H1): There is a difference between drivers of electric cars 

and petrol cars concerning the influence of the distance of scenic views on route 

adaptation. 

3.3 Conditioned hypotheses 
While the research on the impact of a shorter route distance is limited, it is hypothesised that it 

has a profound impact. This study therefore will examine the impact of the considered factors 

conditioning on shorter distance. Thus, the subsequent five hypotheses are proposed: 

11. The effect of the number of stoplights on the conditioned distance: 

o Null hypothesis (H0): The number of stoplights does not influence the user’s 

willingness to adapt the route. 

o Alternative hypothesis (H1): The number of stoplights influences the user’s 

willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

1. 20 min ≤ Time ≤ 32 min 

2. 30 km ≤ Distance ≤ 40 km 



3. 0 ≤ Stoplights ≤ 8 

4. 0 ≤ Roundabouts ≤ 8 

5. 0 km ≤ Scenic route ≤ 12 km 

12. The effect of the number of roundabouts on the conditioned distance: 

o Null hypothesis (H0): The number of roundabouts does not influence the user’s 

willingness to adapt the route. 

o Alternative hypothesis (H1): The number of roundabouts influences the user’s 

willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

1. 20 min ≤ Time ≤ 32 min 

2. 30 km ≤ Distance ≤ 40 km 

3. 0 ≤ Stoplights ≤ 8 

4. 0 ≤ Roundabouts ≤ 8 

5. 0 km ≤ Scenic route ≤ 12 km 

13. The effect of the distance of highway on the conditioned distance: 

o Null hypothesis (H0): The distance of highway does not influence the user’s 

willingness to adapt the route. 

o Alternative hypothesis (H1): The distance of highway influences the user’s 

willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

1. 3 hours 30 min ≤ Time ≤ 4 hours 

2. 300 km ≤ Distance ≤ 350 km 

3. 50 km ≤ Highway ≤ 250 km 

4. 4 ≤ Stations ≤ 20 

5. 0 km ≤ Scenic route ≤ 120 km 

14. The effect of number of gas / petrol stations on the conditioned distance: 

o Null hypothesis (H0): The number of gas / petrol stations does not influence the 

user’s willingness to adapt the route. 

o Alternative hypothesis (H1): The number of gas/petrol stations influences the 

user’s willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

1. 3 hours 30 min ≤ Time ≤ 4 hours 

2. 300 km ≤ Distance ≤ 350 km 

3. 50 km ≤ Highway ≤ 250 km 

4. 4 ≤ Stations ≤ 20 



5. 0 km ≤ Scenic route ≤ 120 km 

15. The effect of the distance of scenic views on the conditioned distance 

o Null hypothesis (H0): The distance of scenic views does not influence the user’s 

willingness to adapt the route. 

o Alternative hypothesis (H1): The distance of scenic views influences the user’s 

willingness to adapt the route. 

o For this hypothesis the following conditions apply: 

§ 3 hours 30 min ≤ Time ≤ 4 hours 

§ 300 km ≤ Distance ≤ 350 km 

§ 50 km ≤ Highway ≤ 250 km 

§ 4 ≤ Stations ≤ 20 

§ 0 km ≤ Scenic route ≤ 120 km 

4. Methodology  
4.1  Formulated factors 
The hypotheses were structured around certain factors and conditions that are divided based 

on their relevance for a short distance or a long distance. The short distances were defined as 

routes ranging from 30 km to 50 km, while long distances were between 300 km and 400 km. The 

time for short routes was set between 20 min and 32 min and for long routes between 3 hours 

and 30 min and 4 hours. For a short route, the following attributes were included:  

• Distance 

• Time 

• Number of stoplights  

• Number of roundabouts 

• Distance of the scenic route 

Roundabouts and traffic lights were deemed less relevant for long routes as they are typically 

considered less and encountered relatively little. Therefore, for long routes there were another 

set of factors that were presented: 

• Distance 

• Time 

• Distance on highway 

• Number of gas / charging stations 

• Distance of a scenic route 



In case of an electric vehicle the number of charging stations was displayed, for a petrol vehicle 

the number of gas stations was showed instead. The distance of highway travelled and the 

number of gas / charging stations were considered to be less applicable on short distance, as 

they are not used as much on a short range.  

 

Each time a set of 3 questions focussed on one of the factors derived from the hypotheses, an 

example of such a question is later presented in Figure 1. This was done by randomizing the 

factor to be different and unique in each option, while keeping all the other factors consistent 

across the presented options. To evaluate the importance of each factor time was added as a 

variable factor, being unique for each option. With time as a variable, an analysis can be done 

on how much driving time users are willing to extend for each distinct factor. This method 

enables a deeper examination of the relative weight of each attribute in relation to time.  

4.2 Identifying subgroups 
Finally, information about the participants was asked to identify if certain subgroups act 

differently. This includes: 

• Age 

• Gender 

• Country of residence 

• Educational level 

• Employment status 

• Household annual income 

• Size of the household 

• Possession of driver license 

If the participant had a driver license further information could be relevant to identify more 

subgroups: 

• Duration of driving experience 

• Frequency of driving 

• Type of propulsion for the vehicle they usually drive 

• Vehicle ownership status 

• Choice of navigation apps 

• Frequency of navigation app usage 

• Preferred travel method to work/school 



4.3 Survey distribution and design 
The data was obtained in two ways:  

1. Distribution of the link of the survey in the author’s network by WhatsApp and Instagram, 

including contacts of my parents to diversify the population more.   

2. Making use of an online service called Prolific that specializes in the distribution of 

surveys.  

