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Abstract

The growing number of sources generating vast amounts of data streams requires additional
capabilities of machine learning models to process and adapt to this information. Factors such
as dynamic environments, seasonality trends and changing human behaviour cause shifts in
the relationship between instances and labels. This phenomenon is known as concept drift
and can lead to a decrease in model performance. Traditional methods for detecting concept
drift typically rely on the error rate. A disadvantage of such a drift detection method is that
while concept drift is detected, the model’s performance has already declined. Therefore, we
propose to detect concept drift through ε̃∗-drift values. ε̃∗-drift values provide additional
information compared to the regular error rate by approximating the distance to the decision
boundary of misclassified instances. We evaluated our proposed method on two synthetic
datasets simulating abrupt and incremental drift. We assessed three input types: error rate,
features and ε̃∗-drift with six drift detection methods: DDM, EDDM, ADWIN, KSWIN, Mann-
Whitney U test and a threshold method. The conducted experiments indicate that, while
ε̃∗-drift are not consistently faster in detecting concept drift and are more computationally
expensive than the regular error rate, they are effective in detecting concept drift and exhibit
a lower average number of false positives compared to the regular error rate. Moreover, this
thesis serves as a first step to investigate further the relationship between the ε̃∗-drift values
and model performance.
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1 Introduction

Nowadays, various sources, such as sensors [1], financial market [2, 3], weather stations [4], electricity
market [5] and Internet-of-Things (IoT) [6] provide increasing flows of information [1, 7, 8, 9]. These
vast amounts of data are known as data streams [10]. Characteristics of data streams include the
continuous or potentially infinite flow of incoming data, the temporal aspect ensuring sequential
order and the dynamic nature [10, 11, 12]. Unlike traditional static datasets, data streams evolve
over time and demand additional capabilities of models to process them [8, 10].

Dynamic environments, seasonality trends and changing human behaviour among other factors
might cause shifts in the underlying data distribution [7, 13]. This change in the underlying data
distribution or hidden context is referred to as concept drift [14]. As a consequence of concept
drift, models processing data streams are prone to a decrease in performance. To prevent a model
from becoming obsolete, it is crucial to equip the model itself or an external mechanism with the
capacity to detect concept drift and act on it accordingly.

Current methods to detect concept drift rely, among others, on the error rate of the model [11,
15, 16, 17], statistical tests performed on batches of the data stream or uncertainty estimates from a
deep neural networks [18, 19, 1, 20]. For instance, the Drift Detection Method (DDM) [11] compares
the continuously updated error rate of the model and considers a significant increase in the error
rate as an indication of concept drift. A downside of this approach is that the performance of
the model needs to decrease to trigger the warning and concept drift stages. Such a method acts
retroactively meaning that the performance of the model has already deteriorated. Naturally, this
is undesirable since one wants to maintain a high-performing model.

To mitigate a decrease in model performance, we aimed to detect concept drift via local
robustness verification. Local robustness verification [21] provides a formal approach to examine to
which extent a neural network is sensitive to instances with small perturbations causing incorrect
predictions. The work of Szegedy et al. [22] made clear that these small changes to the input, also
known as adversarial examples, trigger a neural network to predict a wrong class. For instance,
subtle manipulations of images invisible to the human eye can make neural networks generate a
wrong output. For this reason, it is important to formally define the robustness of a neural network
against adversarial examples, especially in safety-critical domains [23, 24].

A common approach to measure the robustness of a neural network is through a single
predefined ε value. ε denotes the size of allowed perturbation on an original instance. This means
that a smaller ε value encompasses a tighter region in which a neural network verifier can search
for an adversarial example. However, defining this single ε value requires domain knowledge and
does not provide information on a per-instance level.

Therefore, Bosman et al. [25] introduced the ε∗ value representing the maximum amount of
perturbation per instance such that the neural network still makes a correct prediction. Given that
this problem is NP-hard [26], Bosman et al. [25] discretised the search for the ε∗ values introducing
the ε̃∗ value. The ε̃∗ approximates the ε∗ value such that the perturbed instance is still classified
correctly. In essence, the ε̃∗ value translates to an approximation of the distance towards the
decision boundary of a neural network for correctly classified instances.

Measuring the ε̃∗ values for a batch of a data stream provides us with a distribution of distances
towards the decision boundary. In the presence of concept drift, more misclassifications will occur;
hence, the distribution of correctly classified instances will change. We think that observing changes
in such distributions provides an indicator of concept drift.

However, in preliminary experiments, we observed that using ε̃∗ values is ineffective in detecting
concept drift in an earlier stage than regular error rate-based methods. A detailed explanation
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is provided in the methodology section 4 of this thesis. Nevertheless, we did make interesting
observations regarding the misclassified instances before and after concept drift occurred. With
a well-trained classifier, incorrect predictions typically occur for instances close to the decision
boundary. In the presence of concept drift, the region encompassing incorrect predictions expands,
resulting in misclassified instances being located further from the decision boundary.

To measure this distance towards the decision boundary for misclassified instances, we intro-
duced the ε̃∗-drift value based on the ε̃∗ from the work of Bosman et al. [25]. Without concept drift,
we expect very small ε̃∗-drift values for misclassified instances. However, these values will increase
in the presence of concept drift. Significantly larger ε̃∗-drift values can function as an indicator of
concept drift.

To the best of our knowledge, a method leveraging an approximation of the distance to the
decision boundary in the form of ε̃∗-drift values to detect concept drift does not yet exist. For this
reason, we investigated the following research questions:

1. Is it possible to utilise ε̃∗-drift values for the identification of concept drift?

2. Do ε̃∗-drift values in combination with a drift detector allow for detecting concept drift in an
earlier stage than regular error rate-based methods?

3. Do ε̃∗-drift values in combination with a drift detector result in a lower number of false
positives compared to regular error rate-based methods?

The main contributions of this thesis are the following:

• We provided explanations on why the regular lower bound to the critical epsilon value (i.e.,
ε̃∗) is not working for the detection of concept drift.

• We defined the lower bound to the critical ε-drift value (i.e., ε̃∗-drift value) for misclassified
instances. It represents a distance measure towards the decision boundary for misclassified
instances.

• We combined the ε̃∗-drift value with existing drift detectors to detect concept drift.

• We introduced the ε̃∗-drift value in combination with the Mann-Whitney U test to detect
concept drift.

• We introduced the ε̃∗-drift value in combination with a threshold method to detect concept
drift. However, the threshold method demands further investigations into the relationship
between ε̃∗-drift values and the performance of a model.

