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Abstract

Value propagation-based spatial interpolation (VPint) is an interpolation algorithm
created with Python for spatial missing data, with one of its applications being
cloud removal from satellite images. However, compared to other methods, such as
neural networks and moving average methods, VPint has a much longer running
time. To illustrate, using a grid size of 40000, a moving average model has a
running time of 100 seconds, while VPint has a running time of 1000 seconds.
We propose two variations of the VPint algorithm to remedy the relatively long
running time of VPint using parallel computing: a GPU accelerated method and
a multiprocessing method. The GPU accelerated method uses the CuPy library
and CUDA in order to exploit the computational power of the GPU to speed up
the matrix computations of VPint. The multiprocessing method makes use of the
structure of a satellite image and parallelises this structure into thirteen concurrent
processes, as the satellite images used in this research contain thirteen sub-arrays
that act as input of VPint. Our experimental results show a speedup of 1.65 using
the GPU accelerated method compared to the original VPint algorithm, while
the multiprocessing method shows a speedup of 5.58 compared to the original
algorithm, thus concluding that both of our proposed methods are faster than
the original VPint method, with the multiprocessing method achieving a higher
speedup than the GPU accelerated method.
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1 Introduction

Interpolation is a type of estimation or mathematical prediction that is applied to
missing data points within a dataset. In spatial data, interpolation techniques can be
used to fill in missing data due to sparsity or obstruction of measurements. Based on
known data, missing values can be predicted to try and create an accurate reconstruction
of measurements without missing data.

VPint, a value propagation-based spatial(-temporal) interpolation method proposed by
Arp et al. (2022), addresses real-world problems concerning missing data. For example,
cloud coverage in satellite images can be remedied using this method, as well as filling
in the gaps in sparse weather predictions. VPint proposes two methods, both based
on Markov reward processes (MRP): static-discount MRP (SD-MRP) and data-driven
weight prediction MRP (WP-MRP). Compared to other common methods such as
autoregressive moving average (ARMA) models and convolutional neural networks
(CNNs), VPint, particularly WP-MRP, achieves better results with regard to structural
similarity and mean absolute error [Arp et al., 2022b].

Cloud removal, which is the application of VPint in this research, is a relevant problem
in satellite imagery, as on average, 55% of the land on Earth is covered by clouds at
any given time [King et al., 2013]. Cloud coverage limits the use of the affected images
and obstructs missions, including Copernicus’ aims, to provide clean data (meaning free
of noise or missing data) consistently [Ebel et al., 2021]. Spatial interpolation provides
a solution for this problem, as well as other problems regarding meteorology, remote
sensing and environmental science.

VPint is implemented with Python. Currently, VPint runs on a single thread on the
Central Processing Unit (CPU), due to its use of Python packages that are limited to
CPU usage. Furthermore, native Python code is restricted to the use of a single thread on
the CPU. In the case of VPint, NumPy is the main library used for computations, which
is not compatible with GPU computing, nor does it enable Python code to exploit several
threads on a CPU. In other words, VPint lacks any parallel processing, which results in
VPint having a much longer running time than regression methods [Arp et al., 2022b],
such as moving average (MA) [Haining, 1978] and spatial autoregressive (SAR) models
[Anselin, 2013].

To be more specific, considering clustered missing data which clouds in satellite images
are an example of, it can be stated that both VPint methods, SD-MRP and WP-MRP,
have a longer running time than earlier mentioned methods [Arp et al., 2022b]. VPint
takes a chunk of an entire satellite image as input. The satellite images used in the
experiments are all from the Sentinel-2 mission and can be found in the Copernicus
Browser [Copernicus, 2024]. This chunk is called a patch, of which a visualisation can
be found in Figure 1. These patches are also the form the input of VPint for the
experiments.
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Figure 1: A Python visualisation of a 256× 256 patch from the urban Madrid satellite
image from the Copernicus Browser [Copernicus, 2024]. The data is described in more
detail in the experiments section.

In this research, a patch is 256× 256 pixels with each pixel containing 13 bands. The
various bands contain different information regarding the pixel, such as the visible
colours, but also chance of cloud coverage. This patch structure results in a grid size far
greater than 40000 and, as shown in the research by Arp et al. (2022), a grid with a size
of 40000 leads to a running time of approximately 1000 seconds, as opposed to some
competitors, such as the earlier mentioned MA [Haining, 1978] and SAR [Anselin, 2013]
models, who have a running time of about 100 seconds using the same grid size. It is
crucial to remedy this difference for VPint to gain a competitive advantage over other
spatial(-temporal) interpolation methods.

This leads to the following research question:
What are the effects of different acceleration methods in value propagation-based spatial
interpolation with regard to running time?

The main contributions in this work are two accelerated versions of the VPint algorithm
used on spatially clustered real-world data, i.e., clouds in satellite images. Both proposed
methods use a form of parallel computing to achieve its acceleration. These accelerated
versions are a GPU accelerated method and a method using multiprocessing. We per-
formed experiments on a dataset consisting of satellite images of 19 different regions,
which resulted in a speedup of 1.65 and 5.58 respectively compared to the original VPint
algorithm.

To introduce the structure of this paper and the content: This chapter contains the
introduction; Section 2 introduces relevant background information; Section 3 includes
the theoretical framework and definitions; Section 4 discusses related work; Section 5
contains a description of the methods; Section 6 describes the experiments; Section 7
contains the results of the experiments and its interpretation; Section 8 concludes.
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2 Background

Optical remote sensing, which concerns visible and infrared light data that is typically
measured by satellites, has many applications. For instance, object detection, which
deals with identifying objects of interest in satellite images [Cheng and Han, 2016]
and change detection, which aims at detecting change in use of land and land cover
[Peng et al., 2021]. However, optical remote sensing is not without challenges, one of
which is cloud coverage. In some cases, such as weather forecasting and water research,
clouds are useful to keep [Li et al., 2019], however, in many other cases, such as object
and change detection, cloud cover is considered as noise or missing data. Enhancing
the effectiveness of applications of remote sensing that are affected by cloud coverage
creates the need for cloud removal techniques. A common technique for handling cloud
coverage is (spatial) interpolation of the missing pixels in satellite images as a result of
clouds [Cheng et al., 2014].

VPint is an iterative interpolation method that utilises an estimation grid and that
can be applied to the cloud removal problem [Arp et al., 2022b]. To summarise the
VPint method, when an element is unknown (missing data), its value is updated to
the estimated value, which is based on the estimated values of its neighbours. The
estimated values of these neighbours are, in turn, based on the estimated values of their
neighbours, thus propagating known values through these series of estimated values of
neighbours. Updating the estimation grid is based on Markov reward processes, meaning
that rewards are associated with updating an estimated value in the estimation grid,
making certain changes more desirable than others. On top of that, future rewards are
also incorporated in the update rule of the estimation grid, making the desirability of
change in the estimation grid dependent on both the direct and indirect reward of that
change. The iterative updating of the estimation grid continues until it reaches an equi-
librium, meaning that the mean change in values in the estimation grid is smaller than
pre-determined value. If this equilibrium is not reached, there is a limit to the number
of iterations set by VPint. As mentioned in Section 1, VPint has two variants: SD-MRP
and WP-MRP. WP-MRP, which is used in our experiments, allows for neighbour-specific
weights, meaning that the effect one neighbour has on the predicted value of an element
might differ from the effect that another neighbour has on the same element. A weight
prediction model predicts the weight between a neighbour pair based on spatial data.
On the other hand, SD-MRP does assume isotropy, meaning that all neighbours have
the same weights and thus the same spatial effect on each other.