The participants were not filled in on the precise goal of the research to prevent biases. They 

also only saw the electric or petrol version of the survey.  

The design of the survey was done in Qualtrics and had the following sequence: 

1. The participant started with an introduction which thanked them for their participation 

and gave contact information for possible questions.  

 

2. Then the questions about their information such as age and gender were presented.  

 

3. It was ensured in the flow of the survey, with help of an “IF” branch, that the person only 

got asked about their driving behaviour next if they answered “YES” to the question 

about their possession of a driver license. The questions about the choice of navigation 

app were not mandatory as not everybody uses these.  

 

4. Before starting the questions about the factors an introduction was shown with the 

following text to explain what a participant needed to know: 

“For the next questions imagine you are driving [electric or petrol vehicle] to your work. 

Please choose the route that you would like to use based on the travel distance and 

travel time, the number of roundabouts and stoplights, the distance on highway, as well 

as the distance with scenic views. Note that a scenic route is a path that offers beautiful 

views and enjoyable driving experiences. It might pass through forests, along water, or 

by nice buildings, providing a more visually pleasant journey.” 

 

5. Next followed a block of 3 questions with each 3 options that tested one particular 

factor. For question 1 for example there were three provided options as shown in Figure 

1. 



 
Figure 1. An example of a question that is presented to the responded 

The question started with reminding the participant to imagine they were in a certain 

situation. This situation is the same for every question to ensure that it had no influence 

on the results of the survey. Then the person was provided with the information, which 

was the same for each route to guarantee clarity. For each options the time and another 

factor were shown with a visual representation of the navigation in Google Maps. The 

routes were different locations throughout Europe, with each three different options that 

minimally intertwined to get from one destination to another. To prevent unclarity an A 

and B point were added to the images.  

 

6. This process was repeated until all 15 questions were completed. 

 

7. At the end of the survey the “Workers” from the online survey received a personalised 

code. The provided code could be used on the website to confirm that they had indeed 

completed the survey. 

 

To randomise the values every time 5 different possible values were chosen for each factor. 

These were: 

• Distance (short) = [30 km, 35 km, 40 km, 45 km, 50 km] 

• Distance (long) = [300 km, 325 km, 350 km, 375 km, 400 km] 

• Time (short) = [20 min, 23 min, 26 min, 29 min, 32 min]  

• Time (long) = [3 hours and 30 min, 3 hours and 37 min, 3 hours and 45 min, 3 hours and 

52 min, 4 hours] 

• Stoplights = [0, 4, 8, 12, 16] 



• Roundabouts = [0, 4, 8, 12, 16] 

• Highway = [50 km, 100 km, 150 km, 200 km, 250 km] 

• Stations = [4, 8, 12, 16, 20] 

• Scenic route (short) = [0 km, 3 km, 6 km, 9 km, 12 km] 

• Scenic route (long) = [0 km, 30 km, 60 km, 90 km, 120 km] 

Within Qualtrics, JavaScript was used to randomise each factor. First there was an array defined 

for each factor and their possible values. Next a function was created to shuffle set arrays. This 

function was consequently used to shuffle the arrays for each participant. For each question the 

embedded data was given a value from the array and each option got assigned a different index 

to ensure the options were unique.  

4.4 The Bradley-Terry model 
To analyse the results, the Bradley-Terry model was utilised to determine the impact of each of 

the considered factors: the Bradley-Terry Model (Guo, 2018) is a method in which pairs are 

compared to predict the likeness of one being chooses over the other. The model is based on 

probabilistic assumptions and utilizes both absolute and comparison labels.  

First there exists parameter vector 𝛽 ∈ ℝ!  exists which is sampled from a Gaussian prior 

𝑁(0, 𝜎"𝐼), so that for all 𝑖 ∈ 𝑁 and all (𝑖, 𝑗) ∈ 𝐶. 𝑁 represents the set of all items considered and  

𝐶 represents the set of all possible pairs from	𝑁 that are being compared. The absolute labels 𝑌#  

and comparison labels 𝑌#,%  are independently conditioned on 𝛽. Secondly the conditional 

distribution of 𝑌#  given 𝑥#  and 𝛽 is provided by a logistic model: 

𝑃(𝑌# =	+1|𝑥#𝛽) =
1

1 + exp	(−𝛽& , 𝑥#)	
, 𝑖 ∈ 𝑁. 

Finally the conditional distribution of 𝑌#,%  given 𝑥#  𝑥%  and 𝛽 is given by the Bradley-Terry model, 

here it is assumed that every item of 𝑖 ∈ 𝑁 is associated with a parameter 𝑠# ∈ ℝ's.t. 

𝑃<𝑌#,% = +1= = (!
	((!'(")

 for all (𝑖, 𝑗) ∈ 𝐶. This brings us to the following equation incorporating 𝑥# ∈

ℝ!  , 𝑖 ∈ 𝑁: 

𝑃<𝑌#,% =	+1>𝑥# , 𝑥% , 𝛽= =
𝑠(𝑥# , 𝛽)

𝑠(𝑥# , 𝛽) + 𝑠(𝑥% , 𝛽)	
, (𝑖, 𝑗) ∈ 𝐶. 

where 𝑠(𝑥# , 𝛽) = 𝑒,#-!. 

Although the discussion focuses on a single expert, the probabilistic nature of this model  

allows for incorporating multiple experts generating independent labels over the same pairs. 



In the case of this research, the participants each have three options instead of two. To generate 

the preference data set, if the expert prefers option 𝑂#  over 𝑂%, and 𝑂., then we add two pairs 		

𝑂# >	𝑂%, 𝑂# >	𝑂.  to the dataset.  