The remainder of this thesis is organised as follows: First, we introduce the foundational
concepts and techniques related to data streams, concept drift and neural network verification in
Section 2. Subsequently, in Section 3, we discuss common types of input to detect concept drift as
well as drift detection methods. This section also contains detailed information about the ε̃∗ value.
Next, we explore how ε̃∗ values can be used for detecting concept drift. Based on a simplification
of the SEA dataset simulating sudden drift, we provide justifications for why this input type is
not prominent for concept drift detection. Following this, we transition to utilising ε̃∗-drift for
identifying concept drift. In Section 5, we demonstrate and analyse our conducted experiments.
Finally, in Section 6, we interpret the obtained results and share our conclusions.
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2 Background Theory

In this section, we introduce the topics of concept drift and local robustness verification. First, we
will differentiate concept drift from other possible types of data drift. Afterwards, we will explain
four types of concept drift and discuss a general framework for detecting concept drift. Moreover,
we provide a brief overview of three categories of concept drift detection methods: error rate-based,
data distribution-based and multiple hypothesis test.

Secondly, we will start by defining the notion of adversarial example which cause neural
networks to generate wrong predictions. We then provide a mathematical description of the task of
local robustness verification, focusing on both incomplete and complete verification. Additionally,
we discuss the complete verification tool α,β-CROWN [27] which leverages branch and bound
techniques to efficiently verify the validity of certain properties.

2.1 Concept Drift

In a classification task, we aim to predict a categorical target y ∈ R1 based on an instance x ∈ Rn [28].
Furthermore, we assume two or more classes c = 1, ...,C, where C represents the total number of
classes present in the dataset. Both Hoens et al. [29] and Gama et al. [28] consider Bayes’ theorem
to describe the probability that an incoming instance x at timestamp t originates from class c, see
Equation 1:

pt(c∣x) =
pt(c)pt(x∣c)

pt(x)
(1)

in which pt(c) represents the prior probability of observing each class at timestamp t, pt(x∣c)
denotes the probability that we observe x given each class c at timestamp t and pt(x) refers to
the probability of observing x at timestamp t [29]. Notably, Hoens et al. [29] mention that pt(x)
remains constant across all classes in C and can therefore be disregarded.

Generally, a classifier is trained and validated on a static batch of data after which the model is
deployed into production. However, being in production, the classifier might deal with a continuous
flow of incoming data also known as a data stream. Mathematically a data stream represents
a set of samples S = {s0, ..., st, ...}, where each si denotes a tuple (xi, ci) [1]. Per timestamp t a
single st arrives. Key characteristics of data streams include the continuous or potentially infinite
flow of incoming data, the temporal aspect which ensures sequential order and the dynamic
nature [10, 11, 12]. In other words, data streams are a form of time series data due to the temporal
component [10].

This dynamic nature of a data stream can result in changes in the underlying distribution of
the observed incoming data over time, also known as concept drift [14, 28]. Concept drift is formally
defined as follows, see Equation 2:

∃x ∶ pt(x∣c) ≠ pt+1(x∣c) (2)

In other words, concept drift represents a change in the joint distribution of x and c between
t and t + 1, where t + 1 > t [7]. Rewriting pt(x∣c) into pt(x) × pt(c∣x) [7] allows us to distinguish
between the following events depicted in Figure 1:
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(a) pt(x) ≠ pt+1(x), pt(y∣x) = pt+1(y∣x) (b) pt(x) ≠ pt+1(x), pt(y∣x) = pt+1(y∣x)

(c) pt(x) = pt+1(x), pt(y∣x) ≠ pt+1(y∣x) (d) pt(x) ≠ pt+1(x), pt(y∣x) ≠ pt+1(y∣x)

Figure 1: Four possible events triggered by changes between pt(x) and pt+1(x), and changes between
pt(y∣x) and pt+1(y∣x) [7, 28, 30]. In all figures, the red line represents the separator and the green line
denotes the learned decision boundary. Figure 1a represents data drift or covariate shift, i.e., pt(x) ≠ pt+1(x),
while the relationship between the instances and targets pt(y∣x) = pt+1(y∣x) remains. This is also known
as virtual drift since the decision boundary still holds valid. In contrast, Figure 1b represents a scenario
in which the covariate shift impacts a model’s performance. Figure 1c demonstrates a change in the
probability of a certain instance belonging to a class, i.e., pt(y∣x) ≠ pt+1(y∣x), while pt(x) = pt+1(x).
Although the probability distribution of the input features remains, the mapping between these instances
and classes changed resulting in an invalid decision boundary. Finally, Figure 1d depicts both changes i.e.,
pt(x) ≠ pt+1(x), pt(y∣x) ≠ pt+1(y∣x). Figures adjusted from [29].

As can be seen in Figure 1, the scenarios presented in Figures 1b, 1c and 1d impact the
performance of a model since the learned decision boundary is no longer valid. For instance in
Figure 1c, the top four instances were correctly classified at timestamp t. However, at timestamp
t + 1, the top four instances originate from the purple class and will be incorrectly classified as
orange instances. In this thesis, we will exclusively focus on the notion of concept drift as defined
in Figure 1c, i.e., pt(x) = pt+1(x), pt(y∣x) ≠ pt+1(y∣x).
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2.1.1 Types of Concept Drift

To properly define a change in the underlying distribution of the data, we adopt the concept of
context from [11], which denotes a set of instances originating from a static probability distribution.
This means that a data stream can be constructed as a concatenation of contexts. The transition
from one context to the other (i.e., types of concept drift) can have several forms as demonstrated
in Figure 2.

Figure 2: Four types of concept drift: a) sudden drift, b) gradual drift, c) recurring drift and d) incremental
drift. Each drift is visualised over time according to two contexts: the red concept and the blue concept.
Figure is retrieved from [13].

As we can see in Figure 2, four different types of concept drift are illustrated [13]: Sudden
drift represented in Figure 2a refers to an abrupt change in context at one point in time. Gradual
drift represented in Figure 2b denotes a change from one context to another through alternations
between the two at several points in time. Recurring drift represented in Figure 2c similar to
gradual drift consists of alternations between two different contexts. What makes recurring drift
distinct from gradual drift is that the old context reappears at a certain point in time, instead of
being fully replaced by the new context as is the case in gradual drift. An example of recurring drift
is seasonality trends. Incremental drift represented in Figure 2d refers to a continuous change from
one context to another without a specific point in time at which the switch occurred. Arguably, it
can be considered a subtype of gradual drift or a separate type of concept drift.

2.1.2 Concept Drift Detection Framework

A general framework to detect concept drift is presented in Figure 3.
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Figure 3: General outline of a concept drift detection framework. The first stage consists of defining
batches of data since a single instance cannot provide enough information to detect concept drift. The
second stage involves the measurement of statistical dissimilarity between two batches retrieved from
the first stage. In the final stage, the severity of the computed test statistic is assessed via a hypothesis
framework to determine if concept drift is present. Figure is retrieved from [13].

The general framework to detect concept drift contains three key stages: First, a reference
batch consisting of old data is preserved. In general, the model is trained on this batch of data.
With the incoming new data instances, a target batch is taken to compare against the reference
batch. Second, by measuring the similarity between the reference batch and the target batch, a test
statistic is computed that reflects the amount of dissimilarity between the two batches. Finally, a
mechanism based on a certain threshold determines if the test statistic exceeds the threshold. This
means that concept drift occurred.