Some other methods in the field of cloud removal are deep learning approaches that
make use of convolutional neural networks [Meraner et al., 2020, Ma et al., 2023] and
regression methods, such as Gaussian process regression that automatically optimise hy-
perparameters [Park and Park, 2022] and spatially and temporally weighted regression
[Chen et al., 2017].

The satellite images that are used in the experiments of this research are from the
Copernicus Sentinel-2 mission, which is a unit of the European Union’s space programme
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regarding Earth observations [ESA, nd]. The images provided by Sentinel-2 consist of
thirteen bands that contain a variety of information. For example three bands contain
true colour data, meaning the colours how humans would see it [GISGeography, 2024].
Other bands contain short wave infrared measurements, while others measure visible
and near infrared. All bands differ in the central wavelength of which the measurements
are taken and their resolutions differ from 10 meters to 60 meters, which represents the
distance between independent measurements The used data is from the bottom of the
atmosphere, meaning it is Sentinel-2 L2A data, which is top of the atmosphere L1C data
that has undergone atmospheric corrections [PlanetLabs, nd]. All these characteristics
can differ in different satellites, for example, the Sentinel-3 satellite provides data of 21
bands, all with a resolution of 300 meters [Qian, 2015].
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3 Theoretical Framework

In this section, we introduce relevant topics regarding our methods. This includes
NVIDIA’s CUDA, which we use to enable GPU computing in our experiments, after
which we expand on the topic of GPU computing, Amdahl’s law and multiprocessing,
with a focus on the Python programming language.

3.1 CUDA and CUDA Architecture

Python code typically runs on the CPU and there is no option in the default Python
installation that enables a piece of code to use the GPU instead of the CPU. For this
purpose, CUDA, formerly an acronym for Compute Unified Device Architecture, however
now just known as CUDA as its own definition, will be used [Tuomanen, 2018]. CUDA is
a general purpose GPU processing framework developed by NVIDIA, a firm specialised
in GPU production. CUDA enables code, including Python code, to run on the GPU
[Holm et al., 2020]. CUDA assigns the GPU as the device, meaning that it executes
(parallel) tasks, while assigning the CPU as the host, which manages general system
operation.

Regarding the concept of threads (essentially, a thread is a sequence of instructions
that is given to a GPU or CPU [Ramuglia, 2023]), CUDA arranges threads into thread
blocks, that are executed on the same core of a GPU. In turn, thread blocks are arranged
into grids that run on the GPU [Chen et al., 2023].

GPU computing requires CUDA availability on an NVIDIA graphics card in order
to be possible. There are some alternatives to CUDA for GPU computing, for exam-
ple, ROCm using an AMD graphics card [Shafie Khorassani et al., 2021] and OpenCL
[Karimi et al., 2010], which can be used on NVIDIA GPUs. However, CUDA will be
utilised in this research, since the GPU accelerated method of VPint runs on an NVIDIA
graphics card in the experiments, and OpenCL has a minor performance disadvantage
compared to CUDA [Su et al., 2012].

3.2 GPU Computing

GPU acceleration utilises the computing power of the GPU, which often contains thou-
sands of cores [Buber and Diri, 2018]. More cores lead to more computations that can
be done simultaneously. CPUs often only have four or eight cores, with one CPU core
typically containing two threads and a thread being the virtual component that processes
sequences of instructions. This means that a typical CPU can process eight to sixteen
sequences of instructions (as it contains eight to sixteen threads). This leads to CPUs
having considerably less availability for concurrent computations than GPUs. The result
is the possibility of a significant volume of parallel processing using GPU compared to a
CPU, which potentially increases the operating speed of a program when run on a GPU
[Buber and Diri, 2018]. A comparison can be made with roads, where a GPU represents
a wide road with many lanes designed for many slow moving cars, while a CPU repre-
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sents a narrow road with one or a few lanes on which the cars drive fast [Tuomanen, 2018].

Another important difference between CPUs and GPUs is the focus of the architecture.
A CPU focuses on minimising latency [Team, 2022], meaning that the time between
an instruction and the finishing of the processing is diminished. On the other hand, a
GPU prioritises a high throughput, which means that it focuses on being able to do
more computations simultaneously, indicating a specialisation in parallel computing
[Owens et al., 2008, Tuomanen, 2018]. Thus, CPUs (low throughput and low latency)
and GPUs (high throughput and high latency) contrast each other in the latency-
throughput trade-off, which has always been a fundamental consideration in computer
science [Subhlok and Vondran, 1996].

The advantage of parallel processing is only achieved when processing a high number of
independent computations, which is why it is typically applied in 3D visuals, video editing
and in the scientific field, as these applications can contain a lot of data and/or processes
that can be computed independently [Grochowski et al., 2004]. While scalar processes
(processes with low intrinsic parallelism), such as I/O bound processes [Engbrecht, 2008]
and stack based breadth-first search algorithms [Greenlaw, 1992], customarily use the
CPU as it is often as efficient as (if not more efficient than) the GPU for these tasks,
utilising the GPU can enhance performance significantly for larger sets of tasks, such
as matrix computations [Chrzeszczyk and Chrzeszczyk, 2013] and video-editing (which
requires large-scale rendering) [Sharma, 2023]. This does require the tasks or computa-
tions to be independent, as is the case in matrix computations, where partial results can
be calculated separately from the rest of a given matrix calculation without interfering
in or needing the results of other partial computations.

In short, GPU computing is characterised by three aspects [Owens et al., 2008]:

1. Extensive computational requirements.

2. A high level of parallelism.

3. Throughput is prioritised over latency.

3.3 Amdahl’s Law

An estimation can be made of the speedup achieved with GPU or parallel computing
using Amdahl’s law [Tuomanen, 2018]:

speedup =
1

(1− p) + p
N

(1)

This equation gives a very rough estimation of how much parallelisation would speed
up an algorithm based on the proportion of the running time or code that bene-
fits from the parallelisation (p) and the number of cores (N) [Tuomanen, 2018]. N
can also be defined as the speedup of the part of the task that can be parallelised
[Bryant and O’Hallaron, 2015]. The denominator contains 1 − p due to the speedup

6



being dependent on how much of the algorithm can be sped up. It could be the case
that certain operations cannot be done in parallel but should stay serial in order for the
algorithm to function properly, meaning that it cannot be sped up with GPU accelera-
tion. Parallel computing requires the operations that run in parallel to be independent
from each other and thus be computable without the (partial) result or interference of
another parallel computation. The maximum theoretical speedup is therefore:

maximum theoretical speedup =
1

1− p
(2)

However, achieving the maximum theoretical speedup would mean that the parallelised
portion of the code is finished instantly. As this is not the case, p

N
is added to 1 − p

in the denominator. This signifies how much the parallelisable portion benefits from
the parallelisation. This is comparable to constructing a desk in two hours with one
individual, or in one hour with two individuals.

There are some limitations regarding Amdahl’s law. Firstly, it ignores the parallelisation
overhead that occurs in parallelised tasks. There are several types of overhead, such
as memory and instruction latency, which relate to the initialisation and allocation of
resources for the parallel computing task [Bhattacharjee et al., 2011]. Furthermore, the
proportion of code that benefits from parallelisation is an approximation of the proportion
of the running time that benefits from parallelisation. Looking at the proportion of
the code, it depends on coding style and manner of implementation, which does not
necessarily translate directly to the proportion of running time. Alternatively, looking at
the proportion of the running time, Amdahl’s law can be calculated accurately, but this
requires the running time using parallel computing to be known already, rendering the
equation useless. These factors stress the fact that Amdahl’s law is a rough estimation
and not an exact calculation.

