
Master Computer Science

Deep Q-learning for Matching Comprehensively

Typed Red Blood Cell Units

Name: Evani Lachmansingh
Student ID: s1949624

Date: 23/1/2023

Specialisation: Artificial Intelligence

1st supervisor: Mart P. Janssen.
2nd supervisor: Mike Preuss.
External superv.:Merel Wemelsfelder.

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



1

Abstract. Comprehensive antigen typing of red blood cell (RBC) units
increases the number of blood groups to consider for matching, which in-
troduces various logistical challenges in the allocation policy. Since iden-
tical matching is not feasible with a large amount number of included
antigens (up to 214 when considering 14 antigens), the issuing policy
needs to consider mismatch tolerance for all 11 minor antigens, while
enforcing compatible matching on the 3 major antigens (A, B and D),
minimizing shortages and outdating of RBC units. Currently, a linear
programming method is available that applies a near-optimal policy for
matching comprehensively typed RBC units. However, it is limited by
the requirement of determining a matching policy beforehand by defin-
ing the model’s objective and constraints. This study researched using
Reinforcement Learning (RL), specifically Deep Q-learning (DQN), for
finding optimal matching policies. Results showed that DQN can match
up to 90% requests with an ABD-compatible product, with only an av-
erage of 0.15 - 0.18 antigen mismatches per request when including 2
antigens additionally to A, B, and D. This indicates that, with further
research, DQN might be a suitable option for creating an allocation pol-
icy for comprehensively typed RBC units.

Keywords: RBC matching · Linear programming · Deep Q-learning
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1 Introduction

Medical conditions or acute trauma can cause individuals to require a red blood
cell (RBC) transfusion to restore the blood’s hemoglobin levels and oxygen sup-
ply. RBC transfusions are relatively safe and common [13]. In the Netherlands,
around 400.000 RBC units are distributed annually [2]. Before performing an
RBC transfusion, the recipient’s and the donor’s blood are matched based on
the presence of antigens. This prevents the recipient from developing antibod-
ies against antigens present on the donor’s red blood cells, a process known as
alloimmunization. In most first-time transfusions, matching based on the three
‘major’ antigens A, B, and Rhesus D is sufficient to prevent transfusion reac-
tions from occurring. However, once patients require multiple transfusions, they
are at an increased risk of alloimmunization against other minor antigens (up
to 60% of patients develop antibodies after multiple transfusions) [3,4]. Should
a patient develop antibodies against some antigen, for any subsequent trans-
fusions, this patient can now only receive blood that is compatible with that
antigen, to prevent transfusion reactions. Ideally, however, preventive compre-
hensive blood matching on clinically relevant ‘minor’ antigens is performed for
all RBC transfusions to minimize alloimmunization rates and simplify subse-
quent RBC transfusions.

While comprehensive matching may have a positive impact on health out-
comes and the efficiency of the healthcare system, it also introduces logistical
challenges. Extending the matching strategy to include more relevant antigens
means that the number of possible blood groups increases exponentially (2n,
where n is the number of clinically relevant antigens). Since it is not feasible to
always identically match blood units when considering many antigens, the num-
ber of potentially transfusable blood groups increases, making the process of
deciding which blood group to administer more difficult. When matching com-
prehensively, a policy is required to determine when to allow minor antigens
mismatches, to minimize alloimunization risks, while also preventing shortages
in the blood bank inventory. Additionally, the process is further complicated by
the 35-day shelf-life of RBC units. Therefore, it is necessary to develop a well-
suited issuing policy that assists in distributing comprehensively matched RBC
units.

In 2022, van Weem et al. proposed a linear programming model (MINRAR)
to develop an issuing policy for comprehensive RBC matching [29]. In linear
programming, an objective function is minimized or maximized, bounded by a
set of predefined constraints. In the context of our matching problem, the con-
straints include the weighted sum of minor antigen mismatches, the number of
shortages, and the number of outdated RBC products. Compared to standard
ABO-RhD matching, MINRAR could reduce alloimmunization rates by 78.2%.
Hereby they show that, with a proper issuing policy, comprehensive matching
has the potential to drastically reduce the risk of transfusion reactions. While
MINRAR showed promising results, it is limited by the core concept of lin-
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ear programming: objectives and constraints are set beforehand and a policy is
created accordingly. Its performance may therefore be improved by discovering
other policies that may lead to better outcomes.

Reinforcement Learning (RL), a specific branch of machine learning, might
serve as a method for facilitating the blood-matching process. In RL, a so-called
agent is tasked with developing an optimal policy for a sequential problem. The
agent learns this policy by making decisions in an environment and learning
from these decisions. By rewarding the agent for favorable actions, and penal-
izing it for undesirable actions, the policy can be steered in an optimal direction.

This project will aim to answer the following research question:

1. Can Reinforcement Learning, specifically Deep Q-learning, be used to de-
velop an issuing policy for the distribution of comprehensively typed RBC
units?

The RBC issuing process is translated to a Markov Decision Process (MDP)
and Deep Q-learning is implemented to create an issuing policy. The goal is
to create an issuing policy that minimizes alloimmunization risks, blood bank
inventory shortages, and the outdating of RBC units. Antigen sets with 3, 5,
and 7 antigens are included in this study. MINRAR will serve as the baseline
model to which results will be compared.

2 Background

2.1 Blood Compatibility

Ensuring compatibility of the recipient’s and the donor’s blood types is essential
before proceeding with a blood transfusion. Should the recipient’s blood host any
antibodies against antigens present on the donor’s red blood cells, a transfusion
reaction could occur [18]. During such a reaction, the recipient’s antibodies will
attack the donor’s red blood cells. The severity of the immune response varies
and depends on various factors, such as the type of antigen that started the re-
action and the alloantibodies produced following the exposure. Still, the medical
complications could be life-threatening [13][25].

An individual’s main blood type is determined by the ABO blood group.
Using the ABO antigens, blood types can be categorized into 4 types: A, B, AB,
and O. An individual with blood type A has A antigens and anti-B antibodies,
indicating they cannot be matched with blood that holds B antigens (blood type
B or AB). Blood type O indicates the absence of A and B antigens. The ABO
antibodies are naturally present and are highly immunogenic, indicating they
have a high probability of inducing an immune response, which is why they are
used as the primary determinants for blood types [7].
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Additionally, the primary blood types can be further defined by the Rh(D)
antigen or ‘Rhesus factor’. The Rh(D) antigens are also highly immunogenic,
although their antibodies generally do not occur naturally. This implies that the
development of antibodies against Rh(D) antigens typically only occurs after ex-
posure to blood with incompatible Rhesus factors [8]. The presence or absence
of the Rhesus factor is denoted by + and -, respectively.

2.1.1 Matching Matching of the major blood types can be simply represented
as matching binary vectors, also illustrated by van Sambeeck et al. [23]. Table 1
shows the vectors for the blood types including the ABO and Rh(D) antigens.