The process started in Python by reading the csv file and cleaning it. The cleaned data was used 

to pair each response to a question with the right values of each differentiating factor, one of 

them being always time. This resulted in two pairs for each question, as there were three 

options. Using Pandas, a DataFrame was generated containing al these pairs that could be used 

to fit the Bradley Terry model on the data. The items in this research were the different routes 

that were presented, and they were compared each time on one factor and the travel time. This 

meant that each factor, including the travel time, had an associated parameter showing its 

effect on the preference of the user. The following model is formulated; given two items 𝑖 and 𝑗 

with the associated parameters 𝜃#  and 𝜃%: 

𝑃(𝑖	𝑖𝑠	𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑	𝑜𝑣𝑒𝑟	𝑗) =
𝜃#

𝜃# + 𝜃% 	
		 

In the survey each route can be described these factors and travel times: 

• 𝑇#  (Travel time for route 𝑖) 

• 𝑥#,/0123#450( 

• 𝑥#,6178!9:170( 

• 𝑥#,;#45<9=  

• 𝑥#,/090#18( 

• 𝑥#,/>?8#>6170?  

The parameters than can be described as a function of these factors: 

𝜃# = exp(𝛽&#@? ∙ 𝑇# + 𝛽/0123#450( ∙ 𝑥#,/0123#450( + 𝛽6178!9:170( ∙ 𝑥#,6178!9:170( + 𝛽;#45<9= ∙

𝑥#,;#45<9= + 𝛽/090#18( ∙ 𝑥#,/090#18( + 𝛽/>?8#>6170? ∙ 𝑥#,/>?8#>6170?)  

Where 𝛽 are the parameters to be estimated.  

Using this model, the parameters 𝛽 describe the effect of each factor, where 𝛽 < 0 indicates 

that an increase in the factor leads to a decrease in user preference for the route.  

The trade-off with time for a given factor 𝑖 could be determined by how much time 𝛽&#@?  the 

participant was willing to add or reduce a given factor, by calculating it as follows: 

𝑇 =
𝛽#

𝛽&#@? 	
		 



4.5 Bootstrapping and standardisation  
To further analyse the data, we used bootstrap resampling to identify the confidence interval 

(CI). First the Bradley-Terry model was fitted to the original data set to estimate the initial 

parameters. Then several bootstrap samples were generated, in this case 20, by randomly 

sampling with replacements from the original dataset. For each bootstrap sample a Bradley-

Terry model was fitted, and the results were recorded. Each parameter had its own empirical 

distribution based on the estimates from the bootstrap samples. Moreover, confidence 

intervals were calculated from the empirical distributions. This was done by the sorting the 

bootstrap estimates in ascending orders. For the 95% CI that was used in this study, the 2,5th 

percentile and the 97,5th percentile were determined. In this study, a factor is defined as 

statistically significant if its CI did not include zero; if zero was in the range of the interval, the 

factor was considered not significant. 

However, to determine the relative importance of each factor a standardisation was needed 

before fitting the model. The Z-score considered for this purpose was:  

𝑍# =
𝑋# − 𝜇
𝜎

, 

where  𝜇 is the mean and 𝜎 the standard deviation of the dataset.  

This was used in all further analyses of subgroups to determine the importance of each factor. 

4.6 Confidence intervals in comparisons 
To identify if the differences between certain subgroups was significant, the CI was used. 

However, directly comparing the 95% CIs commonly leads to mistakes when concluding 

significance by determining if there is no overlap between the two intervals. This is why 

Goldstein and Healy proposed a different method  (Goldstein, 1995). Instead of directly 

comparing the CIs, the CI of the means is compared. For two independently distributed means 

𝑚#  with 𝑚%  with known standard errors 𝜎#  and 𝜎%, the condition can be determined under which 

they do not overlap, under the assumption of normality. This can be described as follows: 

>𝑚# −𝑚%> > 𝑧2<𝜎# + 𝜎%=, 

where 	𝑧2 is the z-score corresponding to the confidence level 𝛼. For this analysis with a 95% CI, 

where 𝑧A.A"C = 1.96.  

To evaluate the probability that this inequality holds, the ratio of standard errors D!
D"

 is 

considered. Using the normal distribution's cumulative distribution function Φ(𝑧), the 

probability 𝑃 that the confidence intervals do not overlap can be expressed as: 



𝑃 = 2(1 − Φ

⎝

⎛𝑧2
𝜎# + 𝜎%

X𝜎#" + 𝜎%"⎠

⎞, 

This probability varies depending on the ratio D!
D"

 and is minimized when the ratio is equal to 1.  

When 𝑃 < 0.05, it indicates that the CIs do not overlap, suggesting a significant difference 

between the means. Conversely, if 𝑃 ≥ 0.05 it indicates the CIs do overlap, meaning the 

difference is not statistically significant. This study chooses to use visual approach to determine 

if the CIs overlap, this allows for a more intuitive and clearer comparison between the various 

subgroups. If the CIs of the means do not include the zero line on the graph, the difference 

between the means is found to be statistically significant.  

