4:EX:x Universiteit
*4) Leiden

Master Computer Science

HyperDrive: Hyperband with Gaussian Process for
Efficient SCA Model Tuning

Name: Ruilin Ma
Student ID: 3500926
Date: 03/06/2024

Specialisation: CS: Artificial Intelligence

1st supervisor: Guilherme Perin
2nd supervisor: Nele Mentens

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

HyperDrive: Hyperband with Gaussian Process
for Efficient SCA Model Tuning

Ruilin Ma

Leiden Institute of Advanced Computer Science, Leiden University
r.ma@liacs.leidenuniv.nl

Abstract. Side channel analysis is one of the top topics studied in cryptography. By
analyzing the side signals emitted during the encryption and decryption processes,
such as power traces, electromagnetic waves, heat signatures, etc, one could exploit
these to attack and acquire the sensitive secret processed on a processing unit.
With the advance of deep learning techniques, one could utilize the power of deep
neural networks to learn the information within side channel patterns and perform
an attack afterward swiftly. However, deep neural networks are hard to optimize
because of their complexity and the profound number of different configurations of
hyperparameter settings. Without prior knowledge, the enormous search space makes
it difficult to evaluate all possible model configurations progressively, and the cost
of an exhaustive search is overwhelming, making it practically infeasible. This work
aims to address these issues from two perspectives. This work first provides a clear
view and explanation of the most important factors for a good model to be trained,
with coverage of architectural and learning hyperparameters. This is achieved by
comprehensively studying the relationship and influence of the hyperparameters for
competent SCA models. This study then proposes and evaluates HyperDrive, an
enhanced Hyperband with Gaussian Process algorithm, to substantially speed up
tuning velocity, reduce the overall cost, and obtain on-par or even better performance
in finding the closest-to-optima model configuration for SCA tasks. Based on the
comprehensive experimentations and analysis, this work aims to enable more powerful
and efficient deep-learning-based SCA attacks.

Keywords: Side Channel Analysis - Hyperparameter Optimization - Deep Learning

2 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning
Contents

1 Introduction 3

2 Background 4

2.1 Encryption algorithms o 4

2.2 Side-channel information 5

2.3 Learning models 7

231 MLP 8

2.3.2 CONN . .o 8

3 Related work 9

4 Problems and objectives 10

5 Methodologies 11

5.1 Hyperparameter optimization oL, 11

5.2 Hyperband 11

5.3 HyperDrive: Hyperband with Gaussian Process 14

6 Experiments 15

6.1 Experiments setup L 16

6.1.1 Model architectures L Lo 16

6.1.2 Evaluation metrics o 17

6.1.3 Datasets L 17

6.2 Single-hyperparameter characteristic scan 19

6.2.1 Batchsize 19

6.2.2 Learningrateo 20

6.2.3 Regularization oo o 21

6.2.4 Leakagemodel 23

6.3 Inter-hyperparameter relation screening 24

6.3.1 Boundary and correlation 0oL 25

6.3.2 Interconnections L oL 26

6.4 Tuner efficacy evaluation and comparison 30

6.5 A revisit to the configurations obtained 33

7 Discussion 34

8 Conclusion and future work 38

Ruilin Ma 3

1 Introduction

Side-channel analysis (SCA) is a powerful tool for obtaining secret information by manipu-
lating the side-channel information that is widely used in the cryptography field. From the
attack side, this technique can be utilized to guess the secret key of the encryption algo-
rithms and obtain the plain text. From the defense side, the side-channel information is also
a valuable asset for developers to optimize the implementation of the encryption algorithm
in hardware and software to reduce the likelihood of being compromised. Side-channel
information refers to the information that is unintentionally leaked in the encryption and
decryption process, including but not limited to power consumption [KJJ99b], electro-
magnetic waves [QS01], thermal emissions [HS13], acoustic signals [GST14], etc. This
information is the byproduct of the encryption and decryption process, as the processing
unit inevitably generates redundant heat and electromagnetic wave emissions that contain
the pattern of how the algorithm is being executed. Such information, if intentionally and
properly collected, can be used to reverse-engineer to guess the key used in the process,
and eventually lead to the revealing of the original plain text that should, in most cases,
be kept secret.

The success of side-channel analysis is based on the accurate extraction and analysis of
the side-channel information that contains leakage patterns, which requires great expertise
and a huge amount of accumulated experience from the researcher to proceed. This
is, however, sometimes struggling for the analyzer, as this information, such as power
consumption traces, may contain extensive noise that will interfere with the interpretation
of the information. Also, cryptography operations can be executed on various hardware
platforms, such as ARM, X86/64, RISC-V, etc., and the corresponding information and
noise pattern may differ significantly, posing additional obstacles to overcome to retrieve
and analyze useful information. Therefore, traditional SCA often requires the analyzer
to possess abundant knowledge and experience with hardware and software, which is
unfortunately not always accessible.

The development of computational resources and algorithms opens up new opportunities
and possibilities for SCA. The rapidly evolving Al techniques, such as machine learning
(ML) and the accessibility of high-performance computation systems, offer a powerful
approach to dealing with the complexity and difficulties of side-channel analysis [PPM™22].
The idea is to develop machine learning algorithms and let the machine automatically
detect the pattern within the side-channel information collected. This can bypass the
limitations of human experts and dig out the hidden pattern with high efficiency. Also,
the capacity of the machine learning model to learn new patterns makes it flexible for
performing analysis in various hardware platforms. The capability of fast-evolving is also
an advantage of such an approach, as the model can quickly evolve and gain a performance
boost when fed with additional data.

Applications of deep learning (DL) to SCA, first proposed in [MPP16], is a particularly
interesting methodology utilized in performing SCA with AI. Deep learning is a sub-
category of machine learning, referring to utilizing deep neural networks (DNN) to learn a
task. Deep neural networks are a kind of Artificial Neural Networks (ANN) that mimic
how the human brain works. Each ANN consists of multiple layers, with multiple nodes.
The nodes mimic actual human neurons and act as the processing and storing units, and
nodes in different layers are connected with each other in some defined manner. The
connections between nodes contain weights that get updated constantly across the training
phase, which is regarded as the learning process. When the weight updates converge at a
certain point, or the training budget is depleted, the model is considered trained and can
be used to perform tasks like classification and regression, etc. DNN is a special case of
ANN that contains multiple hidden layers, literally meant by the name 'Deep’. DNN is a
power tool that performs various ML tasks and is considered a potential SCA approach.

However, the deep learning method demands high volume computational resources,

4 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

and it requires much time and devotion to find a model that can predict the key correctly,
which is a normal obstacle for machine learning tasks. The field of deep-learning-based
SCA has been suffering from these problems for quite a while, as researchers do not have
a complete understanding of the various deep-learning models that are on the market, and
people usually spend tremendous time searching for promising models with naive search
methods such as grid search or random search [WPP20, PWP21]. Although the application
of random search to find efficient deep neural network hyperparameters tends to result in
efficient models for public datasets, advanced search strategies would be necessary against
real-world and noisy scenarios. The main limitation is that more advanced search methods
also demand higher computational complexity (e.g., genetic algorithms or reinforcement
learning). To speed up the search process while maintaining the performance of the
searched model, this work finds the correlation between different hyperparameters inside
a DNN model. We also present a Hyperband and its variant to increase model search
efficiency.

This paper is organized into the following sections. Section 1 is the general introduction
of the work; section 2 demonstrates the background knowledge of deep-learning-based
SCA; section 3 discusses some of the related work of this study; section 4 identifies the
drawbacks and undiscovered territories of the current relevant researches, and proposes the
objectives of the work; section 5 focuses on the methodologies involved in presenting this
paper; section 6 comprehensively explains the experiment setup and corresponding test
results in four sets of experiments; section 7 discusses the findings obtained and highlights
recommendations for the domain based on the results, and also mentions the limitation of
the work critically; and eventually section 8 concludes this work and motivates outlooks
for future work.

2 Background

The basis of side-channel analysis is the side-channel information, which requires adequate
extraction and careful analysis. This process relies on hardware and software, combined
with prerequisite knowledge of the encryption algorithm. When trying to fulfill the
task with the help of machine learning techniques, the background and mechanism of
relevant approaches are also extremely informative and helpful. This section introduces
and discusses detailed methodologies of the full pipeline of side-channel analysis.

2.1 Encryption algorithms

Encryption is a process of transforming the unprotected original information (referred to
as the plain text) to protected information (referred to as the encrypted text or ciphered
text) that people except the intended recipient can not understand, even if they manage
to acquire access of such information. Figure 1 depicts a simple logic flow chart of a
symmetric encryption algorithm. As a defense of secure information exchange, encryption
technologies have been rapidly developing and widely applied to almost every aspect of
the cyber world. From secure payment systems that verify each transaction made to
end-to-end encryption systems in numerous online chatting software, encryption algorithms
have been deployed in almost every online system to protect people from being attacked
by unwanted intruders.

Many encryption algorithms have been developed over the long history of cyber
attacks and defenses. Some of the most famous ones are the Data Encryption Standard
(DES), Rivest-Shamir—Adleman(RSA), and Advanced Encryption Standard (AES). Many
variants of each algorithm were later proposed to enhance security.

DES was originally developed by IBM in the early 1970s to protect sensitive government
data. Officially adopted in 1977, DES became widely used in various commercial and

Ruilin Ma 5

Encryption
with Key

Decryption
with Key

Plain Text
(Unprotected)

Plain Text
(Unprotected)

Cipher Text
(Protected)

Transmission to
recipient

Figure 1: Logic and operation flow of a simple encryption algorithm (symmetric).

financial systems due to its efficiency in hardware implementations [NAHAB23]. DES is a
symmetric encryption algorithm, meaning the same key is used in both encryption and
decryption processes. The algorithm operates on 64-bit blocks using a 56-bit key, which,
despite initial adequacy, was later critiqued for its vulnerability to brute-force attacks as
computational power grew. By the late 1990s, with the advent of distributed computing,
DES was proven to be insecure, which led to the development of its successors.

The RSA algorithm, named after its developers Ronald Rivest, Adi Shamir, and Leonard
Adleman, and published in 1977, marked a significant advancement in cryptographic
technology [RSA78|[Bon99]. Unlike symmetric key algorithms like the DES, RSA is an
asymmetric system that utilizes a pair of keys—a public key for encryption and a private
key for decryption. This separation addresses the challenge of secure key distribution,
one of the primary limitations of symmetric systems. The security of RSA is rooted in
the computational difficulty associated with the factorization of large integers, an area
in which no efficient solving technique has yet been discovered. As such, RSA remains a
cornerstone in digital security, particularly in applications requiring secure key exchanges.

The AES algorithm, established by the National Institute of Standards and Technology
(NIST) in 2001, is a substitution-permutation network that significantly enhances the
security previously offered by DES. AES was selected through an open competition involving
numerous international candidates and is based on the Rijndael cipher by Vincent Rijmen
and Joan Daemen [DDR99|[Her09]. The standard specifies three key sizes—128, 192, and
256 bits—and operates on blocks of 128 bits, irrespective of key size. Unlike its predecessor,
AES is designed to withstand all known forms of cryptanalytic attack, making it robust
enough for both government and private sector applications worldwide. Its adoption reflects
a shift towards securing systems against increasingly sophisticated attacks, affirming its
role in modern cryptographic practices. Figure 2 shows a visualization of the encryption
and decryption phase of the AES algorithm.

In this paper, the AES algorithm is chosen as the attack subject to evaluate the
performance and effectiveness of SCA analysis and attacks, as it is by far one of the most
advanced, secure, and widely used encryption algorithms.

2.2 Side-channel information

Side-channel attacks exploit information gained from the physical implementation of a
cryptographic system rather than weaknesses in the algorithms themselves. Regardless of
what encryption model, it is always executed with a code implementation on a certain
hardware platform. Like every other program that is executed, the algorithm’s running
will force the processing unit to fetch and store data and perform certain computations.
This is a phase where the law of physics dominates, and the computation performed on
the processing unit will consume energy and emit heat and electromagnetic waves. Power

6 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Hello, Plain text 100101 Gioher text
ain text ipher text
Bob.. (128 bite) 01011... (128 bite)

AddRoundKey InvAddRoundKey

SubBytes InvShiftRows
ShiftRows InvSubBytes

am)

Round Key
(128 bits, 196
bits, 256 bits)

Round Key
(128 bits, 196
bits, 256 bits)

InvAddRoundKey —
CThecking the’ Round Key
(128 bits, 196
loop (’l;mber bits, 256 bits)
Checking the’
Other loop. loop number,
numbers. (%)
numbers

InvMixColumns

Round Key
(128 bits, 196
bits, 256 bits)

Checking the
loop number,

& T T
| 10 (RoundKey 128 bis),|
12 (RoundKey 196 bits)

AddRoundKey
Checking the’
loop number
(%)
L4 ovney 250 i)

100101 Gpertent
ipher tex!
01011...| (128 bitey

(a) Encryption flow (b) Decryption flow

Plain text
(128 bits)

Figure 2: Tllustration of the encryption and decryption processes of the AES algorithm.
AES-128,192 and 256 share mostly the same logic. [KFNO13]

consumption patterns, heat emissions, and electromagnetic emissions are all considered to
be side information, as they are the byproduct of the execution of the encryption algorithm
and are not intended to be produced.