O− O+ A− A+ B− B+ AB− AB+

vector [0 0 0] [0 0 1] [1 0 0] [1 0 1] [0 1 0] [0 1 1] [1 1 0] [1 1 1]
Table 1. Binary vectors for blood types when the ABO and Rhesus factor antigens
are included. Bits correspond, from left to right, to ABD.

Blood types match when every antigen present on the donor’s RBCs is also
present on the recipient’s RBCs. Let vector i denote the recipient’s blood type
and j denote the donor’s blood type. ik represents the k-th element of vector i
and jk represents the k-th element of vector j. The vectors i and j match under
the following condition:

∀k ∈ {1, 2, ...|i|} : (jk = 1 → ik = 1) (1)

Using this condition, compatibility can also be shown in a compatibility
matrix of these vectors. The compatibility matrix of the vectors representing
the major blood types is shown in Table 2.

Donor i

R
ec
ip
ie
n
t
j

[000] [001] [100] [101] [010] [011] [110] [111]

[000] 1 0 0 0 1 0 0 0
[001] 1 1 0 0 0 0 0 0
[100] 1 0 1 0 0 0 0 0
[101] 1 1 1 1 0 0 0 0
[010] 1 0 0 0 1 0 0 0
[011] 1 1 0 0 1 1 0 0
[110] 1 0 1 0 1 0 1 0
[111] 1 1 1 1 1 1 1 1

Table 2. Compatibility matrix of the major blood types. The vectors in the first
column represent the recipient’s blood type, the vectors in the first row represent the
donor’s blood type.



6

2.1.2 Comprehensive matching In addition to the three major antigens,
The International Society of Blood Transfusion (ISBT) recognizes more than
300 different minor antigens [16]. The vast majority of their antibodies are not
naturally occurring, meaning individuals must be exposed to them before they
develop corresponding antibodies [5]. Consequently, patients who undergo mul-
tiple blood transfusions face an increased risk of developing antibodies against a
variety of antigens. For these patients, it is important to conduct comprehensive
matching of clinically relevant antigens, to prevent transfusion reactions from
occurring. Table 3, adapted from van Sambeeck et al., summarizes the Dutch
matching strategy for various patient groups [23].

Patient group Matching strategy

Sickle cell anemia and thalassemia Rh phenotype, K and Fya. (and if
available, Jkb., S and s)

Autoimmune hemolytic anemia Rh phenotype and K

Myelodysplastic syndrome Rh phenotype and K

Alloimmunized with clinically im-
portant antibodies

Rh phenotype and K

Woman of childbearing age c, E and K
Table 3. Matching strategies for various patient groups according to the 2011 Duch
Transfusion guideline. Adapted from van Sambeeck et al. The antigens present in the
Rh blood group, are C, c, D, E, and e (referred to as the Rh phenotype).[23]

Ensuring comprehensive matching for all RBC transfusions would reduce
overall alloimmunization rates and simplify the matching procedure for any pa-
tients that require multiple transfusions [11]. Additionally, the standard ABO-
RhD matching reduces the availability of RBC units with rare blood types in
the blood bank inventory, since units are distributed regardless of any minor
antigens. Comprehensive matching does take all clinically relevant antigens into
account, and could, therefore, be used to reduce shortages of RBC units with
rare blood types.

Of all the known antigens, an additional 11 are deemed clinically relevant
due to their prevalence and immunogenicity. Immunogenicity is formally defined
as the probability of an antigen provoking an immune response. Evers et al.
calculated the proportion of antigen-negative patients who developed antibodies
after a transfusion with mismatched antigens in a cohort study [6]. These prob-
abilities, normalized to sum up to a total of 100%, were utilized to indicate the
severity of a mismatch on a certain antigen, shown in Table 6.
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Rel. immunogenicity

C 3.45%
c 7.06%
E 23.97%
e 8.37%
K 38.42%
Fya 4.43%

Fyb 1.31%
Jka 8.37%

Jkb 0.33%
S 1.31%
s 0.00%

Table 4. 11 minor clinically significant antigens and their relative immunogenicities.

2.2 Reinforcement Learning

Reinforcement Learning (RL) is a domain of artificial intelligence focused on
developing algorithms that learn decision-making policies through trial-and-error
[26]. Unlike supervised learning, where models are trained on labeled data, in
RL, a so-called ‘agent’ learns by receiving feedback in the form of rewards based
on their actions. RL consists of states, actions, and rewards, illustrated in Figure
1. At timestep t, the agent receives an observation from the environment, or the
state St. The agent interacts with this state through action At which leads to
a new state St+1 and a corresponding reward Rt+1. The agent uses a policy to
decide which actions to take. The received rewards for these actions represent
their contribution to achieving some goal and are used to update the policy
accordingly. As a result, actions that led to success become more likely to be
executed again, while unfavorable actions are unlikely to be repeated.

Fig. 1. Illustration of the workflow in Reinforcement Learning. Adapted from [26]

RL algorithms can be implemented in various ways. Generally speaking, RL
algorithms can be defined by the following characteristics:
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1. Model-based or model-free. In model-based RL, the agent has access to a
model that predicts the outcome of actions [22]. In model-free RL, there is
no such model and the agent has to explicitly try out actions to find out
the outcome [26]. Model-based is very useful, but such a model is not always
available.

2. Value-based or policy-based. In value-based RL, the estimations of the values
of the actions are learned. The policy is implicit and can be derived from
these values. An example is Q-learning [28]. Value-based RL works well in
environments with discrete action spaces. In continuous action spaces, policy-
based methods are better suited [20]. In policy-based RL, the actual policy
itself is learned. This policy then specifies which action the agent needs
to take. Trust Region Policy Optimization is an example of a policy-based
algorithm [24]. Some algorithms, such as Actor-Critic, combine policy and
value estimation [17].

2.3 Q-Learning

Q-learning is a model-free and value-based RL algorithm that aims to learn value
estimations of actions, referred to as ‘Q-values’ [28]. The Q-value is calculated
using the reward that the agent received by taking an action a in a state s. By
continuously updating these Q-values for each state-action pair, the agent learns
the value of actions over time. In tabular Q-learning, all Q-values are stored in
a table or Q-matrix. The values are calculated using the Bellman equation [20]:

Q′(s, a) = Q(s, a) + α[R(s, a) + γ ∗maxQ′(s′, a′)−Q(s, a)] (2)

where α indicates the learning rate, γ the discount value, R(s, a) the reward
for taking action a in state s, and Q′ and Q are the Q-values of the next and the
current state respectively. The discount factor γ is used to influence the impact
of future rewards. A value close to 1 amplifies the influence of rewards in the
distant future, while a value close to 0 prioritizes immediate rewards [20].