The approach described in Figure 3 to deal with concept drift is known as adaptive learning
algorithms [31]. In contrast, evolving learning models update the model on a regular frequency [31].
This means that updates might occur even if no concept drift is present. Therefore, a disadvantage
of evolving learning models is the potentially high cost of retraining without knowing for sure if
there is concept drift.

Adaptive learning algorithms aim to mitigate this disadvantage. However, as stated by Se-
bastião and Gama [32], the difficulty of designing a concept drift detection algorithm lies in
effectively balancing robustness to noise while maintaining sensitivity to shifts in the underlying
data distribution. Namely, it might be difficult for such an algorithm to deal with outliers potentially
causing higher false alarm rates (i.e., detecting a concept drift where there is no concept drift) [32].
Furthermore, Khamassi et al. [31] mentioned the following three difficulties: “(i) how to track
concept drift, (ii) which data to keep and which data to forget, and (iii) how to adapt the learner
parameters and structure in order to react according to these new environment requirements.”
Despite these difficulties, this thesis will only focus on adaptive learning models to deal with concept
drift.
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2.1.3 Concept Drift Detection Methods

There exist various methods to deal with concept drift. Lu et al. [7] identified the following three
categories: error rate-based drift detection, data distribution-based drift detection and multiple
hypothesis test drift detection.

The majority of the concept drift detection methods fall into error rate-based detection [7, 13].
In general, these methods monitor the error rate of the model over the incoming data instances. As
soon as the error rate exceeds a predefined threshold, the model triggers a warning meaning that
there is concept drift. It is important to note that error rate-based detection methods depend on
the ground truth labels which are not always available [13].

Data distribution-based drift detection methods exploit a distance function to determine the
dissimilarity between a reference window and a window containing the most recent instances [7]. If
the two distributions statistically differ from each other, concept drift is present. Another difference
between error rate-based detection and data distribution-based drift detection methods is that the
latter directly takes the incoming instances as input. As a consequence, data distribution-based
drift detection methods do not need the ground truth labels [20]. Additionally, according to Lu et
al. [7], these methods are capable of accurately determining at which timestamp the drift occurred.

In contrast to error rate-based detection and data distribution-based drift detection, multiple
hypothesis test drift detection methods use more than one hypothesis test to detect concept drift.
Based on Lu et al. [7], we can categorise multiple hypothesis test drift detection methods into the
following two groups: parallel multiple hypothesis tests and hierarchical multiple hypothesis tests.
Parallel multiple hypothesis tests combine multiple drift detection methods which each measure the
dissimilarity and verify the significance of the computed test statistics [7, 13]. On the other hand,
hierarchical multiple-hypothesis methods typically involve multiple layers to detect concept drift.
In general, such a method contains a detection layer responsible for identifying potential concept
drift using a drift detector and a subsequent validation layer in which an additional hypothesis test
is performed to validate the detected concept drift [7].

In the upcoming section 2.2, we will explain the necessary theory for the foundation of our
concept drift detection mechanism.

2.2 Local Robustness Verification

In general, neural networks have proven their performance in numerous tasks such as image
classification [26]. However, the integration of neural networks in safety-critical domains is limited
due to concerns about their unpredictable behaviour and robustness of such neural networks [23].
Particularly in neural networks applied in safety-critical domains, it is crucial to ensure a certain
degree of robustness concerning the relationship between the input and output of the neural network.

For instance, Szegedy et al. [22] demonstrated that small and oftentimes undetectable per-
turbations to the input of a neural network, i.e., adversarial example, can alter the output of a
neural network to the extent that it generates a wrong prediction. Under this assumption, an
adversarial example is defined as the result obtained after adding a small perturbation to the
original correctly classified instance which triggers the model to misclassify it. Figure 4 illustrates
an adversarial example in a medical image classification task [33] in which the manipulation of
a medical image through the addition of a small amount of noise results in a misclassification.
Arguably, the disparities between the original image on the left and the perturbed image on the
right are invisible to the human eye.
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Figure 4: An example of an adversarial example applied to a deep neural network for detecting skin
cancer, adapted from [33]. The image on the left side contains a spot with a high probability of being
benign according to the model. On the contrary, after adding a slight amount of noise on the pixel level to
this image, the model predicts the spot on the altered image on the right side to be malignant with a high
confidence level.

As observed by Goodfellow et al. [21], a performance metric such as accuracy is incapable of
reflecting the extent to which a model might be vulnerable to adversarial examples. Moreover, small
distortions to the original instances might trigger a neural network to generate wrong predictions,
whereas this neural network might yield high performance in terms of accuracy. A technique that aims
to describe the vulnerability of a model to adversarial examples is local robustness verification [21].
Local robustness verification formally verifies if original instances combined with a varying amount
of perturbation can make the neural network generate a wrong output.

In more detail, following the notation as presented in the work of Bosman et al. [25], we
assume a static trained neural network classifier fθ in Rn → Rm, where θ represents the trainable
parameters of the neural network, n denotes the size of the input vector in terms of features and
m stands for the number of classes an input can be mapped to. Additionally, x0 stands for a
non-perturbed instance with correct class λ(x0) and x for a perturbed instance. As discussed above,
local robustness verification assesses instances with a varying amount of perturbation. We can
define the amount of perturbation as a region around x0: Gp,ε(x0) = {x ∶ ∣∣x − x0∣∣p ≤ ε}, where
p refers to a distance metric and ε denotes the size of the perturbation. Thus, local robustness
verification verifies if a neural network tolerates an adversarial example within the region Gp,ε(x0)
without generating a wrong output.

A distance metric can be employed to ensure that adversarial examples are within the magnitude
of the perturbation ε from the original input x0 [34]. One such family of distance metrics are the
Lp-norm distances. Three common Lp-norm distances applied in neural network verification are [35]:

L1(Manhattan distance): ∑n

i=1
∣xi∣

L2(Euclidean distance):
√
∑n

i=1
x2
i

L∞(Chebyshev distance): maxi ∣xi∣

(3)

where x represents an input for a neural network. A visual depiction of the three Lp-norm
distances mentioned in Equation 3 is present in Figure 5.
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Figure 5: Common regions around the original instance x0 with distance ε to restrict the space in
which adversarial examples are generated in local robustness verification. From left to right: the L1 norm
(Manhattan distance) forms a diamond shape, the L2 norm (Euclidean distance) forms a circular shape
and the L∞ norm (Chebyshev distance) forms a square shape. The figure is retrieved from [35].

Providing formal guarantees about neural networks proves difficult since they consist of large
architectures and are non-linear as well as non-convex [26]. For instance, a neural network with
ReLU as an activation function renders the verification problem NP-hard [26].