Power consumption has a high correlation with the task as well as the code that is
executed. For example, when a line of code produces a result of 1 and stores it, it will
result in a slightly higher power consumption than when a 0 is produced. This is because
all modern hardware consists of transistors that are stacked together. Different operations
create different voltage levels and current values for the integrated circuit that deals with
the computation. When a probe is attached to a hardware platform where encryption is
executed, the power consumption signatures can be acquired and displayed as waveforms
of Voltage-Time, Current-Time, or Power-Time, via equipment like an oscilloscope. Based
on this information, one can guess the secret, like the key inside cryptographic operations,
and gain access to the plain text that should not be exposed. Figure 3 illustrates a classical
setup for performing power-based SCA.

Heat emission, like power consumption, is also a byproduct of the computation on
processing units. According to Joules Law, electric circuits create heat when the current
flows through a resistant medium, which is the case for all current processing units on the
market, regardless of the processor’s instruction set architecture (ISA) or the hardware
packages. Heat can be measured and recorded independently by a heat sensor placed
near or attached to the processing unit, and heat emission could have a similar trend
and a high correlation with power consumption, given the same thermal condition. For
example, when the processing unit runs at full power, it will consume more power from
the power supply and produce more excessive heat. Therefore, it is sometimes combined
with power consumption measurement to better reflect on the nature of the task that is
running and infer the secret from it with relevant prerequisite knowledge like the ISA and
the encryption algorithm.

Electromagnetic waves are also a form of side-channel information associated with
cryptography operations [AARR02]. The oscillator in the processing unit controls the
speed of the opening and closing of transistor gates, sometimes referred to as the clock
speed or the frequency of the processor. A tougher task will push the processing unit to

Ruilin Ma 7

‘“’n-.____nv' RS-232 PC
— USB
(= z
: Embedded Computing HW ’
\ ' Cryptographic SW i | Ciphertext ! Oscilloscope
Plaintext R . T e
(x) Kev . enc(xk)
b e ! " .
CQamrent
SENSOr \ -

= e Time

Figure 3: A classical setup for performing power-based SCA. [EWTS14]

run at a higher clock speed, and the oscillator will run at a higher frequency. Running at
different clock speeds, the processor emits electromagnetic waves with distinct signatures,
which can be probed and analyzed. When performing encryption operations, variations
in the electromagnetic field caused by different instructions or data being processed can
potentially reveal information about the cryptographic operations being performed and
the secret in the process.

In this study, the power consumption is chosen. The reason is that power consumption
directly correlates with the computational activities happening within the device, and
measuring the power consumption of a device can be relatively straightforward and requires
less specialized equipment than some other side-channel information.

2.3 Learning models

The traditional approach to processing the side-channel information acquired and per-
forming side-channel analysis is by manual statistical techniques such as Simple Power
Analysis (SPA) [Koc96] and Differential Power Analysis (DPA) [KJJ99a]. Though proven
feasible and reliable, such approaches are highly dependent on the skills and expertise of
the professional analyzer, as the pattern inside a side-channel trace is submerged beneath
heavy noise. It usually takes a long time for the analyzer to carefully look into every
detail of the side information at hand to determine the possible key or other secrets of the
encryption process, and characteristics and properties of different hardware platforms and
encryption algorithms differ significantly, making it hard for a single researcher to carry
out the same task in different situations.

To address these limitations, machine learning techniques have been proposed to replace
the human expertise in the loop and automatically detect hidden patterns inside side-
channel traces. Machine learning is an approach that allows the machine to learn from
samples and decide by itself, which greatly enhances efficiency and enables the capacity
to transfer the learned knowledge to other platforms. One of the widely used methods
employed is deep learning, a popular technique in machine learning. Performing such
analysis with deep learning is called deep-learning-based SCA, a promising way to perform
such tasks. Deep learning methods, particularly Multi-Layer Perceptrons (MLP) and
Convolutional Neural Networks (CNN) [ZBHV19], have been increasingly applied in this

8 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

domain due to their powerful feature extraction and pattern recognition capabilities. In
this work, the proposed hyperparameter search method is applied to and evaluated on
both architectures to understand the impact of different hyperparameter configurations on
training speed and testing performance.

2.3.1 MLP

Multi-layer Perceptron is a simple but effective neural network architecture. It has one
input layer, one output layer, and several hidden layers. Each layer has some nodes
representing the neurons in the human brain. The nodes are interconnected with other
nodes in the vicinity layers, and each connection is associated with a weight, which is
constantly updated in the training phase. Figure 4 illustrates a schematic of a sample MLP
model, with 4 input nodes, 2 output nodes, and 8 nodes in each of the 2 hidden layers.
MLPs can learn any function given sufficient neurons and layers, making them broadly
applicable to a range of SCA problems with various encryption algorithms. Also, their
straightforward architecture makes them easier to implement and scale up or down across
different datasets and platforms accordingly. However, MLPs with many parameters are
prone to overfitting, especially with limited or noisy side-channel data, requiring careful
tuning and regularization. In addition, they generally lack the ability of automatic feature
extraction, which means critical preprocessing steps must be accurately designed to achieve
optimal performance.

ONONONG)
ONONONONONONONC)
O

ONONONONORONONC)
O

re R® Hidden Layer € R® Output Layer € R?

nput Layer € B* Hidden Lay

I

Figure 4: A schematic illustration of the architecture of a simple MLP network.

2.3.2 CNN

Convolution Neural Networks earn their name from the presence of convolution layers
and have been a powerful tool in the field of SCA. Convolution layers make CNNs very
suitable for performing feature extraction and image processing. They can autonomously
identify and exploit localized and significant patterns within complex input data, which
is common for side-channel analysis. CNNs can effectively focus on specific segments
of a trace that are most indicative of information leakage [ZBHV19, WAGP20]. Unlike
traditional machine learning models that typically require manual feature engineering and
preprocessing, CNNs reduce the need for such preliminary steps through their inherent

Ruilin Ma 9

convolution and pooling layers structure. Figure 5 illustrates a simple representation of a
CNN network, with the front of the model consisting of a convolution layer and pooling
layer, while attached by dense layers that share a similar principle of the MLP model. On
the good side, CNNs are particularly well-suited for SCA because they can automatically
detect important, localized features in input data, such as specific regions in a power
trace where information leakage is high. Meanwhile, CNNs effectively reduce the data’s
dimensionality through convolution and pooling layers, improving computational efficiency.
Yet, it also has some drawbacks. CNNs can be complex to set up and require careful
tuning of their architecture (e.g., number of layers, types of layers, kernel sizes, etc) to
perform well, which might demand extensive experimentation and expertise. Also, they are
sensitive to small changes, which makes them vulnerable to platform or dataset changes.
In addition, CNNs generally require more computational resources to train, which can be
a limitation in resource-constrained environments.

24@48x48

24@16x16 1x256

8@64x64
@ 1x128

1x8

Convolution Max-Pool Dense

Figure 5: A schematic illustration of the architecture of a CNN network.

3 Related work

Since introducing deep-learning-based approaches to side-channel analysis in 2016 in
[MPP16], more than 200 papers have emerged and carefully examined the possibility of
performing such complex tasks with powerful deep neural networks. Deep learning models
are complex and black-box, and they only work fine when proper training is conducted.
Many factors influence model performance, including model architecture, hyperparameter
tuning, evaluation metrics chosen, dataset coverage, etc.

For model architecture, in [ZBHV19], Zaid et al. proposed a methodology to design
efficient CNNs that improve the robustness of SCA against common countermeasures such
as desynchronization. They also introduced innovative visualization techniques such as
Weight Visualization, Gradient Visualization, and Heatmaps to interpret the impact of
hyperparameters on the network’s feature selection capabilities. In [WAGP20], Wouters et
al. revisited the previous CNN architecture. They demonstrated the effectiveness of classical
preprocessing techniques, which reduce model complexity significantly—by an average
of 52%, while maintaining similar performance levels. In [LZC"21], Lu et al. developed
a novel neural network architecture that enables end-to-end profiling of cryptographic
implementations without the need for manual feature extraction. In [PWP21], Perin et
al. revealed that DNNs can achieve successful key recovery with minimal traces under
each scenario, demonstrating the versatility and robustness of DNNs in handling different

10 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

feature selection and noise levels.

For evaluation metrics, in [MDP19] Loic Masure et al. established a link between the
Negative Log Likelihood (NLL) loss function used in deep neural networks and side-channel
information metrics, demonstrating that minimizing NLL is asymptotically equivalent to
maximizing Perceived Information (PI). Also, in [BCGR22], Béguinot et al. refined the
understanding of how Guessing Entropy (GE) and Success Rate (SR) can predict each
other’s outcomes across different leakage models. Kerkhof et al. introduced the Focal
Loss Ratio (FLR) in [KWPP22], designed to enhance the learning process from noisy or
imbalanced datasets typical in SCA. It addressed limitations in existing loss functions by
focusing more on hard and less on easy samples, thus optimizing learning effectiveness.

Regarding hyperparameter tuning, Wu et al. introduced a novel framework, AutoSCA,
that employs Bayesian optimization to automate the tuning process and demonstrated
that Bayesian optimization outperforms traditional random search methods in finding
efficient neural network architectures in [WPP20).

Other machine learning methodologies are also applied and evaluated in side-channel
analysis. For example, in [RWGP21], Rijsdijk et al. developed a Q-Learning-based rein-
forcement learning framework that automates the search for optimal CNN configurations,
significantly reducing the complexity and size of the models while maintaining or even
improving attack performance. In [WDR 23], Wang et al. proposed a novel deep learning-
based SCA method called TripletPower, which reduces the number of training traces
required for effective attacks. TripletPower utilizes triplet networks to learn robust embed-
dings for side-channel attacks with minimal data. It demonstrates its ability to effectively
recover keys using as few as 250 training traces, compared to thousands typically required
by CNNs.

4 Problems and objectives

Though quite thorough work has been carried out in deep learning-based SCA since its
introduction in 2016, researchers are still lost in the mechanism of well-performing deep
learning models for SCA tasks. It is frequently observed that by just tempering with
certain hyperparameter settings in a network, the performance of the model will receive
much influence and in some cases, the once well-performed model will cease to function
even when the change is relatively trivial. Also, the interconnection between different
kinds of hyperparameters is not comprehensively explored. Various research questions
regarding the hyperparameters within competent SCA models are not properly answered,
for example:

e Are learning hyperparameters more important than architectural hyperparameters?

e For learning hyperparameters, which has more impact on the overall performance,
learning rate, regularization or batch size, etc.?

Meanwhile, search and tuning methods are not widely studied. Most work in deep-learning-
based SCA still relies on simple and naive grid search and random search, which is easy
to implement but computationally expensive and time-consuming. They are also not
efficient and rely heavily on the definition of the search space. Work exists exploring
more advanced hyperparameter tuning methodologies, such as Bayesian optimization (BO)
covered in [WPP20]. However, BO is also computationally expensive, while other promising
hyperparameter tuning approaches, such as the multi-armed bandit-based Hyperband,
have not been extensively studied in the context of deep-learning-based SCA.

Therefore, this work aims to properly and comprehensively address the research
questions, explore the uncharted territories in the domain, and achieve the following
objectives based on previous related studies:

Ruilin Ma 11

o Examine the level of impact of various kinds of hyperparameters, explore the intercon-
nections between them, and identify high-influencing ones. Evaluate the best-working
region of each hyperparameter, investigate the cause of such patterns, and formulate
proper explanations.

e Propose, develop, and evaluate a new tuning strategy rather than the current domain
baseline of random search to achieve the same or even better performance while
requiring lower computational and time budgets. Verify the efficacy of the new
algorithms proposed in various model and dataset setups.

o Draw suggestions for building and tuning deep neural networks to help reduce the
time and computational resources needed to acquire well-performing DNN models
for SCA tasks. These should be based on the observations made and results collected
in the experiments and understanding of the DNN architectures.

5 Methodologies

This section discusses some of the primary methodologies employed in this work, including
the hyperparameter tuning mechanism, the dataset involved in the experimentation, and
evaluation metrics.

5.1 Hyperparameter optimization

Hyperparameter optimization (HPO), also known as hyperparameter tuning or searching,
is a fundamental task and obstacle for nearly any task involving a neural network, as the
hyperparameter configuration highly influences the model’s performance. Manual selection
and trial of these configurations require numerous efforts and time from the engineer and
the outcome depends on the expertise and experience of the human expert significantly.
Automated machine learning (AutoML) has been developed to speed up the process as an
efficient alternative to replace human intervention. This bypasses the restrictions of the
human body and enables automated and 24/7 searching for possible models.