Over time, Q-values reflect the quality of actions and can be used to guide the
agent’s next moves. High Q-values represent the actions that have accumulated
the most cumulative reward. However, it is not always useful to simply select
the actions with the highest Q-values. In the beginning of a learning process,
Q-values do not represent the true worth of state-action pairs yet and always
choosing the action with the highest Q-value could result in the agent missing
out on potentially better, but unexplored, actions. Therefore it is necessary to
balance exploitation and exploration when performing action selection during
the training of the agent. A common approach to balance exploitation and ex-
ploration is ϵ-greedy action selection [20]. In ϵ-greedy, the ϵ parameter represents
the probability of the agent selecting the action with the highest Q-value versus
choosing a random action. This way, we encourage the agent to also explore
other options apart from just choosing the action with the highest value.
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A1 A2 A3 A4

S1 0.4 5.2 5.7 4.1

S2 0.8 0.4 6.3 0.4

S3 10.5 15.0 7.7 1.4

S4 0.5 12.0 3.0 2.4

S5 4.5 0.2 3.0 5.5

S6 5.5 12.0 0.9 0.5

S7 13.5 8.1 1.5 20.1

S8 7.5 18.0 3.0 0.9
Table 5. Example of a Q-matrix used in tabular Q-learning. In this example, there
are 4 actions and 8 different states. The cell values represent the Q-values for each
state-action combination.

2.4 Deep Q-learning

Tabular Q-learning falls short when the environment of the problem is character-
ized by a large number of states (or even an infinite number of states). It would
then require impractical amounts of memory to store and update all Q-values in
a look-up table. In such cases, a more efficient approach is to implement a neu-
ral network to approximate the Q-values, a method called Deep Q-learning [21].
This neural network, also referred to as the Q-network, takes the state as input
and predicts Q-values for all available actions. Moreover, a technique called expe-
rience replay can be utilized, in which the agent’s experiences at each time step
are stored in memory [19]. An experience, represented as et = (st, at, rt, st+1),
is saved in this replay buffer, and random samples from the buffer are used
to update the Q-network. When performing an update, the next state st+1 is
passed through the Q-network, which then outputs the predicted Q-values for
this state. Updating the Q-value of the chosen action can be performed in one of
two ways. In case the environment is ending, and an ending (or terminal) state
is reached, the Q-value will be equal to the received reward. If the next state
is not terminal, the Bellman equation is used to calculate the target Q-value.
The current state s1 is also passed through the network. The squared difference
between the Q-value corresponding to action at and the target Q-value is then
calculated, and the gradients of this loss w.r.t. the Q-network’s weights are used
to update these weights. Pseudocode for Deep Q-learning, adapted from Mnih
et al, is provided in Algorithm 1 [19].
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Algorithm 1: Deep Q-learning with experience replay, adapted from
Mnih et al. [19]

1 Initialize experience replay buffer B
2 Initialize Q-network with random weights θ
3 for timestep t = 1...T do
4 With probability ϵ select action at,
5 otherwise select at = argmaxaQ((st), a; θ)
6 Execute at and receive state st+1 and reward rt
7 Store experience (st, at, rt, st+1) in B
8 Sample experience (ss, as, rs, ss+1) ∼ B
9 if sj+1 is terminal then

10 ys = rs;
11 else
12 ys = rs + γ ∗maxas+1Q((ss+1), as+1; θ)
13 Gradient descent with [ys −Q(ss, as, θ)

2] as loss

3 Related work

3.1 Optimal blood issuing by comprehensive matching

In 2022, van Sambeeck et al. developed a mathematical framework for the distri-
bution of comprehensively matched RBC units [23]. Their research investigated
the feasibility of an issuing policy for RBC units typed with more than just the
ABO-RhD antigens. The authors represented the blood types as binary vectors
and formulated the RBC distribution as a minimum cost flow problem (MFCP),
an optimization method that aims to find the cheapest flow through a directed
graph. Three distinct issuing policies —FIFO (First-in-First-out), MROL (min-
imize relative opportunity loss), and a combined FIFO/MROL policy— were
investigated. In the MROL policy, relative opportunity loss quantifies the rela-
tive loss of a match when an RBC unit with type i is issued to a request with
type j.

The study investigated scenarios including 8 antigens and 14 antigens, con-
ducting simulations with varying shelf lives of RBC units, inventory size in weeks,
and the three issuing policies. In the 8-antigen setting, shortage and outdating
rates remained below 1% in nearly all scenarios when a maximum shelf life of 21
days or longer was selected. When including 14 antigens and a maximum shelf
life of 28 days or longer, outdating and shortage rates were kept under 5 % in
almost all scenarios.

3.2 MINRAR

Weem et al. proposed a matching strategy, MINRAR (MINimize Relative Al-
loimmunization Risks), that utilizes linear programming for developing an issu-
ing policy for the matching of comprehensively typed RBC units [29]. MINRAR
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was compared to using the FIFO/MROL ABO-RhD strategy of van Sambeeck
et al [23]. In linear programming, the aim is to minimize or maximize an ob-
jective, within the bounds of predefined constraints. In the MINRAR context,
the objective function was designed to minimize shortages, outbreaks, and the
cost associated with major and minor antigen substitutions. Penalty costs for
major antigen substitutions were calculated based on antigen prevalence, while
relative immunogenicity was used to calculate penalty costs for minor antigen
substitutions. Evaluation of MINRAR involved multiple 1-year simulations us-
ing simulated request and inventory data across various inventory sizes. Re-
sults indicated a notable 78.2% reduction in alloimmunization risk compared to
the FIFO/MROL ABOD policy, without an increase in shortages and outdated
units. In the scenario with the largest inventory size, MINRAR surpassed the
baseline even further, with a 93.7% decrease in alloimmunization risk.

MINRAR provides the basis of our research. While MINRAR’s results are
promising, it is limited by the prerequisite of defining constraints before opti-
mization. In Reinforcement Learning, an agent can learn a policy without explicit
constraints, meaning there is potential for finding a policy that leads to lower
alloimmunization risks.

4 Methodology

4.1 Data simulation

The state is created from a combination of hospital request (demand) data and
blood bank inventory (supply) data. This data is simulated according to the
actual Dutch hospital demand statistics, blood bank inventory statistics, and
antigen prevalence in the population.

4.1.1 Demand data In the demand data, daily RBC requests are described.
Features of a request include the blood type (14 antigens), the number of re-
quested units, the patient type, and the lead time of the request, which is the
duration between the request being known and the actual transfusion. Overall,
the lead time for all requests was limited to a maximum of 7 days. The patient
type distribution is shown in Table 6. In the data simulated for this study, only
one hospital is included. For this hospital, the average daily demand is assumed
to be 50 RBC units.

4.1.2 Supply data Supply data represents the inventory of the blood bank.
Like the demand data, it is assumed that each unit is typed for 14 antigens.
The major antigen prevalence in the simulated supply data represents the actual
antigen distribution in the donor population and is shown in Figure 2. The minor
antigens are sampled according to their prevalence in the Caucasian population.
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Patient group Distribution

Allo 3.16%

SCD / Thal 1.72%

MDS 0.00%

AIHA 1.49%

Wu45 4.94%

Other 88.69%
Table 6. Patient group distribution used in the simulated data. The data originates
from the patient distribution of a hospital in Amsterdam, OLVG East.

