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Abstract

This thesis investigates the optimization of last-mile delivery with flexible time-windows,
exploring the applicability of three distinct algorithms: Greedy, 2-Opt, and Genetic algorithms.
The central research question driving this inquiry is whether these algorithms can enhance
the utilization and sustainability of last-mile delivery operations.

The Greedy algorithm, known for its simplicity and efficiency, is evaluated for local decision-
making optimization. The 2-Opt algorithm, recognized for its optimization using edge-swapping,
is scrutinized in the context of last-mile delivery with flexible time-windows. The Genetic
algorithm, inspired by natural selection processes, is implemented to assess its potential for
finding globally optimal solutions.

The study uses a methodology utilizing 2 types of datasets: clustered- and unclustered
nodes. It evaluates the algorithms based on multiple objectives, including the cost, emission,
and customer dissatisfaction.

The greedy algorithm showed consistent performance for its simplicity. The 2-opt got stuck
in local optima, therefore the algorithm was ineffective to solve the route delivery problem.
The genetic algorithm showed similar consistent performance, and managed to achieve zero-
emission in the unclustered dataset.

Based on the findings the genetic algorithm is most suitable for solving a last mile route
delivery minimization problem with flexible time windows. Further research could be done on
more advanced meta heuristic techniques to solve this problem.
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1 Introduction

The parcel delivery industry is rapidly growing | ]. Tt is becoming increasingly important in all
sectors of business. This comes with a high costs and carbon footprint. In this multi-step delivery
process, last mile delivery is the most polluting one. 20% to 30% of a city’s total carbon dioxide
emissions can be attributed to last-mile delivery activities | |. Due to the complexity and scale
of this optimization problem, Insights in how this multi-objective delivery process can be optimized
using algorithms could contribute to lowering the total cost and emissions of this industry.

1.1 Studies of Significance

The optimization of last-mile delivery operations, particularly in the context of flexible time
windows, has been a subject of growing interest in logistics and transportation research. Notably,
Koskosidis et al. (1992) [ | conducted a seminal study on the optimization of vehicle routing
and scheduling with soft time window constraints. Their work, focusing on an optimization-based
heuristic that extends the cluster-first, route-second algorithm, has provided valuable insights into
the challenges and solutions associated with last-mile delivery logistics. The current literature shows
that research on vehicle routing and scheduling problem structures with time window constraints has
seen significant advances, offering insights for future research (Solomon & Desrosiers, 1988)] ]

1.2 Focus and Scope

This study will concentrate on the multi-criteria optimization problem associated with sustainable
last-mile delivery. The primary goals are to minimize delivery costs, minimize emissions, and
minimizing customer dissatisfaction. The study will examine how various optimization algorithms
and techniques can effectively balance these objectives while considering the flexibility of time
windows. The scope of the optimization problem will be determined by research that considers
diverse geographic regions, delivery time periods, and consumer preferences. This led to the research
question of this study:

Can the utilization and sustainability of last-mile delivery with flexible time-windows be further
optimized by applying a greedy-, 2-opt- or genetic algorithm to the multi-objective optimization
process?

1.3 Objectives of the Research

This thesis aims to achieve the following objectives:

1. Assess the efficiency of the greedy algorithm, the 2-opt heuristic, and the genetic algorithm
in the context of last-mile delivery.

2. Evaluate the impact of these algorithms on the optimization of delivery routes and schedules,
in the presence of flexible time windows.

3. Provide insights into the synergies and trade-offs between algorithmic efficiency, environmental
sustainability, and customer satisfaction.



1.4 Overview of the Thesis Structure

Chapter 2 of the thesis will provide a literature review on the use of algorithms, last mile delivery
practises and flexible time windows. Chapter 3 will explain the last mile delivery problem in detail.
After that, chapter 4 outlines the methodology and the algorithms that are used. Chapter 5 contains
the results of the research. In Chapter 6 the discussion and conclusion will be presented.



2 Related work

2.1 General trends in last mile delivery

Last-mile delivery has garnered significant attention from logistics researchers and the broader
community, driven by the surge in e-commerce and online shopping | |. In the current era
of the circular economy, sustainable service quality has become an important factor for selecting
logistics providers worldwide. The major delivery businesses have set company-wide emission goals
ranging from ”zero emissions” to "net-zero emissions” | |. Gupta et al. (2021) | ] findings
underscore the importance for logistics providers to prioritize sustainable network optimization,
reduced response times, reliable green services, flexible green processes, and the establishment of
trust with stakeholders. These measures are instrumental in positioning logistics providers as the
preferred choice for customers.