5 Results 
5.1 Population distribution 
The population of the respondents is as displayed in Table 1 and 2. 

 Number of respondents  
Total 100 
Age  
19-24 50 
25-34 28 
35-44 13 
45-59 8 
60 ≥ 1 
Gender  
Male 65 
Female 33 
Non-binary  2 
Country of household  
Armenia 1 
Belgium 3 
France 4 
Germany 1 
Greece 3 
Ireland 5 
India 1 
Lithuania 3 
Netherlands 53 
Philippines 9 
Portugal 9 
Sudan 5 
Italy 2 
Education level  
Less than high school 0 



High school 17 
Some college 15 
2-year degree 11 
4-year degree 23 
Professional degree 30 
Doctorate or higher 4 
Personal situation  
Employed full time 39 
Employed part time 15 
Unemployed 6 
Retired 1 
Student 39 
Household annual income  
Less than €10.000   33 
€10.000 - €29.999 24 
€30.000 - €49.999 16 
€50.000 - €69.999 11 
€70.000 - €89.999 3 
€90.000 - €149.999 10 
More than €150.000   3 
Household size including the responded  
1 35 
2 14 
3+ 51 
Possession of driver license  
Yes  93 
No 7 

Table 1. The population of total survey 

 Number of respondents with a driver 
license  

Total 93 
Driving experience  
Less than 1 year 1 
1-2 years 11 
3-5 years 31 
6-10 years 23 
More than 10 years 27 
Driving frequency  
Daily 31 
A few times a week 25 
Once a week 3 
A few times a month 16 
Rarely  17 
Never 1 
Propulsion type of the usually driven 
vehicle 

 

Petrol 47 
Diesel 23 
Hybrid 7 



Electric 16 
Vehicle ownership  
Own  50 
Lease 4 
I do not have a vehicle 39 
Navigation app choice  
Google Maps 55 
Waze 4 
Other 5 
Navigation app usage  
Daily 13 
A few times a week 34 
Once a week 12 
A few times a month 24 
Rarely  8 
Never 2 
Preferred travel method  
Walking 9 
Cycle 27 
Motorcycle 1 
Car 31 
Public transport 25 

Table 2. The driving behaviour of participants with a driver license 

The data was gathered in two distinct ways, one through the author’s network and one through 

an online website distributor. Both methods gathered exactly 50 finished responses. The 

Bradley-Terry model was performed with the bootstrap method to generate the CIs of both 

groups. The CIs of the means is utilised to investigate if the data was consistent. In Figure 2 the 

results are presented from the table in appendix A.  

 
Figure 2. The CIs of the means for the two distribution channels 



In Figure 2 the interval plot is displayed, with the green zero line representing no difference 

between the groups. Here it can be observed that there are significant differences for all factors. 

All the differences of means are negative indicating that the author’s network was relatively 

more sensitive than the group from the website Prolific. This should be considered further in the 

study.  

5.2 Data processing 
The survey for electric vehicles got 49 responses and the survey for petrol vehicles got 51. The 

results of the survey were exported to a .CSV file so it could be used in Python as a data frame. 

Before fitting the model, the results were standardized. The Bradley-Terry model was used, as 

described in Section 4.4, to calculate the parameters for each factor using this formula: 

𝑃(𝑖	𝑖𝑠	𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑	𝑜𝑣𝑒𝑟	𝑗) =
𝜃#

𝜃# + 𝜃% 	
,		 

where 𝜃#  is the parameter option 𝑖.  

Using these parameters the trade-off with time can be calculated with the following formula, as 

described in Section 4.4: 

𝑇 =
𝛽#

𝛽&#@? 	
		 

The standardized coefficient in Table 3 represents the 𝜃 value of each factor, influencing the 

likelihood of preference. A higher absolute value indicates a stronger impact on the route 

preference. The bootstrap method is utilised to calculate the 95% CIs for each factor.  

Factor Standardized 
coefficient  

Standardized bootstrap CI Trade-off with time 
Lower bound Higher bound 

Stoplights -0.133 -0.148 -0.116 1.106 
Roundabouts -0.093 -0.105 -0.078 0.775 
Highway 0.004 0.002 0.005 -0.029 
Stations 0.018 0.007 0.038 -0.153 
Scenic route  0.015 0.013 0.017 -0.125 
Time -0.120 -0.128 -0.114 * 

Table 3. The output of the Bradley-Terry model and bootstrap method for the data 

The interpretation of the trade-off time differs based on them having a positive or negative value. 

For instance, the 1.106 trade-off time for stoplights means that a responded was willing to add 

1.106 stoplights to their route for every additional minute driven less. This is because the 

negative parameter for both stoplights and time is indicating that participants are estimated to 

prefer less of them. For the factor stations on the contrary the responded was willing to reduce 

the number of stations by 0.153 for every minute saved on their trip.  



5.3 Testing the hypotheses 
For all other results the values were standardised before fitting the Bradley-Terry model to be 

able to compare them. For the entire data set the following results were generated. The 

bootstrap CI values enabled the tests for the first five hypotheses as shown in Table 4, with the 

help of the standardized coefficient Figure 3 was created to visualise the influence of the various 

factors.  

Hypothesis Factor Standardized 
coefficient 

Trade-off 
with time 

Standardized 
Bootstrap CI 

Reject H0 

1 Stoplights -8.965 74.838 [-9.821, -8.301] Yes 
2 Roundabouts -6.282 52.440 [-7.191, -5.780] Yes 
3 Highway 0.237 -1.977 [0.152, 0.329] Yes 
4 Stations 1.243 -10.380 [0.197, 2.605] Yes 
5 Scenic route  1.010 -8.429 [0.805, 1.139] Yes 
* Time -0.120 * [-0.127, -0.111] * 

Table 4. The standardized output of the Bradley-Terry model and bootstrap method for all data 

 
Figure 3. The CI’s and the estimated parameters of the original data 

In Figure 3 the various CIs for each factor is displayed, with a blue point representing the 

estimated parameters from the initial data set. The green vertical line represents an influence of 

zero, if crossed by the interval the H0 of the hypothesis is not rejected as the result is not 

significant. In this case it is clear from the results that all five factors have an impact on the 

decision of the participant to choose a route over another and all H0 are rejected. Stoplights and 

roundabouts have a negative impact and the largest impact respectively. The other three factors 

are of positive influence, influencing considerably less however than the negative factors.  