Fig. 2. Blood type distribution of the major blood groups (including A,B, and Rh(D)
antigens).

4.2 Environment

4.2.1 State space Each state is a matrix representation of the inventory of
the blood bank (supply data), along with information on the pending donor
requests from the hospital (demand data). The matrix representing the state
consists of 2 concatenated matrices: one for the inventory (I), and one for the
requests (R).

Matrix I The row indices of the matrix I correspond to specific blood groups.
The binary vector representation of a blood group, as introduced in Table 1, can
be transformed into an integer number (the row indices) and these are ordered
from 0 to 2n − 1, where n represents the number of included antigens. The
columns in the matrix denote the age of blood products. In this study, the
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maximum age of an RBC unit is set to 35 days, in line with the Dutch blood bank
(Sanquin) policy [1]. Each cell in the matrix displays the number of blood units
available for a specific blood group and age combination. A visual representation
of matrix I is displayed in Figure 3.

I =



0 1 2 3 4 5 6 · · · 34

0 0 2 5 3 0 0 4 · · · 3
1 3 0 0 2 0 1 3 · · · 5
2 0 5 2 0 4 1 4 · · · 1
3 4 4 3 0 3 0 3 · · · 0
4 0 5 1 0 0 3 4 · · · 3
5 3 0 4 2 1 0 0 · · · 0
6 0 2 3 4 0 0 4 · · · 3
7 0 4 3 0 5 3 0 · · · 0


(3)

Fig. 3. An example representation of matrix I in any state. This state is designed with
only the A, B, and Rh(D) antigens, and the maximum age of a blood product is set to
35 days. Each row number corresponds to a blood group, while the columns correspond
to the age of the blood unit. In this specific example, there are 5 remaining blood units
with a blood group of O- and an age of 2 days (see red entry).

Matrix R In this matrix, data on the number of requests for each blood group
is stored. The row numbers correspond to the same blood groups as in matrix
I. Matrix R has 9 columns. The first 8 columns indicate the lead time: how
many days there are left until the request must be matched. Each request is
handled independently. The 9th column is filled with 0’s, except for one: this is
the request that the agent is currently handling in this specific state.

R =



8 7 6 5 4 3 2 1 HR

0 0 2 5 3 0 0 4 3 1
1 3 0 0 2 0 1 3 5 0
2 0 5 2 0 4 1 4 1 0
3 4 0 3 0 3 0 3 0 0
4 0 5 1 0 0 3 4 3 0
5 3 0 4 2 1 0 0 0 0
6 0 2 3 4 0 0 4 3 0
7 0 4 3 0 5 3 0 0 0


(4)

Fig. 4. An example representation of matrix R in any state. In this state, only the A,
B, and Rh(D) antigens are included and the maximum lead time of a blood unit is
set to 7 days. The row numbers represent the same blood groups as matrix I. Column
HR indicates the request that is currently being handled. In this specific example, the
agent is handling the donor requests in row 0 (blood type O-, marked red).
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The full state consists of the concatenation of matrices I and R: [I,R]. The
matrix is flattened when used as input for the Q-network. Note that the dimen-
sion of the state matrix is dependent on the number of included antigens the
maximum age of inventory products and the maximum lead time of requests.
Including more antigens increases the number of possible blood types, which
increases the number of rows in the matrix. The number of columns depends on
the maximum age and lead time. The dimension of the state can therefore be
formulated as 2n ∗ (A + LT ), where n represents the number of included anti-
gens, A the maximum age of an RBC unit, and LT the maximum lead time of
a request.

4.2.2 Action space In a given state, the agent must choose a blood unit to
issue according to the request at hand. The action space, therefore, consists of all
the possible blood groups included in the environment configuration. In the same
way, the blood groups are represented as integers in the state, the agent’s action
is simply an integer representing a blood group. The total number of possible
actions equals 2n, where n represents the number of antigens considered.

4.2.3 Step simulation Episodes in the simulation consist of days and each
day has several requests that the agent must handle. The distribution process is
handled request-by-request, so in a single time step, the agent is handling one
request (indicated by the 9th column in the state matrix) and will choose a single
unit to match this request. When the agent chooses an action, the state will be
updated accordingly. Matrix I is updated by removing the chosen blood product
from inventory, if it is available, where the oldest product is removed first. The
handled request is removed from matrix R. This way, the agent proceeds to
handle all requests, until all requests on a single day have been handled. When
a new day starts, the age of all products is increased, outdated products (with
an age > 35) are removed, the lead time of requests is decreased, the inventory
is filled up to its maximum capacity of 150 products, and new requests are
sampled for the day. Filling the inventory up to its maximum capacity ensures
that shortages and outdated units can be attributed to the issuing policy and
not to the inventory levels of the blood bank.

4.2.4 Reward calculation In the reward system, the agent is only penalized
with negative rewards, meaning the maximum (best) reward an agent can get
is 0. A reward is calculated for each action the agent chooses so for each time
step. Reward calculation is shown in Algorithm 2. When a unit is matched with
a request, relative immunogenicity weights are used to calculate penalties for
mismatched antigens. The weights used in this study are shown in Table 7.



15

2: Reward system

Input : Inventory I, issued product i, request r,
weights w for each antigen a

Initialize: Reward R = 0
1 if i ∈ I then

// Compatible on the A, B, and Rh(D) antigens

2 if i and r are not compatible then
// Penalty of 10 for shortage and 1 for discarded product

3 R -= 10 + 1

4 else
5 for i in v do
6 if a /∈ r then
7 R -= w[a]

8 else
9 R -= 50

Antigen Immunogenicity weights

Fya 0.0443

Fyb 0.0131

Jka 0.0836

Jkb 0.0033
Table 7. Relative immunogenicity weights for the antigens included in this study.
Weights are derived from the relative immunogenicity values stated in Table 6.



16

5 Experimental analysis

Various experiments are performed to identify which methods and hyper-parameters
would result in the best-performing Deep Q-learning model. Several different
measurements are plotted and shown in this section:

1. Training reward per simulated day. Training is performed online, meaning
the agent is exposed to new training data at each time step. Training reward
shows how well the agent learns to choose actions that are valuable.

2. Number of matched requests per day. I.e. requests matched in lines 4 - 7 in
Algorithm 2. This measurement provides more insight of DQN’s performance
in the actual problem.

3. Shortages of RBC units (issuing products that are not compatible and there-
fore discarded) and outdating of RBC units (units remaining in inventory
with an age > 35 days). Goals of the distribution policy is to prevent short-
ages and outdated products as much as possible. Hence, these measurements
are reported.