2.2 Multi-objective optimization in logistics

The field of logistics and supply chain management has witnessed a notable increase in interest in
multi-objective optimization, owing to its capacity to successfully address the challenge of balancing
conflicting objectives. It facilitates the ability of decision-makers to make well-informed choices
within intricate situations. It has been demonstrated that the created multi-objective optimization
is an excellent method for analyzing real-life scenarios with multiple objectives | .

The vehicle routing problem with stochastic demand was addressed by Cheong et al. (2006)
[ | with the use of a multi-objective evolutionary algorithm. The primary objective of this
study is to enhance the efficiency of vehicle routes in situations when demand is unclear. This
research emphasizes the significance of flexibility within the field of logistics.

The contribution made by Eid et al. (2018) | ] to the subject of study was an investiga-
tion into the application of simultaneous multi-criteria optimization for the purpose of scheduling
linear infrastructure projects. The research conducted by the authors showcases the practicality of
employing multi-objective optimization methods within the realm of linear infrastructure projects.
It underscores the significance of effective project scheduling in ensuring the accomplishment of
project objectives.

2.3 Flexible time windows

Addressing the complexities of time window management in urban freight operations is a prominent
concern in modern logistics. Insights from a comprehensive study involving three Dutch retail
organizations | | shed light on potential solutions. This study reveals that harmonizing time
windows between neighboring cities significantly enhances overall performance. The findings indicate
that the conventional time-window policy, as commonly employed, may benefit from substantial
improvements in various dimensions of urban freight operations.

The study conducted by Zhao et al. (2020) | ] introduces a novel multi-objective optimization
model based on cost, carbon emissions, and customer satisfaction in the cold chain logistics distribu-



tion process. This model, along with the proposed ACOMO algorithm, addresses the evolving needs
of modern logistics and highlights the importance of considering multiple objectives for efficient and
environmentally friendly last-mile delivery solutions. The study’s findings underscore the advantages
of multi-objective optimization in providing diverse distribution route options, aligning with the
concept of flexible time windows and offering valuable insights for logistics companies striving to
optimize their operations.

2.4 Algorithms for route optimization

The route optimization algorithm discussed in the study by Aibinu et al. (2016) [ ]is a
clustering-based genetic algorithm with polygamy and a dynamic population control mechanism.
This algorithm has demonstrated superior performance in solving route optimization problems,
converging to a global solution within a limited number of iterations. Furthermore, its characteristics
make it particularly suitable for real-time and online applications in the context of last-mile delivery.

Regarding the Traveling Salesman Problem (TSP), noteworthy contributions have been made
to enhance its resolution. Cui et al. | | proposed an innovative approach by refining the
architecture of the Particle Swarm Optimization (PSO) method. Their approach includes a prepro-
cessing multi-subdomain grouping technique, genetic mutation, and a simplified 4-opt strategy. This
optimization technique exhibits remarkable performance, particularly for small to medium-sized
TSP problems, consistently achieving percentage error values below 4.8%.

2.5 Significance of the research

This thesis concentrates on the evaluation of various algorithms for route optimization. Moreover,
it explores the integration of flexible time windows within these algorithms. This focus is crucial
because it aligns with the dynamic aspect of last-mile delivery, where timely and sustainable service
is paramount. By assessing the effectiveness of these algorithms, this research aims to provide
valuable insights into how they can adapt to the specific requirements of last-mile delivery.



3 Problem description

The model used for this last-mile delivery minimization problem is built around three objective
functions which represent the cornerstones of the optimization. These functions include minimiz-
ing the cost of delivery, minimizing emissions from the hybrid bus, and minimizing consumer
dissatisfaction.

3.1 Objective Function 1: Minimize Cost of Delivery

The first objective function targets minimizing the cost of delivery. The cost is calculated by adding
the salary of the driver, the product of the total time spent in minutes and salary per minute, the
product of the distance traveled using diesel and the cost per kilometer for diesel, and the product
of the distance traveled using electricity and the cost per kilometer for electricity. Mathematically,
if the distance between any two nodes is less than 20 units, electricity is used, whereas diesel is
used if the distance exceeds 20 units.

