
Master Computer Science

Group Detection from Spatiotemporal data

using Social Context

Name: Thomas Maliappis

Student ID: s3249484

Date: 28/11/2023

Specialisation: Data Science

1st supervisor: Dr. Mitra Baratchi

2nd supervisor: Prof. dr. Carolien J. Rieffe

Daily supervisor: Maedeh Nasri

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Abstract

In this study, we address the group detection problem using spatiotemporal data
from human trajectories. We leverage the trajectories of surrounding agents,
referred to as ‘context’, when determining if two agents are part of the same
group during multiple consecutive timeframes known as ‘scene’. Our approach
is built upon the Deep Affinity Network for Clustering Conversational Interac-
tants (DANTE). The main advancement in our method lies in the incorporation
of Recurrent Neural Networks (RNN) layers, such as Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU), within the neural network archi-
tecture. This addition aims to capture the temporal dynamics inherent in the
trajectories of agents in the datasets. Our method, the so-called T-DANTE,
combines temporal features with the base model. Our ablation studies demon-
strate that the utilization of context, combined with the processing of temporal
dynamics, yields promising results for the group detection task, across real-
world pedestrian datasets and spring simulation datasets. This is evident and
validated across these datasets. Moreover, we compared the performance of T-
DANTE with NRI, WavenetNRI, GDGAN and the original DANTE baselines.
Our method outperformed baselines in terms of Group Correctness metric by
at least 17.97% for pedestrian datasets Although some baselines perform better
for simulation datasets, the difference is not significant.
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Chapter 1

Introduction

Group detection from spatiotemporal trajectory datasets has wide-ranging ap-
plications. Group detection algorithms are crucial in studying human mobility
and their activities within communities [4, 7, 18, 19, 20, 21, 32], that could
add insights into human behavior in social sciences and psychology [15]. Social
patterns can also be detected at schools to increase inclusiveness in social activ-
ities and avoid marginalization of children [16, 14]. Moreover, group detection
algorithms aid in understanding migration patterns and animal group behavior
[12, 24], forecasting natural phenomena, such as predicting landfalls by group-
ing with old occurrences to find similar behavior [12], and developing carpool
sharing platforms for efficient transportation systems [24].

The conventional landscape of group detection research has predominantly
focused on traditional machine learning methodologies involving feature engi-
neering [19, 31]. These approaches typically require manual extraction and
selection of features to train models for identifying groups among individuals, a
process that can be time-consuming and potentially introduce bias. Recent ad-
vancements in the field are transitioning the group detection task in spatiotem-
poral data into detecting communities in a graph representation of movement
trajectories. This is achieved by constructing a social graph representing trajec-
tories and applying community detection methods to capture agent groups. Sen
et al. [18] employ an SVM classifier to create a social graph based on custom
agent similarity features, subsequently applying a clustering algorithm to get
the underlying groups in the graph. Although the results were promising, the
performance is limited to the selected features.

Recently, deep neural networks gained traction for modeling interactions
within spatiotemporal data [11, 15], as they are capable of detecting complex
nonlinear relationships between variables, finding possible interactions between
predictor variables, and being trained using different algorithmic methods. GD-
GAN [7], NRI [11] and WavenetNRI [15] are all deep neural network-based
approaches aiming to decode the spatiotemporal patterns and to identify group
behavior among agents. The preliminary limitation of this line of research is
the utilization of the entire spatial data per time frame, which means that all
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agents impact each other even if the distance between them is too large.
Another attempt to detect group behaviors in the spatiotemporal data has

been made by Swofford et al. [21]. They introduced DANTE which tackles con-
versational group detection by incorporating context features, that represent
spatial surroundings, into the input of their proposed model to learn a graph
representation for a single-frame scene by a neural network. This method lever-
ages the importance of considering someone’s surroundings when estimating
conversational group membership. The limitation of this study is the reliance
of the neural network architecture only on multilayer perceptron (MLP) design
and the consideration of only a single frame to detect the groups. Specifically,
MLPs have several disadvantages such as being computationally intensive and
not being well-suited for sequential data such as time series, and spatiotemporal
data.

Although several research studies have been carried out on detecting groups
in spatiotemporal data, they often employ manually constructed features or neu-
ral networks that overlook temporal aspects of spatiotemporal data. To address
this gap, the present study introduces an approach, building upon DANTE [21],
that represents agents and their spatiotemporal data as a social graph using a
deep neural network. Our proposed model incorporates layers encountered in
Recurrent Neural Networks (RNN) to account for the temporal aspect of agent
movements, which was not included in the original model and has shown posi-
tive effects in predicting vehicle trajectory in previous studies [6]. Moreover, our
approach builds on the concept of context information that showed promising
results in identifying group behavior [21], and is further refined in our work by
including scenes with multiple timeframes. One challenge of using this approach
is the need to preprocess the datasets and format them accordingly to become
suitable for being the input of our network. Another challenge of the approach
is the need to use an input layer that can process timeseries data. In most pre-
vious studies, the context information includes the data of all available agents,
making it more complex to estimate the affinities of agents. However, our pro-
posed model uses a specific number of agents for the context information based
on the characteristics of the dataset, such as the average number of agents per
timeframe. Subsequently, a community detection algorithm is applied to iden-
tify groups among agents. Moreover, our experimental investigations explore
the impact of different hypeprparameters such as including different numbers
of agents in context information (i.e., context size) and different types of lay-
ers in our model across multiple real-world and simulation datasets. The main
contributions of this work are:

• Introducing a novel framework that extends DANTE by including the
ability to process input data of more than a single timeframe and employ-
ing RNN layers such as Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) to capture temporal dependencies.

• Conducting extensive ablation studies to investigate the impacts of context
size and RNN layers on the performance of our work.
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• Introducing a novel simulation dataset to model group behavior by in-
cluding the concept of attraction points in the original spring simulation
datasets [11, 15]. The inclusion of attraction points is a step towards mak-
ing simulation datasets closer to reality. These points could represent a
spot in a playground that children play around it or a pond in the desert
when analysing animal movements. The use of them could help better
manipulate the trajectories created by moving towards these specified or
random points.

• Evaluating our proposed model using five pedestrian datasets and six sim-
ulation datasets against baselines. The pedestrian datasets differ in terms
of number of agents, duration and number of groups included. The simu-
lation datasets have the number of particles and number of groups param-
eters that leads to creating diverse datasets. The baselines include NRI
[11], WavenetNRI [15], GDGAN [7], and the original DANTE [21] using
Group Correctness and Group Mitre as the evaluation metrics.

The present study is organized as follows. In the introductory Section 2,
the problem formulation is introduced, delineating the parameters and goal as-
sociated with the group detection problem. The subsequent Section 3 delves
into a thorough review of related work in the field, offering a comprehensive
background and contextualization for the proposed approach. The methodol-
ogy Section 4 elucidates the specifics of the proposed approach. It provides
insights into the neural network architecture and the subsequent application
of a community detection algorithm to identify groups within the constructed
social graphs. Moving forward, the experiments Section 5 details the experimen-
tal setup, encompassing information about the datasets, the evaluation metrics,
and the selected baselines for comparison. The results Section 6 presents the
findings obtained from the experiments, offering a detailed analysis of the out-
comes and the performance of the proposed approach. The concluding Section
7 summarizes the entire study, encapsulating key findings and insights. It also
discusses potential avenues for future research and the broader implications of
the proposed approach.
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Chapter 2

Problem Formulation

In order to define the group detection problem in spatiotemporal data, it is
necessary to first define the notations representing the data. Given N agents
and a scene of T consecutive time steps, Xt

i is the location and velocity of agent
i ∈ 1, ..., N in time step t ∈ 1, ..., T . The trajectory of agent i can be represented
by X1:T

i , which includes data about the location and velocity of agent i during
the scene T . We are interested in detecting groups C = {cj |j ∈ [1,K]} in which
each agent belongs, where 1 ≤ K ≤ N is the number of groups. Agents being
in the same group means that they are sharing similar spatial behavior over
a scene of T time steps. The assumption is that the group relationships do
not change during a scene. Duration T of the scene is fixed. The problem of
detecting groups in the spatiotemporal data can now be formulated as obtaining
a representation of graph G = (V,E) in each scene of T time steps, by learning
the pairwise affinities between the agents. V = {v1, v2, ..., vN} being the set of
nodes corresponding to the agents and E the set of edges, where eij = (vi, vj) ∈
E if the pairwise affinity aij of agents i and j over the scene T is higher than
a parameter thr. The graph representation G is the n × n adjacency matrix
A = (aij)n×n where aij = 1 if an edge connects nodes i and j.