Grid search and random search are among the most popular HPO approaches. Grid
search works with a predefined grid of combinations of possible values for each hyperpa-
rameter, and, each time, the search engine samples a value in the pool to create a unique
configuration to evaluate. For n hyperparameters and m values for each, a total of m"
configurations will be evaluated. However, in most hyperparameter spaces, the effective
dimensionality is low: only a few hyperparameters influence the performance of a model
with a real difference, and grid search is, hence, pretty inefficient. Therefore, random
search has been proposed in [BB12], as it is not only computationally efficient but also very
practical and flexible in design. This makes random search one of the preferable choices for
hyperparameter optimization, especially when dealing with large hyperparameter spaces,
for which grid search becomes computationally impractical. However, random search still
requires much processing time and computational resources. Figure 6 illustrates the grid
and random search coverage spaces.

5.2 Hyperband

An approach named Hyperband was developed to tackle the issues regarding the speed
and resource demand of random search. Hyperband is a multi-armed bandit-based
hyperparameter tuning strategy. Initially proposed in [LJDT18] by Li et al., it is a
hyperparameter optimization algorithm that works more efficiently and is based on bandit-
based strategies that use adaptive resource allocation and early stopping rules. The
design of the Hyperband algorithm allows efficient exploration of hyperparameter space

12 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Grid Layout Random Layout

Unimportant parameter
Unimportant parameter

Important parameter Important parameter

Figure 6: An illustration of the performance comparison of a nine-config evaluation with
random search and grid search, where random search produces a better outcome. [BB12]

through dynamical resource allocations to more promising configurations using bandit-
based approaches toward the trade-off between exploration and exploitation. This is
done with no prior assumptions of the performance of the hyperparameters; hence, it is
robust across the application space. It is shown that Hyperband can lead to significant
computational savings in many different problems, from deep-learning to kernel-based
learning, making it a powerful tool for hyperparameter optimization in machine-learning
workflows [LJD*18] [AMH21].

At the core of Hyperband is Successive halving [JT15], an algorithm designed to
dynamically allocate more resources to promising model configurations by killing bad-
performing models at an earlier stage. It is based on the idea that if the model performs
badly initially, it will most likely achieve bad results, even if trained with more epochs.
Therefore, bad configurations should be identified at an early stage and ruled out to save the
training resources and time for other promising ones. Figure 7 illustrates a scenario where
eight configurations are evaluated with successive halving. It can be clearly identified
that all 8 configurations are evaluated at the start of the process. When the budget
consumption reaches 12.5% of the designated total budget, half of the configurations, the
worst 4, are eliminated. The remaining budget is then equally distributed to the remaining
half of the candidates until the next threshold is met and another half gets ruled out.
This process continues until only one candidate is left, which is supposed to be the most
promising one, and the remaining training budget is diverted to it fully. This approach
tries to put more resources into more promising ones, thus saving the total training time
as not-so-good ones are stopped very early and won’t waste the training budget. To decide
what candidate model deserves to continue in the search process, an appropriate metric
should be computed during the training of each model. Although the metric in Figure 7 is
the loss function value, for SCA application, as we will see in the experimental part, other
SCA-metrics are more convenient to reach better results.

Successive halving is a powerful algorithm for HPO tasks. However, one question
remains in some cases, especially in deep-learning-based SCA. For a fixed overall training
budget, it is hard to decide whether to search for fewer configurations but with a
higher budget for each or search for more configurations but with fewer epochs
for each. This is also denoted as n vs. % issue, where B is the total budget for the entire
search and n is the number of configurations to search for. This is a complex dilemma
for the expert without adequate prior knowledge about the essence of the task and search

Ruilin Ma 13

loss

12.5% 25% 50% 100%

budget

o~

Figure 7: Illustration of the training process of a successive halving algorithm applied on
eight configurations. The worst half is continuously dropped as the training budget gets
consumed, and the remaining budget is concentrated on promising configurations. [FH19]

space. In the case of SCA, the search space for models intended for different datasets and
architectures differentiates a lot. It is not fully known to the researchers yet, which means
the answer to the previous selection question remains unknown. Yet Hyperband has the
potential to bypass this limitation due to its special design.

Hyperband does so by taking many values of n in a single run, effectively performing a
grid search over feasible values of n. This is done by composing SH runs, which are called
"brackets" in [LJDT18], through various levels of aggressiveness in resource allocation.
Algorithm 5.2 provides a general overview of the logic and structure of the original
hyperband algorithm proposed in [LJDT18].

Hyperband requires two main inputs: R — the maximum amount of resources allocated
to any single configuration, and n — a parameter controlling the fraction of configurations
discarded in each round of Successive Halving (in practice, n = 3 has been found to work
well). The Hyperband algorithm starts by evenly dividing the available budget into the
brackets corresponding to a different value of n and r — the minimum resources allocated
to each configuration before the first round of halving. The outer loop then iterates over a
range of values for s from 0 to spmax = [log, R]. For each value of s, it identifies the initial
number of configurations n = (RL;S], and the minimum amount of resource allocated to

each configuration r = Rn~®. For each value of s, a Successive Halving algorithm is then
executed, with the number of configurations n being trained using resources r. In contrast,
SH fixes a given n in advance, and Hyperband dynamically changes n and r over several
brackets. This design can let Hyperband explore a lot of different configurations with a
small amount of initial resources and exploit promising configurations with more resources.
Through the sweep over the values of n and r, Hyperband becomes a method that, in fact,
attains a much better trade-off between exploration and exploitation. So, it will spend
more resources systematically on promising configurations over different brackets, and it
will make sure that there is a good enough search happening in the hyperparameter space
without the too-premature dismissal of good configurations. In this way, Hyperband can

14 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Algorithm 1 Default Hyperband for Hyperparameter Optimization

Require: R (maximum resources per configuration), n (default n = 3)
Smas < Llog, (R)]
: B« (Smam + l)R
: for s € {smaz, Smaz — 1,...,0} do
n < ’V% sz-l—l
r <+ Rn~°
T «+ Sample(n)
for i € {0,1,...,s} do
ni < [nn~']
ri < rn’
10: L + {Evaluate(t,r;) : t € T}
11: T « TopK(T, L, L%j)
12: end for
13: end for
14: return Best configuration observed

© P NS AW

speed up hyperparameter optimization considerably, as it can be seen as an efficient way
to run multiple SH instances in parallel with different resource allocation configurations.
Such parallelism enables it to evaluate more configurations within the same budget than
traditional SH or Bayesian optimization methods. Hypothetically, Hyperband can reach
near-optimal performance because its total budget is guaranteed to be only logarithmically
higher than the best SH strategy, and, on the other hand, the nature of the problem
characteristics is unknown a priori. These strengths make Hyperband suitable and effective
for many hyperparameter optimization problems, including finding a suitable configuration
for SCA tasks.

5.3 HyperDrive: Hyperband with Gaussian Process

Though effective in searching hyperparameters in large search spaces with reduced compu-
tation costs, the original hyperband, by default, still relies on random search. This inherent
characteristic makes hyperband an enhanced version of random search, but it cannot
record trail results and intelligently search in more promising regions. Meanwhile, theories
such as Gaussian process (GP) [WR96] and HPO methods like Bayesian Optimization
(BO) [SLA12] had been proposed and intensively studied as an approach to perform
hyperparameter tuning with an adaptive manner and they had been proven to be effective
in finding competent configurations. In the context of deep-learning-based SCA, Bayesian
Optimization has also been implemented and evaluated. [WPP20]. BO is a powerful tool
in exploitation, but it is computationally expensive and may stuck in local optimal. On the
contrary, Hyperband is good at exploration but cannot use newly obtained observations to
refine the search process adaptively.

Therefore, this work adapts an integrated approach of combining Hyperband and a
Gaussian process in determining proper training hyperparameters. Algorithm 5.3 defines
the general logic flow of the HyperDrive algorithm (HB-GP) developed in this work. At the
early stage of the search, the GP kernel can not properly guide the search process as it does
not collect adequate observations to form a proper prior distribution. Therefore, in this
phase, the GP kernel is taken offline, and the HB-GP algorithm works exactly as a default
Hyperband. After enough observations are collected, the kernel is activated, and each
time before a hyperband is run, the kernel will first randomly sample N candidates from
the defined search space and conduct a screening to pick the most promising candidate
based on its current distribution function. Then, the selected candidate is passed to the

Ruilin Ma 15

Algorithm 2 HyperDrive: Hyperband with Gaussian Process for HPO (HB-GP)

Require: R (maximum resources per configuration), n (default n = 3), a (threshold
controller), B (total budget), N (sample amount)
1: Initialize trial count and start the search process
2: while used budget not exceeded B do
3: if trial count < threshold o then
4 Perform default Hyperband to collect observations
5 else
6 Randomly sample N candidates from the defined search space
7 Use GP kernel to recommend the most promising candidate from N samples
8
9

Use Hyperband to train and evaluate recommended candidate
Update the Gaussian Process kernel with new observations

10: Increment trial count

11: end if

12: end while

13: Return the best configuration found

Hyperband tuner for evaluation. The GP kernel in the process aims to better use the
obtained observations by recommending more promising hyperparameter configurations
instead of random sampling, which emphasizes exploitation in the HPO process. On the
other hand, the Hyperband algorithm in HB-GP dynamically allocates more resources to
promising candidates and terminates poor-performing configurations at an early stage,
reducing unnecessary epoch wastes. By combining the advantage of GP and Hyperband,
the HB-GP algorithm developed in this work aims to balance exploration and exploitation
properly, thus improving the training speed while saving costs, as well as obtaining good
hyperparameter configurations.

6 Experiments

To fully address the research questions and evaluate the advantages of the algorithm
proposed in this work, multiple sets of experiments are designed and executed, including
the following:

e Single-hyperparameter characteristic scan. This involves designating one
hyperparameter and scanning the model’s performance with different values of
the designated hyperparameter within a search space while fixing other considered
hyperparameters. This aims to reveal a general working region to keep the search
spaces not too broad in future experiments, and it briefly shows the impact of
each hyperparameter. Tuner is not activated in this phase as there is no tuning in
this setup. A simple grid search is applied to the investigated hyperparameter for
scanning.

¢ Inter-hyperparameter relation screening. This set of experiments utilizes
the search tuners to search for the best model configuration candidate. For each
hyperparameter, a selected search space is created based on the insights from the
above experiment and includes both working and non-working regions. This is
designed to reveal the correlation between different hyperparameters and distinguish
the one with the most influence. This insight can be used to reduce redundant searches
and instruct people to pay more attention to highly influential hyperparameters
when performing deep-learning-based SCA, which should benefit other researchers in
the field.

16 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

e Tuner efficacy evaluation and comparison. This aims to evaluate the per-
formance and efficiency of the three tuner methods, namely the currently popular
random search (baseline), Hyperband (default) that is being paid more attention
to recently, and the HyperDrive (HB-GP) proposed in this work. All methods are
tested with the ASCADf and ESHARD datasets in a wide and narrow search space.
This attempts to reveal the performance difference between different tuning methods
and prove the superiority of the proposed HyperDrive tuner in this paper.

e A revisit to the configurations obtained. This acts as a re-evaluation of the
efficacy of the tuners. For each continuous hyperparameter, a single-variable re-scan
in the search space is executed with settings similar to the first experiment set
but with other hyperparameters fixed at the values in the best-performing model
returned by the tuner. By comparing the positional relationship between the found
hyperparameter value and the performance curve, we can further validate whether
the tuner returns a configuration in proximity to the optimal choice.

The exact setup for each set of experiments is further discussed in section 6.1.

6.1 Experiments setup
6.1.1 Model architectures

For a more comprehensive study on the hyperparameters’ impact and the effectiveness of
the proposed HB-GP tuning strategy, MLP and CNN architectures are put to tasks of the
ASCADf and the ESHARD datasets. To better evaluate the performance of distinctive
architectures in various cases, three variants for each architecture were evaluated, noted
as Small, Medium, and Large MLP/CNN, respectively. The specific configurations of
the model architecture are detailedly described in Table 1. For MLP models, apart from
a stationary output layer, a small variant consists of 3 fully connected layers, with 128
nodes each. A medium variant consists of 4 FC layers with 256 nodes each, and a large
variant consists of 6 FC layers with 512 nodes. In the case of CNN models, a small CNN
is equipped with one convolution layer with 8 filters. The medium and large CNN variant
has 2 convolution layers with 12 and 16 filters, respectively. All variants have the same
average pooling layer with a kernel size of 2 x 2. Small CNN is accompanied by 3 FC
layers with 128 nodes each, medium CNN has 4 FC layers with 256 nodes each, and large
CNN boasts 5 FC layers with 512 nodes each.

In the following sections, this paper uses small, medium, large models to
address the model with the specification as illustrated in Table 1.