Cost = salary + (endtime — begintime) x salary_per_minute

+(diesel_distance x diesel_cost_per_km) + (electric_distance x electric_cost_per_km) (1)

3.2 Objective Function 2: Minimize Emissions

The second objective function aims to minimize the distance traveled using diesel. This function
is essentially the summation of all distances above 20 units (where diesel is employed) across the
entire route. Minimizing this will result in a reduction in emissions.

3.3 Objective Function 3: Minimize Consumer Dissatisfaction

The third objective function is constructed to minimize consumer dissatisfaction. Each customer
is assigned three time slots, each 30 minutes long. The preference is to have all deliveries made
during the first time slot. If this is not feasible, the second time slot is utilized, and if that too is
not possible, the third time slot is used. In cases where none of the time slots are viable, a penalty
is incurred. The weights associated with these options are 0, 1, 2, and 10 respectively. The objective
is to minimize the sum of these weights across all customers.

3.4 Combination of Objectives

The optimization problem is solved by combining the three objective functions. We can either solve
for each objective separately, providing us with three different solutions or integrate the objectives
into a single function by assigning equal weights to each, and then solving for a single solution that
best balances the trade-offs among the objectives.

3.5 Geographical Context

The mathematical model is based on a 2D map with positive coordinates. Node 0 represents the
depot from which the driver begins and ends the journey. Other nodes represent customers, who



are scattered across the map. The x and y coordinates signify the location of the node on the map.
The driver operates a hybrid bus and must visit all the nodes/customers and return to the depot
while optimally satisfying the aforementioned objectives. The dataset comprises the node number,
x and y coordinates, and three time slots for each customer.

3.6 Visualization

To visualize the solution, we plot the route on a 2D map. The customers and the depot are
represented by their respective coordinates, which are plotted on the map. The visualization
incorporates color coding to represent different aspects of the solution. Specifically:

e If a customer is assigned option 1 (first time slot), the corresponding point on the map is
marked in

e If a customer is assigned option 2 (second time slot), the corresponding point is marked in
blue.

e If a customer is assigned option 3 (third time slot), the corresponding point is marked in

e If a customer is unable to be assigned any of the three options, the corresponding point is
marked in red.

e The depot is marked in black.

The lines connecting the points on the map represent the distances traveled between consecutive
points. If the distance is covered using electricity, the line is displayed in green. If the distance
is covered using diesel, the line is displayed in yellow. These visual elements provide an intuitive
representation of the solution, highlighting the delivery options, travel modes, and overall satisfaction
for each customer. An example of a visualization can be seen in figure 5.



4 Methodology

4.1 Type of Research

This research employs a quantitative approach to address the research question: ” Can the utilization
and sustainability of last-mile delivery with flexible time-windows be further optimized by applying
a greedy-, 2-opt- or genetic algorithm to the multi-criteria optimization process?” The study aims
to optimize the last-mile delivery process by utilizing three distinct optimization algorithms. These
algorithms are applied to two different datasets of delivery routes and evaluated against multiple
criteria.

4.2 Data Collection
4.2.1 Dataset Generation

A dataset of consumers is generated using a randomizer, including information on delivery locations
with coordinates and 3 different time-windows.

4.3 Application of Optimization Algorithms

To create delivery routes, 3 different optimization algorithms were used. Each algorithm has
different characteristics. The generated routes will be assessed on their performance. The data will
be compared in a clustered and unclustered setting.

4.3.1 Greedy Algorithm

The greedy algorithm is implemented to iteratively refine the delivery routes. It starts with an
initial solution and explores neighboring solutions by making incremental adjustments.

Algorithm 1: Greedy Algorithm for Route Optimization

Data: nodes, weights

Result: Optimized route

current_node = nodes[0];

route = [current_node];

unvisited_nodes = nodes[1:];

while unvisited_nodes is not empty do
next_node = SelectNextNode(unvisited_nodes, route, weights);
unvisited_nodes.remove(next_node);
route.append(next_node);

N 00 0k Wy

route.append(nodes[0]);
9 return route;

03]




4.3.2 2-Opt Algorithm

The 2-opt algorithm is applied to improve the order of delivery stops within the routes. It system-
atically evaluates pairs of delivery stops and performs swaps to minimize delivery cost, emissions
and enhance adherence to time-windows.