Afterward, the adjacency matrix A of the graph representation will be used
as the input of a graph community detection algorithm to detect the commu-
nities C in the graph. These discovered communities C represent the groups of
agents that have similar spatiotemporal behavior during the scene T .

Our proposed method for solving the problem is based on a deep neural
network. Specifically, our proposed model approximates the pairwise affinities
between agents in each scene and produces the corresponding adjacency matrix.
The social graph represented by each adjacency matrix then will be given to the
Dominant Sets (DS) [9] community detection algorithm to discover communities
in the graph.
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Chapter 3

Related work

To date, various group detection methods have been proposed. For conve-
nience, we categorized methods into (i) classical and (ii) deep neural network
approaches. For the latter category, the concepts of graph neural networks, re-
current neural networks, and context information are being introduced, which
includes frameworks that combine one or more of them.

3.1 Classical Approaches

The first attempts at solving the group detection task have mainly focused on
traditional machine learning methodologies. Yamaguchi et al. [31] approached
the task as a binary classification problem over pairwise trajectory features and
used an SVM classifier to estimate if the two agents with their corresponding
trajectories are in the same group. Solera et al. [19] built a Structural SVM-
based learning framework that uses proxemics, which is the study of how space
is used in human interactions, and causality-related features to solve the group
detection task. Such approaches, however, take a significant amount of time
to select and extract the required features. Moreover, these models potentially
introduce bias by ignoring some crucial aspects of the spatiotemporal data.

3.2 Deep Neural Network Approaches

Group detection task could not have escaped by the rise of deep neural networks.
Most of the recent strides in the field have integrated a deep neural network into
their frameworks as they seem to be more capable of capturing the complex
dependencies between the data than models using manual feature extraction
[1, 3, 22].
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3.2.1 Graph Neural Networks

In the landscape of deep neural networks, Graph Neural Networks (GNNs)
emerge as a distinct and powerful paradigm, particularly tailored for data with
underlying graph structures. These networks feature specialized layers designed
to effectively capture complex relationships and dependencies within graph-
structured data, making them well-suited for tasks involving interconnected
entities [29, 30, 34].

The GNNs can be used in different applications such as group detection tasks
using spatiotemporal data. Conversational group detection is a special version
of group detection. In the realm of conversational group detection, the empha-
sis lies in identifying F-formations, which represent the spatial arrangements of
individuals during group conversations [9, 27]. To tackle this challenge, Thomp-
son et al. [25] proposed a novel framework based on a message-passing GNN,
offering a unique perspective on understanding conversational dynamics. In this
study, the temporal dependencies in the spatiotemporal data are entirely over-
looked, whereas the inclusion of specific layers, for example, Recurrent Neural
Networks can integrate the temporal dynamics.

3.2.2 Recurrent Neural Networks

RNNs represent a specialized class of deep neural networks uniquely designed
to model sequential data effectively. These networks feature specific layers that
excel in capturing intricate dependencies within time series data, making them
particularly well-suited for tasks involving sequential information [5, 8].

Neural Relational Inference (NRI) [11] is one of the RNN-based approaches
that have introduced a paradigm shift by incorporating deep neural networks to
model intricate interactions between individuals. This work takes advantage of
both GNNs and RNNs to build an auto-encoder model to learn the latent vec-
tors that represent the interaction graph. Building upon this foundation, Nasri
et al. [15] introduced WavenetNRI, a model that integrates a gated Residual
Dilated Causal Convolutional Block [26] in order to capture both short and
long-term interactions in the sequences of edge features. This approach uti-
lizes learned interactions to effectively extract and discern groups formed by
interacting individuals, showcasing the evolving complexity in group detection
methodologies. The main disadvantage of these approaches is the complete re-
liance on the model to understand which agents affect the trajectories of others.
In contrast, our work only maintains the surrounding agents as part of the same
group, thus not all agents are in our affinity learning process. In this way, the
model focuses on the interactions between agents that are close to each other,
while excluding insignificant agents located at a distance from agents of inter-
est. By excluding agents, we also aim to reduce the computational cost of our
method.
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3.2.3 Context information

The integration of contextual information has emerged as a pivotal aspect of
group detection. Deep Affinity Network (DANTE) of Swofford et al. [21] is
a notable example that utilizes a specified number of surrounding agents as
context for clustering social interactants. This approach is limited due to the
use of only one timeframe; thus, it does not exploit the temporal aspects of
the problem. Similarly, Tan et al. [23] employ an approach where all agents
in a given scene contribute to contextual information, feeding a neural network
that predicts affinities between agents. These methodologies underscore the
importance of considering broader contextual cues for accurate group detection
in dynamic environments.

The significance of context information is further exemplified in vehicle tra-
jectory prediction. Neural networks have been employed to forecast the behavior
of vehicles based on the movements of surrounding vehicles. For instance, LSTM
encoder-decoder model of Deo et al. [6], incorporating convolutional social pool-
ing, showcases an innovative approach to predict the motion of surrounding ve-
hicles for autonomous vehicles. Similarly, our proposed model integrates context
information and temporal dynamics, but in a different application to solve the
group detection problem.

In a nutshell, the present study is inspired by multiple ideas from the afore-
mentioned approaches to solve the group detection problem using spatiotem-
poral data. The temporal dynamics of the data are captured by incorporating
RNN layers in our model. The novelty of our approach is the combination of
the temporal aspects of the data with context information when processing each
pair of agents in a scene. More details about the methodology will be presented
in the following section.

10



Chapter 4

Methodology

This section introduces the architecture of our method. Firstly, we explain our
framework to learn the affinities between agents in a scene. Since our network
is based on DANTE [21] combined with temporal features of spatiotemporal
data (i.e., including RNN layers), we name our model T-DANTE. Secondly,
we explain the Dominant Sets community detection algorithm which is used to
obtain the groups from the affinity graph. Figures 4.1 and 4.4 provide a visual
representation of our framework, respectively.

4.1 Affinity learning network

This section explains the deep neural network proposed to estimate an affinity
graph representing the trajectories of agents during a scene. This neural network
is called T-DANTE and is estimating the affinities between the agents which
represent the edges in the affinity graph (visualisation in Figure 4.1). The
architecture of T-DANTE tries to take advantage of types of information: (1)
the information related only to the pair of agents that we are interested to check
their affinity in the graph and (2) the information acquired from the surrounding
agents, which are the context, of the agents, who form the pair of interest. Our
T-DANTE advances this idea by using RNN layers (i.e., LSTM and GRU) to
include temporal data, in addition to the spatial features, and decide the affinity
score between two agents accordingly.

During the training of T-DANTE, the pairwise group relationships will be
used as ground truth and the difference between A and Â will be minimized
using the log loss function. Equation 4.1 shows how the log loss L(y, ŷ) is
calculated.

L(y, ŷ) = − 1

N

N∑
k=1

(yk · log(ŷk) + (1− yk) · log(1− ŷk)) (4.1)

where N is the number of samples. yk is the true label for the k-th sample
(either 0 or 1). k̂i is the predicted probability that the k-th sample belongs to
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Figure 4.1: The locations and velocities of the agents are the input of our deep
neural network. The pairwise affinities are learned in order to create the affinity
matrixA which is the representation of graphG used in the community detection
algorithm. In this figure, the value of a12 is approximated by processing the
features of Agents 1 and 2 by the Pair Branch and the features of the other
agents by the Context Branch of the network. The Combination Branch is the
last part of the architecture responsible for the final output.

the positive class (between 0 and 1). Each yk sample refers to the affinity aij of
two Agents i and j. If aij = 1 means Agent i and Agent j are in the same group
while aij = 0 means Agent i and Agent j are in different groups. For the rest
of this work, we make the assumption that T-DANTE computes the affinity aij
for the Agents i and j for graph G.

4.1.1 Pair Branch

The first part of T-DANTE is called Pair Branch and uses the data of Agents
i and j to compute the local features that represent the interactions between
these agents. An example visualisation can be found in Figure 4.2, where Agent
i = 1 and Agent j = 2. A two row matrix, one for each Agent is used as input
of this branch. The data of each Agent is separately passed to a RNN layer
(i.e., LSTM or GRU layer) depending on the variation of T-DANTE, After the
extracted features for the two Agent are combined to be processed together.