The next five hypotheses focussed on the differences between electrical drivers and petrol 

drivers. Both the data sets showed the following results. 



Factor 
Electric 

Mean 
standardized 
coefficient 

Standardized bootstrap CI Trade-off with time 
Lower bound Higher bound 

Stoplights -9.883 -11.100 -8.407 74.423 
Roundabouts -7.329 -8.350 -6.643 55.191 
Highway 0.399 0.267 0.557 -3.008 
Stations 2.083 0.056 4.015 -15.684 
Scenic route  1.328 1.103 1.505 -10.003 
Time -0.133 -0.145 -0.124 * 

Table 5. The standardized output of the Bradley-Terry model and bootstrap method for the data 

Factor Petrol Mean 
standardized 
coefficient 

Standardized bootstrap CI Trade-off with time 
Lower bound Higher bound 

Stoplights -8.487 -9.490 -7.285 75.992 
Roundabouts -5.443 -6.423 -3.726 48.735 
Highway 0.089 -0.080 0.212 -0.799 
Stations 0.308 -1.308 1.867 -2.757 
Scenic route  0.771 0.541 0.995 -6.906 
Time -0.112 -0.122 -0.103 * 

Table 6. The standardized output of the Bradley-Terry model and bootstrap method for the data 

From the results from Table 5 and 6 the standardized bootstrap estimated parameters and the 

trade-off with time were used to determine the confidence intervals of the difference as shown 

in Table 7. From the CIs and the difference of the trade-off a confidence interval plot is created 

that is presented in Figure 4. 

Hypothesis Factor Difference in trade-off CI of difference Reject H0 
6 Stoplights -1.569 [-3.309, 0.172] No 
7 Roundabouts 6.457 [4.861, 8.052] Yes 
8 Highway -2.209 [-2.415, -2.003] Yes 
9 Stations -12.927 [-15.464, -10.390] Yes 
10 Scenic Route -3.097 [-3.400, -2.794] Yes 

Table 7. The confidence intervals of the difference between electrical and petrol 



 
Figure 4. The CIs difference of means for electric compared to petrol 

It is evidently shown in Figure 4 that the CI of stoplights crosses the green line, indicating it is in 

the range of 0 and thus not significant. All other factors have their H0 rejected establishing that 

with these factors there is a difference between electrical and petrol drivers. Note that the 

definition of the green line is distinct in the interval plot for a comparison, as it is centred around 

the green line. The negative part of the x-axis represents a greater influence the electric drivers, 

while the positive axis represents a greater influence on petrol drivers. The factor station shows 

the largest difference, influencing electric drivers the most. Roundabouts meanwhile is the 

second largest, only this factor has a bigger impact on petrol drivers. 

The last 5 hypotheses were based on conditioned distances, for this only the responses were 

used that were shorter and thus for which applied that 0 km ≤ Scenic route ≤ 12 km or 0 km ≤ 

Scenic route ≤ 120 km. The results of the tests on hypotheses 11 to 15 is displayed in Table 8 

and Figure 5. 

Hypothesis Factor Standardized 
Coefficient 

Trade-off 
with time 

Standardized 
Bootstrap CI 

Reject H0 

11 Stoplights -8.685 68.570 [-9.682, -7.274] Yes 
12 Roundabouts -5.818 45.936 [-6.990, -4.600] Yes 
13 Highway 0.324 -2.560 [0.236, 0.508] Yes 
14 Stations 1.222 -9.645 [-0.374, 2.544] No 
15 Scenic route  1.154 -9.114 [0.908, 1.395] Yes 
* Time -0.127 * [-0.136, -0.118] * 
Table 8. The output of the Bradley-Terry model and bootstrap method for the conditioned data 



 
Figure 5. The CI’s and the standardized coefficients of the conditioned data 

Similar as in the original data set, the stoplights and roundabouts have the most impact on the 

respondent’s choice for a navigation suggestion. Unlike the original data the factor stations is 

not significant here. Highway has the smallest value accompanied by the smallest range as it 

was in the original data. 

5.4 Subgroups comparisons 
For this section the various subgroups were analysed based on the population distribution to 

identify any discrepancies in preferences between them. This is done using the CI differences 

for each factor at a time to present the results more clearly. The subgroups country of 

residence, possession of driver licence, navigation app choice, and preferred travel method 

were not included as the sizes of the groups are insufficient for a proper analysis. The subgroup 

comparisons are presented for each factor to give a clear overview. These should be interpreted 

as follows; a negative value means the first subgroup is more influenced by the factor, a positive 

value translates into the second group being more influenced by the factor. In Table 9 the 

subgroups are provided, being constant in every analysis. Figures 6-9 are based on the results 

from the comparison of the confidence interval of the means, which can be found in appendix B-

F.  

Attribute Subgroups 
1 2 

Age  24 ≤  25 ≥ 
Gender Male  Female 
Educational level 2-year degree ≤ 4-year degree ≥ 
Personal situation Student Other 
Annual income  €20.000 < €20.000 ≥ 
Household size 1 and 2 3 ≥ 



Driving experience 5 years ≤ 6 years ≥ 
Driving frequency A few times a week ≤ Once a week ≥ 
Vehicle type driven usually Petrol Other 
Vehicle ownership Own or lease No 
Navigation app usage A few times a week ≤ Once a week ≥ 

Table 9. The subgroups used for the analyses 

 

Figure 6. The CIs difference of means for each subgroup for stoplights 

In Figure 6, the distinct difference in the influence of stoplights is seen in the subgroup age. With 

persons of an age of 24 or lower being more prone for stoplights with a difference in trade-off of  

-65.729. All other subgroups show significant discrepancies too, besides the personal situation 

that did not have any significant differences as its CI range crosses the zero line.  