Table 1: Model variants architecture used in the experiments. Conv. refers to Convolution;
FCL refers to the fully connected layer, which excludes the output layer and includes the
input layer; Node count refers to the node count in the FC layer.

Arch. Size Conv. layer Conv. filter Pool. layer FCL. count Node count

Small 3 128
MLP Medium N/A 4 256
Large 6 512
Small 1 8;size =1 1;size =2 3 128
CNN Medium 2 12; size =1 2; size = 2 4 256
Large 2 16; size =1 2; size = 2) 512

Ruilin Ma 17

6.1.2 Evaluation metrics

The primary metrics used to evaluate the deep learning model’s performance in this work
include Guessing Entropy (GE), the Number of Traces to Reach GE = 1 (NT), and
Perceived Information (PI). Guessing Entropy measures the effort needed to find the
correct key. It determines how many keys, on average, an attacker would have to test
before finding the right one. The function calculates the GE for each key candidate across
multiple traces. It sums probabilities for each key and sorts them to determine the rank of
the correct key. The guessing entropy is then the position of the correct key in this sorted
list, normalized across multiple executions. The formula for calculating GE is defined as

the following:

N,

1 exrec 1/
RankgC)

N correct
exec

i=1
Where: Neggee is the number of executions, Rank,(;()omp is the rank of the correct key in the
i-th execution, S; is the set of traces selected in the i-th execution. The best possible GE
is 1, indicating the model can make a correct guess at the first attempt. Since a 16 x 16
Shox is used in the experiments, the worst case of GE will be 256. It should be noted that
since an average is taken for GE, it may be a decimal value.
NT quantifies the minimum number of traces required for the Guessing Entropy of the
correct key to be the highest, indicating the most probable key is the correct one. This is
determined by periodically calculating the GE and identifying the first occurrence where

the GE equals 1. It is calculated according to the following:
NT = min {¢t: GE; = 1, t = n X interval}

GE =

Where t represents the trace count where GE is calculated, and interval is the fixed number
of traces, after which GE is reassessed to determine consistency and convergence. NT falls
in the range between 1 and 2000, being a positive integer. For all working models (defined
as GE = 1), NT will be in the range, and the lower, the better. If the model does not
work (GE > 1), the NT will be capped at 2000.

Perceived Information measures the information content about the correct key, derived
from the entropy of the key space adjusted by the predictive probabilities. This calculation
takes the initial entropy of the key distribution. Then it adds the entropy reductions based
on the log probabilities of the model’s predictions for each key, adjusted by the frequency
of each key. It is calculated according to the following formula:

K

log, (pr,; + €

PI=H(K) + Yop | Y P
=1 = k

Where H(K) represents the initial entropy of the key space; py is the probability of the
k-th key being correct; Vi, is the number of traces associated with the k-th key; py ; is the
predicted probability for the k-th key at the j-th trace, and € is a small constant added
to ensure numerical stability when calculating logarithms (e.g., le — 36). PI will be a
negative value when a model performs poorly but not lower than -8 bits. On the contrary,
the best possible model leads to the maximum possible value of a PI of +8 bits.

In this work, GE and NT were mainly used to evaluate the model’s performance.
Models with a GE = 1 are regarded as working, and their performance is determined by
NT; the lower the NT, the better.

6.1.3 Datasets

This work primarily utilizes two datasets to evaluate the model’s performance and fulfill
the research questions described in Section 4. This section introduces these datasets and
relevant preliminary knowledge.

18 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Table 2: Properties of the datasets selected. P-set, V-set, and A-set correspond to the
number of traces in the profiling (training), validation, and attack (test) set.

Dataset P-set V-set A-set Feature Count Implementation
ASCADf 50000 5000 5000 700 ATMEGA boolean masked AES
ASCADr 200000 5000 5000 1400 ATMEGA boolean masked AES
ESHARD 90000 5000 5000 1400 STM32F4 SW masked AES-128

The ASCAD (ANSSI SCA Database) dataset [BPST20] can be considered one of the
most important open datasets in the domain of cryptographic security research. Specifically
geared towards side-channel attacks through deep-learning methodologies, this dataset
was made by the French National Cybersecurity Agency, ANSSI, and offers many power
consumption traces collected from a microcontroller implementing AES. The dataset
is engineered to simulate real-life scenarios of a side-channel attack that would create
problems for current cryptographic security measures. All the traces in the ASCAD dataset
are thoroughly annotated with the exact secret key that was used in an AES operation,
which serves to provide a clear path for researchers to gauge the effectiveness of their
analysis methods under fixed (ASCAD fixed key, ASCADf) or random key conditions
(ASCAD random key, ASCADr). The ASCAD{ dataset comprises 60,000 traces, 50,000
of which belong to the profiling set, 5,000 for the validation set, and 5,000 for the attack
set. Our experiments consider a trimmed version of ASCADf with 700 sampling points or
features. Each acquired trace has been labeled with a fixed key and associated plain text
and mask values. The ASCADr dataset contains 300,000 traces: 200,000 belong to the
profiling set with variable keys, while the remaining 100,000 traces are set with a fixed
key. From the fixed-key set, we select 5,000 for validation and 5,000 for attack. Traces in
the ASCADr, compared to ASCADf, have an enlarged trace size. In our experiments, we
consider a trimmed version of ASCADr with 1400 sampling points. ASCADr allows for a
variable-key setting in which every trace is labeled with different keys in the profiling set
and associated plaintext.

The NUCLEO_SW__AES MASKED_ SHUFFLED dataset is one of the datasets
developed by the company ESHARD and is therefore sometimes referred to as the ES-
HARD dataset for simplicity [VITM23]. The ESHARD dataset is another popular SCA
dataset widely used to evaluate attack performance. Compared with ASCAD, it contains
much noise in the traces and incorporates countermeasures such as masking and shuflling,
making it noticeably more difficult to tackle. In these ways, the obvious links among the
key and observable side-channel emissions are blurred, and this complex dataset is provided
to push the limits of testing the approaches of side-channel attacks. It contains electro-
magnetic side-channel traces of an SW AES implementation that runs on an STM32F4
microcontroller (Cortex-M4), a fairly representative of many secure embedded systems.
The implementation uses Boolean masking and a shuffling of the SubBytes operation order
to protect against side-channel attacks to a certain extent. It comprises 100,000 traces:
90,000 traces used in profiling, 5,000 in validation, and 5000 in attack set. Each trace
has 1400 sampling points. For the experiments conducted in this work, we considered a
dataset version with disabled shuffling operations.

This work elaborates on every designed experiment with both datasets to better evaluate
the proposed algorithm’s performance and answer the research questions. For simplicity,
ASCAD fixed and random key datasets will be noted as ASCADf and ASCADr,
respectively. The NUCLEO_SW__AES MASKED_SHUFFLED dataset will be referred
to as ESHARD dataset. Table 2 indicates the properties and implementation of the
datasets selected in this work.

Ruilin Ma 19

6.2 Single-hyperparameter characteristic scan

Regardless of the hyperparameter type, the model works in a finite space, and once it
moves out of the working region, the model ceases to work properly. Acquiring a better
understanding of such a working region makes it possible to limit the search space in a
much narrower way, which helps to reduce the computation load and save time. Therefore,
a single hyperparameter characteristic scan was first executed to reveal the feasible search
region and define the search space for experiments in section 6.3 and 6.4. This scan
was applied to learning rate, batch size, and regularization since they are all continuous
variables. All but the one hyperparameter scanned is fixed, and the one is scanned from a
starting value to the ending value in each run to reveal the performance curve of each test.
Table 3 shows the default values for the hyperparameters involved. Each scan involves one
hyperparameter and is evaluated in a predefined search space. All other hyperparameters
in the process were fixed to the default value as documented.

Table 3: The default hyperparameter setting for the scan. Each test scans a defined search
space for one hyperparameter and the remaining ones are fixed to the default values.

Hyperparameter Learning Rate Batch Size L1 L2 Optimizer Act. Func.
Default value le-4 200 le-4 1le-4 Adam elu

6.2.1 Batch size

Batch size (BS) is a vital hyperparameter in most, if not all, deep learning-based tasks, which
considerably impacts the dynamics of the learning process. Batch size determines how many
training samples are used in the loss calculation and gradient approximation before the
model weights update. Notably, the batch size is essential for the convergence of the training
algorithm and, at the same time, has a significant impact on the computational efficiency
and memory requirements of the training process. A smaller batch allows for a closer
approximation to the true gradient, potentially improving future generalization results.
In other words, limited by the batch size, the overall loss computation is representative
of fewer samples and, hence, more precise for these samples. On the other hand, larger
batches benefit from computational efficiency improvements derived from built-in vectorized
operations and require fewer weight updates in the long term, meaning faster convergence.

Figure 8 illustrates the performance curve with different batch size values. The left
figure was obtained with a small MLP model, and the batch size is scanned from 8 to
1536, with a step of 16. The right one results from a small CNN model, with the batch
size scanned through 16 to 1024 at a step of 32. Both models showed a similar trend: The
model could not perform correctly at a very small batch size. When batch size is increased
to a value roughly smaller than 200, the models achieve maximum performance, with
NT being minimized. As batch size continues to increase, the performance of the models
deteriorates until they cease to work correctly after a respective threshold. It is noticeable
that when the batch size is large, the model’s performance is extremely unstable, as it
fluctuates significantly. However, an approximate threshold boundary can be drawn to
distinguish the best working region for batch size, which, for the MLP, is around 1000,
and for CNN;, is around 600.

Yet, it should be noted that batch size’s influence resonates with the model’s size. An
additional set of experiments was executed to investigate the performance curve for batch
size with a different model size. Figure 9 demonstrates the differences and similarities
between batch size scans in small and large MLP models. The small model is scanned
through the same search space defined previously, and the large model is scanned through
16 to 10240 with a step of 64. It can be derived that the large MLP shares the same

20 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

trend as the small variant; both achieve optimal performance at a relatively small value
and worsen as it grows. Meanwhile, a larger model pushes the threshold for the working
region way further, from roughly 1000 to around 9000, and the same observation is made
with CNN. However, both models archive their optimal performance at a small batch size
setting, proving that the batch size selection can be made at a relatively small
search region regardless of model size.

NT vs. Batch Size w. CNN

2000 2250

2000
1750

1750
1500

1500
1250

£ s
1000 z

NT Metric

Figure 8: Model performance (NT) over different batch sizes. All other hyperparameters
were fixed according to Table 3. A small MLP (left) and small CNN (right) were examined
in the test with the ASCADf dataset.

NT vs. Batch Size w. larger Model

2000 2000 {—¢ 28 ses +scse
o
o

1750 1750 s .
1500 1500
1250 1250

1000 1000

NT Metric
NT Metric

o 200 a00 600 800 1000 1200 1400 1600 o 2000 4000 6000 8000 10000

Figure 9: Model performance (NT) over different batch sizes in two sizes of MLPs. All
other hyperparameters were fixed according to Table 3. A small MLP (left) and a large
MLP (right) were investigated in the case with the ASCADf dataset.

6.2.2 Learning rate

The learning rate (LR) is one of the fundamental hyperparameters in deep learning model
training used to adjust the weights based on the gradient calculated concerning the reduction
in the loss function. Adequately setting the learning rate optimizes the convergence of the
model to a good minimum in which the balance is between the convergence speed and
the risk of overshooting the possible minimal points. If the learning rate is too high, the
training process may become unstable, and the model could oscillate around the optimum
weights or even diverge. On the other hand, a learning rate that is too small makes
the convergence process unbearably slow. In deep-learning-based SCA, where a model
has to detect and exploit fragile and often noisy signals to infer cryptographic keys or
operations, getting a proper choice of the learning rate is essential. Figure 10 depicts the
NT performance over different configurations of the learning rate scanned.

Ruilin Ma 21

The MLP is tested with a learning rate between 5e —5 and 5e —3, and CNN is configured
with a learning rate between le — 4 and 5e — 3. Both model architectures share a similar
trend: the model won’t work properly if the learning rate is too low or too high. Once
the learning rate falls in the optimal region, model performance is significantly improved
until it reaches the upper limit, and the model stops working afterward. For both cases
examined, the optimal region lies roughly between 5e¢ — 4 and le — 3, in which the model
works fine. It could also be seen that both architectures suffer greatly from having a huge
learning rate. Before the LR is too large to disable the model from performing correctly,
there is a region where the model’s performance fluctuates significantly, which should also
be considered an infeasible region. Findings from the learning rate scan suggest that both
model architectures have a relatively narrow feasible region of learning rate
configurations to work correctly, and therefore, the search space of the learning
rate can be scaled down to reduce the time needed to converge to an optimal.

NT vs. Learning Rate

2000 2000

1750 1750
1500 1500

1250 1250

NT Metric
NT Metric

1000 1000

Figure 10: Model performance (NT) over different learning rates in a small MLP (left)
and a small CNN (right) on the ASCAD{ dataset. All other hyperparameters were fixed
according to Table 3. The X-axis is drawn in a log scale.