Algorithm 2: 2-Opt Algorithm for Route Optimization
Data: route, weights
Result: Optimized route

1 repeat

2 for 1 = 1 to length(route) - 1 do

3 for j = i + 1 to length(route) do

4 new_route = 2-OptSwap(route, i, j);

5

6

if calculate_cost(new_route, weights) < calculate_cost(route, weights) then
L route = new_route;

7 until no improvement is made;
8 return route;

4.3.3 Genetic Algorithm

Genetic algorithms are utilized to evolve and optimize the delivery routes. Routes are represented
as chromosomes, and genetic operators such as crossover and mutation are applied to generate new
solutions. Fitness evaluation considers the objective functions.

Algorithm 3: Genetic Algorithm for Route Optimization
Data: nodes, weights, population_size, generations
Result: Optimized route
Initialize a population of routes with random chromosomes;
for generation = 1 to generations do
Evaluate the fitness of each route in the population using the given weights;
Select routes for the next generation using roulette wheel selection or other methods;
Apply crossover to create new routes in the next generation;
Apply mutation to introduce diversity in the population;

[~ U

~

Select the best route from the final generation based on fitness;
return best_route;

03]

4.4 Data Analysis
4.4.1 Performance Metrics

The assessment criteria used in this study assess the efficiency of the algorithms utilized on the
datasets. The metrics used in this analysis are as follows:



1. Objective Functions: The evaluation of algorithmic performance was conducted with respect
to multiple objective functions, including cost, diesel emissions and customer dissatisfac-
tion. These objective functions are essential in characterizing the efficacy of the dataset
configurations in real-world applications.

2. Combined Scores: In addition to the evaluation of individual objective functions, a normalized
score was calculated for each algorithm to create a combined score. These combined scores
provide a holistic view of the overall performance of each algorithm and allow us to investigate
trade-offs between various objectives.

4.5 Mitigation of Research Biases
4.5.1 Randomization

Randomization is used during the initial generation of solutions in the genetic algorithm to reduce
any inherent biases. The mean of 10 runs was taken to asses the performance for each objective
function. All algorithms used a randomly generated route to perform the route optimization.

4.5.2 Clustered and unclustered dataset

The focus of this analysis is on two main datasets: the clustered and unclustered versions of a
collection of nodes. The clustered dataset configuration is characterized by a map consisting of
three cities, whereby customers are situated in relatively close range inside each city. In contrast,
the unclustered dataset configuration contains a randomly generated map where customers are
spread out across the entire area. Both configurations were assessed on their performance for each
algorithm. By examining the algorithms’ performance in both clustered and unclustered scenarios,
the risk of research bias associated with exclusively focusing on one type of dataset is reduced.



5 Results

The research objectives of this thesis involved assessing the effectiveness of algorithms applied to
a last mile delivery problem. The goal was to gain a better understanding of the trade-offs and
benefits linked to different algorithms, and to measure the performance of each algorithm for each
objective function.

5.1 Objective function 1

Cost Comparison of Greedy, 2-Opt, and Genetic Algorithms (log scale) Cost Comparison of Greedy, 2-Opt, and Genetic Algorithms (log scale)
9% 10
9x10°
e) )
o I
o o
& &
o o
i=) 2
o "
@ ]
o <]
] o]
8% 10°
) 8x10°
N - 1
e ———
e s
Greedy 2-0pt Genetic Greedy 2-0pt Genetic

(a) Objective Function 1: Cost Comparison for clus- (b) Objective Function 1: Cost Comparison for un-

tured dataset clustured dataset
Algorithm Cost Algorithm Cost
Greedy 2068.61 Greedy 2712.70
2-Opt 10785.30 2-Opt 12381.53
Genetic (Mean) — 2311.39 Genetic (Mean)  2580.25

Figure 1: Comparison of algorithms for OF1

In figure 1, the Greedy algorithm generally performed well, especially in the clustered dataset. The
2-Opt algorithm, on the other hand, exhibited higher costs in both scenarios, indicating potential
limitations. The Genetic algorithm, with mean costs, positioned itself as a robust alternative,
showing competitive performance in both clustered and unclustered datasets.
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5.2 Objective function 2