LSTM and GRU layers are types of RNN architectures, designed to capture
and utilize temporal information in sequential data [8, 5]. The LSTM features
memory cells and intricate gating mechanisms, including input, forget, and out-
put gates, which allow them to selectively store and retrieve information over
extended sequences. This capability is particularly beneficial for tasks where
modeling long-term dependencies is crucial. Equation 4.2 formulates the LSTM
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layer as follows:

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf )

gt = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(4.2)

Where it is the input gate activation vector. ft is the forget gate activation
vector. gt is the candidate cell state (proposed change). ot is the output gate
activation vector. ct is the updated cell state. ht is the output hidden state.
σ is the sigmoid activation function. tanh is the hyperbolic tangent activation
function. ⊙ is the element-wise multiplication. Wij is the weight matrix for the
input (i), forget (f), candidate (g), and output (o) gate. xt is the input at time
t. ht−1 is the hidden state at time t − 1 and bij is the bias term for the input
(i), forget (f), candidate (g), and output (o) gate.

On the other hand, GRU layers employ simpler update and reset gates,
offering computational efficiency with fewer parameters. GRUs excel in tasks
where capturing shorter-term dependencies and efficiently processing sequential
information are essential. The GRU layer is formulated in Equation 4.2 as
follows:

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Whxt + rt ⊙ (Uhht−1) + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

(4.3)

where zt is the update gate activation vector. rt is the Reset gate activation
vector. h̃t is the candidate hidden state. ht is the updated hidden state. σ is the
sigmoid activation function. tanh is the hyperbolic tangent activation function.
⊙ is the element-wise multiplication. Wz, Wr, and Wh are the weight matrices
for the input (xt) in the update, reset, and candidate hidden state equations,
respectively. Uz, Ur, Uh are the weight matrices for the hidden state (ht−1)
in the update, reset, and candidate hidden state equations, respectively. bz,
br, and bh are the bias terms for the update, reset, and candidate hidden state
equations, respectively. xt is the input at time t. ht−1 is the hidden state at
time t− 1.

Both LSTM and GRU layers have proven effective in a variety of applica-
tions, providing practitioners with versatile tools to address temporal depen-
dencies in diverse datasets [8, 5]. The concatenation of the RNN layer (either
LSTM or GRU) outputs is then managed by multiple x blocks of a series of a
Convolutional or Dense layer for T-DANTE and T-DANTE GD, respectively,
followed by a Dropout layer and a Batch Normalisation layer. The Dropout
layer is responsible for reducing overfitting to the training dataset and improv-
ing the generalization of the final model. The Batch Normalisation layer is

13



used to avoid the covariate shift that occurs when the distribution of input fea-
tures is changing during training. The Convolutional layers use ReLU activation
functions as it is known to prevent the exponential growth in the computation
required to operate the neural network.

Figure 4.2: Visualisation of the architecture of T-DANTE using LSTM and
Conv1D layers. This architecture is mentioned as T-DANTE throughout the
thesis.

Figure 4.3: Visualisation of the architecture of T-DANTE using GRU and Dense
layers. This architecture is mentioned as T-DANTE GD throughout the thesis.
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4.1.2 Context Branch

The Context Branch of T-Dante computes the global feature representations of
the social context of the pair of interests as depicted in Figure 4.2. The number
of agents considered as social context is a hyperparameter of the model, as an
example the context size is 3 agents in Figure 4.2. Similar to the Pair Branch,
the Context Branch first applies RNN layers to the features of each agent in the
context. The same sequence of the Convolutional/Dense layer, Dropout layer,
and Batch Normalisation layer is repeated x times with different numbers of
filters based on the prescribed configuration.

4.1.3 Combination branch

The Pair Branch and Context Branch are followed by a Concatenate layer in
order to combine their acquired information. This combined branch is called the
Combination Branch as depicted in Figure 4.2. The tensors are flattened and
used by a sequence of a Dense layer, a Dropout layer, and a Batch Normalisation
layer n times with various filters. The number of layers and the filter size depend
on the complexity of the data. Attributes representing the complexity of the
data could be the number of frames per sample, the batch size, and the amount
of data. This sequence also uses ReLU activation functions. The last layer of
the Combination Branch and of the whole network is a Dense layer using a
Sigmoid activation function to constrain the output to the [0, 1] range. This is
the affinity score for the pair of agents of interest given the specified context.

4.2 Graph community detection

Once all the affinity values between pairs of individuals are computed within
the social affinity graph, the subsequent step involves unraveling the inherent
group structures embedded in the data. To achieve this, we turn to the DS
algorithm, a powerful tool introduced by Hung et al. [9] specifically designed
for the analysis of edge-weighted graphs. In the context of our study, the social
affinity graph G serves as the canvas upon which we seek to reveal cohesive
groups, and the DS algorithm plays a pivotal role in this endeavor.

The DS algorithm [9], as an extension of maximal cliques to edge-weighted
graphs, facilitates this identification by sticking to specific criteria of mutual
affinity. The DS algorithm not only identifies clusters based on high relative
mutual affinity but also continues to search iteratively for new clusters that
satisfy this criterion. This cluster identification process is not boundless; it con-
cludes under two conditions. Either a newly considered cluster fails to meet
the requirement of high relative mutual group affinity, or the mutual affinity
within a group drops below a certain threshold. The DS algorithm is proficient
at producing compact clusters, effectively representing F-Formations of varying
sizes. While it can accommodate social affinity graphs with asymmetric affini-
ties, empirical evidence suggests that symmetric affinities tend to yield more
robust outcomes [9, 27]. Therefore, in our study, we adopt the assumption of
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Figure 4.4: The obtained graph representation is used as the input of the com-
munity detection algorithm that discovers the communities between the agents.

symmetric affinities, achieved by setting edge weights to the average of predicted
values aij and aji for 1 ≤ i, j ≤ N and i ̸= j. This choice further ensures a
cohesive and insightful community detection process within our spatiotemporal
group detection framework.
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Chapter 5

Experiments

In this section, we conducted several experiments in order to evaluate the per-
formance of our model. The pedestrian and spring simulation datasets used in
the experiments are explored, and the steps of preprocessing datasets to become
suitable for our model are explained. Furthermore, the evaluation metrics and
baselines will be outlined before presenting the results. The experiments will
help us answer the following questions:

• Can the addition of the temporal aspect of data to the input of the neural
network lead to better results on the group detection problem?

• Does the use of context information for each sample processed by the
neural network help to gain better performance?

• Does the number of agents included in the context information of each
sample affect the performance of the model?

• How does our method perform compared to other methods?

5.1 Datasets

5.1.1 Pedestrian datasets

Two types of pedestrian datasets are used in our experiments. The first is
obtained from a study conducted by Pellegrini et al. [17] which introduced
two datasets, namely eth and hotel. The second study conducted by Lerner et
al. [13], which includes three datasets, namely zara01, zara02 and students03.
These datasets can be found in OpenTraj repository 1 [2] and are commonly
used as benchmarks for group detection tasks on spatiotemporal data. The
data of the aforementioned experiments consist of the location and the velocity
of each agent for multiple timeframes. The ground truth of the agent groups is
also included in these datasets.

1https://github.com/crowdbotp/OpenTraj
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(a) eth (b) hotel

(c) zara01 and zara02 (d) students03

Figure 5.1: Reference photos of the pedestrian datasets.

Table 5.1 shows the differences between the pedestrian datasets concerning
the duration of measurements in seconds, the number of agents, and the number
of groups to which they belong. According to this Table, the students03 dataset
contains the highest number of agents and groups with the shortest duration of
measurement. Another equally important feature is that eth and hotel datasets
have very similar values for all variables, probably due to being products of the
same study [17]. Moreover, zara01 and zara02 datasets are both captured in
the same location with a medium-range duration of measurement compared to
the other datasets. In Figure 5.1, the reference photos for all the datasets are
depicted, with zara01 and zara02 sharing the same photo as they were captured
from the same position.

The students03 dataset has a higher number of groups than any other
dataset with a group size of 2-4 members, as depicted in Table 5.1. Most of the
datasets include small group sizes with 2 or 3 members. The only dataset that
has large group sizes is the eth dataset with groups of 4 and 6 members.

Another aspect that was interesting to explore was the number of agents
in scenes per dataset. As depicted in Figure 5.3, the students03 dataset has a
higher number of agents in scenes, which makes it suitable for experiments with
high context size. On the other hand, eth, hotel, zara01, and zara02 datasets
have a lower number of agents in most scenes. Therefore, the characteristics of
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Dataset Duration (s) Agents # Groups #
eth 773.4 360 58
hotel 722.4 390 41
zara01 360.4 148 45
zara02 420.4 204 58
students03 215.6 428 101

Table 5.1: Information about the name, duration, number of agents, and number
of groups in each pedestrian dataset.

Figure 5.2: Bar plot of group sizes per pedestrian dataset.
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(a) eth (b) hotel

(c) zara01 (d) zara02

(e) students03

Figure 5.3: Distribution of number of agents in different scenes for each pedes-
trian dataset. The boxplot summarizes key statistical measures, such as quar-
tiles and median for number of agents variable of scenes for each pedestrian
dataset.
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the pedestrian datasets lead us to explore context sizes of less than 10 agents,
later in our experiments. This decision was made in order to restrict the number
of samples with fake data, as eth, hotel, zara01, and zara02 datasets have a
high number of scenes with only 5 agents present.