6.2.3 Regularization

Regularization techniques are important ingredients for training deep learning models.
They mainly tackle overfitting, which occurs when a model learns the training data too
well, including noise and outliers. For deep-learning-based SCA, noise is an influential yet
unavoidable ingredient, mostly causing the model to learn poorly. L1 and L2 regularizations
are two of the most popular approaches to regularizing the model.

L1 regularization is also known as Lasso regularization [Tib96]. Basically, the regular-
ization penalizes the magnitudes of the coefficients of "weight" in a manner equivalent to the
absolute value of the magnitudes. The L1 regularizer is particularly suitable for tasks where
most features in a high-dimensional data structure are not useful for prediction, such as the
noise in the side channel information. L2 regularization, also known as ridge regularization,
applies a penalty equal to the square of the magnitude of the coefficients [Has20]. It keeps
the errors distributed among all the terms that do not allow large weights. It further
improves the model’s robustness by ensuring that one particular weight does not influence
the training process.

L1 and L2 regularizers are tested with a small MLP and a small CNN. The scan applies
a range of 0 to 2.5e — 4 and 0 to 2e — 4 to MLP and CNN, respectively. Figure 11 and 12
illustrate the performance of both model architectures under different values of L1 and L2
regularizers. It can derived from the results that MLPs are more stable with regularizers
compared with CNNs, and L1 regularizers have a much positive and higher boost in
performance compared with L2. For L1, as the value increases, the model’s performance
improves with the process until it reaches a threshold, after which the model can not

22 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

function properly. The reason for the models to stop working after regularization exceeds
a certain threshold may be that noise is a more intensified problem for the SCA domain,
and the abundant noise inside the dataset makes models with a high penalty unable to
distinguish between useful information and noise. The non-working region’s threshold for
MLP and CNN is around 1.2e — 4, before which the model’s performance improves as L1
increases. L2, on the other hand, does not show any significant improvement for MLP
and CNN models, as the performance fluctuates and models stay mostly in an inoperative
state. This observation might be because the built-in feature selection ability gives the
L1 regularization a chance to select the most important features that make an effective
side-channel attack. L1 makes it possible to nullify less important weights so that the
model can disregard non-informative features, stabilizing its predictions against the noises
in the datasets.

Observations made in the scan of regularizer values suggest that L1 generally is a
better option for regularizing deep-learning models to perform SCA attacks,
and models with an L1 regularizer perform better than the one that is not
regularized, yet the L1 value must not be too large; otherwise, the model won’t
perform properly at all. Therefore, in hyperparameter tuning, L1 should be
tuned in a restricted search space to avoid destabilizing the model.

2000 2000

1750 1750
1500 1500
1250

1250

1000

NT Metric
NT Metric

1000

750

500

250

0,00000 0.00005 0.00010 0.00015 0.00020 000025 0000000 0000025 0000050 0000075 0000100 0000125 0000150 0000175 0.000200
LL Regularization Value L1 Regularization Value

Figure 11: Model performance (NT) over different L1 values in a small MLP (left) and a
small CNN (right) on the ASCADf dataset. All other hyperparameters were fixed according
to Table 3.

NT vs. L2 Regularization NT vs. L2 Regularization w. CNN

2000

2000

1750 1750

1500 1500

1250 1250

°
— smoothed NT

NT Metric
NT Metric

1000 1000 ©

750

0 ° ° ! . '.
I ISR Wi

0.00000 0.00005 0.00010 0.00015 0.00020 0.00025 0000000 0000025 0000050 0000075 0000100 0000125 0000150 0000175 0.000200
L2 Regularization Value 12 Regularization Value

Figure 12: Model performance (NT) over different L2 values in a small MLP (left) and a
small CNN (right) on the ASCADf{ dataset. All other hyperparameters were fixed according
to Table 3.

Ruilin Ma 23

6.2.4 Leakage model

In addition to hyperparameters, the leakage model plays a vital role in performance [DPRS11].
This work involves two leakage models: the Identify model (ID) and the Hamming Weight
model (HW). In the ID model, the side-channel leakage is supposed to be directly propor-
tional to the information (i.e., intermediate data processed by the encryption algorithm),
with no transformation whatsoever. The assumption behind this model is that the leakage
observed and measured (like power consumption or electromagnetic emissions) is expected
to correlate directly with the actual binary values of the data being processed by the
cryptographic device, as the following formula:

L(z)=x

The Hamming Weight model postulates that the side channel has an attack leakage function
equal to the Hamming weight being operated on, which is the number of bits set to "1’
in a binary representation. This model implies that the side channel information from a
cryptographic device depends upon the number of active transistors, which is correlated
to the number of '1’s in the binary data. The computation of HW can be derived as the
following:

L(z) = HW(x) = sz

Where z; represents the i-th bit of z, and n is the total number of bits in . The summation
>, x; calculates the total number of bits set to 1.

The influence of the leakage model is also evaluated in this set of experiments. Figure
13 documents the comparison of the model’s performance with the same hyperparameter
configurations but with distinct leakage model selection for a small CNN model. It can be
clearly observed that the ID achieves a smoother and higher performance when compared
with the HW model in the same search space. Also, the tendency of ’going down first and
back high’ of the NT vs. L1 does not show with a HW model in the same search space.
However, it should be noted that the selection of the leakage model should be based on
the requirements and preferences of the dataset. For example, for the ESHARD dataset
investigated, the model mostly ceases to operate with an ID model but works quite fine
with the HW model. Therefore, it is concluded that the choice of the leakage model
should be tailored to the requirements of the dataset instead of being tuned as
a hyperparameter. In this work, unless specified intentionally, models tested
on the ASCADf dataset have an ID model, and those on EHARD have an HW
model by default.

NT vs. Learning Rate w. CNN NT vs. Learning Rate w. CNN & HW

2000 2000

1750
1800
1500
1600
1250

1400

NT Metric
NT Metric

1200

1000

Figure 13: Model performance (NT) over L1 for an ID (left) and HW (right) leakage
model with a small CNN on the ASCADf dataset. All other hyperparameters were fixed
according to Table 3.

24 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Overall, the single-hyperparameter characteristic scan investigates the influence of
individual hyperparameters in a pre-defined search space to reveal their corresponding
performance characteristic curves. The insights obtained are valuable for understanding
the approximate best-performing region for each hyperparameter and selecting a narrower
search space in the hyperparameter tuning phase to reduce the complexity and computation
load in the search for a model that performs well. The search spaces defined for section
6.3 and 6.4 are based on the results obtained in this section.

6.3 Inter-hyperparameter relation screening

This section investigates the interconnections between different hyperparameters that lead
to a model performing well. The assumption behind the design of this set of experiments is
that hyperparameter are not equal in terms of determining model’s performance.
Some might have a larger impact on a good model that needs to be precisely fine-tuned,
while others might be more resistant to changes and can be set in a broader range. Insights
on this pattern can be used to define a more precise search space, reduce the computational
load on fine-tuning deep-learning SCA models, and save time in finding a competent model.

Wide and narrow search spaces are defined to better evaluate the model’s performance
in various setups and provide more comprehensive coverage. Table 4 illustrates the
configurations of the two search spaces defined. In terms of hyperparameter tuning
for deep-learning-based SCA, two kinds of hyperparameters have an influence on the
model’s performance, which can be summarized as learning hyperparameters and
architectural hyperparameters. Learning hyperparameters refer to the ones related
to the training process, such as learning rate, optimizer kind, batch size, etc. Architectural
hyperparameters are associated with the model’s architecture, such as network type, layer
count, node count, etc. This work mainly focuses on the learning hyperparameters
since they are considered to have more impact on whether or not obtaining a good-
performing model, while the layer count and node count won’t be a big problem, as long
as the architecture is defined in an acceptable range. In all four sets of experiments, five
learning hyperparameters are examined: optimizer, learning rate, activation function,
batch size, and regularization, to balance coverage and test feasibility. Small, middle, and
large CNNs (Table 1) are constructed and tested in the same search space to reflect the
performance more comprehensively. Specifications of the ranges are determined based on
the findings in section 6.2.1, 6.2.2 and 6.2.3.

Table 4: Search space properties defined in this work. LR refers to learning rate, BS refers
to batch size, and L1 refers to L1 regularization. For LR, BS, and L1, corresponding ranges
apply. For the optimizer and activation function, a predefined list of choices applies.

Definition Property LR BS L1 Optimizer Activation Function
Min 1E-05 64 0 [adam, [elu, relu,
Narrow Max 1E-03 1024 8E-05 sgd, selu,
Steps log 32 linear rmsprop| tanh]
Min 5E-06 32 0 [adam, sgd, [relu, selu,
Wide Max 5E-03 2048 1.5E-04 rmsprop, elu, tanh,
Steps log 64 linear adadeltal] sigmoid|

Two methodologies are utilized to investigate the interconnection between different
hyperparameters: a 3D scatter plot showing the spatial distribution of hyperparameter
combination candidates in the search space and a parallel coordinate plot illustrating the
interconnecting relationship between different hyperparameters. For the scatter plot, the
three dimensions measured are learning rate, batch size, and 11 regularization, as they

Ruilin Ma 25

are all continuous variables. For the parallel coordinate plot, all five hyperparameters are

present.

6.3.1 Boundary and correlation

The 3D scatter plots are primarily used to reveal the possible virtual boundaries between
the three involved hyperparameters: learning rate, batch size and L1 regularization value.
Figure 14 illustrates two 3D scatter plots of the spatial distribution of NT performance in
the search space, one with a small MLP (left) and one with a small CNN (right). The color
bars of both plots share the same rule: lighter points indicate poor-performing models, and
darker points lead to good-performing models. Yellow points represent models with an
NT of 2000, considered not functioning. Two patterns exist for the three hyperparameters
examined, which this work addresses as boundary and correlation.

Impact of Hyperparameters on NT Performance w. Small MLP Model Impact of Hyperparameters on NT Performance w. Small CNN Model

.
-2000 -2000
o ~0.000200 . ~0.000200 750
“ T . 0.000175 S 1750 4 o . 0000175 §
2 2 o ° 1 2
*l s . 0000150 § 1500 o o = 0.000150 F 1500
.o Yoy L ~0,000125 & z e o] 0000125 5 z
s . |
e o, Je ~0.000100 3, L1250 o o Py 28 8 . > 0000100 3, s0 5
6 5 2 ® ?. ~0.000075 ¢ e T~ s ~0.000075 E ES
e] B -0.000050 5 L1000 2 H ~0.000050 5 1000 §
S - ° % Iy 10.000025 g e . g °) ~0.000025 B
°3 > y 750 3 . % $ ~0.000000 750 3
by o W ~0.000000 3 . = ¢ o° 8
o _% . °® <
o o oo - » 500
o o8 *, > 500 500 . >~ o ™ 2000
° - o o _ 7 1750
. . e - 400 250 > ° o 7 500 | 250
.
o
0.000¢ ’ 300 4o 1000 &V
80002 Lo D_,d/ 0.0002 750
0004 200 xS 0.0004 e
0,000 & le, 500 of
L t 100 @ Ming ., O 250

Sarn;, 00 0008
in .
9 Rate *%%G 0014 o 0.0010

Figure 14: Spatial distribution of model performance (NT) in the search space obtained
with a small MLP (left) and CNN (right). Point coordinates lead to the 3D configuration
of the learning hyperparameters, and their color indicates corresponding performances.

(Darker is better.)

Boundary refers to the virtual threshold determining whether a model functions properly.
When the corresponding hyperparameter value exceeds it, the deep learning model will
be disabled from performing SCA tasks. This observation is made with L1 in particular,
as depicted in Figure 15. The boundary plane (in pink) is drawn to illustrate the barrier
of L1, indicating that any L1 values above this threshold result in the failure of the deep
learning model, regardless of other hyperparameters’ values. The L1 threshold, in this case,
is roughly 1.2e — 4. This observation is in accordance with and supplements the findings
in section 6.2.3, that models stop working correctly when L1 increases and surpasses a
threshold. The same pattern exists regardless of model architecture, leakage model, and
dataset and can be seen as a common tendency for deep-learning-based SCA. This indicates
that the selection of the L1 value is of great significance and should be fine-tuned with
care to find a promising, competent model.