Emission Comparison of Greedy, 2-Opt, and Genetic Algorithms Emission Comparison of Greedy, 2-Opt, and Genetic Algorithms
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(a) Objective Function 2: Emission Comparison for (b) Objective Function 2: Emission Comparison for

clustered dataset unclustered dataset
Algorithm Emission Algorithm Emission
Greedy 65.26 Greedy 104.95
2-Opt 1028.30 2-Opt 1236.09
Genetic (Mean) 36.85 Genetic (Mean) 0.00

Figure 2: Comparison of algorithms for OF2

In figure 2 the Genetic algorithm, with zero emissions in the unclustered dataset, stands out as an
environmentally conscious solution. This can be seen in figure 10 where all edges are green. The
Greedy algorithm showed moderate emissions, while the 2-Opt algorithm exhibited higher emissions
in both clustered and unclustered datasets. The environmental efficiency of the Genetic algorithm,
especially in the absence of clustering, positions it as a promising choice for sustainability.

5.3 Objective function 3

In figure 3, in the clustered dataset, the Greedy algorithm outperforms the Genetic algorithm,
suggesting its efficiency in optimizing routes for closely grouped customers. Conversely, in the
unclustered dataset, the Genetic Algorithm excels, showcasing its effectiveness in handling dispersed
customer distributions. These results may emphasize the need for algorithm choice based on dataset
characteristics, highlighting the trade-off between the two.
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Customer Dissatisfaction Comparison of Greedy, 2-Opt, and Genetic Algorithms Customer Dissatisfaction Comparison of Greedy, 2-Opt, and Genetic Algorithms
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(a) Objective Function 3: Customer Dissatisfaction (b) Objective Function 3: Customer Dissatisfaction

Comparison for clustered dataset Comparison for unclustered dataset
Algorithm Customer Dissatisfaction Algorithm Customer Dissatisfaction
Greedy 174.0 Greedy 333.0
2-Opt 462.0 2-Opt 463.0
Genetic (Mean) 257.1 Genetic (Mean) 289.1

Figure 3: Comparison of algorithms for OF3

5.4 Combined weights
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Figure 4: Comparison of Combined weight scores

5.4.1 Clustered approach

In the clustered approach, the normalized scores reveal interesting insights into the performance of
the algorithms. The Greedy algorithm demonstrates the best performance, obtaining a normalized

12



score of 0.34. This indicates that, within the clustered setting, the Greedy algorithm has a good
balance among the considered objectives. On the other hand, the 2-Opt algorithm appears to
struggle, yielding a high normalized score of 0.82. This suggests that 2-Opt might be converging
to a local optimum, consistently producing similar routes across various objective functions and
resulting in less favorable scores. This is visualized in figure 7.

In contrast, the Genetic algorithm, with a normalized score of 0.35, displays competitive per-
formance in the clustered approach. The ability of the Genetic algorithm to explore diverse solutions
seems to contribute to its effectiveness in tackling multi-objective optimization problems, showcasing
its versatility in addressing different criteria simultaneously.

5.4.2 Unclustered approach

Moving to the unclustered approach, the landscape changes. Greedy, which performed well in the
clustered setting, now exhibits a higher normalized score of 0.38. This might indicate that the
simplicity of the Greedy algorithm becomes a limitation in a more complex, unclustered scenario.
On the other hand, 2-Opt continues to struggle, with a notably high normalized score of 0.93. This
reinforces the hypothesis that 2-Opt is susceptible to getting stuck in local optima, visible in figure 8.

Remarkably, the Genetic algorithm in the unclustered setting achieves a normalized score of
0.34, comparable to its performance in the clustered scenario. Additionally, it manages to achieve
zero emissions. This is a significant finding, suggesting that the Genetic algorithm has the potential
to provide environmentally sustainable solutions in last-mile delivery scenarios with flexible time
windows.

Algorithm Normalized Score Algorithm Normalized Score
Greedy 0.34 Greedy 0.38
2-Opt 0.819 2-Opt 0.927
Genetic 0.353 Genetic 0.339

Table 1: Normalized scores in the clustered ap-Table 2: Normalized scores in the unclustered
proach. approach.

5.5 Balance of scores

Analyzing the percentage contributions to the combined scores provides insights into how each
objective function influences the overall score for each algorithm. The percentage contributions can
be seen in table 3 and 4.