Performance measurements are plotted per simulation day. An episode has
800 simulation days. 800 days provides a balance between a reliable training
time and the required computational time required. On average, a day will have
50 requests (or 50 time steps). Episodes are indicated in the plots by the blue
vertical lines. Considering the time scope of this project, only 3 sets of antigens
are researched: a 3-antigen setting with A, B, and Rh(D), a 5-antigen setting
with A, B, Rh(D), Jka, and Jkb, and a 7-antigen setting A, B, Rh(D), Jka, Jka,
Fya, and Fyb. The resulting size of the state matrices are 8 x 43, 32 x 43, and
128 x 43, for each setting respectively. The architecture and hyperparameters
used for the Q-network and the DQN methods are shown in Table 8.

5.1 Learning rate tests

To ensure efficient updating of the Q-network weights, experiments with varying
learning rates are performed. A high learning rate can provide fast convergence,
but the model might never learn the optimal weights, since the weight adjust-
ments are too large to move in the optimal direction. While a low learning
rate could cause slower convergence, but a higher chance of finding the optimal
weights. The network was tested with learning rates 1E−2, 1E−3, and 1E−4.
All experiments were performed for 30 episodes or 800 ∗ 30 = 24.000 simulation
days.

Figure 5 depicts the daily total training reward and the proportion of matched
requests for various learning rate tests. The left column illustrates results for the
3-antigen setting using antigens A, B, and Rh(D), while the right column dis-
plays outcomes for the 5-antigens setting, including A, B, Rh(D), Jka, and Jkb.
Across all experiments, it is clear that adjusting the learning rate significantly
impacts the performance and computational time.
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Hyperparameter Value

Optimizer Adam

Input 8 x 43 = 344 (3 antigens)
32 x 43 = 1376 (5 antigens)

Batch size 64

Output 8 (3 antigens)
32 (5 antigens)

Layers 64, 32

Learning rate* 1E − 2/E − 3/1E − 4

Activation ReLu

Loss function MSE

ϵ 0.1

γ 0.98

DDQN (f)* 100/1000
Table 8. Architecture and hyperparameters for the Q-network and DQN methods
used in the experiments. Hyperparameters denoted with * vary depending on the ex-
periment. The differences in NN architecture between the 3-antigen setting and the
5-antigen setting are also noted. ϵ is the probability of choosing a random action, γ is
used to prioritize future rewards vs immediate rewards (see section 2.3)

The highest learning rate, 1E − 2, learns the quickest but reaches the low-
est performance in most experiments. In the 3-antigen setting, the difference
in performance is not significant compared to the other learning rates. After
30 episodes, the reward converges at slightly above -250 and the proportion of
matched requests reaches 0.9. The other learning rates only slightly outperform
1e−2. In the 5-antigen setting, however, this learning rate does again learn the
quickest but reaches a much worse performance compared to the other learning
rates.

A learning rate of 1E − 4 is, as expected, the slowest learner in all experiments.
In the 3-antigen setting, convergence is attained, but it takes slightly longer than
with the other learning rates. Over time, this learning rate does achieve a pro-
portion of matched requests above 0.9. In the 5-antigen setting (second column
in the figure), it can be observed that the model has not reached convergence
yet after 30 episodes of training, indicating that, with longer training time, a
learning rate of 1E − 4 could achieve better results.

A learning rate of 1E − 3 provides our optimal balance between computational
time and algorithm performance. In the 3-antigen setting, the agent consistently
matches over 90% of requests regularly. In the 5-antigen setting, the agent’s re-
ward and proportion of matched requests are much higher after 30 episodes than
in the other settings. Daily reward converges around -250, with the percentage
of matched requests nearing 90%, approaching the performance level observed
in the 3-antigen setting.
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Fig. 5. On the left, the total daily training reward is plotted for the various learning
rate tests. Experiments were performed with learning rates 1E−2, 1E−3, and 1E−4.
On the right, the proportion of matched requests is plotted. The total training time
was 30 episodes for each setting.

5.2 Pre-training the Q-network

For this study, the MINRAR optimization code is available, which allows for
using this near-optimal matching policy to train the Q-network in a supervised
manner, before starting the Q-learning algorithm. This way, the Q-network will
be pre-trained and the agent will have some prior knowledge to estimate the
quality of the task. Which may increase algorithm performance and decrease
computational time.

For a total of [x simulated days/episodes] MINRAR is used to assign in-
ventory products to requests. For every issued product, the current inventory,
known requests, and the match that is made are transformed into a state-action
pair as described in Section 4.2. Each state-action pair is stored as data, and
finally used to train the Q-network to predict the MINRAR-optimal action given
a state. Subsequently, the weights of this neural network are saved and used to
‘kick-start’ the Q-learning process.



19

5.2.1 Supervised Learning The architecture of the neural network is shown
in Table 9. In our previous learning rate tests, a learning rate of 1E−3 provided
the best trade-off between computational time and performance, hence we con-
tinue with this setting. The cross entropy loss is used, since this problem can be
defined as a multi-class classification problem [9]. In order to simplify copying
of the weights of the trained network to the Q-network in DQN, the rest of the
architecture is kept the same.

Hyperparameter Value

Optimizer Adam

Input 8 ∗ 43 = 344

Batch size 64

Output 8

Layers 64, 32

Learning rate 1E − 3

Activation function ReLu

Loss function Cross Entropy Loss
Table 9. Architecture and hyperparameters used in pre-training the Q-network.

An analysis of the class distribution, which can be found in Appendix A.1,
shows that the dataset for pre-training the Q-network is highly imbalanced. Ac-
tions 1 and 5, representing blood groups O+ and A+, are executed much more
often than all other classes. Imbalances in the dataset could lead to poor per-
formance of the network on minority classes. Therefore, a weighted sampler was
implemented that, during training, uses the class frequencies to sample all classes
evenly.

The data was split into a train set (70%) and a validation set (30%). The
validation set is used to test the performance of the network on unseen data. The
neural network was trained for 50 epochs. An epoch is a complete run through
the available data. Each epoch consists of 250 training batches and 50 validation
batches. Since the batch size is 64, a total of 16.000 training samples and 3.200
validation samples were used. The training and validation loss and accuracy are
depicted in Figure 6.
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Fig. 6. The accuracy and loss plots over time for training a neural network on the 3-
antigen setting MINRAR optimized data. The neural network architecture is described
in Table 9. The model was trained for 50 epochs. 250 batches for training and 50 batches
for validation. The model performs much better on the validation set compared to the
training set.

The training graphs show that the model’s performance increases quickly,
plateauing at around 15-20 epochs, with the validation accuracy consistently
reaching 80 - 82 %. Remarkably, the graphs also show that the model performs
much better on the validation set then on the training set. The validation accu-
racy achieved is around 10 p.p. higher and the loss is 0.1 lower than the training
loss. This can be attributed to the underlying distribution of the validation set
compared to the test set. Due to the weighted sampler, the train set contains
evenly distributed classes, whereas, in the validation set, classes 1 and 5 are
over-represented. Even though a weighted sampler is used, the variety in classes
1 and 5 still results in better generalizability of these classes to new data. The
weighted sampler does ensure greater performance overall, which is confirmed by
re-running the experiments without sampling (results are depicted in Appendix
A.1). On the test set, the network achieves a loss of 0.7592 and an accuracy of
79.67%.