Specifically for local robustness verification, we are interested in formally assessing if a neural
network fθ holds a certain property P for all possible inputs x constrained to the domain defined
by Gp,ε(x0) = {x ∶ ∣∣x − x0∣∣p ≤ ε} [36]. Following the example presented in [36], we assume a binary
classification task for which we trained fθ and a positive instance x0 with correct class λ(x0) ≥ 0, i.e.,
fθ(x0) ≥ 0. Since we are interested in formally proving that a certain amount of perturbation to this
instance leads to a correct output fθ(x) ≥ 0, we set the property P to exclusively positive numbers
R+. In other words, we aim to solve the optimization problem: f∗ =minfθ(x),∀x ∈ Gp,ε(x0), which
provides an exact solution.

Neural network verifiers are typically categorised into complete verification and incomplete
verification [35] to assess whether a property holds. Incomplete verification methods generally relax
the optimization problem to gain advantages in terms of computation time at the cost of not being
able to guarantee an outcome for each problem instance x. Namely, by relaxing the non-convexity
of fθ, we generate a lower bound f

¯
≤ f∗ which renders the verification problem more tractable

to solve [27]. This results in correct verification for cases where f
¯
≥ 0 since we can conclude that

f∗ ≥ 0. However, in case f
¯
≤ 0, we fail to verify P.

On the other hand, complete verification guarantees to provide the exact solution f∗. Since
verifying if a property holds is NP-hard, a disadvantage of complete verifiers is that they are
expensive and do not scale to larger neural network sizes [35]. For this reason, oftentimes a time
limit is introduced.

Remember that in our example, we are interested in finding the global minimum of f∗ =
minfθ(x),∀x ∈ Gp,ε(x0) to verify if P = R+ holds. In general, this is done through means of finding
counter-examples [26, 23]. For instance, if the global minimum is negative, the verifier returns
satisfied meaning that the property does not hold [23]. On the contrary, if the global minimum is
positive, the verifier returns unsatisfied meaning that the property holds [23]. Incomplete verifiers
have a third output: unknown since the relaxation might result in cases in which we are unable to
conclude if a property holds. Due to the time limit introduced in complete verifiers, they can also
output timeout.

A fundamental framework allowing for the formulation of local robustness verification problems
is Mixed-Integer Linear Programming (MIP) [23]. In general, MIP provides a mathematical
framework to formulate optimization problems. In essence, it involves specifying a linear objective
function alongside a set of linear constraints. The objective function is defined as a linear combination
consisting of real- or integer-valued decision variables. The ultimate goal is to find a solution that
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maximises or minimises the objective function while simultaneously satisfying the set of linear
constraints.

A solver for MIP-formulated neural network verification that attracted a lot of attention
is Branch-and-Bound (BaB) [23, 37]. BaB [23, 37] is considered a complete verification method.
According to Li et al. [35], a majority of the submissions of the International Verification of Neural
Networks Competition (VNN-COMP) included BaB [38], with α,β-CROWN [27] being the winner
of the three most recent iterations.

The working principles of the BaB algorithm from a high-level perspective are as follows [23]:
The algorithm iteratively divides the global MIP formulation into smaller subproblems (i.e., branches)
partitioned according to the input space. Each branch represents a subspace of the feasible region
which facilitates the search for a solution to the MIP. By maintaining lower and upper bounds
(i.e., bounding) for each branch, BaB aims to provide an exact outcome for each branch. If the
verification fails, BaB performs another iteration of dividing into subproblems and verifying the
properties. Notably, subproblems are solved through incomplete verification algorithms rendering
the search for a solution computationally cheaper [37]. Hence, via a divide-and-conquer approach,
the algorithm efficiently narrows down the space wherein it should focus its attention on solving
the neural network verification problem.

2.3 Key Ideas

In this section, we introduced the notion of a data stream characterised by the continuous flow of
incoming data, sequential order and dynamic nature. A model deployed on such a data stream can
exhibit a deterioration in performance due to concept drift. Specifically, we consider the following
description of concept drift in this thesis: pt(x) = pt+1(x), pt(y∣x) ≠ pt+1(y∣x). There are four types
of concept drift: sudden drift, gradual drift, recurring drift and incremental drift. Furthermore,
methods to deal with concept drift are divided into three categories: error rate-based drift detection,
data distribution-based drift detection and multiple hypothesis test drift detection. Error rate-based
methods rely on monitoring changes in the error rate as an indicator of concept drift. On the
other hand, data distribution-based mechanisms exploit a distance function directly applied to two
input data distributions to detect concept drift. Multiple hypothesis methods utilise more than one
hypothesis test to detect concept drift.

Regarding the robustness of neural networks, we have explored adversarial examples which
are small and oftentimes undetectable perturbations to the input triggering the neural network
to make a wrong prediction. Local robustness verification provides a formal framework to assess
to which extent a neural network is vulnerable to adversarial examples. Given that solving this
task is NP-hard, there is a general distinction between complete and incomplete neural network
verifiers. Incomplete verification methods, while being computationally cheaper, cannot guarantee
an outcome to the verification problem. In contrast, complete verification methods do provide
an exact outcome to the verification problem at the cost of increased computational expenses. A
state-of-the-art neural network verifier is α,β-CROWN making use of BaB.
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3 Related Work

Various methods exist for detecting concept drift. In this section, we will discuss the following
prominent methods: DDM, EDDM, ADWIN and KSWIN. In addition, we will explain a more recent
method named UDD which uses uncertainty estimates of a neural network as input to ADWIN for
detecting concept drift. We will mention several disadvantages of these methods that our proposed
method aims to address. Subsequently, we introduce our method which belongs to the category
of error rate-based methods. Our approach is inspired by the lower bound to the critical epsilon
value defined in the work of Bosman et al. [25]. Essentially, these values provide a distance measure
to the decision boundary. We hypothesise that the distributions of these values differ significantly
before and after the occurrence of concept drift.

3.1 Concept Drift Detection Methods

The largest group of drift detection methods is error rate-based drift detection, as discussed
in Section 2.1.3. A well-known error rate-based method is Drift Detection Method (DDM) [11].
DDM relies on the prediction of a model to update the error rate within a context window.
Specifically, DDM accepts binary input in which 0 represents a correct classification and 1 denotes
a misclassification. The input for DDM is assumed to follow a Binomial distribution [20]. DDM
keeps track of the minimum error rate (i.e., the mean over the observed zeros and ones) and
the minimum standard deviation. A warning mode is triggered as soon as the current error rate
and standard deviation exceed a confidence level of 95% [11]. Suppose the current error rate and
standard deviation exceed 99% [11], in that case, it is considered concept drift.

Early Drift Detection Method (EDDM) [39] focused on improving DDM specifically for slow
incremental drift. Similarly to DDM, EDDM relies on binary inputs and assumes that these follow
a Binomial distribution [20]. Instead of the error rate and standard deviation, EDDM exploits
the average distance and variance between two consecutive misclassifications. Baena-Garćıa and
colleagues [39] assume that as the model learns, this average distance should increase. This means
that a decrease in the average distance indicates the potential presence of concept drift. EDDM
keeps track of the maximum distance between two consecutive misclassifications and the maximum
standard deviation. Similarly to DDM, EDDM first triggers a warning zone before indicating a
concept drift.