Correlation refers to the interconnections between two or more hyperparameters, from
the belief that the hyperparameters are influential to each other. Generally, for competent
deep-learning models, when the value of one hyperparameter moves, that for another will
move accordingly to maintain the model’s performance. Therefore, a correlation plane
should be generalized to illustrate the interconnection between hyperparameters, as shown
in Figure 16. The result suggests that a correlation exists between learning rate and batch
size and that a large batch size combined with a small learning rate can maintain good
performance. This is intuitive and, as such, is also true for many deep-learning tasks. Such

26 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Impact of Hyperparameters on NT Performance w. Large MLP Model

-2000

~0.000200
-1750

vy ° ~0.000175 §
1 S ~0.000150 F -
P AR ~0.000125 z
oy e ~0.000100 3, 1250
L P . o0 ~0.000075 ¢ g
[]
PR < ~0.000050 5 1000 &
® Mo ¥ ° o 3
Py ») ~0.000025 i [
] . i 5]
. [o -0.000000 8
° o ° -
o ° . < 800 500
~ 700
- ° o . ~ 600 L 250
00000 7 P
- 000020008 - W w0 s0
70,0006 ’ 5
Legy, 2 Boot0 - %
MNing 5.~ 0.001 100
ate 6oot4

Figure 15: Virtual boundary (pink plane) of the L1 attached to the spatial performance
distribution of a large MLP model. It can be clearly seen that all configurations above
this hyperplane are invalid (NT = 2000).

a correlation plane covers most of the points in the search space, and it can be noticed that
no matter what value is applied to the regularizer, such a correlation exists for BS and LR.
This finding reminds us that LR and BS are correlated to some extent, as most
powerful models show an inverse-proportional trend between learning rate
and batch size. This is further validated in the interconnection part in section
6.3.2. This correlation can be utilized in search strategies to tune them as a
whole instead of individually, thus improving model performance and reducing
search space.

Such findings are observed regardless of the deep-learning model architecture and
leakage model. Figure 17 shows the 3D spatial coordinate distribution of a medium
CNN model with both ID (left) and HW (right) leakage models on the ASCADf dataset.
Comparison between this and Figure 14 illustrates that the same pattern of barrier and
correlation is documented, no matter the model’s size and the leakage model’s choice.
It proves that connections exist between various hyperparameters, but only in the three
continuous. To further analyze the relationship between all five learning hyperparameters,
the parallel coordinate plots are introduced and utilized to analyze hyperparameters with
continuous and discrete search space together, as discussed in section 6.3.2.

6.3.2 Interconnections

In the parallel coordinates plot, data points represented in multivariate data from connected
line segments are placed in parallel across attributes or axes of variables, with each line
segment representing a data point. It is a valuable asset for analyzing the effects of
hyperparameters on models of deep-learning-based SCA. They give insight into how one
hyperparameter affects the effectiveness of a model and how to address the optimization
of these parameters for better model performance. As such, this type of plot finds much
utility in model tuning [LDW21]. This work utilizes the Plotly library [Inc15] to visualize
the interconnections between the five learning hyperparameters.

However, most parallel plot libraries can not directly deal with string data. The

Ruilin Ma 27

Impact of Hyperparameters on NT Performance w. Medium CNN Model

-2000
~0.000200
ol & ° ~0.000175 § .
oo oo ° 70.000150 g 1500
< o ° ~0.000125 5 =
o o o4 . Cegts = o ~0.000100 ;’.}, 1250 4
g] '. ° ~0.000075 o e
o’ % ~0.000050 5 1000 §
L o - . ® 0000025 3
A >S .. o b S e . -0.000000 750 3
%\ .o 4
o : %% $ £ 500
: @ ¢ _ 4000
e e _ 3500
- ~AR >, 3000 250
” U o\ o 2500
0.0000 > T 2000 gV
20002 - o = 1500 o
0.0004 5 % 1000 o8
Leg,, . 0.0006 2K w00 @
Ning 0.000! 0
0.0010

Figure 16: Virtual correlation plane (light blue) of LR and BS attached to the spatial per-
formance distribution of a large MLLP model. Hyperparameter configurations of competent
models share the tendency that a large batch size with a small learning rate leads to a

good model.

Impact of Hyperparameters on NT Performance w. Medium CNN Model Impact of Hyperparameters on NT Performance w. Medium CNN Model w. HW

- 2000

-2000
~0.000200 ~0.000200
o & . -0.000175 § [1750 H 0000175 § 1800
2 Looootso 5
c eog oo o ~0.000150 g 1500 L) 00015 g 1600
> oo 0000125 5 = . . 0000125 z
. o, Ces®s L 0 ~0.000100 ;‘;’ 1250 o | AR ~0000100 3 o B
o s Lt . ~0.000075 o g ¥ e Ne < ~0.000075 o £
o 0% % ~0.000050 5 - 1000 % . ~0.000050 5 3
. « ¥ ° -0.000025 H % oh 3 s -0000025 1200 §
.
(il 4 S Py e Ve ~0.000000 (750§ 2g e Ned S ~0.000000 00 3
®% .o e 4 . . o < i
O ¥ S8 £ - 500 H by >
o 4000 o . 7 4000
e " _ 3500 2 " _ 7 3500 | 800
S0 50 0 . = . 258300
- 3 = 2500 o
0.0000 g 2000 42 0.0000 2000 &
0.0002 o o100 50 00002 o 1500 o
0000 = 1000 of° 0.00 = 1000 of°
e e < Loy, 7 o
i, 00 500 ing R, 0.00 .
00010 © 0.001

Figure 17: Spatial distribution of model performance (NT) in the search space obtained
with a medium CNN with ID (left) and HW (right). Point coordinates lead to the 3D
configuration of the learning hyperparameters, and their color indicates corresponding

performances. (Darker is better.)

28 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

optimizers and activation functions are presented with not values but strings, which can
not be directly processed by Plotly. Therefore, mapping is established to convert the
strings to one of the categorical numbers, which is attached to the bottom of each figure
for reference.

Figure 18 demonstrates the interconnections between the five learning hyperparameters
investigated with a large MLP in a narrow search space on the ASCADF dataset. Each
line represents a valid model selected by the search, and their intersections with each
axis mark the corresponding value of each hyperparameter. The color bar indicates the
performance of the model (NT metric); the darker the line, the better performance it is for
the model. Only good models with an NT smaller than 1000 are selected to display in the
figure to distinguish the pattern better. It can be observed that the selection of L1 value
in this case is highly concentrated at around 6e — 5 to 8¢ — 5. This is because the cap
of L1 in a narrow search space is set to be 8¢ — 5, which is lower than the maximum L1
threshold discovered in section 6.2.3, meaning that the larger the L1 in the defined search
space, the better regularization performance it is for the model, which leads to a reduced
NT metric. Meanwhile, the inverse proportion pattern between the batch size and
learning rate can be observed: a larger batch size with a small learning rate and vice versa.
This finding is per the observation in section 6.3.1. In addition, the effect of the activation
function in the narrow search space is not significant, as shown in the figure, yet for the
optimizer, adam and rmsprop have a noticeable advantage over sgd.

NT Performance
2000

Figure 18: Parallel coordinates plot for a large MLP model searched in a narrow space on
the ASCADf{ dataset. Only good models (NT < 1000) are selected to show.

Similar observations exist for the wide search space, as illustrated in Figure 19, obtained
with a medium MLP tested in a wide search space. Compared with the previous outcome,
this search clearly results in fewer competent models, as fewer lines exist in the figure.
However, the same inverse-proportion pattern between batch size and learning rate, and
the concentration of the L1 value are present. The observed tendency also applies to CNNs,
illustrated in Figure 21, which is tested under a small CNN on a wide search space. It
can be clearly noticed that the working models spread through a larger space and are less
condensed in spatial distribution because more invalid options are available to the tuner.
It may result in more invalid configurations that are filtered out in the figure. Tests on
the ESHARD dataset are also executed and examined to understand the interconnections
comprehensively. Figure 20 shows the plot for a medium MLP on the ESHARD dataset in
a wide search space. Evidently, the model’s performance is reduced compared with that of

Ruilin Ma 29

the ASCADf dataset, which makes sense as the ESHARD dataset contains more noise and
fewer sampling points, making it a harder target to attack. Yet, the similar tendency of
the interconnections between the learning hyperparameters is valid in this dataset.

Overall, these experiments using the two plotting methodologies prove that such
interconnections between learning hyperparameters exist regardless of model
architectures, model size, dataset, and search space size. These findings suggest
that understanding the relations between the hyperparameters can help reduce the search
space and make the tuning more concentrated and targeted, increasing optimization
efficiency.

erformance (GP Enabled & Med

& ASCADS Dataset & Wide Search Space)

Figure 19: Parallel coordinates plot for a medium MLP model searched in a wide space
on the ASCADf dataset. Only good models (NT < 1000) are selected to show.

parallel Coordinates Plot for Hyj

s and NT Performance (Medium MLP & EHARD Dataset & Narrow

Figure 20: Parallel coordinates plot for a medium MLP model searched in a wide space
on the ESHARD dataset. Only good models (NT < 1000) are selected to show.

30 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Parallel Coordinates Plot for Hyperparameters and NT Performance (GP Enabled & ASCADF & Small CNN & Large Search Space)

Figure 21: Parallel coordinates plot for a small CNN model searched in a wide space on
the ASCADf{ dataset. Only good models (NT < 1000) are selected to show.

6.4 Tuner efficacy evaluation and comparison

Tuner efficacy evaluation is at the core of this work. The previous analysis serves as the
basis for understanding the impact of each hyperparameter, and the insights are utilized
to define a proper search space for competent models. This paper proposes two algorithms,
Hyperband (HB) and Hyperband with Gaussian Process (HB-GP or HyperDrive), to
replace the current popular random search (RS) in the field. This section documents the
findings and compares these methodologies.

Hyperparameter searches are executed with one of the three tuning algorithms defined
in Table 5. All tuning algorithms are executed with a fixed seed (42 for MLP and 85 for
CNN) to purge the impact of randomness in the process and address replicability. Trails
performed with all tuners have a maximum budget limit of 40, with an early stopping
mechanism kicking in after 8 non-improving epochs. Four full iterations are allowed for HB
and HB-GP. At the same time, the iteration of RS is defined as the total budget divided
by epochs per trail so that all three tuners have exactly the same total epoch budget to
ensure a fair comparison.

Table 5: Settings of tuners used in the experiments. HB is the default Hyperband, HB-GP
is the HyperDrive strategy proposed in this work, and RS is the widely used Random
Search. E. P. T. stands for Epochs per Trail, and the GP threshold indicates the minimum
observations needed to activate the GP process.

Tuner Objective E. P. T. Iterations Seed HB Factor GP Threshold
HB CMOT 40 (ES=3) 4 42/85 3 N/A

HB-GP CMOT 40 (ES=8) 4 42/85 3 10 Observations
RS CMOT 40 (ES=8) TB/E.P.T. 42/85 N/A N/A

The CMOT function is defined to replace the default validation loss as the minimiza-
tion objective. General DL tasks widely use validation loss as an intuitive and simple
objective. However, low validation loss does not always lead to high model performance
in deep-learning-based SCA tasks. Therefore, a customized simple logic is applied as the
minimization objective for all three tuners, as described in Algorithm 3. The idea is based

Ruilin Ma 31

on the definition of the evaluation metrics, that good models always have a GE = 1 and
an NT as low as possible. For models that can not reach GE = 1, their NT value will be
permanently capped at 2000. Therefore, the design of the CMOT objective allows the
tuner first to try to minimize GE until it reaches 1, then move to reduce NT as much
as possible, as there will be no sense in reducing NT if its GE is not 1, according to the
definitions in section 6.1.2.

Algorithm 3 CMOT: Customized Minimization Objective for Tuners
1: function CMOT(ge, nt)

2 if ge # 1 then

3 return 1000 + ge > High penalty for ge not being 1
4: else
5

6
7

return %‘50 > Normalize nt; lower nt yields a drastically reduced score
end if
end function

All tuners are evaluated with the same total budget for each run, with either a large
epoch setting (14400 epochs total) or a small epoch setting (4800 epochs total).
This work aims to replace the time-consuming random search method widely used nowadays
with a more efficient searching algorithm to find a more powerful model using the same time
or spend less time finding an on-par model. Therefore, this work evaluates the performance
of the tuners based on two metrics: the SCA performance metric, which determines the
competency of the best-found model, and the searching time that illustrates the duration
needed for tuners to find promising models. For performance metrics, NT and PI are used
to judge the model’s capability, as GE in these cases will always be 1 and can not be used
to distinguish differences.

Table 6: Performance and time metric results for six model architectures
(small/medium/large & MLP/CNN) under large budget setting on the ASCADf dataset.
RS refers to baseline random search, HB and HB-GP refer to Hyperband and HyperDrive
proposed in this paper. The best results are shown in bold. GE is omitted in the table
for simplicity as all models listed achieve 1.

NT (count) PT (bit) Search Time (min)
Architecture HB HB-GP RS HB HB-GP RS HB HB-GP RS
Small MLP 157 151 156 0.243 0.129 0.116 105 101 148

Medium MLP 85 80 126 0.265 0.303 0.270 99 132 157
Large MLP 117 105 108 0.196 0.325 0.272 113 119 208

Small CNN 140 148 190 0.164 0.189 0.202 131 134 256
Medium CNN 125 107 111 0.159 0.195 0.237 149 148 359
Large CNN 72 97 89 0.102 0.245 0.260 195 187 459

Table 6 demonstrates the detailed results of the performance and time metrics of six
different model setups, including the small, medium, and large variants of MLP and CNN
on the ASCADf dataset. Each configuration is executed three times, and the average is
calculated and displayed to reduce the impact of a possible single abnormal run. The
best-obtained results for each category are shown in bold.