Lastly, we explored the distribution of the number of timeframes in which
an agent appears in a scene. As shown in Figure 5.4, the students03 dataset
has the highest number of timeframes in which agents appear with a mean
value of slightly less than 50 timeframes. Both eth and hotel datasets, col-
lected during the same study [17], have a very similar distribution with a mean
value of approximately 25 and 15 timeframes, respectively. The zara01 and
zara02 datasets have completely different distributions. The zara01 dataset
presents more similarities with eth and hotel datasets. In contrary, the zara02
dataset, despite the significantly lower mean of around 30 timeframes, shares
more similarities with student03 datasets. Since many datasets contain agents
appearing only in few timeframes, we chose the scene size of 15 timeframes to
avoid excluding essential information from our datasets.

5.1.2 Simulation dataset

In addition to pedestrian datasets, spring simulation data was used in our ex-
periments. The advantage of simulation data is the availability of ground truth
and the possibility of generating an infinite amount of data in order to train our
model. The original spring simulation dataset was proposed by Kipf et al. [11]
and further enriched by Nasri et al. [15] with particle group information. The
basic idea is that a number of particles move in a 2-D space, simulating the
concept of particles moving along with each other and affecting the trajectory
of each other. The locations and velocities of the particles are part of the gen-
erated data as well as the group membership information. The particles were
distributed randomly in different groups (the maximum number of groups is the
number of particles), while the particles in the same group attract each other
and repel particles from other groups.

In order to control the size of groups, the number of groups as well as the
number of particles, was added as a parameter of the simulations. The method
of initializing groups was modified accordingly to include these parameters. An-
other feature that is added to the spring simulation experiment is the concept
of attraction points, which are locations in the simulation that groups could be
attracted to.The attraction points could represent a spot in a playground that
children play around or a pond in the desert which attracts animal movements.
The attraction points are implemented by defining a force that points each par-
ticle toward an attraction point. All the forces has the same strength value,
but the direction of them is based on the location of the particle compared to
the location attraction point. The number of attraction points ap is another
parameter of the simulation. At the start of each simulation, a list of attraction
points APg, 0 < |APg| < ap is assigned to each group g. This list includes the
location of attraction points for the particles in a group that are going to be at-
tracted along their trajectories. Figure 5.5 shows some examples of simulations
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(a) eth (b) hotel

(c) zara01 (d) zara02

(e) students03

Figure 5.4: Distribution of the number of timeframes in which an agent appears
in a scene for each pedestrian dataset. The boxplot summarizes key statistical
measures, such as quartiles and median for number of timeframes variable of
each agent for each pedestrian dataset.
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generated with the addition of attraction points.

(a) (b)

Figure 5.5: Visualisations of spring simulations with attraction points. Circle
markers are the starting points of the trajectory of a particle and triangle mark-
ers are the final points of the trajectory of a particle. Each group of particles
share the same color and the pentagon markers represent the attraction points.
In Figure 5.5a the blue group is first attracted by the right attraction point and
at the end attracted by the top attraction point. Another example is Figure
5.5b where the orange group is first attracted by the right attraction point and
at the end attracted by the top attraction point. These are not completely clear
in the images due to the attraction and repulsion forces that also occur.

More spring simulation visualization examples can be found in the Appendix
9.1. Table 5.2 presents the parameters used to generate the six spring simulation
datasets in our experiments. All the simulation datasets include 3 attraction
points. The major difference between the simulation datasets compared to the
pedestrian datasets is the arbitrary choice of sample size. In our experiment,
each simulation dataset consists of 1000 samples with a specified number of
particles and number of groups. For example sim1 of Table 5.2, includes 1000
samples, that each one includes 8 particles split into 2 groups. Each sample has
duration of 50 timeframes, which is also the length of the particles trajectories as
we have data for all particles for the whole duration of the sample. This length
was selected to experiment with richer data than the pedestrian datasets, where
agents are present in more consecutive timeframes. Another feature of spring
simulation datasets is the existence of groups with various sizes, whereas the
pedestrian datasets mostly include smaller group sizes.

A more detailed representation of the group sizes of each simulation dataset
can be seen in Figure 5.6. As shown in this figure, compared to the distribu-
tion shown in Figure 5.2, there is a higher number of groups with size over 3.
Especially sim2 and sim4 simulation datasets have a small number of groups
with sizes 1 and 2, as most of their groups contain sizes of 5, 6, and 7 particles.
On the other side sim1, sim3, sim5, and sim6 mostly consist of groups with
smaller sizes, but over 3 particles.
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dataset particles # groups # average group size
sim1 8 2 4.01
sim2 9 2 4.51
sim3 9 3 3.10
sim4 10 2 5.00
sim5 10 3 3.40
sim6 10 4 2.65

Table 5.2: The six simulation datasets generated and used in our experiments.
From left to right, the columns denote the name of the dataset, the number of
particles included in the dataset, the number of groups that the particles were
split in, and the average group size in the dataset, respectively.

Figure 5.6: Bar plot of group sizes per simulation dataset.
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5.1.3 Datasets preprocessing

Both pedestrian and simulation datasets need to be processed in order to be used
by the input structure of T-DANTE. The baselines also use the same data, but
possibly in different formats to fit the input of each model. The acceptable input
structure for T-DANTE samples is an array of agents data {X1:T

i |i ∈ [0, k]},
where k ≥ 2 is the number of agents and T is the length of their trajectories.
Each sample has at least the pair of agents that the affinity is estimated plus
the ‘context‘ agents, which could also be zero.

At the beginning of the process, we need to find all the possible scenes of
size T (T is the number of timeframes that a scene consists of). In order for
a number of timeframes to form a scene, they have to be consecutive. The
constraint for a scene to be part of the dataset is to include at least 2 agents.
During the process of finding the scenes, using these two constraints, we keep
track of the groups and the agents that are included in the scene, and later use
this information during the evaluation process.

Next, we create samples extracted from the pulled scenes, by using different
agents as part of the context around the pair of interest. Thus, by having
enough agents for each possible pair of agents in each scene, multiple samples
are created.

Moreover, the information about the groups, the label of the affinity between
the pair of agents of interest, and the timeframe IDs that constitute the scene
are stored to be used in later stages, i.e., when splitting the dataset into folds
and then evaluating the model. Additionally, different sampling rates are used
for pairs of agents in the same group and pairs of agents in different groups. This
aims to achieve a balanced dataset by minimizing disparities in the number of
samples for pairs of agents within the same group and those in opposing groups.

Another point to consider is the frame in which the spatial features are
reported. The datasets include location data that use a world reference W .
For each of the agents that are part of the context of a sample, their data are
transformed to represent their relative location to a local frame of reference Lij ,
which is unique for each pair of agents i and j that are the pair of interest for the
given sample. This local frame of reference is defined by the middle point of the
line connecting agents i and j and is visualized Figure 5.7. This transformation
of the context features enhances the learning and generalization capability of
our approach.

For dataset splitting strategy, we employed a 5-fold cross-validation ap-
proach. In Figure 5.8, we visualize the division of samples into five parts, where
three parts constitute the training set, one forms the validation set, and the
remaining part serves as the test set in each iteration of the cross-validation
process. This ensures a balanced distribution of scenes across the five sets. To
maintain the integrity of temporal relationships within scenes, we took special
care to allocate all samples from the same scene to the same set. This scene-
level splitting strategy is crucial for constructing affinity graphs corresponding
to scenes during both the training and testing phases. Consequently, each fold
contains a diverse representation of scenes, allowing our model to learn and gen-
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eralize effectively across different temporal contexts. The sizes of our training,
validation, and test sets were held consistently across folds. This uniformity in
set sizes facilitates a fair evaluation of our model’s performance across diverse
temporal scenarios. The model’s performance is thoroughly evaluated using
the metrics discussed in the evaluation metrics section 5.2, with the average
performance metrics computed across folds. This provides a comprehensive as-
sessment of models’ generalization ability. The dataset splitting strategy, com-
bined with 5-fold cross-validation with scene-level splitting, not only optimizes
computational efficiency but also ensures robust model evaluation by preserving
the temporal dependencies within each scene. This approach contributes to the
model’s ability to generalize well to unseen data, a critical factor in the context
of our group detection task.

Figure 5.7: Visualisation of how the agents of the pair of interest (i and j) are
using a global frame of reference W and the context agents (m and n) are using
a local frame of reference L defined by the pair of interest.