 
Figure 7. The CIs difference of means for each subgroup for roundabouts 

First of the gender and personal situation do not merit a significant difference on the behaviour 

of participants. The household size has the largest mean with -38.861. The subgroup that drives 



a petrol car is more impacted by roundabouts than other drivers, which is in line with the 

previous findings for hypothesis 7. It also worth mentioning that drivers who drive more 

frequently are keener on avoiding roundabout, like they also were in Figure 6 for stoplights. The 

opposite is true for driving experience. 

 
Figure 8. The CIs difference of means for each subgroup for highway 

For the distance of highway, it is notable that petrol drivers are much less sensitive to this factor 

than other drivers. The similar situation is true for persons with the age of 25 years or older.  

  
Figure 9. The CIs difference of means for each subgroup for stations 

One of the critical findings in Figure 9 is that vehicle ownership has the most substantial 

difference between owners and no owners. It also shows that the number of stations has a 

sizeable influence on drivers with an experience 5 years or less and the group of 24 years old or 

younger. For the educational level applies that the higher educated persons were wearier of the 



number of stations along their road.  The differences are relatively high in Figure 9 as can be 

seen on the x-axis.  

 
Figure 10. The CIs difference of means for each subgroup for scenic route 

Figure 10 shows that the subgroups of minimal navigation app usage and not frequent drivers 

are more influenced by the distance of scenic route. Women are more susceptible for scenic 

routes than men according to data. In general, the personal situation has not have had a 

significant influence on any of the factors.  

6 Discussion & conclusion  
6.1 Implications 
The results of this study have some implications on the understanding of how users interact 

with AI-generated navigation suggestions. In Table 4 it is demonstrated that the bootstrap CIs 

rejected the H0 for hypotheses 1 to 5, thereby supporting the alternative hypotheses of H1. 

These findings indicate that the factors examined - number of stoplights, roundabouts, distance 

on highways, number of stations, and scenic views - do indeed influence the choice of the user 

to adapt a route from their AI navigation system.  

The analysis revealed that the factors stoplights and roundabouts were experienced as 

undesirable and had more substantial impact with a trade-off time of 74.838 and 52.440 

respectively. This outcome likely reflects the human tendency to dislike traffic and minimize 

stopping their car. The stronger aversion for stoplights compared to roundabouts can be 

attributed to the fact that drivers typically stopping fewer times at a roundabout, aligning with 

the previously mentioned desire to continuously move.  



On the contrary, the other factors were found desirable, tough they had less of an impact on the 

decision-making process. Notably, participants were less inclined to drive longer if it meant an 

increase in one of these factors. In particular the distance of highway, which had the most 

minimal influence with a trade-off of -1.977 and the smallest CI [0.152, 0.329]. This may be 

explained by the concept of negative bias, the human tendency to focus more on the negative 

stimuli than the positive ones (Vaish, 2008).  

The 6th hypothesis was found to be not significant and thus we cannot deduce that the stoplights 

influence is different between a person driving either an electrical vehicle or a petrol one, as 

depicted in Figure 4. The other four hypotheses concerning this comparison were found to be 

significant, as illustrated in Table 7. Among these, the number of stations displayed the most 

considerable difference of -12.927, indicating electrical drivers are influenced more. This is 

consistent with the expectation that drivers of an electric vehicle would have a greater concern 

for the range of their battery.  

In Table 8 it is shown that the hypotheses 11 to 15 that were conditioned for shorter distances 

rejected all H0 hypotheses, except for the number of stations. The diminished importance of 

stations on a shorter distance is logical, as the need for recharging and refuel is reduced. In 

Figure 5 the stoplights and roundabouts were found to have the most significant impact, while 

the impact of distance of highway was minimal again, similar to the analysis of the original data. 

The decrease in trade-off scores in general could be accounted for by perceived smaller 

differences on shorter distances.  

Several noteworthy results emerged from the subgroup analyses. Firstly, individuals who drove 

frequently exhibited a stronger inclination to evade stoplights and roundabouts, as 

demonstrated by Figures 6 and 7. This behaviour may be caused by the increased frustration 

with these types of crossings associated with encountering them regularly. Figures 6 and 7 

interestingly display that driving experience has the opposite effect, indicating that individuals 

who have had their driver license for 5 years or less were more influenced by these factors. 

These findings align with similar results of the subgroup age, as evidenced Figures 6 and 7, as 

younger individuals have their driver license shorter. The reason for the significant difference 

observed in Figure 6 for the subgroup without vehicle ownership remains unclear.  

In Figure 9 highlights age, the educational level, and the driving frequency as the three 

subgroups with the most substantial differences. The subgroup with the higher educational 

level was influenced substantially more by the factor stations, with a trade-off time difference of 



26.000. The younger group and the less frequent drivers may choose for the safer options due to 

their limited experience in uncertain situations. In Figure 9 it also shown that petrol car owners 

were only marginally less concerned with stations, in contrast with the comparison for electrical 

and petrol vehicles. This discrepancy could be attributed to the other group including hybrids 

and diesel, beside electrical vehicles.  