A typical window-based method to monitor the error rate of a model is ADaptive WINdowing
(ADWIN) and the optimised successor ADWIN2 [16]. Based on a window with a size defined by
the user, ADWIN partitions the window into two large enough subwindows. Importantly, ADWIN
compares the difference between the two means of the sub-windows against a defined confidence
threshold. If the difference in means exceeds the threshold, the concept present in the first subwindow
is different from the concept in the second subwindow. Thus, the difference in terms of the two
sample means serves as the test statistic to verify whether there is concept drift [7]. ADWIN
accepts binary as well as real-valued inputs without assumptions about the distribution of the
input data [16].

A state-of-the-art data distribution-based detection method is KSWIN [1]. KSWIN maintains
the n most recent samples and generates two distributions: one window containing the r most
recent instances and another window consisting of r uniformly sampled instances excluding the
ones present in the first window. The authors opted for uniform sampling since this method is
parameter-free and provides no discrimination towards the selection of instances from a distribution
with unknown properties [1]. As a test statistic to highlight concept drift, the authors utilise
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the Kolmogorov-Smirnov test which computes the absolute distance between two cumulative
distributions [1]. Table 1 summarises the discussed concept drift detection methods.

Table 1: Comparison between four concept drift detection methods.

Drift Detector Category Needs Labels Input Parameters
DDM error rate-based yes binary -
EDDM error rate-based yes binary -
ADWIN error rate-based depends on input arbitrary significance value

KSWIN data distribution based depends on input arbitrary
window size

detection window
test statistic

As shown in Table 1, DDM, EDDM and ADWIN are originally error rate-based methods
exclusively accepting the error rate as input. KSWIN being a data distribution-based method,
accepts features as input.

Instead of the error rate or the direct features as input, Baier et al. [20] introduced Uncertainty
Drift Detection (UDD). UDD leverages uncertainty estimates from a deep neural network as input
to ADWIN to detect concept drift. For each incoming instance, UDD computes the uncertainty by
performing multiple forward passes through a deep neural network using Monte Carlo Dropout [20].
During inference, Monte Carlo Dropout applies different dropout masks per forward pass to generate
a distribution of predictions. It is important to note that Monte Carlo Dropout requires the network
architecture to contain dropout layers. UDD applies to both classification and regression problems.
For this reason, we extended the input of ADWIN to real-valued in Table 1.

To summarise, we have discussed three different inputs to drift detectors: error rate, features
and uncertainty. According to Baier et al. [20], methods relying only on features as input data
might be prone to an increased number of false positives due to detecting changes on the feature
level instead of concept drift. As a consequence, unnecessary retraining of the model may occur.
For instance, it might detect virtual drift pt(x) ≠ pt+1(x), pt(y∣x) = pt+1(y∣x) which has no impact
on the performance of the model [20]. Baier and colleagues [20] addressed this problem via their
proposed UDD method. However, a drawback of UDD is that the architecture of the neural network
requires dropout layers.

Regarding the error rate, drift detector methods typically identify concept drift once the
error rate decreases by a certain margin or the distance between two consecutive misclassifications
decreases. However, a disadvantage of such methods is that by the time concept drift is detected,
the model’s performance has already been degraded. Therefore, we propose a method that aims
at monitoring changes in the distance of instances towards the decision boundary. By using these
distance measures as input to a drift detector, we expect to be able to proactively react to concept
drift before a severe decline in model performance occurs. In the upcoming section, we will explain
the fundamental basis on which we build our concept drift detection method.

3.2 Detecting Concept Drift Through Critical ε Values

In Section 2.2, we introduced ε denoting the amount of perturbation added to an instance. Instead
of using a predefined perturbation radius, Bosman et al. [25] introduced the critical epsilon value
ε∗. The critical epsilon value ε∗ represents the maximum perturbation size that can be added to a
specific instance such that the resulting distorted instance cannot trigger the neural network to
generate a wrong prediction i.e., x ∈ {x ∶ ∣∣x − x0∣∣p ≤ ε∗} [25]. In other words, a perturbation size
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larger than ε∗ will generate an adversarial example and consequently trigger the neural network to
generate a wrong prediction.

However, current neural network verification frameworks are expensive in terms of running
time making it infeasible to evaluate all possible ε values [25]. Rather, Bosman et al. [25] propose to
find an empirical lower bound ε̃∗ to the critical epsilon ε∗ via discretization. This means that only a
set of epsilon values E = {ε0, ..., εn}, in which εi < εi+1,∀i ∈ {0, ..., n} [25] is assessed. In more detail,
within the range of epsilons E , we are interested in finding two ε values next to each other such
that the smaller one εi−1 yields no adverserial example and the larger one εi contains an adversarial
example. If such a pair exists, the empirical lower-bound ε̃∗ is set at εi−1 and the critical epsilon ε∗

exists in the range of this pair: [εi−1, εi).
Based on this explanation, it becomes clear that ε̃∗ functions as a distance measure towards

the decision boundary of a trained neural network. This means that for each incoming instance, we
can compute its distance to the decision boundary via the method proposed in the work of Bosman
et al. [25]. Specifically, we leverage this method to obtain ε̃∗ for a correctly classified instance,
whereas we assign 0 for incorrectly classified instances. Compared to the original error rate-based
input, we provide additional information (i.e., the distance towards the decision boundary) through
the ε̃∗ values.

As specified in Section 2.1, we only consider concept drift formally defined as pt(x) =
pt+1(x), pt(y∣x) ≠ pt+1(y∣x). This means that the relationship between instances and their classes
changes while the probability distribution of the features remains the same. Hence the learned
decision boundary by a neural network no longer holds to a certain extent in the presence of concept
drift. As a consequence, we will observe an increase in misclassified instances due to the inaccurate
decision boundary. We think that the distributions of ε̃∗ values before and after concept drift will
differ significantly. To this end, we believe that a change in the distribution of ε̃∗ values is an
indicator of concept drift. In the next section, we will explain our approach in more detail.
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4 Methodology

This section provides a detailed explanation of our proposed method for detecting concept drift.
First, we focus on the usage of ε̃∗ values to detect concept drift in binary classification tasks. We
will explore the combined ε̃∗ distributions of both classes as well as the individual ε̃∗ distributions
per class. Second, we introduce the ε̃∗-drift representing an approximation of the distance towards
the decision boundary for misclassified instances. We provide a detailed procedure for computing
ε̃∗-drift values. Finally, we discuss the integration of ε̃∗-drift values into classical drift detection
methods and introduce an additional drift detector: the Mann-Whitney U test. Furthermore, we
propose a threshold method as a drift detector which works exclusively with ε̃∗-drift values.