3.4 Multiprocessing

Another method of speeding up a program is multiprocessing. This method enables multi-
ple tasks to be executed concurrently on different threads of the CPU [Aziz et al., 2021].
Alternatively, multiprocessing enables a program to run on several CPUs simultaneously.
Like GPU acceleration, multiprocessing requires the parallel tasks to be independent
from each other. On top of that, tasks can finish in a different order than when the code
is run in series, meaning that the result of the multiprocessing task has to be properly
rearranged to get the desired output. In Python, multiprocessing is enabled by the
multiprocessing Python library and the multiprocessing method is applied to one CPU,
using multiple threads. An advantage of this method is that, like GPU acceleration,
it enhances throughput [Aziz et al., 2021], partially alleviating the CPU’s throughput
restriction. Especially in Python, which has a Global Interpreter Lock (GIL) that enables
only one thread to be in a state of execution concurrently, because of which CPU usage
is limited as well [Ajitsaria, 2018]. The throughput is increased in a multiprocessing
method by utilising unused CPU cores for computations.
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3.5 Suitable acceleration methods for VPint

After discussing GPU computing and multiprocessing in general, we will now elaborate
on why these parallelisation methods are suitable for VPint.

3.5.1 GPU Acceleration

VPint is a suitable candidate for GPU acceleration as it matches the three characteristics
mentioned by Owens et al. [Owens et al., 2008]:

1. VPint can have a large computational requirement, due to its application of
interpolation in cloudy satellite images. As mentioned before, a patch of a satellite
image from the Sentinel-2 satellites contains 256 by 256 pixels, each pixel containing
13 bands that determine the characteristics of the pixel such as the colour and
cloud coverage. An example of a satellite image is the Madrid urban area image
found in the Copernicus Browser [Copernicus, 2024] taken with the Sentinel-2
satellite (details of the data can be found in Section 6). The entire image consists
of 441 patches, meaning that the matrix operations on the 256 × 256 matrices
have to be carried out 441 times, which could be defined as a large computational
requirement.

2. Parallelism concerning GPU acceleration is achieved in VPint in matrix calculations.
Using a GPU, especially large matrix calculations can benefit, as the many cores
of a GPU can independently calculate partial results.

3. Latency is not as important for VPint as the throughput: the delay between the
instruction and the computation is marginalised when compared to the size of the
computation that needs to be done. It is more important that more computations
can run in parallel, than minimising the time of a computation.

As parallelism is achieved in the matrix calculations, these are the lines of code that
benefit from GPU acceleration. Lines such as creating variables, matrices and function
calls are not parallelisable, meaning that a substantial part of VPint does not benefit
from the GPU acceleration. Luckily, the main loop, which runs approximately 180
times more often than any other part of VPint under the conditions in the experiments,
contains 10 out of 27 lines of code that benefit from the acceleration. Using a graphics
card with 3584 cores, which is the number of cores that the GPU in the experiments
has [NVIDIA, 2021], Amdahl’s law predicts the following potential speedup:

speedup =
1

(1− (10/27) + 10/27
3584

= 1.588 (3)

When incorporating the entire VPint code, this speedup decreases, as other parts of the
code contain relatively fewer lines that benefit from GPU acceleration. The speedup of
the entirety of VPint is expected to be as follows:

speedup =
1

(1− (621940.5/1694300.5) + 621940.5/1694300.5
3584

= 1.564 (4)
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Due to conditional statements and the number of occurrences of each path created by
these statements, there is a .5 used in Equation 4. Overall, the expected speedup of
VPint using GPU acceleration is 1.564.

3.5.2 Multiprocessing

Unlike GPU acceleration, in which the parallelisation lies within in matrix multiplication,
using multiprocessing, the parallelisation lies within the bands of the satellite image. To
enable multiprocessing, the code of the pre-processing of the data for VPint is adjusted
in such a way that the 13 bands of the pixels are parallelisable. Then, the entire code of
the VPint benefits from this. Only the pre-processing is still serialised, as the bands are
still one matrix before the initiation of VPint. When considering only VPint, the entirety
of the code is parallelised, meaning that p = 1. The computations are parallelised over
the 13 bands, meaning that N = 13. Using Amdahl’s law, this leads to the following
estimated speedup:

speedup =
1

(1− 1) + 1
13

= 13 (5)

By rough estimation, the speedup of VPint when the bands are parallelised would thus
be 13, given there are enough cores to run the 13 bands in parallel.
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4 Related Work

GPU computation and multiprocessing are two parallel computing methods that have
been extensively explored already. Since VPint is implemented using Python, this section
will focus on related work regarding Python implementations of GPU acceleration and
multiprocessing.

4.1 GPU acceleration

As CuPy is the Python library that is used in the GPU accelerated version of VPint,
this section will focus mainly on CuPy. The reason for using CuPy is expanded in the
Section 5.
Research by Ninshino and Loomis (2017) [Nishino and Loomis, 2017] has shown a sim-
ple comparison between Numpy running on the CPU and CuPy running on the GPU.
Ninshino and Loomis (2017) include basic array computations in their experiments,
applying the arange, reshape, transpose and multiplication operations to a given array.
The experimental results show longer computation times using CuPy for arrays with
sizes 104 and 105, while from arrays with size 106 and onward, the computation time for
the CuPy method is faster, indicating that computations with a large computational
requirement benefit from using a GPU. Regarding our research, this might indicate a
minimal speedup, as VPint contains matrices with an approximate size of 6 · 105.

CuPy has been applied to Computational Fluid Dynamics, largely depending on matrix
computations [Chen et al., 2023]. The experiments in the research by Chen et al. (2023)
were run using an NVIDIA Geforce RTX 2060 GPU and an Intel Core i5-9500 CPU.
Some experiments resulted in a speedup by a factor of 110 when using CuPy on the
GPU instead of NumPy on the CPU. This speedup was accomplished using larger
two-dimensional square matrices. A matrix with shape 8192× 8192 achieved a speedup
of approximately 76, while a matrix with shape 256× 256 achieved a speedup of about
1.7. The matrix computations of VPint are on matrices with shape 256× 256 as well,
thus Chen et al. (2023) provide an indication of the potential speedup of VPint based
on parallel matrix computations with this particular shape.

Research by Balogh and Ruiz (2022) focuses on GPU accelerating the construction of
Hadamard Matrices [Balogh and Ruiz, 2022]. CuPy is used as Python library to enable
GPU acceleration. The experiments performed by Balogh and Ruiz (2022) include
creating and mutating Hadamard matrices, which are square matrices consisting of
1 and -1 entries. CuPy allowed the researchers to run thousands of matrix computa-
tions, as well as populations consisting of thousands of matrices simultaneously. The
speedup of their entire experiment is not discussed, but it is stated that CuPy enabled
the handling of thousands of matrices and computations in parallel, which may imply
that GPU accelerated matrix computations can result in a speedup in VPint using CuPy.

Research considering the effect of variables on GPU coding, including different im-
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plementation packages, applies the GPU acceleration packages Numba and CuPy to
a method that solves the Burgers’ equation with the finite difference method (FDM)
[Xu et al., 2022]. FDM is a method utilised in solving complex differential equations
[Shamey and Zhao, 2014]. Xu et al. (2022) [Xu et al., 2022] have found the same error
produced by the different implementations using Numba, Cupy and NumPy, with the
global relative error and norm error as the error metrics. On top of that, Xu et al. (2022)
have measured an improvement concerning operation speed using either Numba or Cupy
when compared to the NumPy implementation. Xu et al. (2022) indicate that applying
GPU computing to their problem does not result in a change in the error metrics, which
is expected in our experiments as well.