This group of other vehicle owners exhibited the largest difference in Figure 8, with a mean of 

6.433. The variations of means are small in this Figure 8, likely because highway did not have a 

wide CI in the original data set, giving little space for differences. The factor scenic route does 

not display any substantial differences between the various subgroups, as it should be noted 

that Figure 10 has the lowest values on its x-axis, despite not having the lowest trade-off time in 

the original data. 

Finally, in Figures 5-9 it is observed that individuals who do not own a vehicle were more 

influenced by all the factors. This increased sensitivity may be due their inexperience with all 

these factors, prompting them to pay closer attention to these elements, rather solely focussing 

on the travel time.  

The Driver Preference-Based Route Planning model, developed by Wang et al. (2022), 

incorporate the attributes scenery and traffic lights into the route selection process. As 

displayed by the outcomes of hypotheses 1 and 5, this study supports that decision, finding 

both attributes to be of significant importance to users’ preferences. The scenic quality was 

also found to be of impact in the study of Amirgholy et al. (2017), further validating its relevance. 

Additionally, the difference of electrical and petrol drivers in this research agrees with the study 

of Franke, T., & Krems, J. F. (2013) that suggests that electrical drivers are weary of their battery 

range and charging opportunities. It is remarkable, however, that younger drivers look to be 

more careful from this data as study finds that younger persons are more likely to take risks in 

everyday activities (Ivers, 2009). 

Furthermore, this research contributes to the existing body of knowledge by identifying and 

confirming factors that have a significant influence on driver’s preferences when selecting a 

route. These factors could be leveraged to further refine AI navigation systems. Especially by 

integrating considerations for electrical vehicles, with the availability of charging stations along 

the road being crucial. The data also demonstrated that in specific context, like the conditioned 

shorter distance, factors like stations could be of no significant influence. This indicates that the 



process of designing and enhancing AI routing systems a broader range of factors should be 

considered.  

The observed variations within subgroups also underscore the necessity for personalisation in 

AI navigation systems. The system could gather or request background information and 

preferences to further enhance the experience. This level of personalisation will only become 

more feasible with continued advancements of AI technologies in the future. For instance, the 

significant influence of age on preferences, as demonstrated in this study, could be utilised as 

an attribute for recommendations.   

6.2 Conclusion 
While numerous studies have focussed on the improvement of AI navigation suggestions from 

the technical perspective, this research aimed to approach this challenge from the angle of the 

end-user. Five key factors of interest were identified, corresponding hypotheses were 

formulated and tested trough a survey. The results of the study provide an answer to the 

research question: 

How can AI-generated routes be improved to better adapt to user needs? 

In conclusion the following factors were found to have a significant influence on the Adaptation 

of AI-generated routes: 

• Number of traffic lights  

• Number of roundabouts 

• Distance on highway 

• Number of gas / charging stations 

• The distance of a scenic route 

This implies that all these factors should be carefully considered when designing an AI routing 

system. In particular the number of stations is important to consider when focussing on 

electrical vehicles. Moreover, the observed differences between the various user groups 

underlines the need for incorporating personalised route suggestions to improve user 

adaptation further. This is a valuable goal as an increase in adaptations leads to mitigating 

congestion and less traffic accidents (Metz, 2023; van Rooijen, 2008). Moreover, the wider 

adaptation of more efficient AI routes also leads to a reduction of carbon emissions (Ranyal, 

2022). 



6.3 Limitations and future research 
One of the limitations was the static environment of the scenario in this study. The respondents 

were only asked to imagine they were in a single specific situation to prevent other factors from 

interfering, driving at 09:00 for the purpose of work. Future study could explore a variety of 

scenarios, studying attributes as time of day and purpose of travel as factor. This would 

potentially reveal variations in driver behaviour and preferences.  

Another limitation the specific focus on cars by this study. This study did not account for drivers 

of other vehicles, like trucks or motorcycles, who may have different desires. The analysis also 

showed a difference between the responses of the author’s network and the distribution by 

website. Future research could look at cultural differences between end-users and how these 

effect their preferences.  

A further limitation of this study was the hypothetical nature of the survey. Although the survey 

did ask participants to imagine they were in a certain situation, it does not replicate the exact 

same real-life scenario. Observing and tracking actual user behaviour on car navigation systems 

would likely merit more applicable results. There remains a broad scope of factors and 

situations to be studied further, to understand the end-user of these systems better.  
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Appendix 
Factor Difference in trade-

off 
Difference in trade-off 
Lower bound Higher bound 

Stoplights -66,857 -68,389 -65,326 
Roundabouts -47,757 -49,583 -45,931 
Highway -2,848 -3,038 -2,658 
Stations -27,723 -30,219 -25,227 
Scenic route -2,110 -2,433 -1,787 

Appendix A. The CI of difference and the difference in trade-off for distribution channels 
 

Subgroup Subgroups Difference 
in trade-off 

CI of difference Significant 
1 2 

Age  24 ≤  25 ≥ -65.729 [-67.910, -63.547] Yes 
Gender Male  Female -38.929 [-41.424, -36.433] Yes 
Educational level 2-year 

degree ≤ 
4-year 
degree ≥ 

-7.079 [-8.788, -5.371] Yes 

Personal situation Student Other -0.796 [-2.433, 0.842] No 
Annual income  €20.000 