5.2 Evaluation Metrics

The following section describes the two evaluation metrics that are used to assess
the performance and effectiveness of the models in our experiments.

5.2.1 Group Mitre

Group Mitre was introduced by Solera et al. [20] built upon the work of Vilain et
al. [28] in describing a scoring scheme for coreference tasks. The scoring process
involves determining the minimal adjustments needed to transform the predicted
groups into those of the ground truth groups. Specifically, the recall (as well as
precision) error terms are computed by identifying the smallest number of links
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Figure 5.8: Visualisation of how the datasets has been split into folds.

required to align the predicted groups and the ground truth groups. Despite
the apparent combinatorial complexity, the method leverages the concept of
minimal spanning subsets, enabling the use of a simple counting approach to
achieve efficient alignment. For any list of groups represented by a spanning
forest, a spanning tree is an equivalence class within a group. Thus, the score can
be calculated by accounting for the number of links that are needed to be added
or removed in order to recover the spanning forest of the correct solution. This
approach originally had the flaw of not including groups of a single individual.
Thus, Solera et al. [20] proposed the addition of fake individuals to be connected
to each isolated individual. In our experiments, we use the F1 Group Mitre score
as an evaluation metric that combines information of both precision and recall,
as formulated in Equation 5.1.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(5.1)

5.2.2 Group Correctness

In order to assess the effectiveness of the pipeline we created to face the group
detection task, we employed an evaluation metric that has been widely recog-
nized in previous studies [9, 21, 27, 33]. These works did not give a specific
name to this metric, so we decided to refer to it as group correctness. The idea
of this metric is that a specific percentage of the members in the ground truth
group need to be part of the predicted group in order to consider the predicted
group as a True Positive (TP). The formula used to check the minimum number
of agents for a predicted group to be a TP is P ∗ |cd|, where P is a threshold
parameter and |cd|: indicates the cardinality or the size of the ground truth
group d. If P = 1 then all the members of the ground truth group are needed,
so the evaluation is stricter than when P < 1. For our experiments we checked
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two values for P , P = 2/3 and P = 1. The F1 Group Correctness score was
calculated to evaluate the performance of our group detection model.

5.3 Baselines

This section introduces the baselines utilized in the experiments to compare the
performance of our model.

5.3.1 DANTE

Swofford et al. [21] presented a data-driven approach to detect conversational
groups. Their approach introduced a novel Deep Affinity Network (DANTE)
to predict the likelihood that two agents in the same scene can be part of the
same conversational group, considering their social context. In more detail,
DANTE is a neural network that takes the location and head orientation data
of a single frame scene and tries to learn the pairwise affinities between the
agents by identifying their spatial arrangements. The predicted results for all
agent pairs in the scene are then used by the DS clustering algorithm to identify
groups of various sizes. This pipeline was also used to test interaction scenarios
between a robot and humans. In contrast to relying on head orientation, this
baseline also utilizes the velocity data. The lack of temporal considerations in
the design is expected to make it unable to capture temporal dependencies.

5.3.2 GDGAN

Fernando et al. [7] implemented a novel deep-learning framework for predict-
ing human trajectories and detecting social group memberships in crowds. The
framework includes a generative adversarial network that uses the spatiotempo-
ral structure of the neighborhood around an agent in order to identify attributes
that describe the social identity of the agents. The authors are approaching the
problem from an unsupervised learning point of view, allowing them to apply
the pipeline to various settings without the need for labeling.

5.3.3 NRI

Kipf et al. [11] introduced the NRI model. NRI is an unsupervised model that
learns to estimate interactions while at the same time learning the dynamics
using observational data. In more detail, this model is a variational auto-encoder
that learns the interactions between agents and uses graph neural networks in
order to reconstruct the data.

5.3.4 WavenetNRI

Nasri et al.[15] used an NRI [11] adaptation to perform group detection in
spatiotemporal data. The model consists of a GNN encoder transformed by
applying a Residual Dilated Causal Convolutional Block inspired by Wavenet
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architecture [26]. This work includes both supervised and unsupervised train-
ing. Louvain community detection algorithm is used to find the clusters of the
interaction graphs formed by the predictions of the model. For our experiments,
we have used the supervised trained version as one of the baselines. This model
uses whole scenes as samples, which is different from our approach where only
a specific amount of surrounding agents is used to predict the affinities.

5.4 Implementation details

In this section, the values of the parameters of each model used in the experi-
ments are specified.

5.4.1 DANTE

DANTE model uses two branches as our proposed approach. The branch that
processes data of the main pair of agents of a sample uses three convolutional
layers of different filters of values 16, 64, 128. The context branch also uses
three convolutional layers, although the values are 64, 128, and 512. After the
concatenation of the pair branch and context branch, two dense layers with filter
values of 256 and 64 follow before the last dense layer which uses the sigmoid
activation function. The dropout and regularization values used are 0.35 and
0.0000001 respectively. Adam optimizer is used during training with a learning
rate value of 0.0001, beta 1 0.9, beta 2 0.999, decay 1e-5, amsgrad False, and
clipvalue 0.5. beta 1 and beta 2 are parameters to control the exponential decay
rate for the first and second moment estimations of the updating rule of the
optimizer [10], respectively. Furthermore, binary crossentropy is selected as the
loss function. The code was found on DANTE Github repository2.

5.4.2 GDGAN

GDGAN baseline is based on the code found on WavenetNRI GitHub reposi-
tory3.

5.4.3 NRI

NRI baseline has the same parameters as WavenetNRI and our experiments were
done based on the implementation found on WavenetNRI github repository3.

5.4.4 WavenetNRI

The parameters used for this baseline were retrieved from the given code up-
loaded on Github3. The only values that were changed were the weight of group

2https://github.com/mswoff/DANTE
3https://github.com/fatcatZF/WavenetNRI
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dataset wG wḠ

eth 2.42 0.63
hotel 5.79 0.55
zara01 2.22 0.64
zara02 5.12 0.55

students03 11.82 0.52

Table 5.3: Group and non-group weight values used for each pedestrian dataset.

labels and the weight of the non-group labels. These values are specific for each
dataset and calculated using the following equations.

wG =
nG + nḠ

2nG
(5.2)

wḠ =
nG + nḠ

2nḠ

(5.3)

Equation 5.2 is used to estimate wG, which is the weight of group labels and
equation 5.3 is used to estimate wḠ, which is the weight of non-group labels.
Accordingly, Table 5.3 presents the values of wG and wḠ calculated for the
pedestrian datasets experiments. On the other hand, for all simulation datasets
the values of wG and wḠ used during the training process was 0.5.

5.4.5 T-DANTE

The architecture of T-DANTE is similar to DANTE, so most of the parameters
used are kept the same. The difference is the number of filters used in the Pair
branch layers and Context branch layers. The three Pair branch layers have 32,
128, and 256 filters and the three Context branch layers have 64, 128, and 256
filters. Another parameter that has been used for the T-DANTE GD variation
of T-DANTE is the one that swaps the LSTM layers with GRU layers and the
Conv1D layers with Dense layers. The number of filters for each branch is kept
the same for the T-DANTE GD neural network structure.

In order to compare our model with WavenetNRI in pedestrian datasets, we
chose scenes of 15 timeframes as the original work [15]. The NRI and GDGAN
baselines are also built with scene sizes of 15 timeframes. On the other hand,
DANTE uses just a single frame to evaluate pairwise affinities of agents due
to its temporal limitation, which leads to higher number of samples. For the
simulation datasets, all of the baselines and T-DANTE use 50 timeframes as
scene size, which is the length of each simulation dataset sample.
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Chapter 6

Results

This section presents the results of our experiment. Each pedestrian dataset has
been split into 5 folds and for each fold, each method has been evaluated 5 times,
in total 25 runs per method. On the other hand, the spring simulation datasets
have not been split into folds, as they were generated under controlled conditions
that do not exhibit the distribution shifts typically addressed by cross-validation.
Thus, each method has been evaluated 25 times for each simulation dataset.
The Wilcoxon signed rank test has been applied to compare the results of the
experiments and check if there is any significant difference between the top two
performing models. This statistical test was selected as it is a non-parametric
version of the paired T-test and it provides a statistic that is easy to interpret.
In the tables used for this section, the significance of the superiority of a model
for a dataset is shown by the use of ∗ next to the value. Our first phase of
experiments is related to the ablation study and the second phase of the results
is the comparison of our model T-DANTE against four other baselines.

6.1 Ablation study

The ablation study is conducted per dataset type. For both the pedestrian
and simulation datasets, we perform multiple experiments with different design
layers and context sizes in our proposed T-DANTE model.