4.2 Multiprocessing

Multiprocessing in Python has been applied to the Monte Carlo N-Particle (MCNP)
code [Sazali et al., 2022]. MCNP is a code used for general purpose many particle trans-
port simulations [Briesmeister et al., 2000] and is computationally heavy due to its
tracking of all particles during the simulation. The experiment of Sazali et al. (2022)
[Sazali et al., 2022] consisted of running an MCNP simulation on the three hardware
setups and checking the running time on the setups using different numbers of logical
cores. Their experiment did not result in significant changes in the average error of the
experiment, while they did find a significant improvement with regard to running time.
The experiments carried out by Sazali et al. (2022) produced an average speedup of
approximately 7.35 when utilising twelve cores instead of one. Relating to our research,
this not only indicates a significant speedup by using multiprocessing, but it indicates
that the speedup is not necessarily directly proportional to the number of cores that are
used.

Considering geospatial data, multiprocessing has been applied to the max-p-regions prob-
lem [Sindhu, 2018]. The max-p-regions problem concerns the clustering of geographical
regions under certain constraints in order to create homogeneous areas with regard to
specific characteristics [Duque et al., 2012]. Viney Sindhu (2018) [Sindhu, 2018] applied
the multiprocessing Python library using a hardware setup with 16 cores. Depending on
the input of the multiprocessing, the experiments resulted in a speedup of the entire
problem between 3.31 and 13.94, where larger problems attained a larger speedup. Sindhu
(2018) shows speedups for multiprocessing applied to geospatial data, and similarly to
the research of Sindhu, our experiments concern geospatial data.
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5 Methods

To understand the GPU accelerated method and the multiprocessing method, certain
aspects of the original VPint algorithm need to be understood. Firstly, the input of
VPint consists of two collocated patches with a resolution of 256 × 256 pixels. This
means that only one of the thirteen bands is used as the input of VPint at a time,
meaning that the bands are serialised in the original VPint algorithm. When running
VPint, many matrix calculations are carried out and many matrices are created. On top
of that, VPint is optionally recursive, resulting in the numbers of matrix computations
and matrix creations being even larger. In short, the original VPint algorithm relies on
a serial calculation of the bands that comprise a satellite image, which are calculated
(partially) by use of matrix computations. All methods use the VPint algorithm with an
optional random component in its calculation of the predicted image enabled, meaning
that different results can be obtained while using the same algorithm and data. More
details regarding the VPint algorithm can be found in the original paper by Arp et al.
(2022) [Arp et al., 2022b].

5.1 Baseline

The baseline is the original VPint code created by Arp et al. (2022) [Arp et al., 2022a],
which we will call the original VPint method from now on. This method only exploits the
computational power of one CPU thread, which means that the method runs entirely on
the CPU. This means that the bands are run in a serialised manner. Matrix computations
rely on NumPy and Python’s native functions. The datatype of matrices in the original
VPint method (including the input and output) is a NumPy array. The datatype of the
items in the matrices are floats, which is a double precision datatype and corresponds
to NumPy’s float64 datatype.

5.2 GPU acceleration

The GPU accelerated method utilises the GPU to accelerate parallelisable functions
and methods within the VPint algorithm. This concerns matrix computations, of which
partial results can be calculated independently from the other partial calculations. On
top of that, the matrices in the experiments typically have a shape of 256x256, thus, a
total of 65536 operations per matrix computation can be done using thousands of GPU
cores, instead of just one CPU core. GPU acceleration is enabled by the Python library
CuPy. CuPy is not only used due to the fact that it enables GPU computing, but also
due to its high compatibility with NumPy, meaning that many functions are identical
[Chen et al., 2023].

The bands are serialised in this method. The datatype of the input matrices is a CuPy
array, while the output is a NumPy array. This is done to have an identical output as
the other methods with regard to datatype. The matrices that are initialised during
VPint are CuPy arrays, while the datatype of the items in these arrays, as well as the
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input and output arrays, are floats. This method relies on both GPU and CPU, with
the matrix computations being executed on the GPU, while other tasks run on the
CPU. The pre-processing is the same as the original VPint method, apart from the fact
that the input of VPint is converted to a CuPy array. The VPint algorithm has been
adjusted to contain CuPy functions and arrays instead of NumPy functions and arrays,
although some NumPy functions have not been replaced by CuPy functions, which is
due to minor incompatibilities within the VPint code. An example of this is NumPy’s
product function, which resulted in complications with other functions when changed to
CuPy’s product function. The affected functions are a minor part of the algorithm and
are not relevant in enabling GPU computation for all matrix computations.

5.3 Multiprocessing

Multiprocessing makes use of the same VPint algorithm as the original VPint method,
meaning that NumPy functions and arrays are used, resulting in this method running
entirely on the CPU. This means that no conversion of the variables from CPU to GPU
takes place, which saves time. However, the manner of input is adjusted compared to the
original VPint method. Instead of calculating one of the thirteen bands of the satellite
images at a time, all thirteen bands are calculated simultaneously. Using multiprocessing,
the bands are all separate “jobs” that need to be carried out. These jobs are initialised
in a for-loop, while assigning a different thread to each band, meaning that the bands
are calculated in parallel.

The datatype of the matrices in this method, including the input, is a NumPy array
and the datatype of the items in the matrices are floats. The matrix computations are
done with NumPy functions. As the bands are calculated separately and simultaneously,
the jobs of the bands finish in a different order than the original matrix. To handle this,
the output of the jobs are saved in a dictionary with their corresponding original band
index as the key. This dictionary is sorted after all jobs are finished and a NumPy array
is created from this sorted dictionary in order to get an output which is similar to the
other methods.

In short, the pre-processing is adjusted to handle the thirteen bands concurrently, while
the VPint algorithm itself is the same as the one used for the original VPint method.
The multiprocessing method utilises thirteen threads on the CPU.
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6 Experiments

In this section, specifics regarding the experiments are discussed. This includes the
hardware setup, the research questions that we try to answer and a detailed description
of the dataset.

All methods were run on the same hardware setup:

• CPU: Intel(R) Xeon(R) CPU E5-2683 v4, 16 cores, 32 threads.

• GPU: NVIDIA Corporation GP102 [GeForce GTX 1080 Ti], 3584 CUDA cores.

• All experiments used 8GB of memory, whether this was 8GB on the CPU or GPU
depends on the experiment.

The GPU method uses the CUDA toolkit 10.0, which was released in September 2018
[Yoshida et al., 2024]. The parameters of the VPint algorithm were kept constant for
all methods. The code for running the methods can be found in Section 9.

6.1 Research questions

The main research question is as follows:
What are the effects of different acceleration methods in value propagation-based spatial
interpolation with regard to running time?

The experiments will answer the following sub questions that will constitute an answer
to the main research question:

1. Is there a significant difference between the methods regarding the mean absolute
error (MAE) and mean squared error (MSE) using a two-tailed Wilcoxon signed-
rank test [Wilcoxon, 1992]?

2. How do the average running times of the original VPint method, the GPU acceler-
ated method and the multiprocessing method compare to each other?

3. How do the average running times of entire patches of the original VPint method,
the GPU accelerated method and the multiprocessing method, including pre-
processing and processing of the output, compare to each other?

The first sub question will give insight into whether the GPU accelerated and multipro-
cessing methods operate in the same manner as the original VPint method. In other
words, is there a difference in the used VPint algorithms or are they equivalent for all
methods with regard to the quality of the predicted image, based on the MAE and
MSE? As the methods should be identical, there should not be a significant difference
in the error metrics between any of the methods. The second sub question will clarify
which methods are better than others in terms of running time of VPint only, excluding
pre-processing and processing of the output. The last sub question will help understand
whether the pre-processing and/or the processing of the output (such as the dictionary
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sorting for the multiprocessing method) has a significant impact on the overall running
time of a patch when using a certain method. More specifically, it gives insight into
whether a given method that is significantly better than another method when looking
at the second sub question, is significantly better when the pre- and post-processing of
both methods are included in the running time. This sub question regards the average
running times of entire patches of the three methods instead of solely the average running
time of VPint.