The same supervised learning experiment was performed on the 5-antigen
setting. A similar class imbalance was found and can be viewed in Appendix
A.1. The model was again run for 50 epochs. The accuracy and loss plots are
shown in Figure 7.
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Fig. 7. Accuracy and loss over time for supervised training of the 5-antigen setting.
Architecture can be found in Table 8. Training was done for 50 epochs.

Similarly to the 3-antigen setting, the model achieves better accuracy per-
formance on the validation set compared to the train set. Accuracy reaches ap-
proximately 60% and 54%, for the validation and train set, respectively. Again,
this can be attributed to the difference in class distribution and variety between
the two sets. On the test set, an accuracy of 59% and a loss of 1.4124 is achieved.

5.2.2 Supervised learning: convolution The low performance of the NN
on the 5-antigen setting, compared to the 3-antigen setting, could be due to the
increased dimension of the state matrix (32 x 43, compared to 8 x 43). Flat-
tening the matrix and feeding it into a fully connected NN might complicate
finding relations within the data and result in a more complex task to learn. To
investigate this, a convolutional neural network (CNN), that takes the complete
unflattened matrix as input, was also implemented to investigate if higher accu-
racy rates could be achieved. A simple CNN was implemented, the architecture
is described in Table 10. In the CNN architecture, feature maps refer to the
output of a layer in a CNN. The kernel size is the size of the matrix used for
convolution. The stride is the step size used for moving the kernel across the
input and the padding refers to adding pixels on the edges of the input data to
retain the original dimensions.

Accuracy and loss plots are displayed in Figure 8.
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Type Feature maps Kernel size Stride Padding

Layer 1 Conv2D 32 3 x 3 1 1

Layer 2 MaxPool - 2 x 2 2

Layer 3 Conv2D 64 3 x 3 1 1

Layer 4 Max Pool - 2 x 2 2

Layer 5 Conv2D 128 3 x 3 1 1

Layer 6 Linear 64 - -

Layer 7 Linear 32 - -
Table 10. Architecture used for the implemented CNN in the convolutional supervised
learning experiment.

Fig. 8. Training accuracy and loss plots for the 5-antigen setting, using the CNN from
Table 8.

As can be seen in the plots, convolution only improves accuracy by a small
margin (61% and 55%) compared to flattening the matrix and using a feed-
forward NN. Hence, further experiments are continued with the previous fully
connected NN. It could also be argued that an accuracy of 60% is good enough
since the aim is to simply kick-start the Q-learning, not to reach the most optimal
NN.

5.2.3 Kick-starting Q-learning The trained weights from the supervised
learning experiments are saved and used to ‘kick-start’ the Q-learning. Figure 9
shows the performance in the 3-antigen setting with and without a pre-trained
Q-network.
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Fig. 9. The reward plot (left) and the proportion of matched requests (right) for kick-
starting the Q-network versus training from scratch. Training was done for 10 episodes.
The architecture of the NN is shown in Table 9.

Using a pre-trained network makes the agent start at a higher base reward,
around -1,000 kick-started versus -1,500 from scratch, and the agent reaches
higher rewards slightly faster. In the proportion of matched requests, a similar
performance increase is observed: a higher start base (approx. 0.6 vs 0.4) and the
proportion of matched requests reaches rates above 0.90 after 1,000 simulation
days (kick-started), while training from scratch takes around 2,500 days to reach
the same performance. Training from scratch does catch up with the kick-started
network over time. This slight increase in performance and computational speed
might be even greater in more complex settings, such as using 5 or 7 antigens.
Hence, the same experiment was performed in the 5-antigen setting.

The results of the same experiments in the 5-antigen setting with the learning
rate at 1 ∗ E − 3 and 1 ∗ E − 4 are shown in Figure 10.
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Fig. 10. Daily total training reward (left) and proportion matched requests (right)
with ‘kick-starting’ the Q-network in the 5-antigen setting. Learning rates 1E − 3 and
1 ∗ E − 4 were tested. Training was performed for 50 episodes.

With the learning rate set at 1E− 3, the kick-started network learns slightly
faster but is quickly caught up with by the network trained from scratch. With
the learning rate set at 1E−4, the kick-started network learns much faster. The
model consistently matches over 60% of requests after 5,000 simulation days
compared to 10,000 days when starting from scratch.

5.3 Double Deep Q-Learning

To investigate whether performance could be increased further, a variation of
the Deep Q-learning algorithm was implemented: Double Deep Q-learning. In
the original DQN algorithm, the max argument in the update function could
lead to an overestimation of Q-values and poorer policies. A solution for this is
the addition of a second Q-value estimator, first proposed in 2010 by van Hasselt
et al [14]. In Deep Q-learning, this second estimator is implemented in the form
of an additional Q-network [15]. The second estimator is used to evaluate the
states to prevent overestimation of Q-values. Updates to the second estimator’s
weights are only performed at a predefined interval of time steps.
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Action selection is performed in the same way as in the original DQN, using
the Q-network with weights θ. Evaluation of states during the update of the Q-
network, however, is done with the additional Q-network with weights θ′. This
means the update function changes as follows:

ys = rs + γ ∗maxas+1Q((ss+1), as+1; θ
′) (5)

An additional hyperparameter (f) is introduced that controls after how many
updates the weights of the Q-network (θ) are copied to the second Q-network
(θ′).

Experiments are performed with varying values for f to investigate whether
Double Deep Q-learning improves performance. In the 3-antigen setting, the
same architecture as described in Table 5 is used, with the learning rate set at
1E − 3. Experiments were performed by updating the double Q-network each
100 time-steps and 1,000 time-steps (f = 100 and f = 1000). The algorithm was
run for 10 episodes, the reward and number of matched requests are plotted in
Figure 11.

Fig. 11. On the left, the daily training reward for the various frequency updates is
shown. On the right, the number of matched requests is plotted. The performance of
the original Deep Q-learning algorithm (DQN) is also included.

Updating the second Q-network every 100 time-steps slightly improves speed
and performance in the 3-antigen setting. A frequency of 1,000 results in the
fastest learning: matching 80% of requests after 1,000 days versus around 1,500
days in the original DQN.

Similar experiments were conducted in the 5-antigen setting. Results are
shown in Figure 12. Again, faster learning can be observed when the DDQN
algorithm is implemented. A frequency of 100 does not differ much from a fre-
quency of 1000.
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Fig. 12. Daily reward plots and number of matched requests in the DDQN algorithm
for the 5-antigen setting.