6.1.1 Pedestrian datasets

Table 6.1 and Table 6.2 show the results of T-DANTE when using various
context sizes including 0, 4, and 8 context size and scene size of 15 timeframes.
The table includes T-DANTE with LSTM and Conv1D layers mentioned as T-
DANTE, and T-DANTE GD which includes GRU and Dense layers. According
to this Table, the main conclusion is that including context information enhances
the performance of T-DANTE, except in the eth dataset when using the Group
Mitre as the evaluation metric. T-DANTE and T-DANTE GD show lower values
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eth hotel zara01 zara02 students03

T-DANTE

no context

0.5859 0.5232 0.8103 0.8491 0.5421

±0.0206 ±0.0283 ±0.0185 ±0.0121 ±0.0959

T-DANTE

context 4

0.5736 0.5338* 0.8224 0.862 0.644

±0.0193 ±0.0293 ±0.0147 ±0.0101 ±0.0824

T-DANTE

context 8

0.5901 0.508 0.8215 0.8699* 0.6957

±0.0301 ±0.0434 ±0.0149 ±0.0108 ±0.0563

T-DANTE

GD no context

0.5593 0.5199 0.8027 0.8416 0.6332

±0.027 ±0.027 ±0.0182 ±0.0223 ±0.114

T-DANTE

GD context 4

0.5453 0.5274 0.8149 0.8457 0.6661

±0.026 ±0.0261 ±0.0186 ±0.0121 ±0.0844

T-DANTE

GD context 8

0.5663 0.5241 0.8077 0.8536 0.6777

±0.0357 ±0.0335 ±0.022 ±0.0191 ±0.0855

Table 6.1: Group Correctness metric with P = 1 for T-DANTE variations in
all pedestrian datasets. Context sizes of 0, 4 and 8 agents and scene size of 15
consecutive timeframes. * shows that this result is significantly different than
all the other values in the same dataset.

for datasets eth and hotel, which can be explained by the high number of scenes
with less than 5 agents (Figure 5.3), that leads the models to include zeros as
fake agent data in order to fill the Context Branch which has fixed dimensions.
A larger context size seems to work efficiently mostly for zara02 and students03
datasets where more agents appear in their scenes (Figure 5.3). This trend can
be seen for both T-DANTE and T-DANTE GD models. However, the use of a
larger context size can also deteriorate the performance of the model as we can
see in Table 6.2 when analyzing hotel dataset, where using 8 agents as context
significantly diminishes the performance of T-DANTE compared with using 0
or 4 agents. The distribution of agents in the scenes of hotel dataset, as high
number of the scenes have less than 10 agents (2 pair agents + 8 context agents),
is responsible for the low results. Similar features can be found when comparing

Group Correctness results using P =
2

3
(See Appendix 9.2). Regarding our

experiments related to context size for pedestrian datasets, we conclude that
each dataset may benefit from using a different context size depending on the
features of the dataset, such as the average number of agents per scene. Another
point is that T-DANTE performs better than T-DANTE GD in almost all of the
pedestrian datasets. This leads us to the interpretation that the combination
of LSTM and Conv1D layers are better equipped than the combination of GRU
and Dense layers to process the information passed through our neural network.
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eth hotel zara01 zara02 students03

T-DANTE

no context

0.6743 0.6024 0.8248 0.848 0.7135

±0.015 ±0.0203 ±0.0166 ±0.0137 ±0.0386

T-DANTE

context 4

0.6693 0.6038 0.838 0.8628 0.7537

±0.012 ±0.0213 ±0.0143 ±0.0106 ±0.0367

T-DANTE

context 8

0.6651 0.5425 0.838 0.8726* 0.7805

±0.0168 ±0.0228 ±0.0152 ±0.0106 ±0.0281

T-DANTE

GD no context

0.6645 0.5998 0.8185 0.8415 0.7521

±0.0176 ±0.0186 ±0.0171 ±0.0147 ±0.0549

T-DANTE

GD context 4

0.6614 0.6116 0.8326 0.8452 0.7668

±0.017 ±0.0141 ±0.0175 ±0.0106 ±0.0385

T-DANTE

GD context 8

0.6543 0.5574 0.8288 0.8532 0.7702

±0.0234 ±0.0321 ±0.0201 ±0.0155 ±0.0369

Table 6.2: Group Mitre metric for T-DANTE variations in all pedestrian
datasets. Context sizes of 0, 4 and 8 agents and scene size of 15 consecutive
timeframes. * shows that this result is significantly different than all the other
values in the same dataset.

6.1.2 Simulation datasets

The result of Group Correctness and Group Mitre evaluation metrics of T-
DANTE for different variations using the simulation datasets are presented in
Tables 6.3 and Table 6.4, respectively. The most notable feature of these tables
is that T-DANTE with a context of 8 agents does not perform any better than
T-DANTE with no context and T-DANTE with a context of 4 agents. This is
rational for the simulation datasets, which have a constant number of 8 and 9
agents in their scenes, in which the input of the Context Branch of the neural
network is filled with fake data (zeros) to reach the given context size, as there
are not enough agents to fill the context information. For the rest of the results
in both tables, the T-DANTE model with context size of 4 agents ranks first in
sim 2 and sim 3 datasets, and T-DANTE GD with context size of 4 performs
better for sim 1, sim 4, sim 5 and sim 6 datasets. An important feature is that
the performance of the model based on the Group Mitre metric in Table 6.4
with no context and context of 4 agents are very similar, but the corresponding
values with the Group Correctness in Table 6.3 present larger differences in
their performance. Another point is that the performance of all the simulation
experiments is significantly better with respect to absolute values compared to
the performance of the model using pedestrian datasets. This can be explained
by the existence of more complete data and the lack of randomness between the
samples in the simulation datasets.
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sim 1 sim 2 sim 3 sim 4 sim 5 sim 6

T-DANTE

no context

0.9653 0.9541 0.9473 0.9477 0.9609 0.9323

±0.0082 ±0.009 ±0.0137 ±0.0088 ±0.0055 ±0.0087

T-DANTE

context 4

0.9693 0.9798* 0.9817* 0.9707 0.9593 0.9449

±0.0023 ±0.0018 ±0.0062 ±0.0065 ±0.014 ±0.0113

T-DANTE

context 8

0.942 0.9639 0.9639 0.9333 0.906 0.8918

±0.0117 ±0.0087 ±0.012 ±0.0124 ±0.0298 ±0.0162

T-DANTE

GD no context

0.978 0.9665 0.9599 0.9666 0.9698 0.9455

±0.0074 ±0.0074 ±0.0083 ±0.006 ±0.0068 ±0.0084

T-DANTE

GD context 4

0.9807 0.9726 0.9703 0.9749* 0.9737* 0.9604*

±0.0052 ±0.0107 ±0.0061 ±0.0041 ±0.0064 ±0.0079

T-DANTE

GD context 8

0.9673 0.958 0.9564 0.9441 0.9385 0.9145

±0.0099 ±0.0133 ±0.0119 ±0.0153 ±0.0175 ±0.0138

Table 6.3: Group Correctness metric with P = 1 for T-DANTE variations in
all spring simulation datasets. Context sizes of 0, 4 and 8 agents and scene size
of 50 consecutive timeframes. * shows that this result is significantly different
than all the other values in the same dataset.

The interpretation of the ablation study results leads to the conclusion that
in almost all cases the use of context is beneficiary for the performance of the
model using either of the evaluation metrics. However, the best size of this
context is not the same for all the datasets, as each dataset holds different
characteristics like the number of agents that are present in every timeframe.
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sim 1 sim 2 sim 3 sim 4 sim 5 sim 6

T-DANTE

no context

0.979 0.9699 0.9749 0.9792 0.9781 0.9742

±0.0041 ±0.0055 ±0.0052 ±0.0031 ±0.0021 ±0.0031

T-DANTE

context 4

0.9834 0.9888* 0.9876* 0.9866 0.9778 0.9763

±0.0016 ±0.0012 ±0.0028 ±0.0023 ±0.0057 ±0.0032

T-DANTE

context 8

0.9724 0.9809 0.9783 0.9733 0.9528 0.9599

±0.0037 ±0.0036 ±0.0049 ±0.0054 ±0.0134 ±0.0044

T-DANTE

GD no context

0.9853 0.9776 0.9836 0.986 0.9813 0.9788

±0.0042 ±0.0035 ±0.0037 ±0.0021 ±0.0041 ±0.0026

T-DANTE

GD context 4

0.9858 0.9789 0.9837 0.9876* 0.9831 0.9797

±0.0028 ±0.0059 ±0.0022 ±0.0012 ±0.0035 ±0.0031

T-DANTE

GD context 8

0.9779 0.9692 0.9756 0.9759 0.9619 0.9659

±0.0053 ±0.0065 ±0.0041 ±0.0046 ±0.0088 ±0.0043

Table 6.4: Group Mitre metric for T-DANTE variations in all spring simulation
datasets. Context sizes of 0, 4 and 8 agents and scene size of 50 consecutive
timeframes. * shows that this result is significantly different than all the other
values in the same dataset.
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6.2 T-DANTE vs Baselines

In this section, the results of T-DANTE compared with the baselines will be
discussed. Table 6.5 and Table 6.6 show the results of the experiments for
the pedestrian datasets and Table 6.7 and Table 6.8 present the results of the
simulation dataset.