6.2 Dataset

As mentioned in Section 2, the satellite images that are used in the experiment are
Copernicus Sentinel-2 images. More specifically, bottom of the atmosphere data, called
L2A data from Sentinel-2, is used. A satellite image from Sentinel-2 consists of thirteen
bands, each containing data regarding a different central wavelength. Nineteen scenes, a
scene being a region such as “Europe Cropland Ukraine”, are used in total, the names of
which can be found Appendix C, under the column “Scene name”. All satellite images
can be downloaded from the Copernicus Browser. [Copernicus, 2024], although the data
can be downloaded from other sources as well (such as the Copernicus Space Component
Data Access) [Copernicus, nd].

To execute VPint on one scene, three different satellite images of the same region are
needed. Firstly, the target image, which is the true image that the predicted image (the
output of VPint) should ideally resemble. Next, the feature image is needed, which is a
satellite image of the same region but the feature image was taken before the target
image. The used feature image is typically an image of one month before the target
image, however, depending on alignment issues, this could be six months as well. A
difference of one month is used since it closely, but not completely resembles the target
image. An alternative would be a one-week difference, however, the image taken one
week before the target is used as the target image when the original target image is
misaligned with the other images. On top of that, a one-week difference between the
feature and target image might not pose a challenge for VPint. Using a time difference
of one month gives a balanced trade-off between the resemblance of the feature and
target image and the difficulty of the task. Lastly, a mask image is used to determine
which pixels are clouds in a satellite image. An extra band that is included in the entire
dataset, but not included in the thirteen bands of the input images of VPint, contains
the probability of a pixel being a cloud. When that probability for a pixel is higher than
a pre-defined threshold, that pixel will become a cloud (missing data) in the cloudy image.

The cloudy image is initially a copy of the target image, but clouds are placed over
this copy, after which this cloudy image becomes one of the satellite image inputs of
VPint. The pixels that are categorised as clouds in the mask image will also be the
pixels (by coordinate) that become clouds in the copy of the target image. In this cloudy
image, a pixel is a cloud when the values over all bands are set to Not a Number (NaN)
values, that signify missing data. Typically, a higher threshold for the cloud probabilities
results in fewer pixels being categorised as clouds. The second image input of VPint is
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the feature image, most often taken one month before the target (and thus the cloudy)
image. This feature image is used to predict the covered values in the cloudy image.

The target, mask and feature images of each scene are used. One satellite image can be
divided into 441 patches of 256x256 pixels, which applies to all scenes. It is important
to mention that VPint does not necessarily run on all patches of a satellite image, as
patches that do not have any clouds are skipped, as there is nothing to predict in these
patches. Appendix C shows for all 19 scenes used for the experiments how many cloudy
patches it contains and thus how many patches were skipped.
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7 Results

In this section, we show the experimental results and discuss them afterwards. Firstly,
the used significance test will be discussed, after which the error metrics, being the mean
absolute error and mean squared error, of the original VPint method, GPU accelerated
method and the multiprocessing method will be analysed. Finally, we will reflect on the
differences of running times of the three methods.

All metrics are averages of the patches over all scenes. We analysed the original VPint
method, the GPU accelerated method and the multiprocessing method by looking
for a significant different (in the case of the error metrics) or better (in the case on
running times) result achieved by the different methods. This significance is tested using
a Wilcoxon signed-rank test with a significance level of α = 0.05. This test is used
because both the errors (MAE and MSE) and running times of VPint are not normally
distributed, which resulted from a normality test based on D’Agostino and Pearson’s
test [D’Agostino, 1971, D’Agostino and Pearson, 1973]. As we are testing a significant
difference between the method regarding the error metrics, the MAE and MSE will be
tested using a two-tailed Wilcoxon signed-rank test, while we are testing the running
time on an improvement, meaning that a one-tailed Wilcoxon signed-rank test will be
used. The same patches with extreme outliers in the error metrics have outliers in their
running time for VPint, although less extreme. The method that outperforms most
other methods in a particular metric has that metric printed in bold, except when none
of the methods outperform each other, in which case none of the metrics are bold printed.

Table 1: The average values of the error metrics over all scenes per method are shown
below. A bold printed value indicates the method that performed significantly better
than most other methods, tested with a two-tailed Wilcoxon signed-rank test. There are
no bold printed values in this table, meaning that there was not significant difference
between any of the methods regarding the MAE and MSE.
Method MAE MSE
original VPint method 5.50E+17 ± 3.87e+19 5.08E+43 ± 3.74E+45
GPU acceleration 3.42E+15 ± 2.13e+17 5.03E+40 ± 2.98E+42
Multiprocessing 2.35E+16 ± 1.24e+18 5.25E+39 ± 3.74E+41
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Table 2: The running times in seconds of VPint and of an entire patch over all scenes
per method are shown below. A bold printed value indicates the method that performed
significantly better than most other methods, tested with a one-tailed Wilcoxon signed-
rank test.
Method Running time of VPint Running time of a patch
original VPint method 217.69 ± 88.42 143.78 ± 88.52
GPU acceleration 132.21 ± 54.52 89.44 ± 54.64
Multiprocessing 39.02 ± 1.48 26.41 ± 1.55

7.1 Interpretation

Before answering the sub questions, the large MAE and MSE in Table 1 of all methods
must be discussed. These can be explained by looking at the individual scenes, of which
the results regarding error metrics can be found in Appendix A. Most scenes do not have
errors as large as in Table 1. However, unusually large errors can be found for all three
methods in the “Europe Cropland Ukraine” and “Africa Cropland Nile” scenes. The
former scene has an average MAE of more than 1016 and an average MSE of more than
1040 for all methods and the latter has average MAEs ranging from 105 to 1.37 · 1017
and MSEs ranging between orders of magnitude of 1017 and 1041. This large error is
caused due to the absence of a maximum value that a predicted value can be, which we
shall refer to as a clip, in the VPint functions and pre-processing. This clip limits values
in an initialised array in the VPint algorithm to a certain value, which in turn limits
the MAE and MSE to a certain value. After running VPint with a clip of 10000 on all
of the patches that had an MAE of over 10000 during the experiments, these patches all
returned an MAE in the order of magnitude of 102 and an MSE in the order of magnitude
of 106 for all methods. On top of that, these unusually large errors were rare incidents
that did not occur in the majority of patches. However, the averages of the error metrics
of the afflicted scenes were affected by the small number of patches with such large errors.

As these large errors were a known complication in the research of Arp et al. (2022)
when clipping was disabled, and due to the fact that the clip remedied these large errors,
it can be concluded that the cause of the errors was not a fault in the experiment, but
rather a result of the omission of a clip.

Again, it is important to note that the large errors were a rare occurrence and most
of the scenes resulted in an MAE in the order of 102 and an MSE between the orders
of 104 and 1012. A complete overview of the error metrics per scene can be found in
Appendix A, where it can be seen that most scenes do not have unusually large errors.

7.1.1 Error metrics: MAE and MSE

Reflecting on the first sub question: Is a significant difference between the methods
regarding the MAE and MSE? The results in Table 1 do not show a significant difference
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between any of the methods regarding the MAE and MSE. Due to the random element
of VPint being enabled in our experiments for all methods, different results occur
regularly, but when looking at the results over all nineteen scenes together, there is no
significant difference between the methods for the error metrics. Although not tested,
disabling this random element should result in all methods having the same error metrics.