< 
€20.000 
≥ 

-13.249 [-15.026, -11.472] Yes 

Household size 1 and 2 3 ≥ -38.054 [-39.871, -36.236] Yes 
Driving experience 5 years ≤ 6 years ≥ -40.801 [-42.678, -38.923] Yes 
Driving frequency A few 

times a 
week ≤ 

Once a 
week ≥ 

19.060 [17.284, 20.837] Yes 

Vehicle type driven 
usually 

Petrol Other 33.697 [32.068, 35.326] Yes 

Vehicle ownership Own or 
lease 

No 43.979 [41.993, 45.965] Yes 

Navigation app 
usage 

A few 
times a 
week ≤ 

Once a 
week ≥ 

-14.692 [-16.492, -12.892] Yes 

Appendix B. The CIs of the difference between each subgroup for stoplights 

Subgroup Subgroups Difference 
in trade-off 

CI of difference Significant 
1 2 

Age  24 ≤  25 ≥ -18.523 [-20.447, -16.599] Yes 
Gender Male  Female 0.245 [-1.881, 2.371] No 
Educational level 2-year 

degree ≤ 
4-year 
degree ≥ 

-18.772 [-20.343, -17.201] Yes 

Personal situation Student Other 1.770 [-0.050, 3.590] No 
Annual income  €20.000 

< 
€20.000 
≥ 

-18.927 [-20.772, -17.082] Yes 

Household size 1 and 2 3 ≥ -38.861 [-40.764, -36.959] Yes 
Driving experience 5 years ≤ 6 years ≥ -26.684 [-28.168, -25.199] Yes 
Driving frequency A few 

times a 
week ≤ 

Once a 
week ≥ 

26.179 [24.739, 27.620] Yes 

Vehicle type driven 
usually 

Petrol Other -15.754 [-20.194, -11.313] Yes 



Vehicle ownership Own or 
lease 

No 16.904 [15.170, 18.639] Yes 

Navigation app 
usage 

A few 
times a 
week ≤ 

Once a 
week ≥ 

20.116 [18.587, 21.644] Yes 

Appendix C. The CIs of the difference between each subgroup for roundabouts 

Subgroup Subgroups Difference 
in trade-off 

CI of difference Significant 
1 2 

Age  24 ≤  25 ≥ -4.399 [-4.601, -4.197] Yes 
Gender Male  Female 2.343 [2.100, 2.586] Yes 
Educational level 2-year 

degree ≤ 
4-year 
degree ≥ 

-2.080 [-2.281, -1.879] Yes 

Personal situation Student Other -0.246 [-0.625, 0.133] No 
Annual income  €20.000 

< 
€20.000 
≥ 

-1.769 [-2.016, -1.522] Yes 

Household size 1 and 2 3 ≥ 0.336 [0.131, 0.540] Yes 
Driving experience 5 years ≤ 6 years ≥ -2.559 [-2.797, -2.321] Yes 
Driving frequency A few 

times a 
week ≤ 

Once a 
week ≥ 

-0.388 [-0.600, -0.175] Yes 

Vehicle type driven 
usually 

Petrol Other 6.433 [6.194, 6.673] Yes 

Vehicle ownership Own or 
lease 

No 0.505 [0.297, 0.714] Yes 

Navigation app 
usage 

A few 
times a 
week ≤ 

Once a 
week ≥ 

1.525 [1.272, 1.778] Yes 

Appendix D. The CIs of the difference between each subgroup for highway 

Subgroup Subgroups Difference 
in trade-off 

CI of difference Significant 
1 2 

Age  24 ≤  25 ≥ -24.875 [-27.536, -22.214] Yes 
Gender Male  Female -18.240 [-20.632, -15.848] Yes 
Educational level 2-year 

degree ≤ 
4-year 
degree ≥ 

26.000 [23.606, 28.395] Yes 

Personal situation Student Other 2.052 [-1.221, 5.325] No 
Annual income  €20.000 

< 
€20.000 
≥ 

-12.372 [-14.599, -10.145] Yes 

Household size 1 and 2 3 ≥ 7.335 [4.781, 9.890] Yes 
Driving experience 5 years ≤ 6 years ≥ -3.996 [-6.546, -1.445] Yes 
Driving frequency A few 

times a 
week ≤ 

Once a 
week ≥ 

-41.131 [-43.719, -38.542] Yes 

Vehicle type driven 
usually 

Petrol Other 3.864 [0.944, 6.783] Yes 

Vehicle ownership Own or 
lease 

No 45.963 [42.928, 48.997] Yes 



Navigation app 
usage 

A few 
times a 
week ≤ 

Once a 
week ≥ 

-11,562 [-14.127, -8.997] Yes 

Appendix E. The CIs of the difference between each subgroup for stations 

Subgroup Subgroups Difference 
in trade-off 

CI of difference Significant 
1 2 

Age  24 ≤  25 ≥ 0.736 [0.475, 0.996] Yes 
Gender Male  Female 2.972 [2.663, 3.281] Yes 
Educational level 2-year 

degree ≤ 
4-year 
degree ≥ 

-0.786 [-1.105, -0.466] Yes 

Personal situation Student Other -0.361 [-0.761, 0.039] No 
Annual income  €20.000 

< 
€20.000 
≥ 

-0.455 [-0.813, -0.097] Yes 

Household size 1 and 2 3 ≥ 2.184 [1.889, 2.478] Yes 
Driving experience 5 years ≤ 6 years ≥ -1.031 [-1.347, -0.714] Yes 
Driving frequency A few 

times a 
week ≤ 

Once a 
week ≥ 

-3.578 [-3.907, -3.249] Yes 

Vehicle type driven 
usually 

Petrol Other 2.163 [1.883, 2.444] Yes 

Vehicle ownership Own or 
lease 

No 1,414 [1.045, 1.782] Yes 

Navigation app 
usage 

A few 
times a 
week ≤ 

Once a 
week ≥ 

-3.445 [-3.756, -3.135] Yes 

Table F. The CIs of the difference between each subgroup for scenic route 

 

 

 

 