4.1 Lower Bound to the Critical ε Value

In Section 3.2, we introduced our idea for a concept drift detection method based on local robustness
verification. To thoroughly explain our method, we make the following assumptions: I) we assume
concept drift as defined by pt(x) = pt+1(x), pt(y∣x) ≠ pt+1(y∣x), II) we assume that the ground truth
is always and directly accessible and III) we assume that there exists a single ultimate separator in
the form of a rule to split data into two distinct groups (i.e., binary classification). We leave the
extension of this method to multiclass classification and other problem types, such as regression,
open for future work.

The sudden drift scenario based on a simplification of the SEA dataset visualised in Figure 6
serves as the foundation to explain our concept drift detection method:

time0.44

0.46

0.48

0.50

0.52

0.54

0.56

fe
at

ur
e 

2

(a) No concept drift.
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(b) Concept drift.

Figure 6: Sudden drift scenario. We assume a binary classification task in which instances consist of two
features: feature 1 and feature 2. The red lines denote the separator and the green lines represent the
learned decision boundary by a model. The separator is a rule determining if an instance belongs to the
orange or purple classes. The separator in Figure 6b changed compared to Figure 6a causing concept drift.
It is important to note that the separator cannot be measured or assessed in practice.

First, we exclusively focus on Figure 6a. In this plot, we represent a binary classification task
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in which instances consist of two features: feature 1 and feature 2 in the range [0,1] and belong
either to the orange class or the purple class. The red line denotes the separator representing a rule
that decides if an instance belongs either to the orange class or the purple class. Specifically for
the plot in Figure 6a, if feature 2 is bigger than 0.5 an instance belongs to the orange class and
otherwise it originates from the purple class. It is important to note that this separator cannot be
measured or assessed directly in practice.

Furthermore, Figure 6a contains a green line representing the learned decision boundary by a
neural network. Since a neural network might be incapable of perfectly learning the separator, the
green line (decision boundary) is slightly above the red line (separator). As a result, misclassifications
occur for instances in the area enclosed between the red and green lines.

In Figure 6b, we observe a change in the red line (separator). Notably, the red line shifted from
0.5 to 0.53 meaning that instances with feature 2 bigger than 0.53 belong to the orange class and
otherwise to the purple class. This is an example of sudden drift. Since we do not retrain the neural
network, the green line (decision boundary) does not change. In other words, the area between
the green line (decision boundary) and the red line (separator) increased. As a consequence, more
instances fall in this area which causes the model to produce more wrong classifications compared
to the situation without concept drift in Figure 6a.

As a first approach, we can compare the distributions of ε̃∗ values before and after concept
drift. Remember that we can only measure the ε̃∗ value for correctly classified instances meaning
that we can choose to ignore misclassified instances or set their ε̃∗ value equal to 0.

First, we focus on the distribution of ε̃∗ values prior to the occurrence of concept drift. The
blue arrows in Figure 7 denote the ε̃∗ values for both the orange and purple classes. Although
the blue arrows represent the exact distance towards the decision boundary for correctly classified
instances (i.e., ε∗ values), we opted for this representation of ε̃∗ values to simplify the explanations.
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(a) No concept drift.
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(b) No concept drift.

Figure 7: Distances towards the decision boundary in terms of ε̃∗ values in the presence of no concept
drift.

Figure 7a denotes the ε̃∗ values as blue arrows for the orange class. The closer an orange
instance is to the green line (decision boundary) the smaller the ε̃∗ value. Given that all instances
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above the green line (decision boundary) are correctly classified as orange instances and the neural
network verifier measures the distances of these instances towards the green line (decision boundary),
we expect to observe all ε̃∗ values as defined by E with an infinite number of incoming instances.

A different scenario is depicted in Figure 7b. Figure 7b contains blue arrows representing the
ε̃∗ values for the purple class. Again, the closer a purple instance is to the green line (decision
boundary) the smaller the ε̃∗ value. However, the neural network did not learn the exact separator
resulting in misclassifications in the area between the red line (separator) and green line (decision
boundary). Because instances above the red line belong to the orange class, there cannot exist
instances between the red line (separator) and the green line (decision boundary) originating from
the purple class. As a consequence, we cannot observe ε̃∗ values for the purple class spanning
the distance from the green line (decision boundary) to the red line (separator). Nevertheless by
combining the distributions of the ε̃∗ values for the orange and purple class we observe all ε̃∗

values as defined by E with an infinite number of incoming instances in theory (see the pink line in
Figure 10).

Similar observations can be made for the ε̃∗ distributions after concept drift represented in
Figure 8.
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(a) Concept drift.
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(b) Concept drift.

Figure 8: Distances towards the decision boundary in terms of ε̃∗ values in the presence of concept drift.

Given that the red line (separator) shifted from 0.5 to 0.53 and the green line (decision
boundary) remains, Figure 8b is similar to Figure 7a. Namely, we expect to find all ε̃∗ values in
E for the purple class, since all instances below the green line (decision boundary) are correctly
classified.

To this extent, Figure 8a represents a more extreme example demonstrated in Figure 7b. After
the concept drift, all instances above the red line (separator) belong to the orange class, whereas
the instances below this line originate from the purple class. Hence, misclassifications between the
red line (separator) and the green line (decision boundary) happen solely for instances from the
purple class. In other words, we would observe more ε̃∗ values equal to 0 due to the increase in
misclassified instances as depicted in Figure 9b. The distribution of ε̃∗ values after concept drift for
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the purple class shifts downwards compared to the distribution before concept drift for the purple
class.

Regarding the orange class, it is impossible to observe orange instances in the area denoted
by the red line (separator) and green line (decision boundary). Consequently, ε̃∗ values smaller or
equal to the distance between the red line (separator) and the green line (decision boundary) are
non-existent for the orange class as can be seen in Figure 9a. Notably, the distribution of ε̃∗ values
for the orange class shifts upwards compared to the distribution for the orange class before concept
drift.

To clarify, the distributions of ε̃∗ values of the orange and purple classes before concept drift
are similar to each other as seen in Figure 9. Due to concept drift, we observe larger ε̃∗ values
for the orange class and an increase in ε̃∗ values equal to 0 for the purple class due to increased
misclassifications. In other words, the distributions of the orange and purple classes after concept
drift are drifting away from each other. However, the missing smaller ε̃∗ values are still present in the
distribution of ε̃∗ values of the purple class after concept drift. Again, combining the distributions
of ε̃∗ values of both the orange and purple classes yields all possible ε̃∗ values in E (see the grey
line in Figure 10).
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(a) Orange class before and after concept drift.
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(b) Purple class before and after concept drift.

Figure 9: Distributions of ε̃∗ values for the orange class and purple class before and after concept drift.
Figure 9a represents a shift in larger ε̃∗ values for the orange class. An increase in misclassifications
represented as a ε̃∗ value of 0 decreases the distribution as seen in Figure 9b. The distributions after
concept drift of the orange class and purple class are moving in opposite directions.