When looking at the error metrics of the scenes independently, of which the entire
tables with results can be found in Appendix A, there are several scenes that show a
significant difference in MAE and MSE between the methods. At first glance, this result
is especially strange when comparing the original VPint method and the multiprocessing
method, as they use exactly the same VPint algorithm and metric calculation. When
looking into the Wilcoxon signed-rank test, this can be explained by the number of
ties that occur. Taking the MAE of the original VPint method and multiprocessing
method as an example, the Wilcoxon signed-rank test calculates the difference between
the MAE of a certain patch of the original VPint method and the MAE of the same
patch of the multiprocessing method. All the absolute differences of all patches are
ranked from small to large. Once ranked, they get an increasing weight and a sign
depending on the sign of the difference. For example, the smallest few differences could
be: −0.01, 0.02, 0.025,−0.03, ...
This would lead to their signed ranks respectively being: −1, 2, 3,−4, ...
However, this does not take into account the patches where the difference is zero, mean-
ing that the methods have the same error with the used precision. This is where the
problem lies, as there are many such cases, called ties, in all scenes. In some cases, these
ties lead to a large imbalance in the signed ranks, which, in turn, results in a significant
difference when no significant difference is expected.

To partially remedy this, the precision of the error calculation can be increased. Normally,
the precision of the MAE and MSE is equal to the precision of a float, or double precision,
with about 15 decimals. When setting the precision of the error calculations to 25 deci-
mals, the number of ties decreases, as fewer patches have equal values for both methods
when increasing the precision. The “America Forest Mississippi” scene (which contains
170 patches on which VPint is run) has been tested with a comparison between using dou-
ble precision (approximately 15 decimals) and using 25 decimals when using the original
VPint method and the multiprocessing method. This resulted in the number of patches
that resulted in ties decreasing from 67 to 42 out of a total of 170 patches when using a
25-decimal precision. Although the p-value was still significant due to the large remain-
ing number of ties, this result does indicate the disturbance of ties to the significance test.

Supporting the argument that all three methods do not differ significantly regarding
their MAE and MSE, is the fact that performing a Wilcoxon signed-rank test on the
entire dataset, i.e. all scenes together, did not result in a significant difference between
any two methods. All scenes of the original VPint method compared to all scenes of the
multiprocessing method concerning MAE resulted in a p-value of 0.225, which is higher
than the test statistic α = 0.05. This means that the null hypothesis of the Wilcoxon
signed-rank test, which is that the result of both groups (methods) come from the same
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distribution, cannot be rejected.

In short, based on the facts that:

• The ties disturb the significance test for some scenes when the multiprocessing
method is compared to the original VPint method or the GPU accelerated method
concerning the MAE and MSE,

• When considering all scenes, the null hypothesis of the Wilcoxon signed-rank test
cannot be rejected when comparing any of the methods based on their MAE and
MSE, thus indicating no significant difference between the methods over all scenes,

• The GPU method did not yield any significant difference compared to the original
VPint method regarding MAE and MSE,

It can safely be assumed that the three methods only differ significantly regarding the
error metrics in specific cases due to limitations of the Wilcoxon signed-rank test and
that the methods should not differ regarding the quality of their predictions.

7.1.2 Running times

Table 2 shows a significant difference in running time between all methods, with the
multiprocessing method having a significantly shorter running time for all scenes than
both the original VPint method and the GPU accelerated method. Furthermore, the
GPU method has a significantly shorter running time than the original VPint method.
Using the average running times from the same table, it can be established that the mul-
tiprocessing method leads to a speedup of VPint of approximately 5.58 when compared
to the original VPint method. This is quite a bit lower than the expected speedup of 13,
as was expected in Equation 5. As discussed in Section 3, the actual speedup is lower
than the expected speedup partially due to the parallelisation overheads, such as the
initialisation and termination overhead. On top of that, software overhead concerning
the used libraries, the operating system and the parallel compiler [Balasooriya, 2017]
may have an impact on the lower speedup as well. These last types of overhead include
function calls, resource management and code generation. Hardware limitations may
also play a role in the lesser actual speedup, as only 8GB of the total 128GB of available
memory on the CPU was used for the multiprocessing experiment (as well as for the
original VPint method). Only a very small portion of this lower speedup is due to having
to sort the output dictionary and create a NumPy array in the multiprocessing method.
On average, these extra operations only took approximately 0.03 seconds per patch.

The initialisation overhead also plays a role in the running time of entire patches. On
average, for the multiprocessing method, each patch added about 1.92 seconds to the
running time concerning pre- and post-processing only. For the original VPint method,
this average was 1.69 seconds, meaning that the pre- and post-processing running time
has increased by 0.23 seconds per patch using multiprocessing compared to the original
VPint method. Thus, when comparing the average running time for entire patches, the

20



multiprocessing method leads to a speedup of 5.44.

Furthermore, a patch running VPint using the multiprocessing method is only as fast as
its slowest band. While the calculation in Equation 5 assumes all bands take the same
amount of time, this is not true. Some bands take longer to converge to the equilibrium
in the mean change of the prediction grid than others. Some bands converge after a
few iterations, while other bands might not converge at all (which can be seen in the
case of the unusually large errors). For example, the tenth band in the L2A products
only consists of zeroes as this band does not contain any bottom of the atmosphere
information [Müller-Wilm et al., 2017]. A band of zeroes is calculated much faster than
the band that caused the very large errors in the “Europe Cropland Ukraine” scene, as
this band reaches the limit of computations set by VPint, while the band consisting of
zeroes does reach the equilibrium that VPint converges to. An exaggerated illustration
can be given with a case where one band takes 100 seconds to finish while the other 12
bands only take 10 seconds. The original VPint method, which calculates the bands in
series, would take 220 seconds to finish all bands. The multiprocessing method, which
calculates all bands in parallel, would take 100 seconds to finish all bands. Equation 5
would assume that all bands take 100 seconds, meaning 1300 seconds for the original
VPint method and 100 seconds for the multiprocessing method, which is not the case.
This is more nuanced in reality, but a similar situation in the experiments partially
explains why the actual speedup is less than the expected speedup.

The GPU accelerated method achieves a speedup of about 1.65 compared to the original
VPint method. This is quite close to the predicted speedup in Equation 4, which was
1.564. The slight difference between the expected speedup and the actual speedup might
be caused by a larger proportion of the running time benefiting from GPU computing
than the proportion of the code used in Equation 4 approximates. Using the proportion
of code in Amdahl’s law assumes that all lines of code have an equal individual running
time. This is not the case, as, for example, executing a large matrix computation probably
has a longer running time than creating an integer variable. Thus, the actual speedup
suggests that the proportion of running time that benefits from parallel computing is
larger than the proportion of running time that is estimated by the proportion of code
in Equation 4. The GPU accelerated method resulted in a speedup of 1.61 compared to
the original VPint method when looking at the average running time of a patch. This is
slightly lower than the speedup for only the VPint algorithm because of the cloudless
patches having a larger impact on the average patch running time of a higher running
time, as these cloudless patches finish almost instantly.

To put the speedups of the VPint algorithm into perspective, the average total running
time of VPint of all patches of one scene using the original VPint method is approximately
63000 seconds or 17.5 hours. The GPU accelerated method had an average total running
time of VPint of about 39000 seconds, which is about 10.8 hours. The multiprocessing
method resulted in an average total running time of 11000 seconds, or 3.1 hours.
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8 Conclusions and Further Research

To conclude, both of the proposed alternative methods for VPint, GPU acceleration
and multiprocessing, resulted in a significantly faster running time than the original
VPint method: a speedup of 1.65 and 5.58 respectively. The multiprocessing method
only differs significantly in MAE and MSE from the original VPint method and GPU
accelerated method in specific cases, which is due to a limitation of the used significance
test. It can be assumed that the proposed methods result in similar quality predictions
as the original VPint method. The GPU accelerated method leverages the computational
power of the GPU to speed up the matrix computations carried out by VPint, while the
multiprocessing method exploits the data structure of the satellite images in order to
reach its speedup. Overall, the multiprocessing method is found to be much faster than
the original VPint method and the GPU accelerated method, leading to its recommended
use for computations with VPint.