It can be clearly noticed that for the NT and Search Time metrics, the proposed
HB and its variant HB-GP in this paper achieve the best outcome compared with the
currently widely adopted random search in every tested configuration. For MLPs, the
HB-GP achieves the best model performance regarding the lowest N'T, which applies to all

32 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Table 7: Performance and time metric results for six model architectures
(small/medium/large & MLP/CNN) under small budget setting on the ESHARD dataset.
RS refers to baseline random search, HB and HB-GP refer to Hyperband and HyperDrive
proposed in this paper. The best results are shown in bold. GE is omitted in the table
for simplicity as all models listed achieve 1.

NT (count) PI (bit) Search Time (min)
Architecture HB HB-GP RS HB HB-GP RS HB HB-GP RS
Small MLP 683 470 566 0.026 0.129 0.042 37 41 68

Medium MLP 576 458 724 0.054 0.063 0.057 43 38 79
Large MLP 583 669 702 0.037 0.040 -0.005 56 99 111

Small CNN 391 490 497 0.046 0.023 0.021 65 63 119
Medium CNN 741 626 642 0.040 0.018 0.041 104 100 129
Large CNN 733 690 775 0.041 0.038 0.026 134 139 169

three model sizes. For the medium MLP, both HB and HB-GP record much fewer NT
needed to reach GE = 1 compared with the RS baseline, that the HB-GP requires an NT
of 80 and HB requires 80, while RS requires 126. The small and large variants of MLP also
show that HB and HB-GP achieve on-par or fewer NT, indicating a performance boost to
the RS. Meanwhile, the two proposed algorithms require less time to find a competent
model. HB utilizes significantly less time and finds an even better model, and it can be
noticed that as the size of the model increases, the time-saving advantages grow even
larger. For example, the HB method uses 105 minutes to find a small MLP model with
roughly the same NT metric as the one found by RS, which uses 148 minutes. When it
comes to large MLPs, the HB spends 113 minutes finding a model similar to the one found
by RS, which takes 208 minutes. The HB and HB-GP methods also achieve a higher PI
than the RS baseline.

A similar story describes the case for CNN models. The HB and HB-GP obtain a
lower NT result for all CNNs with three sizes than the RS, and the search time difference
between the proposed methods and random search is even larger. HB finds a better model
using 131 minutes for a small variant, while RS finds a worse model consuming 256 minutes.
Again, when the model size increases, the time saved grows significantly. HB-GP finds
a slightly worse but on-par model within 195 minutes for a large CNN configuration,
while RS finds a slightly better model yet uses a whopping 459 minutes. The RS baseline
method, however, achieves a larger PI for all three sizes compared with the proposed
new methodologies. However, it should be noted that the PI metric is sensitive to the
dataset setup, model configuration, objective function, etc., and is less informative when
determining the model’s performance compared with other hard metrics like GE and NT.
Therefore, for CNN, we can still conclude that the proposed methods can obtain models
with on-par performance while using significantly less time.

The same experiment is conducted with the ESHARD dataset to demonstrate the per-
formance difference between various tuners in more demanding situations. The ESHARD
dataset implements both masking and shuffling countermeasures. These dual countermea-
sures significantly increase the resistance against side-channel attacks by introducing more
randomness and noise into the measurements, making it harder to extract the cryptographic
keys. The complex nature makes this dataset a harder target for models to break than the
ASCAD(dataset. Table 7 documents the performance detail of the model architectures
evaluated. To further simulate a harder scenario for the models, the total training budget
is set to the small variant, with 2400 epochs for the entire search. The results confirm
the difficulties for models in making a correct guess brought by the complexity of the

Ruilin Ma 33

dataset and reduced total budget, that for all configurations, the NT metric significantly
deteriorates when compared with results on the ASCADf dataset. However, the proposed
HB-GP and HB algorithms still perform better regarding a lower NT and a shorter search
time in every configuration tested. For MLPs, models found by the two new methods
mark a significantly lower NT metric than those obtained by random search, using around
half the time. As for CNNs, the new approaches still obtain more competent models and
consume less time than the baseline, though the time-saving advantage isn’t as large as the
ones shown in MLP or on the ASCADf dataset. Nevertheless, the results also advocate for
the superiority of the HB-GP and HB tuners, as they can lead to better models for SCA
tasks requiring less time searching.

Results in Table 6 and Table 7 have demonstrated that both the default Hyperband (HB)
and the enhanced HyperDrive (HB-GP) show considerable performance boost compared
with random search. The main modification and advantage of HB-GP is the Gassuian
Process kernel, which suggests new candidates based on the observations made. In
comparison, the core of the default HB is still a random search; though it can fasten the
search process, it can not use the obtained observations to guide future searches. Therefore,
this work further introduces HB-GP to simultaneously address performance and search
speed. A performance comparison is conducted to demonstrate the advantage of HB-GP
compared with the original HB.

Figure 22 and 23 shows the performance (NT metric) comparison of the HB-GP and
HB algorithms on a large MLP and a CNN model, respectively. Results clearly exemplify
the performance boost of the HB-GP method. Regardless of epoch usages, the enhanced
variant (purple) achieves a lower NT value than the standard one (green). It can also be
noticed that the HB-GP tuner obtains a less fluctuated outcome, which is evident by the
generally narrower min-max band. These findings confirm the advantages of the GP kernel
in the Hyperband, proving the superiority of the HB-GP method.

To sum up, this set of experiments extensively examines and compares the performance
of the RS, HB, and HB-GP tuners. It has been proven that Both HB-GP and HB
tuners can achieve an on-par or even better model with lower NT metric while
using significantly less time. This is the case regardless of datasets, model architectures,
and model sizes. It also suggests that HB-GP obtains an even better result than HB,
benefitting from the learning capability on observations from the GP kernel. Therefore,
this work recommends replacing the current widely-used random search tuning
methodology with HyperDrive tuner or Hyperband, which results in finding
models with better performance while using significantly less time. These
proposed algorithms can drastically increase the efficiency of finding deep-learning models
and benefit the domain of deep-learning-based SCA with the capability of obtaining more
competent models swiftly.

6.5 A revisit to the configurations obtained

The proposed tuner’s capacity to obtain competent models with proper hyperparameters
has been proven in section 6.4. In addition to that, this work reviews the effectiveness of
the tuners in terms of locating the best possible configuration. This involves comparing
the found hyperparameter settings with results obtained in a search space scan, with one
hyperparameter being probed. In contrast, others remain at the best value returned by
the tuner. If the found configuration is located close to the global optimum discovered in
the scan, it can be concluded that the tuner does obtain an adequate setup. The three
continuous learning hyperparameters, L1, BS, and LR, are revisited and analyzed. The
scan is executed in the same approach as the Single-hyperparameter characteristic scan
shown in section 6.2 but with the best values found.

Figure 24 illustrates the scan plot of NT metrics over different L1 values in the search
space and the relation to the L1 setup of the best-found model. Data is collected with

34 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Performance comparison between GP enabled and default Hyperband applied to large MLP

e GP:Raw Data

)

1750 —— GP: Smoothed Trend
GP: Min-Max Band

= L2 . e No GP: Raw Data

2 . No GP: Smoothed Trend

S 1500 b No GP: Min-Max Band

2 ®

[.

: ° 9 i

2 1250

o

- .

1 L 2

g 1000

£

S .

5] L4 L4 .

4 " *

o 750 ° U

s 3

8 .

©

2 A o NS *l e

L ! .

6 [

s

73

L

E

>

Z 250

0 2000 4000 6000 8000 10000 12000 14000
Epoch Used for Training

Figure 22: Performance comparison between HB-GP and default HB over different total
budgets with a large MLP. The HB-GP (purple) achieves lower NT metrics than the
default HB (green), regardless of the epoch used.

a small MLP model examined on the ASCADf dataset in a wide search space, and the
orange dot represents the L1 value and performance of the model selected by the tuner
(HB-GP). The test is performed with all other hyperparameters except L1, fixed at the
value found by the tuner. It can be clearly noticed that the point lies close to the global
optima of L1 in the search space, proving the tuner indeed boasts the ability to search for
promising configurations for L1 regularization. The same observation is also made for LR
and BS, as depicted in Figure 25 and 26.

Based on the results of re-scanning the hyperparameters in this experiment, it can
be further confirmed and concluded that the hyperparameter configurations returned by
the tuner are located in proximity to the global optima in the defined search space. This
demonstrates the capacity of the proposed tuner to find extraordinary candidates and
further validates the efficacy of the proposed methods.

7 Discussion

Since the introduction of deep-learning methods in the field of SCA, researchers have
proven the effectiveness of such an approach in obtaining secrets in encrypted devices.
However, few insights on the mechanism of the deep learning model performing SCA tasks
and the corresponding hyperparameter tuning methodologies have been obtained. The
widely adopted method to search for a competent model till this day in the domain is still
the naive random search. Though, in most cases, the random search can eventually find a
competent model, it requires much time to converge. Meanwhile, the absence of knowledge
of the mechanism and interconnection of the hyperparameters makes it hard to rule out
unnecessary variables and define a much more precise and narrower search space, which

Ruilin Ma 35

Performance comparison between GP enabled and default Hyperband applied to large CNN

° e GP:Raw Data

1750 ! . = GP: Smoothed Trend

[0 GP: Min-Max Band
e No GP:Raw Data

= No GP: Smoothed Trend

No GP: Min-Max Band

° .

L —

1500

1250

1000

500

Number of Traces to Reach GE = 1.0 (lower is better)

2000 4000 6000 8000 10000 12000 14000
Epoch Used for Training

Figure 23: Performance comparison between HB-GP and default HB over different total
budgets with a large CNN. The HB-GP (purple) achieves lower NT metrics than the
default HB (green), regardless of the epoch used.

makes the already lengthy search process even more extensive.

This work aims to examine the interconnections between hyperparameters, propose
new search algorithms to replace the random search, and draft guideline suggestions
for performing hyperparameter tuning for SCA task-tailored deep-learning models, as
discussed in section 4. After extensive experiments and analysis, this work claims the
following findings and recommendations:

¢ Learning hyperparameters impact the model’s overall performance more
than architectural hyperparameters. It is observed that the size of the model
does not significantly influence the model’s performance. As for the three sizes tested
for both MLP and CNN, no correlation is found between the architectural setting
of the model and its corresponding performance. Also, the result proves that MLP
can achieve on-par performance compared with CNN and uses noticeably less time.
Therefore, it is recommended to focus on learning hyperparameters and avoid tuning
the model’s architectural configuration. Meanwhile, it is recommended that MLP
would be sufficient in most cases.

e Noticeably different weights of the learning hyperparameters exist. It is
observed that regularization exerts more influence on performance, followed by batch
size and learning rate. Optimizer kind and activation functions influence the overall
performance less as long as they are properly configured with a normal choice for
the task. Also, it is noticed that L1 regularization works better compared with L2.
Therefore, if the training budget is constrained, focusing on the L1 value, batch
size setting, and learning rate configuration should be adequate to find a competent
model.

36 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

Scan of NT vs. L1 with Best Hyperparameters Found by the Tuner and Actual Observation

Y @ Raw Data Point with Best Hyperparameters
400 4 ° —— Smoothened Trend
® Best Model Obtained by HB-GP
Min-Max Band
350 e
) °
o
L4 °
300 A e
3 oo % o0 ?
o [)
S 250+ 20 %% o le
2 (] °® ®
b=
Q
=
=
Z 200 A L
150

o ® "o Py ®o®
[6{‘.
°

100 A

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012 0.00014
L1 Regularization Value

Figure 24: A re-scan of NT metric over L1 in the large search space defined with all other
hyperparameters set at the value of the best small MLP model found. The L1 configuration
obtained by the tuner is shown as the orange dot. This confirms that the found L1 setting
is close to the global optima in the search space.

Scan of NT vs. LR with Best Hyperparameters Found by the Tuner and Actual Observation

2000 A GF
1750 A
1500 1
3 1250 A e
© @ Raw Data Point with Best Hyperparameters
>
o ° —— Smoothened Trend
ﬁ 1000 A Best Model Obtained by HB-GP
= Min-Max Band
=
z
750 A
500 - e
(]
@
250 A
L]
0 T T T

107° 1074 1073
Learning Rate

Figure 25: A re-scan of NT metric over LR in the large search space defined with all
other hyperparameters set at the value of the best small MLP model found. The LR
configuration obtained by the tuner is shown as the orange dot. This confirms that the
found LR setting is close to the global optima in the search space.