To conclude the first approach, we expect to observe all ε̃∗ values in E before and after concept
drift given an infinite number of incoming instances as demonstrated in Figure 10. As seen in
Figures 7 and 8, the distributions on a class basis differ and by combining them they cancel each
other out. Hence, comparing the distributions of ε̃∗ values before and after concept drift will not
work since the distributions are expected to be similar to each other.
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Figure 10: Distributions of observed ε̃∗ values before and after concept drift. Both distributions are
combinations of the observed ε̃∗ values for the orange and purple classes as demonstrated in Figures 7
and 8.

Building on this first approach, a natural next step is to split the distributions of ε̃∗ values
before and after concept drift based on the classes. Based on Figure 7a, we expect to observe all
possible ε̃∗ values for the orange class before concept drift. On the contrary, we expect to observe
only ε̃∗ values larger than the distance between the red line (separator) and the green line (decision
boundary) for the orange class after concept drift as depicted in Figure 8a. Both distributions
before and after concept drift are visualised in Figure 11a. Notably, the grey line representing the
distribution of ε̃∗ values after concept drift shifted towards the right in comparison to the pink line
denoting the distribution of ε̃∗ values before concept drift.

Regarding the purple class, we expect to observe solely ε̃∗ values larger than the distance
between the red line (separator) and the green line (decision boundary) for the purple class before
concept drift as depicted in Figure 7b. On the other hand, we expect to observe all possible ε̃∗

values for the purple class after concept drift as demonstrated in Figure 8b. The differences between
these two distributions are minimal as depicted in Figure 11b.
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(a) Orange class before and after concept drift.
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(b) purple class before and after concept drift.

Figure 11: Distributions of observed ε̃∗ values before and after concept drift. Both distributions are split
based on the class label (i.e., orange class or purple class).

The distribution shift depicted in Figure 11a contains information we could use to detect
concept drift. Notably, this shift is observed in the lower part of the distributions as instances
further located from the decision boundary are currently the only ones correctly classified. In other
words, smaller ε̃∗ values are missing in the distribution of the orange class after concept drift
compared to the distribution of ε̃∗ values of the orange class before concept drift.

For this approach to work, we depend on observing correctly classified instances with a distance
towards the decision boundary equal to the ε̃∗ values in the lower parts of the distributions. A
potential disadvantage is that it is not guaranteed to observe these specific instances while the model
might already demonstrate a drop in performance due to concept drift. Namely, an exceptional
scenario would be to solely observe misclassified instances and instances yielding larger distances
towards the decision boundary than the ε̃∗ values in the lower parts of the distribution. In such a
case, our approach would be unable to detect concept drift while the model demonstrates a lower
performance.

An opposite scenario might also occur in which we observe correctly classified instances with
the ε̃∗ values in the lower parts of the distribution and zero misclassified instances. In this specific
scenario, we will be faster in detecting concept drift than regular error rate-based methods.

Another drawback of this approach is the necessary split into classes. For each new correctly
classified instance, we need to verify whether it belongs to the orange or purple classes. This means
that we need a drift detector per class increasing the computational costs.

We conducted experiments in an early experimental phase to assess the performance of this
class-splitting approach to detect concept drift. Based on preliminary results, we observed that this
approach is relatively slow and produces a higher number of false positives compared to the regular
error rate. Furthermore, a significant difference between the distributions of ε̃∗ values before and
after concept drift was observed in the purple class rather than in the orange class. Despite these
findings, this method does provide information in terms of a shift in the distribution of ε̃∗ values
before and after concept drift, which we leave open for future work.

Therefore, we might consider a third approach in which we include misclassifications while still
splitting the distributions based on classes. We assigned a 0 as ε̃∗ value for misclassified instances.
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Similar to the error rate-based methods, we would observe an increase in 0 values after concept
drift occurred. This difference is demonstrated in Figure 12.
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(a) Yellow class before and after concept drift.
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(b) purple class before and after concept drift.

Figure 12: Distributions of observed ε̃∗ values including misclassifications before and after concept drift.
Both distributions are split based on the class label (i.e., orange class or purple class).

As becomes clear from Figure 12b, we observe an increase in zero ε̃∗ values for the purple class
after concept drift. However, to get this difference in zero ε̃∗ values before and after concept drift,
we are still dependent on misclassification. For this reason, this approach defaults to the regular
observation of the error rate and there is no advantage in terms of detection time.

Up to this point, we have mainly focused on the distance towards the decision boundary
for correctly classified instances via ε̃∗ values. Simply comparing the distributions of ε̃∗ values
before and after concept drift does not work since the classes cancel each other out. Splitting
the distributions of ε̃∗ values before and after concept drift based on classes yields a shift in the
distribution after concept drift compared to before concept drift for a specific class. However,
neglecting misclassified instances and dividing the information over two concept drift detectors
might result in delays in detection time compared to regular error rate-based methods that use
a single concept drift detector. Namely, it is not guaranteed to receive enough of these instances
to detect a significant shift in the lower parts of the distributions before and after concept drift.
Including misclassified instances in the distributions results in an increase in observed 0 values after
concept drift compared to before concept drift for a specific class. However, this is similar to the
regular error rate and therefore not faster in detecting concept drift.

Instead of correctly classified instances, we started to focus on the distance towards the decision
boundary for misclassified instances. We will explain this approach in the next section.
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4.2 Lower Bound to the Critical ε-drift Value
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(a) No concept drift.
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(b) Concept drift.

Figure 13: Distances towards the decision boundary for misclassified instances in the presence of no
concept drift (Figure 13a) and concept drift (Figure 13b).

A noticeable difference between Figures 6a and 6b is that several misclassified instances in Figure 6b
are more distant from the decision boundary than misclassified instances in Figure 6a. In more detail,
the two orange instances between the red line (separator) and the green line (decision boundary) are
the only misclassified instances in Figure 6a. The distances towards the decision boundary of both
instances are relatively small since the area between the red and green lines is small. On the other
hand, we observe an increase in misclassified instances in Figure 6b due to concept drift. In other
words, the area between the red line (separator) and green line (decision boundary) increased and
hence we observe misclassified instances with an increased distance towards the decision boundary
compared to Figure 6a. These increased distances towards the decision boundary for misclassified
instances function as a sign of concept drift.

We introduce the ε-drift∗ value inspired by Bosman et al. [25] to compute the distance towards
the decision boundary for a misclassified instance. Instead of searching for the ε̃∗ value of a correctly
classified non-perturbed instance λ(x0), we are interested in doing the opposite. Namely, we aim to
find the ε-drift∗ value for a misclassified non-perturbed instance.