Future research might include changing the datatype of the values inside the (input)
arrays of VPint. Research by Xu et al. (2022) has shown that changing the datatype from
double precision (float64) to single precision (float32) reduces running time by a mini-
mum of 20% in their experiments regarding finite difference methods [Xu et al., 2022].
Although their experiments are not related to VPint, their work does suggest a sub-
stantial decrease in running time when using a single precision datatype. Researching
the exact impact that different datatypes, such as float16, float32, float64 and float128,
have on the running time and on the error metrics might yield interesting results.
Looking into the exact effect of these datatypes on the error metrics might be espe-
cially interesting due to the occurrence of ties in the Wilcoxon signed-rank test. The
precision/running time trade-off for VPint might prove an interesting and useful research.

Furthermore, we propose two alternative methods to the original VPint code: the GPU
accelerated method and the multiprocessing method. Both of these methods resulted in a
significant decrease in running time compared to the original VPint method. Combining
these metrics might result in an even better realised speedup and thus would be worth
looking into in the future. We did not include this method in this research due to a
limitation of CUDA, which does not allow processes to be forked after initialisation
of CUDA. That means that this method would require a different manner of input
regarding multiprocessing to avoid the CUDA limitation.

Lastly, changing the input size of the matrices of VPint could yield interesting speedups,
especially for the GPU accelerated method. Research by Chen et al. (2023) [Chen et al., 2023]
has shown a significantly larger speedup when using much larger matrices in a GPU
accelerated method. Applying this to VPint will not only reduce the serialised part, as
using a larger patch means that there will be less patches in total in a satellite image,
but this could also result in an advantage for the GPU accelerated matrix computations
compared to the CPU when using larger matrices.
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9 Code Availability

The code that was used for running the experiments can be found at:
https://github.com/DeanvanLaar/AcceleratedVPint.
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Appendices

A Appendix: Error Metrics per Scene

Table 3: The average mean absolute errors (MAE) of the scenes of all the methods are
shown below. When methods are bold printed, it indicates a statistically significant
difference between these bold printed methods using a two-tailed Wilcoxon signed-rank
test with α = 0.05
Scene name Original VPint method Multiprocessing GPU

average MAE average MAE average MAE
Europe Urban Madrid 2.15e+02 ± 2.60e+04 9.89e+02 ± 1.10e+04 2.88e+03 ± 5.02e+04
Europe Cropland Hungary 2.08e+02 ± 9.59e+01 2.08e+02 ± 9.94e+01 2.07e+02 ± 9.30e+01
Europe Cropland Ukraine 7.95e+18 ± 1.49e+20 3.47e+17 ± 4.74e+18 5.04e+16 ± 8.16e+17
Africa Cropland Nile 1.37e+17 ± 2.83e+18 5.24e+05 ± 1.08e+07 2.16e+06 ± 3.34e+07
America Shrubs Mexico 1.29e+03 ± 2.04e+04 5.64e+02 ± 5.27e+03 7.01e+02 ± 6.15e+03
Asia Herbaceous Mongoliaeast 1.24e+02 ± 9.89e+01 1.24e+02 ± 9.90e+01 1.24e+02 ± 9.91e+01
Asia Urban Beijing 7.46e+02 ± 7.29e+03 9.96e+02 ± 1.12e+04 9.72e+02 ± 1.03e+04
Africa Herbaceous Southafrica 1.08e+02 ± 5.59e+01 1.07e+02 ± 5.52e+01 1.08e+02 ± 5.54e+01
Australia Shrubs South 2.98e+03 ± 3.53e+04 3.60e+03 ± 4.45e+04 3.38e+03 ± 4.08e+04
Asia Cropland India 2.72e+02 ± 1.14e+02 2.71e+02 ± 1.09e+02 2.73e+02 ± 1.15e+02
America Cropland Iowa 1.70e+02 ± 3.51e+01 1.69e+02 ± 3.49e+01 1.70e+02 ± 3.51e+01
Asia Herbaceous Kazakhstan 1.19e+02 ± 5.41e+01 1.19e+02 ± 5.46e+01 1.19e+02 ± 5.41e+01
America Herbaceous Peru 1.24e+02 ± 4.87e+01 1.24e+02 ± 4.90e+01 1.24e+02 ± 4.87e+01
Asia Shrubs Indiapakistan 2.66e+02 ± 3.11e+03 3.40e+02 ± 4.16e+03 1.12e+02 ± 2.05e+02
Australia Shrubs West 3.59e+02 ± 6.45e+02 3.70e+02 ± 6.99e+02 3.54e+02 ± 6.25e+02
America Urban Atlanta 2.14e+02 ± 2.05e+02 2.14e+02 ± 1.99e+02 2.15e+02 ± 2.13e+02
Asia Cropland China 1.38e+02 ± 1.06e+02 1.32e+02 ± 8.33e+01 1.57e+02 ± 2.88e+02
America Forest Mississippi 2.30e+02 ± 2.74e+02 2.30e+02 ± 2.73e+02 2.30e+02 ± 2.70e+02
Africa Forest Angola 1.14e+02 ± 5.13e+01 1.14e+02 ± 5.17e+01 1.14e+02 ± 5.14e+01
All scenes 5.50e+17 ± 3.87e+19 2.35e+16 ± 1.24e+18 3.42e+15 ± 2.13e+17
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Table 4: The average mean squared errors (MSE) of the scenes of all the methods are
shown below. When methods are bold printed, it indicates a statistically significant
difference between these bold printed methods using a two-tailed Wilcoxon signed-rank
test with α = 0.05.
Scene name Original VPint method Multiprocessing GPU

Average MSE Average MSE Average MSE
Europe Urban Madrid 7.56E+11 ± 1.54E+13 9.48E+10 ± 1.92E+12 2.14E+12 ± 4.35E+13
Europe Cropland Hungary 1.28E+05 ± 1.57E+05 1.30E+05 ± 1.73E+05 1.27E+05 ± 1.51E+05
Europe Cropland Ukraine 7.50E+44 ± 1.44E+46 7.43E+41 ± 1.14E+43 7.74E+40 ± 1.44E+42
Africa Cropland Nile 2.26E+41 ± 4.67E+42 1.80E+17 ± 3.73E+18 1.78E+18 ± 3.37E+19
America Shrubs Mexico 5.44E+11 ± 7.79E+12 7.98E+11 ± 1.10E+13 4.31E+12 ± 7.90E+13
Asia Herbaceous Mongoliaeast 5.79E+04 ± 1.86E+05 5.81E+04 ± 1.86E+05 5.82E+04 ± 1.86E+05
Asia Urban Beijing 5.09E+11 ± 7.77E+12 1.17E+12 ± 1.78E+13 9.04E+11 ± 1.38E+13
Africa Herbaceous Southafrica 3.75E+04 ± 4.24E+04 3.69E+04 ± 4.15E+04 3.71E+04 ± 4.13E+04
Australia Shrubs South 2.68E+11 ± 3.80E+12 4.57E+11 ± 6.56E+12 3.72E+11 ± 5.32E+12
Asia Cropland India 2.35E+05 ± 3.42E+05 2.30E+05 ± 3.39E+05 2.37E+05 ± 3.42E+05
America Cropland Iowa 8.15E+04 ± 3.59E+04 8.13E+04 ± 3.59E+04 8.16E+04 ± 3.60E+04
Asia Herbaceous Kazakhstan 3.46E+04 ± 4.50E+04 3.47E+04 ± 4.54E+04 3.46E+04 ± 4.52E+04
America Herbaceous Peru 4.79E+04 ± 7.23E+04 4.79E+04 ± 7.21E+04 4.79E+04 ± 7.25E+04
Asia Shrubs Indiapakistan 1.86E+09 ± 3.76E+10 3.26E+09 ± 6.53E+10 1.01E+06 ± 1.98E+07
Australia Shrubs West 9.57E+08 ± 4.41E+09 1.09E+09 ± 5.08E+09 8.68E+08 ± 3.95E+09
America Urban Atlanta 1.05E+08 ± 1.02E+09 9.49E+07 ± 9.63E+08 1.10E+08 ± 1.11E+09
Asia Cropland China 4.36E+07 ± 2.56E+08 2.69E+07 ± 1.57E+08 5.24E+08 ± 4.90E+09
America Forest Mississippi 2.36E+05 ± 8.15E+05 2.31E+05 ± 7.93E+05 2.29E+05 ± 7.88E+05
Africa Forest Angola 4.05E+04 ± 3.63E+04 4.09E+04 ± 3.67E+04 4.05E+04 ± 3.62E+04
All data 5.08E+43 ± 3.74E+45 5.03E+40 ± 2.98E+42 5.25E+39 ± 3.74E+41
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B Appendix: Running Times per Scene