5.4 Comparison to MINRAR

To evaluate the performance of the Q-learning models, the best-performing mod-
els are compared to the MINRAR model. For the 3-antigen setting, this means
kick-starting the network before the Q-learning and using the DDQN algorithm
with the frequency set at 1,000. For the 5-antigen setting, the same architec-
ture is used, apart from kick-starting, as did not yield any improved results.
The DQN algorithm was tested on the same test episodes in both the 3- and
5-antigen setting. The test set consisted of 2,400 simulation days in total. The
number of matched requests, shortages, outdated units, and the number of anti-
gen mismatches (5-antigen setting) are stated in Table 11.

M. requests Shortages Outdates Mism. Jka Mism. Jkb

DQN
3 antigens

112,174
(92.98%)

8,473 (2.35%) 108 (0.003%) - -

MINRAR
3 antigens

120,032
(99.49%)

48 (0.04%) 41(0.001%) - -

DQN
5 antigens

104,490
(86.61%)

16,157
(4.48%)

2,571 (0.07%) 18,462
(0.15 p.r.)

21,134
(0.18 p.r.)

MINRAR
5 antigens

120,129
(99.43%)

688 (0.19%) 123 (0.003%) 8,568
(0.07 p.r.)

7,992
(0.07 p.r.)

Table 11. Matched requests, shortages, outdated units, and the number of antigen
mismatches for the DQN models compared to MINRAR. Total numbers for the entire
test simulation (2,400 days) are given. For the matched requests, the proportion of the
total number of requests (120.647) is given. For the shortages and outdated units, the
proportion of the total number of products in inventory is given. The average number
of mismatches per request (p.r.) is also stated.
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Hyperparameter Value

Optimizer Adam

Input 8 ∗ 43 = 344 (3a)
32 ∗ 43 = 1376 (5a)

Batch size 64

Output 8 (3a)
32 (5a)

Layers 64, 32

Learning rate 1E − 3

Activation function ReLu

DDQN True, f = 100

Loss function MSE
Table 12. Architecture and hyperparameters of the Q-networks used for testing. For
the in- and output, the values for both the 3-antigen (3a) and the 5-antigen (5a) settings
are shown.

Table 11 shows that DQN has not reached the performance of MINRAR
yet. MINRAR matches considerably more requests with a compatible product
in both the 3-antigen (99.49% vs 92.98%) and the 5-antigen setting (99.43% vs
86.61%). When considering 5 antigens, MINRAR has an average of 0.07 antigen
mismatches per request for both Jkaa and Jkab. More than half the amount of
DQN: 0.15 and 0.18, for Jkaa and Jkab, respectively.

MINRAR was also evaluated using the reward system in the DQN algorithm.
This shows how MINRAR would perform if its unit distribution was evaluated
using the same conditions as in the DQN model. As expected from the statistics
in Table 11, MINRAR reaches higher rewards than DQN when evaluated with
the same reward system. MINRAR achieved an average reward of -19.99 vs -41.12
for the DQN model in the 3-antigen setting. In the 5-antigen setting, MINRAR
got a reward of -77.89 versus -269.09 for the DQN model.

5.5 Policy analysis

The reward system in the DQN algorithm is set to optimize the policy to achieve
the following objectives:

1. Prevent discarded units by matching compatible RBC units.
2. Allocate RBC units that are existent in inventory.
3. Prevent discarding of RBC units due to outdating.

To investigate whether the implementation achieved the desired results, the
number of units that are 1)issued but non-existent, 2)issued but discarded, and
3)outdated are plotted over the training time in Figure 13.
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Fig. 13. Number of discarded, outdated, and non-existing issued units in the best-
performing 3-antigen and 5-antigen setting.

As depicted in the plots, there is a noticeable decline over time in both the
number of outdated units and non-existent units. This indicates that the policy
is indeed optimized in the correct direction. Interestingly, although the number
of units discarded remains low, it increases slightly over time.

For the 5-antigen setting, the policy is further optimized with an additional
condition: minimizing the number of minor antigen mismatches. Figure 14 dis-
plays the number of relative mismatches for antigens Jka and Jkb over time.
Relative mismatches are used because the total mismatches are expected to rise
as the agent learns to match more compatible units. For an antigen x and a total
number of daily requests r, the relative mismatches per day are calculated as
follows:

Relative mismatches =

∑r
j=0 mj,X

s
(6)

WhereM denotes the number of mismatching antigens for that specific match
and s denotes the total number of matched requests.
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Fig. 14. Relative mismatches per antigen for the DDQN algorithm in the 5-antigen
setting. Relative mismatches are calculated according to equation 6.

As the agent issues units, the relative number of mismatches for both antigens
increases in the beginning. After some training, relative mismatches decrease
slightly, however, a more or less stable value of around 0.17 for Jkb and 0.21 for
Jka is reached after approximately 10,000 training days. Mismatches for antigens
Jka and Jkb follow a similar trend.

5.6 7 antigens

Finally, experiments were performed including a total of 7 antigens: A, B, D,
Jka, Jkb, Fya, and Fyb. Since this is a much more complicated task, with a state
matrix of 128 x 43, the algorithm was run for 100 episodes or 8,000 simulation
days. The same architecture was used, described in Table 5, with a learning rate
of 1E−3. Figure 15 shows the daily reward and the number of matched requests.
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Fig. 15. The reward and number of matched requests for the 7 antigen-setting. The
model was run for a total of 100 training episodes.

After 100 training episodes, the model reaches rewards of around -1000 and
matches 60% of requests. The algorithm has not converged yet, indicating more
training time is required, which expected considering the complexity of the 7-
antigen setting.

6 Discussion

6.1 Overall performance

This study showed that DQN is suited for creating an issuing policy for the dis-
tribution of RBC units. In the 3-antigen setting, DQN could consistently match
over 90% over requests and up to 90% in the 5-antigen setting. Shortages and
outdated units were kept to 2.35% and 4.48%, for the 3- and 5-antigen settings
respectively. In the 5-antigen setting, the average number of mismatches per mi-
nor antigen remains quite low: 0.15 and 0.18, for Jka and Jkb respectively. The
number of units issued and discarded, non-existent units, and outdated units
were minimized over time, showing the policy was steered in the desired direc-
tion. While promising, the DQN’s performance is not near that of MINRAR yet.
MINRAR can match up to 99% of requests in the same scenarios while keeping
shortages to 0.19% and achieving roughly half the amount of mismatches per
request.

It must be noted, though, that the current implementation of DQN is fairly
simple. A small NN (2 hidden layers: 64, 32) is already able to capture the tasks
of the 3- and 5-antigen settings relatively well. In the 7-antigen setting, this
small NN can achieve 60% matched requests. A larger NN might achieve better
results since it is better able to capture the relations within the data.
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6.2 Methods review

Kick-starting the network seems promising. In the 3-antigen setting, the agent
was able to learn faster and started at higher initial rewards. In the 5-antigen
setting, however, the best agent was not kick-started. While kick-starting may
provide some knowledge to the agent and increase computational speed, it could
inhibit the agent; the prior knowledge might cause the agent to over-exploit cer-
tain actions since these will have high Q-values from the beginning. This might
be the case here since there was a clear difference in the performance of the
3-antigen NN (79% accuracy) and the 5-antigen NN (60% accuracy). With more
time, a better network could be trained that may exhibit a performance increase
in the 5-antigen scenario and other antigen scenarios as well.