6.2.1 Pedestrian datasets

eth hotel zara01 zara02 students03

DANTE
0.3195 0.4306 0.7307 0.6334 0.0236

±0.0474 ±0.0435 ±0.051 ±0.0376 ±0.0107

NRI
0.201 0.1691 0.285 0.1058 0.0065

±0.062 ±0.0544 ±0.0671 ±0.0346 ±0.0096

GDGAN
0.3243 0.3224 0.5373 0.1887 0.0811

±0.0459 ±0.0458 ±0.0288 ±0.0309 ±0.019

WavenetNRI
0.2419 0.2021 0.3611 0.1839 0.0011

±0.059 ±0.0485 ±0.0912 ±0.0655 ±0.0041

T-DANTE
0.5901* 0.508* 0.8215* 0.8699* 0.6957*

±0.0301 ±0.0434 ±0.0149 ±0.0108 ±0.0563

Table 6.5: Group Correctness metric with P = 1 for T-DANTE vs Baselines in
all pedestrian datasets. * shows that this result is significantly different than
all the other values in the same column.

T-DANTE with a context size of 8 agents was chosen for this part of the
comparison because, on average, it performed best in the ablation study using
the pedestrian datasets. According to 6.5, T-DANTE produces superior results
than all baselines, i.e., DANTE, NRI, GDGAN, and WavenetNRI, for all pedes-
trian datasets using Group Correctness metric. Results in table 6.6 with Group
Mitre metric do not agree completely with Group Correctness as GDGAN is
producing the best results for eth and hotel datasets, and T-DANTE takes the
second place in these datasets. This can happen due to the tendency of Group
Correctness metric at penalising more the model, when a false negative group
has been predicted. GDGAN creates many false negative groups for eth and
hotel datasets. While in all other datasets, T-DANTE performed best. These
results can lead us to the assumption that due to the superiority of T-DANTE
versus DANTE, the addition of a temporal aspect using the LSTM layers ame-
liorates the performance of the model. Another notable aspect of the tables
is the high standard deviation in NRI and WavenetNRI results compared to
the rest of the results. This means that these models do not consistently learn
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eth hotel zara01 zara02 students03

DANTE
0.5479 0.5859 0.7932 0.7054 0.5019

±0.0195 ±0.0355 ±0.0285 ±0.0259 ±0.0131

NRI
0.5707 0.5399 0.5969 0.4172 0.28

±0.0738 ±0.0972 ±0.0527 ±0.019 ±0.026

GDGAN
0.7058* 0.6117* 0.7762 0.5273 0.286

±0.0257 ±0.0514 ±0.0218 ±0.0237 ±0.0215

WavenetNRI
0.5526 0.4549 0.627 0.4622 0.2799

±0.0568 ±0.0799 ±0.0659 ±0.0401 ±0.0237

T-DANTE
0.6651 0.5425 0.838* 0.8726* 0.7805*

±0.0168 ±0.0228 ±0.0152 ±0.0106 ±0.0281

Table 6.6: Group Mitre metric for T-DANTE vs Baselines in all pedestrian
datasets. * shows that this result is significantly different than all the other
values in the same dataset.

how to distinguish the different classes in every experiment run, which leads to
the difference between their results that is represented by standard deviation.
The low values produced by the baselines for the students03 dataset could be
explained by the high number of agents of this dataset 5.1, as most of them take
into account all the agents in a scene.

6.2.2 Simulation datasets

In the simulation dataset, the T-DANTE with a context size of 4 was selected
as it showed better results in the ablation study. According to Table 6.7 and
Table 6.8, WavenetNRI and NRI performed better than T-DANTE in all simu-
lation datasets using both evaluation metrics. On the other hand, GDGAN was
unable to capture the patterns in the simulation datasets, as its weak perfor-
mance is shown in both tables. The existence of large groups in the simulation
datasets could be the reason for these low values occurring. DANTE baseline
is performing better than GDGAN, but it does not reach the performance of
the other three models. T-DANTE performs worse than WavenetNRI and NRI,
and better than DANTE and GDGAN. The WavenetNRI and NRI are able to
process and analyze the entire scene, which might explain their superiority.

In general, the results demonstrate the effect of including the temporal dy-
namics of the datasets in the structure of the neural network. The results
of T-DANTE vs DANTE clearly represent that the use of data from multiple
timeframes in a single sample helps the model to perform better. Another point
is that T-DANTE surpasses the baselines in the pedestrian datasets, but in
the simulation datasets, NRI and WavenetNRI baselines share the first- and

37



sim 1 sim 2 sim 3 sim 4 sim 5 sim 6

DANTE
0.2155 0.1978 0.0955 0.1992 0.0804 0.0408

±0.0075 ±0.0079 ±0.0108 ±0.0108 ±0.0107 ±0.0075

NRI
0.9837 0.9828 0.9884* 0.9961 0.9897* 0.9885*

±0.0041 ±0.0067 ±0.0043 ±0.0026 ±0.0049 ±0.0071

GDGAN
0.0 0.0 0.0 0.0 0.0 0.0

±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.0

WavenetNRI
0.996 0.9953* 0.9772 0.9983* 0.9721 0.953

±0.0061 ±0.0042 ±0.0082 ±0.0035 ±0.0117 ±0.0115

T-DANTE
0.9693 0.9798 0.9817 0.9707 0.9593 0.9449

±0.0023 ±0.0018 ±0.0062 ±0.0065 ±0.014 ±0.0113

Table 6.7: Group Correctness metric with P = 1 for T-DANTE vs Baselines in
all spring simulation datasets. * shows that this result is significantly different
than all the other values in the same dataset.

sim 1 sim 2 sim 3 sim 4 sim 5 sim 6

DANTE
0.717 0.7012 0.518 0.7117 0.5272 0.4246

±0.0041 ±0.0035 ±0.011 ±0.0046 ±0.007 ±0.0089

NRI
0.9915 0.9934 0.9946* 0.9986 0.994 0.9948

±0.0024 ±0.0025 ±0.0023 ±0.0009 ±0.0027 ±0.0026

GDGAN
0.0067 0.0031 0.0411 0.0024 0.0278 0.092

±0.0 ±0.0003 ±0.0 ±0.0003 ±0.0 ±0.0

WavenetNRI
0.9984 0.9984* 0.9882 0.9995 0.9878 0.9685

±0.0022 ±0.0015 ±0.0044 ±0.001 ±0.0055 ±0.009

T-DANTE
0.9834 0.9888 0.9876 0.9866 0.9778 0.9763

±0.0016 ±0.0012 ±0.0028 ±0.0023 ±0.0057 ±0.0032

Table 6.8: Group Mitre metric for T-DANTE vs Baselines in all spring simu-
lation datasets. * shows that this result is significantly different than all the
other values in the same dataset.

second-best places. This behavior might be explained by different character-
istics of the pedestrian and simulation datasets. Simulation datasets include
more data samples and these samples include a higher number of scenes with
groups of over 3 members than pedestrian datasets. The baselines were unable
to capture the interactions of smaller groups that appear more frequently in
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the pedestrian datasets. However, these baselines were able to effectively find
patterns in larger groups that are majorly included in the simulation datasets.
Group Correction metric seems to give harsher punishment, when false nega-
tive group are detected, than Group Mitre metric. This can be seen in all the
tables of this section. The results are also affected by the differences between
pedestrian datasets related to number of agents included in each one 5.1. The
best results occur for the zara01 and zara02 pedestrian datasets that involve
the least number of agents. On the opposite side, eth, hotel and students03
datasets, which include higher number of agents.

After our experimentation, we answer the questions we set at the beginning
of the experiments section 5.

• Can the addition of the temporal aspect of data lead to better results on
the group detection problem?
The integration of temporal dynamics in T-DANTE enhanced the per-
formance of the model. This is demonstrated in T-DANTE vs baselines
section, as T-DANTE is performing better than DANTE, while DANTE
only uses a single frame per sample.

• Does the use of context information help to gain better performance?
Context information seems to enhance the performance of T-DANTE
mostly when using the context of 4 agents compared to using no context
information.