Table 5: The average running time in seconds of VPint of the scenes of all methods are
presented below. A bold printed value indicates the method that performed significantly
better than the most other methods using a one-tailed Wilcoxon signed-rank test with
α = 0.05.
Scene name Original VPint method Multiprocessing VPint GPU VPint

average running time average running time average running time
Europe Urban Madrid 184.67 ± 50.42 38.44 ± 0.85 112.23 ± 33.28
Europe Cropland Hungary 202.36 ± 65.03 39.54 ± 1.46 124.87 ± 39.25
Europe Cropland Ukraine 406.56 ± 44.47 41.41 ± 1.00 265.44 ± 29.69
Africa Cropland Nile 351.98 ± 95.07 40.54 ± 1.30 213.22 ± 59.49
America Shrubs Mexico 181.95 ± 19.55 38.49 ± 0.37 103.69 ± 12.92
Asia Herbaceous Mongoliaeast 167.74 ± 11.74 38.45 ± 0.27 102.57 ± 8.45
Asia Urban Beijing 246.95 ± 104.36 39.19 ± 1.45 161.85 ± 66.74
Africa Herbaceous Southafrica 169.82 ± 23.19 38.53 ± 0.34 104.10 ± 14.58
Australia Shrubs South 164.14 ± 7.04 38.40 ± 0.30 99.53 ± 6.17
Asia Cropland India 268.64 ± 84.43 40.37 ± 1.56 164.22 ± 54.03
America Cropland Iowa 186.09 ± 28.16 38.77 ± 0.96 113.91 ± 17.97
Asia Herbaceous Kazakhstan 177.16 ± 21.18 38.20 ± 0.54 108.75 ± 14.81
America Herbaceous Peru 180.57 ± 22.09 38.10 ± 0.34 110.77 ± 14.70
Asia Shrubs Indiapakistan 229.09 ± 57.73 37.95 ± 0.90 148.25 ± 38.22
Australia Shrubs West 173.53 ± 29.34 38.66 ± 0.64 106.45 ± 21.73
America Urban Atlanta 164.97 ± 16.31 38.44 ± 0.73 103.06 ± 9.61
Asia Cropland China 197.78 ± 67.58 38.60 ± 0.94 122.48 ± 43.04
America Forest Mississippi 166.43 ± 8.76 38.50 ± 0.42 101.40 ± 6.52
Africa Forest Angola 176.34 ± 28.97 38.27 ± 0.47 106.78 ± 19.45
All scenes 217.69 ± 88.42 39.02 ± 1.48 132.21 ± 54.52
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Table 6: The average running time in seconds for calculating a patch (including pre- and
post-processing) of the scenes of all methods are presented below. A bold printed value
indicates the method that performed significantly better than the most other methods
using a one-tailed Wilcoxon signed-rank test with α = 0.05.
Scene name Original VPint method patch Multiprocessing patch GPU patch

average running time average running time average running time
Europe Urban Madrid 174.73 ± 50.52 37.22 ± 0.94 106.71 ± 33.37
Europe Cropland Hungary 68.61 ± 65.07 13.95 ± 1.51 42.66 ± 39.31
Europe Cropland Ukraine 363.43 ± 44.52 38.14 ± 0.95 237.79 ± 29.78
Africa Cropland Nile 353.24 ± 95.22 41.95 ± 1.39 214.56 ± 59.71
America Shrubs Mexico 171.83 ± 19.58 37.21 ± 0.41 98.37 ± 12.95
Asia Herbaceous Mongoliaeast 55.75 ± 11.78 13.31 ± 0.31 34.38 ± 8.50
Asia Urban Beijing 135.19 ± 104.50 22.25 ± 1.59 88.96 ± 66.95
Africa Herbaceous Southafrica 90.47 ± 23.27 21.18 ± 0.39 55.82 ± 14.66
Australia Shrubs South 80.32 ± 7.05 19.33 ± 0.37 49.02 ± 6.18
Asia Cropland India 92.64 ± 84.56 14.56 ± 1.72 56.95 ± 54.20
America Cropland Iowa 186.73 ± 28.20 39.90 ± 1.01 114.82 ± 18.02
Asia Herbaceous Kazakhstan 168.58 ± 21.24 37.32 ± 0.58 103.99 ± 14.90
America Herbaceous Peru 175.11 ± 22.15 37.99 ± 0.33 107.96 ± 14.79
Asia Shrubs Indiapakistan 220.97 ± 57.84 37.88 ± 0.97 143.60 ± 38.36
Australia Shrubs West 12.68 ± 29.32 3.30 ± 2.35 8.01 ± 21.72
America Urban Atlanta 93.55 ± 16.31 22.51 ± 0.67 58.80 ± 9.60
Asia Cropland China 85.95 ± 67.70 17.47 ± 1.06 53.58 ± 43.19
America Forest Mississippi 64.83 ± 8.82 15.62 ± 0.44 39.80 ± 6.58
Africa Forest Angola 137.29 ± 29.07 30.67 ± 0.50 83.60 ± 19.58
All scenes 143.78 ± 88.52 26.41 ± 1.55 89.44 ± 54.64
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C Appendix: VPint Patches and Cloudless Patches

per Scene

Table 7: The number of patches that VPint runs on per scene, the number of patches
that do not have clouds, and thus do not run VPint and the total number of patches
per scene can be found in the table below.
Scene name Number of patches running VPint Number of cloudless patches Total patches
Europe Urban Madrid 415 26 441
Europe Cropland Hungary 148 293 441
Europe Cropland Ukraine 393 48 441
Africa Cropland Nile 441 0 441
America Shrubs Mexico 414 27 441
Asia Herbaceous Mongoliaeast 145 296 441
Asia Urban Beijing 240 201 441
Africa Herbaceous Southafrica 233 208 441
Australia Shrubs South 214 227 441
Asia Cropland India 151 290 441
America Cropland Iowa 440 1 441
Asia Herbaceous Kazakhstan 417 24 441
America Herbaceous Peru 425 16 441
Asia Shrubs Indiapakistan 423 18 441
Australia Shrubs West 31 410 441
America Urban Atlanta 248 193 441
Asia Cropland China 190 251 441
America Forest Mississippi 170 271 441
Africa Forest Angola 341 100 441
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