The Double Deep Q-learning algorithm clearly increased performance. Faster
learning and higher rewards were observed. More experiments regarding the fre-
quency of updating the second network should be performed in further research.

6.3 Future work

Future work should focus on extending the model to include more relevant anti-
gens and improve overall performance to approximate, or surpass, that of MIN-
RAR. The results for the 3-antigen, 5-antigen, and 7-antigen settings show that
increasing the number of antigens significantly increases learning complexity. 7
antigens take over 100 training episodes to only match around 60% of requests.
Including up to 14 antigens, which is the number that is considered clinically rel-
evant for matching, might be too complex for the DQN agent to learn all at once.

A possible approach could be to implement a form of incremental learning.
Incremental RL involves an environment that is dynamic and adaptable, mean-
ing the state and action spaces can change. In this context, incremental learning
could be used to expose the Q-learning model to more antigens over time. Initi-
ating learning with a low number of antigens, such as 5 or 7, and incorporating
more antigens gradually whenever the model reaches convergence. The challenge
lies in the implementation of the states. Adding in antigens not only increases
the number of input and output neurons in the neural network but also alters
the ordering of the blood groups in the state matrix. A possible solution would
be to start with the entire 14-antigen state and apply masks to the non-included
antigens. Over time, the masks can be progressively removed to include more
antigens. Incremental learning has proved its worth already in various other do-
mains, such as computer vision and robotics [10] [27].

While DQN has shown promising results, other RL methods could also be ex-
plored to improve results. Actor-critic methods provide more stable and sample-
efficient learning since they combine value estimation (which offers the advan-
tage of low variance) with policy estimation (low bias) [20]. When including
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more antigens, more training samples are necessary to achieve decent results.
A state-of-the-art method that could deal with this high sample complexity, is
Soft Actor-Critic [12]. Future work could also focus on more extensive reward
shaping, specifically for mismatching. In the current implementation, mismatch-
ing has not decreased significantly over time. This might be because the relative
immunogenicity weights used are too small compared to the rewards for the min-
imizing of non-existent products, discarded products, and outdated products.
The rewards could be shaped dynamically over time: increasing the penalties
for mismatching relative to the distribution of units, to emphasize mismatching
more once the agent has learned to issue mostly compatible units.

Finally, a larger Q-network combined with more extensive hyper-parameter
tuning may also achieve better results.

6.4 Thesis obstacles

During this MSc. thesis, various obstacles along the way limited overall pro-
gression. For a long period (4/5 months), undiscovered bugs in the algorithm
code led to the assumption that DQN was not suitable for the RBC distribution
task. The first part of the project consisted mostly of trying out many different
experiments to just get the algorithm working. The conclusion that this task is
simply not learnable by RL was already drawn and this was going to be the main
conclusion of the thesis. It was not until small bugs in the code, relating to the
copying of variables between classes, that the DQN algorithm started working.
Once bugs were discovered, little time was left to re-run experiments and get
the most out of the algorithm (such as extending to more than 7 antigens).

Before the DQN algorithm started working, many approaches were tried to
just get the algorithm running. These include hyper-parameter optimization, de-
creasing the number of antigens, decreasing the maximum age and lead times
to simplify learning, also the idea of ‘kick-starting’ the network originated from
this issue to see if this would get the code working. The scope and direction of
the thesis were therefore different from how it turned out in the end. When the
algorithm did start working, it turned out that even simple methods and very
little tuning already provided decent results.

Additionally, complications arose with the use of LIACS virtual machines.
Regular downtimes, user storage limits, and killing of processes after running for
periods of time-limited thesis progression as well.

7 Conclusion

The goal of this study was to answer the following research question:

1. Can Reinforcement Learning, specifically Deep Q-learning, be used to de-
velop an issuing policy for the distribution of comprehensively typed RBC
units?
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Results showed that DQN is indeed suited for this task. With DQN, it is
possible to develop an issuing policy that can match up to 86% of requests, when
considering 5 antigens, while keeping the proportion of discarded and outdated
units below 5%. A simple DQN implementation was also able to match up 60% of
requests when including 7 antigens. The initial results are promising, but further
research is necessary to extend the model to include more antigens and improve
performance. Further research could include more extensive hyper-parameter
tuning, incremental learning, and the use of more state-of-the-art RL methods.

A Supervised Learning

A.1 Class imbalance and classification reports

In the supervised learning experiments, described in section 5.2.1, the MINRAR
optimized data was used to pre-train the Q-network. Due to the distribution of
blood groups among the patient population, MINRAR’s policy leads to a larger
proportion of the O+ (class 1) and A+ (class 5) classes in the dataset. Figure
16 shows the histogram of the class occurrence in the dataset.

Fig. 16. The distribution of all classes in the 3-antigen MINRAR optimized dataset.
Classes 1 (O+) and 5 (A+) are majority classes and represent the largest part of the
dataset. The total number of data samples is 915.579.

Further analysis of the supervised training experiment includes a classifica-
tion report, which shows the precision, recall, and F1-score per class.
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Precision =
TP

TP + FP
(7)

Where TP is the number of ‘true positives’ and FP the ‘false positives’.
The recall calculates how many of the actual relevant classes were correctly

predicted and is calculated as:

Recall =
TP

TP + FN
(8)

Where FN stands for ‘false negatives’.

The F1-score is a combined metric of precision and recall and is calculated
as follows:

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(9)

The metrics for each of these measurements per class are shown in the clas-
sification reported depicted in Figure 17.
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Fig. 17. The test set classification report for the 3-antigen setting. The y-axis labels
(0-7) correspond to the integer mapping of the blood groups. The precision, recall,
and F1-score are shown per class. The model achieves an accuracy of 0.79 on the test
set. The model performs best in classes 1 and 5, with an F1-score of 0.85 and 0.89,
respectively.
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Fig. 18. Class distribution in the 5-antigen dataset. Similarly to the 3-antigen dataset,
classes are highly imbalanced, with classes 7 and 23 being the biggest.
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Fig. 19. Precision, recall, and f1-score for each class in the 5-antigen supervised learning
task.

A.2 Supervised learning without weighted sampler

When using a weighted sampler, the NN performed better on the validation set
than on the test set. To confirm this was due to the variation in distribution
between the two tests, caused by the weighted sampler, the experiments were
run again without a sampler. Results are depicted in Figure 20. The plots show
that, when a weighted sampler was not used, the classifier overfits quickly on
the training set.
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Fig. 20. Accuracy and loss when training an NN on the MINRAR optimized data
without a weighted sampler.
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