• Does the size of the context information affect the performance of the
model?
The best context size depends on the characteristics of the dataset. For
some datasets context size of 4 agents was more suitable than 8 agents.
For example, the simulation datasets did not perform well with the context
size of 8 agents. However, T-DANTE with a context size of 8 agents have
been the best for modeling zara02 and students03 datasets.

• How does our method perform compared to other methods?
Our proposed method outperformed other baselines almost in all cases
in pedestrian datasets. To be more precise, in 3 out of 5 cases using
Group Mitre metric and 5 out of 5 cases using Group Correctness metric
with P = 1, our model produced higher outcomes than the baselines.
However, in simulation datasets, NRI and WavenetNRI baselines show
superior performance than T-DANTE.
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Chapter 7

Conclusion

In conclusion, this thesis has delved into the critical task of group detection
within spatiotemporal data, showcasing its broad applications spanning intel-
ligent surveillance, human mobility modeling, animal trajectory analysis, and
natural phenomena forecasting. Our proposed methodology, drawing inspira-
tion from the neural network architecture introduced by Swofford et al. [21]
and enriched with RNN layers, demonstrates its effectiveness in capturing the
temporal dynamics inherent in agent movements. The subsequent application
of the DS community detection algorithm unveils latent groups within the con-
structed social graph. The insights gathered from our experiments show the
value of context size, temporal information, and the model’s ability to discern
meaningful groups in both pedestrian and simulation datasets. Our experiments
demonstrate that T-DANTE is the superior model for the group detection task
using pedestrian datasets. However, T-DANTE does not surpass other base-
lines in simulation datasets but seems to be competitive. The conclusion of the
experiments versus the baselines executed for both pedestrian and simulation
datasets demonstrated that T-DANTE was the only approach with acceptable
performance in all kinds of datasets.

The major limitation of our work is the need to feed the Context Branch of
T-DANTE, even when there are not enough agents in a scene. The incorporation
of dynamic context size per scene based on the presented number of agents would
be a solution that could be explored in order to feed the model with actual data.

Nevertheless, the complexity of spatiotemporal data and the dynamic nature
of group interactions present challenges that need further exploration. Future
research endeavors could deepen our understanding by refining the proposed
methodology, exploring alternative neural network architectures, and investi-
gating the impact of better hyperparameter tuning on model performance. The
generalizability of our approach across different datasets and its scalability to
real-time applications could be another future approach. Last but not least,
an intriguing direction would be experimenting with a spectrum of community
detection algorithms. Diverse algorithms, beyond the DS algorithm applied in
our current work, might offer better results.
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Chapter 8

Ethical Considerations

The publicly available datasets that we used were captured with the use of
cameras. The camera footage was then transformed to location and velocity
data for each of the agents involved. The use of such camera footage should be
used only with the consent of the people included and should be anonymised
properly in order to avoid being used for unethical purposes. In our case we
use our data and our results only for research purposes and in no way intend to
create any commercial benefit by manipulating this data.
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Chapter 9

Appendix

This appendix contains data that would have taken up too much space to include
in the main thesis.

9.1 Simulation dataset visualisations

More visual representations of the simulation samples can be found below.
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Figure 9.1: Visualisations of spring simulations with attraction points. Circle
markers are the starting points of the trajectory of a particle and triangle mark-
ers are the final points of the trajectory of a particle. Each group of particles
share the same color and the pentagon markers represent the attraction points.
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9.2 Result tables

This part of the appendix shows result tables for Group Correctness evaluation
using threshold value 2/3.

9.2.1 Ablation study

eth hotel zara01 zara02 students03

T-DANTE

no context

0.6094 0.5306 0.8188 0.8552 0.7084

±0.0185 ±0.0272 ±0.0127 ±0.0079 ±0.075

T-DANTE

context 4

0.6063 0.5367 0.8253 0.8641 0.7768

±0.0156 ±0.0284 ±0.0129 ±0.0093 ±0.045

T-DANTE

context 8

0.609 0.533 0.8256 0.8715* 0.807

±0.0221 ±0.0253 ±0.0136 ±0.01 ±0.0374

T-DANTE

GD no context

0.6057 0.5258 0.8134 0.8508 0.7752

±0.0174 ±0.026 ±0.015 ±0.0111 ±0.069

T-DANTE

GD context 4

0.5983 0.5306 0.8236 0.8522 0.7919

±0.019 ±0.0261 ±0.0158 ±0.0097 ±0.057

T-DANTE

GD context 8

0.5999 0.5382 0.8202 0.8592 0.7979

±0.0255 ±0.0283 ±0.0163 ±0.0122 ±0.0493

Table 9.1: Group Correctness metric with P =
2

3
for T-DANTE variations in

all pedestrian datasets. Context sizes of 0, 4 and 8 agents and scene size of 15
consecutive timeframes. * shows that this result is significantly different than
all the other values in the same column.
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sim 1 sim 2 sim 3 sim 4 sim 5 sim 6

T-DANTE

no context

0.978 0.9737 0.97 0.9668 0.9745 0.9448

±0.0051 ±0.0059 ±0.0064 ±0.0059 ±0.004 ±0.007

T-DANTE

context 4

0.9734 0.9854* 0.9869* 0.9803 0.9745 0.9578

±0.0021 ±0.0019 ±0.0039 ±0.0029 ±0.008 ±0.0093

T-DANTE

context 8

0.9555 0.9771 0.9755 0.9616 0.9408 0.9169

±0.0114 ±0.0052 ±0.0079 ±0.0074 ±0.019 ±0.01

T-DANTE

GD no context

0.9848 0.9799 0.9784 0.9764 0.9808 0.9557

±0.0038 ±0.0048 ±0.0058 ±0.0031 ±0.0049 ±0.0064

T-DANTE

GD context 4

0.9857 0.983 0.9825 0.9854* 0.9832* 0.9687*

±0.0028 ±0.0046 ±0.003 ±0.0031 ±0.0036 ±0.0053

T-DANTE

GD context 8

0.98 0.9749 0.974 0.9693 0.9603 0.9346

±0.0048 ±0.0067 ±0.0064 ±0.0093 ±0.0121 ±0.0145

Table 9.2: Group Correctness metric with P =
2

3
for T-DANTE variations in

all spring simulation datasets. Context sizes of 0, 4 and 8 agents and scene size
of 50 consecutive timeframes. * shows that this result is significantly different
than all the other values in the same dataset.

49



9.2.2 T-DANTE vs Baselines

eth hotel zara01 zara02 students03

DANTE
0.5145 0.4757 0.8278 0.7841 0.1111

±0.026 ±0.0349 ±0.0292 ±0.0408 ±0.0231

NRI
0.3554 0.2587 0.5231 0.2497 0.0143

±0.074 ±0.0695 ±0.0581 ±0.0432 ±0.0177

GDGAN
0.4438 0.3291 0.6246 0.2754 0.1865

±0.0364 ±0.0421 ±0.0334 ±0.0356 ±0.0285

WavenetNRI
0.3942 0.2831 0.5551 0.3298 0.0044

±0.0545 ±0.0496 ±0.0769 ±0.0577 ±0.0083

T-DANTE
0.609* 0.533* 0.8256 0.8715* 0.807*

±0.0221 ±0.0253 ±0.0136 ±0.01 ±0.0374

Table 9.3: Group Correctness metric with P =
2

3
for T-DANTE vs Baselines in

all pedestrian datasets. * shows that this result is significantly different than
all the other values in the same dataset.

sim 1 sim 2 sim 3 sim 4 sim 5 sim 6

DANTE
0.5189 0.5601 0.284 0.5299 0.2621 0.1677

±0.0089 ±0.0092 ±0.0197 ±0.0161 ±0.0221 ±0.0288

NRI
0.9886 0.987 0.9906* 0.9985 0.9922* 0.9932*

±0.0035 ±0.0044 ±0.0036 ±0.0017 ±0.0036 ±0.0032

GDGAN
0.0 0.0 0.0 0.0 0.0 0.001

±0.0 ±0.0 ±0.0 ±0.0 ±0.0 ±0.001

WavenetNRI
0.9993 0.9983* 0.9849 0.9996* 0.9793 0.9641

±0.0015 ±0.0023 ±0.0049 ±0.0013 ±0.0096 ±0.0086

T-DANTE
0.9734 0.9854 0.9869 0.9803 0.9745 0.9578

±0.0021 ±0.0019 ±0.0039 ±0.0029 ±0.008 ±0.0093

Table 9.4: Group Correctness metric with P =
2

3
for T-DANTE vs Baselines in

all spring simulation datasets. * shows that this result is significantly different
than all the other values in the same dataset.
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