Ruilin Ma 37

35§can of NT vs. Batch Size with Best Hyperparameters Found by the Tuner and Actual Observation

@ Raw Data Point with Best Hyperparameters ®
—— Smoothened Trend
Best Model Obtained by HB-GP
Min-Max Band

300 A

NT Metric Value
N
w
o

N

o

o
L

150 4

0 250 500 750 1000 1250 1500 1750 2000
Batch Size

Figure 26: A re-scan of NT metric over BS in the large search space defined with all
other hyperparameters set at the value of the best small MLP model found. The BS
configuration obtained by the tuner is shown as the orange dot. This confirms that the
found BS setting is close to the global optima in the search space.

e Barrier, correlation, and interconnection exist for the learning hyper-
parameters. It is found that the working region for the hyperparameter setting
investigated is rather narrow. For L1 regularization, there exists a threshold before
which the model’s performance increases as the regularization intensifies, and the
model is disabled after the L1 setting exceeds the threshold. For batch size and
learning rate, an inverse-proportional relation is found. Therefore, in tuning these
hyperparameters, it is recommended to utilize these characteristics to reduce the
search space and save time.

¢ The proposed HB and enhanced HB-GP show performance improvement
and search time reduction compared with the current popular choice of
random search. In the six model configurations with distinct sizes and methodolo-
gies on two datasets, the proposed methods outperform random search by obtaining
on-par or even better results with drastically less time, proving its capability to
improve search efficiency. This allows researchers to search for more promising
models using the same time or with the same number of candidates with significantly
less time, in some cases, 1/3 of the time required by random search. It is therefore
recommended to utilize the HB and HB-GP in SCA deep-learning model tuning.

However, this work also has some limitations. The first is the limitation of the model
architectures evaluated. This work only examines MLP and CNN, two popular choices in
the field. However, more state-of-the-art architectures like Transformers and time-series
RNNs or LSTMs might perform better than traditional choices. Also, this work only
evaluates the performance on two datasets, which may not generalize the tuner’s and
hyperparameters’ behavior well. For example, though proven on the most popular datasets,
the performance of the tuners and hyperparameter interconnections on datasets with
significantly more noise may no longer be the case. Also, due to computational limitations,

38 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

this work only evaluates models with fewer epochs in total, which might not allow for
the full potential of the HyperDrive method, as the Gaussian process component in it
relies on the quality and quantity of observations and few total epochs result in fewer
options examined and observations made. This explains why HyperDrive does not achieve
significantly better results than the default HB. Yet, given the results obtained, there
is reason to believe that the performance boost of HyperDrive will increase once more
observations are made within a search.

8 Conclusion and future work

This work examined the fundamental component of deep-learning-based SCA: hyperpa-
rameter tuning, which has not been extensively explored. We studied and identified the
most influential hyperparameters that determine model performance in the domain and
revealed the existence of connections between these hyperparameters. These insights
can be utilized to scale down the search space when performing model tuning to reduce
the computational and time resources required, allowing for higher efficiency. Also, we
proposed two new search algorithms, the Hyperband (HB) and HyperDrive, a Hyperband
with Gaussian Process embedded, to replace the currently widely-used random search. We
have demonstrated that these algorithms hold the capacity to obtain model candidates
with on-par or even better performance while using significantly less time than the random
search. We also observed the advantage of incorporating a GP kernel inside Hyperband to
allow for real-time improvement and learning from previous observations, which benefits a
more targeted and concentrated search. We made several recommendations for executing
hyperparameter optimization for deep-learning models for SCA tasks based on the results
obtained in four groups of experiments.

The future work of this paper mainly involves two directions: confirming the obser-
vations in other datasets and other model architectures and examining the behavior of
the tuners in more budget configurations. As discussed in section 7, this work only inves-
tigates the domain’s two most popular model architectures: MLP and CNN. We intend
to incorporate more state-of-the-art model types in future work, such as transformers, to
evaluate whether they will bring more power and produce more competent models. Also,
we plan to apply the proposed methods on more complex datasets with more noise and
more powerful countermeasures to evaluate their efficacy. In addition, we intend to test
with more powerful computational resources on a larger scale to observe the corresponding
behaviors. We hope this work and further investigations will help SCA researchers better
understand how to tune their deep-learning models and provide them with more efficient
and competent algorithms for finding the optimal model without hassle.

Ruilin Ma 39

Acknowledgements

Ad astra per aspera.

To the boy who relentlessly pursues perfection in every endeavor to make a splash. To-
gether with the tough moments, struggles and gloomy rainy days embraced by courage,
perseverance, and cheerfulness.

My sincere appreciation goes out to my supervisor, Prof. Guilherme Perin, as his com-
mitment to guiding me and generosity in sharing insights with me was nothing short of
inspiring. I am also grateful to Sengim for his prompt and helpful responses to all my
inquiries, coming very timely when I needed them. I would like to express my thanks
to Prof. Nele Mentens as well, as her feedback and encouragement helped me reflect
and stay on course. I must also extend my deepest admiration to myself for maintaining
the courage to try and stay high in an era of uncertainty and unprecedented challenges.
Despite encountering more failures than ever before, hope is never lost and I am always
prepared to crush these hurdles with resilience. Words are beyond me for cherishing
the togetherness presented across the continent eight thousand kilometers away that
reached me every single moment. Connections haven’t been, and will never be broken
by distances that kept us apart for now. My family and wholehearted friends always
welcomed me with a place to be myself and recharge, and assured me that I had unwavering
support and companionship along the journey. They all made me, and they are truly a gift
in my life. I shared this odyssey, and for that, I am deeply humbled and filled with gratitude.

From a first stride through the doors of Leiden, where before me spread a vast landscape
of knowledge and seemed like alien territory, to now, where I leave as an ardent explorer,
confident to share the insights I have drawn. All the learning moments and challenges
enfolded have been steps toward growth as a student and adventurer. It has been a
transforming journey I will cherish for life.

As the chapter of my master’s journey draws to a close, I look to the future with a hopeful
heart. Whenever I revisit these words, may I find that I am still the boy who was confident,
fearless, and passionate about life—forever the explorer, courageously charting paths
untrodden, as I have always held in my heart, to boldly go where no one has gone before.

40 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

References

[AARR02]

[AMH21]

[BB12]

[BCGR22]

[Bon99)]

[BPS*20]

[DDR9Y)

[DPRS11]

[EWTS14]

[FH19]

[GST14]

[Has20]

[Her09]

Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi.
The em side-channel(s). In Revised Papers from the jth International Work-
shop on Cryptographic Hardware and Embedded Systems, CHES 02, page
29-45, Berlin, Heidelberg, 2002. Springer-Verlag.

Noor Awad, Neeratyoy Mallik, and Frank Hutter. Dehb: Evolutionary
hyperband for scalable, robust and efficient hyperparameter optimization,
2021.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13(10):281-305, 2012.

Julien Béguinot, Wei Cheng, Sylvain Guilley, and Olivier Rioul. Be my guess:
Guessing entropy vs. success rate for evaluating side-channel attacks of secure
chips. In 2022 25th Euromicro Conference on Digital System Design (DSD),
pages 496-503, 2022.

Dan Boneh. Twenty years of attacks on the rsa cryptosystem. Notices of the
American Mathematical Society, 46:203-212, 1999.

Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptographic Engineering, 10(2):163-188, 2020.

Joa Daor, Joan Daemen, and Vincent Rijmen. Aes proposal: rijndael. 10
1999.

Julien Doget, Emmanuel Prouff, Matthieu Rivain, and Frangois-Xavier Stan-
daert. Univariate side channel attacks and leakage modeling. Cryptology
ePrint Archive, Paper 2011/302, 2011. https://eprint.iacr.org/2011/
302.

Hassan Eldib, Chao Wang, Mostafa Taha, and Patrick Schaumont. Qms:
Evaluating the side-channel resistance of masked software from source code.
In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 1-6, 2014.

Matthias Feurer and Frank Hutter. Hyperparameter Optimization, pages
3-33. Springer International Publishing, Cham, 2019.

Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 201}, Proceedings, Part
I, volume 8616 of Lecture Notes in Computer Science, pages 444-461. Springer,
2014.

Trevor Hastie. Ridge regularizaton: an essential concept in data science,
2020.

Simon Heron. Advanced encryption standard (aes). Network Security,
2009(12):8-12, 2009.

Ruilin Ma

41

[HS13]

[Inc15]
[JT15]

[KFNO13]

[KJJ99a)

[KJJ99b)]

[Koc96]

[KWPP22]

[LDW21]

[LID*18]

[LZC+21]

[MDP19]

[MPP16]

Michael Hutter and Jorn-Marc Schmidt. The temperature side channel and
heating fault attacks. In Aurélien Francillon and Pankaj Rohatgi, editors,
Smart Card Research and Advanced Applications - 12th International Con-
ference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised
Selected Papers, volume 8419 of Lecture Notes in Computer Science, pages
219-235. Springer, 2013.

Plotly Technologies Inc. Collaborative data science, 2015.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification
and hyperparameter optimization, 2015.

Takeshi Kumaki, Tomohiro Fujita, Mamoru Nakanishi, and Takeshi Ogura.
Morphological pattern spectrum and block cipher processing based image-
manipulation detection. Nonlinear Theory and Its Applications, IEICE,
4:400-418, 10 2013.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages
388-397, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO 99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388-397. Springer, 1999.

Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Proceedings of CRYPTO’96, volume 1109 of
LNCS, pages 104-113. Springer-Verlag, 1996.

Maikel Kerkhof, Lichao Wu, Guilherme Perin, and Stjepan Picek. Focus is key
to success: A focal loss function for deep learning-based side-channel analysis.
In Josep Balasch and Colin O’Flynn, editors, Constructive Side-Channel
Analysis and Secure Design, pages 29-48, Cham, 2022. Springer International
Publishing.

Jiaqi Lou, Ke Dong, and Maosen Wang. A parallel coordinates plot method
based on unsupervised feature selection for high-dimensional data visualiza-
tion. In 2021 International Wireless Communications and Mobile Computing
(IWCMC), pages 532-536, 2021.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter
optimization, 2018.

Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay atten-
tion to raw traces: A deep learning architecture for end-to-end profiling
attacks. TACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(3):235-274, Jul. 2021.

Loic Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study
of deep learning for side-channel analysis. Cryptology ePrint Archive, Paper
2019/439, 2019. https://eprint.iacr.org/2019/439.

Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. IJACR Cryptol.
ePrint Arch., 2016:921, 2016.

42 HyperDrive: Hyperband with Gaussian Process for Efficient SCA Model Tuning

[NAHAB23] Khalid Nahar, Obaida Al-Hazaimeh, Moyawiah Alshanaq, and Mohammed

[PPM*22]

[PWP21]

[Qso1]

[RSATS]

[RWGP21]

[SLA12]

[Tib96]

[VTM23]

[WAGP20]

[WDR*23]

[WPP20]

[WR96]

Bawaneh. Analytical approach for data encryption standard algorithm.
International Journal of Interactive Mobile Technologies (iJIM), 17, 05 2023.

Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina.
Sok: Deep learning-based physical side-channel analysis. ACM Comput. Surv.,
oct 2022. Just Accepted.

Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. Cryptology ePrint
Archive, Paper 2021/1414, 2021. https://eprint.iacr.org/2021/1414.

Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema):
Measures and counter-measures for smart cards. In Isabelle Attali and Thomas
Jensen, editors, Smart Card Programming and Security, pages 200-210, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

Jorai Rijsdijk, Lichao Wu, Perin Guilherme, and Stjepan Picek. Reinforce-
ment learning for hyperparameter tuning in deep learning-based side-channel
analysis. TACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 677-707, 07 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian
optimization of machine learning algorithms, 2012.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), 58(1):267-288,
1996.

Aurélien Vasselle, Hugues Thiebeauld, and Philippe Maurine. Spatial depen-
dency analysis to extract information from side-channel mixtures: extended
version. Journal of Cryptographic Engineering, 13(4):409-425, 11 2023.

Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Re-
visiting a methodology for efficient cnn architectures in profiling attacks.

IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(3):147-168, Jun. 2020.

Chenggang Wang, Jimmy Dani, Shane Reilly, Austen Brownfield, Boyang
Wang, and John M. Emmert. Tripletpower: Deep-learning side-channel
attacks over few traces. In 2023 IEEFE International Symposium on Hardware
Oriented Security and Trust (HOST), pages 167178, 2023.

Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis. Cryp-
tology ePrint Archive, Paper 2020/1293, 2020. https://eprint.iacr.org/
2020/1293.

Christopher K. I. Williams and Carl Edward Rasmussen. Gaussian processes
for regression. In David S. Touretzky, Michael C. Mozer, and Michael E.
Hasselmo, editors, Advances in Neural Information Processing Systems 8,
pages 514-520, Cambridge, MA, USA, 1996. Max-Planck-Gesellschaft, MIT
Press. Presented at the Ninth Annual Conference on Neural Information
Processing Systems (NIPS 1995), Denver, CO, USA.

Ruilin Ma 43

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient cnn architectures in profiling attacks. TACR Trans-
actions on Cryptographic Hardware and Embedded Systems, 2020(1):1-36,
Nov. 2019.