5.5.1 Greedy Algorithm

For the Greedy algorithm, dissatisfaction significantly influences the combined score, emphasizing
a potential area for improvement. The contributions from cost and emission, while present, are
comparatively lower.
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5.5.2 2-Opt Algorithm

In contrast, the 2-Opt algorithm demonstrates a more balanced contribution across cost, emission,
and customer dissatisfaction. However, this result is not representative because of the overall bad
performance of the algorithm.

5.5.3 Genetic Algorithm

The Genetic algorithm, intriguingly, achieves 0% diesel emission, showcasing an environmentally
friendly characteristic. Dissatisfaction remains a dominant factor, indicating potential enhancements
in parameter optimization that could be done to get better scores. This requires more process
power and time.

5.5.4 Overall balance

The combined scores seem to have a good balance, representing the scores of the individual results.
The dissatisfaction contribution is high across the scores, it was the hardest task for all algorithms.
Therefore, there is no overcompensation witnessed in the results.

Algorithm Cost (%) Diesel Emission (%) Dissatisfaction (%)

Greedy 15.71 4.27 80.03
2-Opt 35.15 27.90 36.95
Genetic 19.20 4.59 76.21

Table 3: Percentage Contribution to Combined Score for Each Algorithm in the Clustured dataset.

Algorithm Cost (%) Diesel Emission (%) Dissatisfaction (%)

Greedy 18.48 5.68 75.84
2-Opt 35.78 29.63 34.59
Genetic 18.05 0.00 81.95

Table 4: Percentage Contribution to Combined Score for Each Algorithm in the Unclustered dataset.

14



6 Conclusion and Discussion

6.1 Conclusion and contributions

In addressing the research question— ”Can the utilization and sustainability of last-mile delivery
with flexible time-windows be further optimized by applying a greedy-, 2-opt-, or genetic algorithm to
the multi-objective optimization process?”— each algorithm played a distinct role in optimizing the
delivery process. The Greedy algorithm demonstrated solid performance for its simplicity , the 2-Opt
algorithm revealed to be unuseful in all cases, and the Genetic algorithm showcased to be capable
of achieving zero-emissions in an unclustered setting. The results showed that the genetic algo-
rithm is the best suited algorithm for solving a last mile delivery problem with flexible time windows.

This thesis makes contributions to the field of sustainable last mile delivery. Specifically, it advances
the understanding of applying certain algorithms to a minimization problem and provides practical
advise for parcel delivery companies. The integration of algorithms and the use of flexible time
windows has widened the scope of research in last mile delivery route optimization.

6.2 Limitations and future work

The limitations of this study include the reliance on two datasets and a fixed set of parameters.
Further studies could explore the sensitivity of the algorithms to different dataset characteristics
and parameter settings. Additionally, the focus on three specific objectives leaves room for the
addition of more nuanced criteria, such as vehicle capacity or dynamic traffic conditions.

To build on this research, future studies could delve deeper into other algorithms that perform well
on route optimization problems. While our study focused on the performance of greedy, 2-opt, and
genetic algorithms, there are several emerging algorithms and variations that warrant investigation.
Exploring advanced meta-heuristic techniques, such as specific meta-heuristic, may offer novel
perspectives on enhancing route optimization in last-mile delivery. Furthermore, exploring specific
variables’ impact on optimization and tailoring algorithms to unique constraints within last-mile
delivery contexts offers promising research directions. Continuous exploration of diverse algorithms
and factors is crucial for advancing knowledge in last-mile delivery optimization.

In conclusion, this research has shed light on the subject of sustainable last mile delivery through
the lens of multi-objective optimization algorithms. The findings highlight the influence of algorithm
choice on last-mile delivery optimization, emphasizing the superior performance of the genetic
algorithm, potential pitfalls of 2-opt, and the contextual nuances between clustered and unclustered
approaches. It is clear that the optimization of last-mile delivery is a multifaceted challenge that
requires ongoing exploration and innovation.
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A Appendix

A.1 Route Visualizations

B Code

The GitHub repository of this project can be found at the following URL: https://git.liacs.
nl/s2713330/1last-mile-delivery-thesis.git
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Figure 5: Greedy Algorithm Route Visualization for Clustered Data
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Figure 7: 2-Opt Algorithm Route Visualization for Clustered Data
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Figure 9: Genetic Algorithm Route Visualization for Clustered Data
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