Formally, we utilise a static trained neural network fθ in Rn → Rm to make predictions about
newly incoming instances in which θ represents the trainable parameters of the neural network and
n and m stand for the input and output dimensions respectively. For a misclassified non-perturbed
instance represented as x0, a perturbed instance x within the region x ∈ {x ∶ ∣∣x − x0∣∣p ≤ ε-drift∗}
triggers the neural network to predict the same class as x0. Through discretizing the search space
of possible ε-drift values (i.e., E = {ε-drift1, ..., ε-driftn}, in which ε-drifti < ε-drifti+1,∀i ∈ {1, ..., n}),
we are interested in finding two ε-drift values such that the smaller one ε-drifti−1 triggers the
network to predict the exact same class as x0, whereas the bigger one ε-drifti predicts the opposite
class of x0. If such a pair exists, we interpret ε-drifti−1 as the lower bound to the critical ε-drift
value ε̃∗-drift. In other words, ε̃∗-drift represents the distance towards the decision boundary for a
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misclassified non-perturbed instance x0. Compared to the regular error rate-based methods, our
ε̃∗-drift method provides additional information in the form of the distance towards the decision
boundary. In the next section 4.3, we will give a high-level overview of our pipeline.

4.3 Concept Drift Detection Through ε̃∗-drift Values

We will address an important part of our concept drift detection method. Specifically, we will cover
the binary search for ε̃∗-drift values.

4.3.1 Binary Search for ε̃∗-drift Values

To search for the ε̃∗-drift value of a misclassified instance, we make use of a binary search approach
as performed in the study of Bosman et al. [25]. Ideally, we aim to find a pair of ε-drift values
such that the smaller ε-drifti−1 is unsatisfiable (safe) and the larger ε-drifti is satisfiable (unsafe).
However, we also account for the following scenarios: i) All ε-drift values in E might be satisfiable
meaning there is no safe ε-drift value. This is expected to happen, especially when there is no
concept drift, for misclassified instances that lie very close to the decision boundary. Consequently,
we set the ε̃∗-drift value equal to 0 for such cases. ii) It is also possible that all ε-drift values are
unsatisfiable for instances with a considerable distance from the decision boundary. In that specific
case, we assign the highest ε-drift value in E to be the ε̃∗-drift.

Finally, a complete neural network verifier such as α-β-CROWN, is guaranteed to give a
definite proof of a property given enough time [27]. Since time is precious in a data streaming
context, we need to restrict the time a neural network verifier gets to verify if a property holds. As
a consequence, the output of a neural network verifier can be timeout. Another possible outcome is
an out-of-memory error. This raises other possibilities regarding the outcome of a ε̃∗-drift value for
a misclassified instance.

Namely, we might find timeout or out-of-memory error outputs in between a safe and unsafe
ε-drift value. As a result, the range defined by the safe and unsafe ε-drift values in which we can
find the ε∗-drift becomes larger. In such cases, we still consider the safe ε-drift value as the ε̃∗-drift.
Although the distance towards the decision boundary becomes less accurate, we do not overestimate
this distance preventing potential false positives. We perform the same procedure if we encounter a
safe ε-drift value and all larger ε-drift values evaluate to timeout or out-of-memory error outputs.

Finally, we might also encounter an opposite situation in which we find an unsafe ε-drift and all
smaller ε-drift values to be timeouts or out-of-memory errors. In the worst-case scenario, all ε-drift
values will result in a timeout or out-of-memory error output. In these cases, we have insufficient
information to determine the distance towards the decision boundary and hence we discard the
instance.

4.4 Concept Drift Detection Methods

Through the computed ε̃∗-drift values, we aim to detect concept drift. We use these values directly
as input for the classical drift detection methods DDM, ADWIN and KSWIN mentioned in Table 1.
Additionally, our intuition about ε̃∗-drift values is that we observe small ε̃∗-drift values with no
concept drift while these values increase in the presence of concept drift. For this reason, we
introduce two additional concept drift detectors: the Mann-Whitney U test [40] and a threshold
method.

The Mann-Whithney U test is a non-parametric test meaning that the input data does not need
to be of a specific distribution such as a Gaussian distribution. Since we do not have information
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about the distribution of ε̃∗-drift values, we opted for this test. Intuitively, the Mann-Whitney U
test compares the rankings of two independent populations. It assesses whether the values of one
population tend to be larger compared to the other population. This aligns with our proposed
method to detect concept drift through ε̃∗-drift values. Namely, we expect to observe increased
ε̃∗-drift values with concept drift.

As for the practical implementation, we keep in memory a part of the training phase ε̃∗-drift
values. Given that the input data’s normalisation procedure might cause misclassifications due to
incorrect mapping for the first batch of instances, we consider the most recent instances in the
training set. With the arrival of new instances, we first fill a second window until it contains the
same number of ε̃∗-drift values as the reference window. As soon as this is the case, we conduct the
Mann-Whitney U test. If indeed ε̃∗-drift values from the second window are statistically larger than
the ones from the reference window, we consider it as an indication of concept drift. Otherwise, we
discard the oldest instance in the second window, include the most recent ε̃∗-drift value and repeat
the described procedure.

A final approach we propose is the utilisation of a so-called threshold method. After the
training phase, we could evaluate the range of ε̃∗-drift values. Based on these observations, we can
establish criteria for acceptable ε̃∗-drift values. For instance, by observing enough ε̃∗-drift values
during the training phase, we can compute the probability of observing a certain ε̃∗-drift value. If
this probability is smaller than 0.05, we could consider it concept drift. Another possibility would
be to compute the mean and standard deviation of the distribution of ε̃∗-drift values during the
training phase. If the current ε̃∗-drift value is for example three standard deviations away from the
mean, we could consider it concept drift.

However, these methods assume that we observe enough ε̃∗-drift values which is not guaranteed.
Therefore, a less robust method not grounded in statistical evidence is to consider an acceptable
range of ε̃∗-drift values. One approach could be to take the observed ε̃∗-drift values as this acceptable
range. Concretely, if a ε̃∗-drift value surpasses the acceptable range, we consider it concept drift.

It is important to note that the threshold method is only compatible with ε̃∗-drift values.
Namely, with the error rate consisting of binary values, we cannot make claims about observing
larger values or values falling outside a certain range of observations. Regarding the features as input,
we assume that the input distributions before and after concept drift do not change. Furthermore,
the threshold method directly influences the method’s sensitivity. A higher threshold means a
lower number of false positives at the risk of delays or missing concept drift. Therefore, it needs
further refinement, which we leave open for future work. Despite its current limitations, we believe
this approach introduces a promising new research direction within the domain of neural network
verification, briefly discussed in Section 6.
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5 Experiments

In this section, we will explain our experimental setup and demonstrate the obtained results.
To verify if our proposed method can handle different types of concept drift, we assessed the
detection capabilities on two synthetic data generators. A general overview of the used synthetic
data generators is present in Table 2. The code to reproduce the experiments is available via the
following link: https://github.com/rlaanen/e_drift.

5.1 Synthetic Data Generators

There is a general distinction between synthetic data generators and real-world datasets in the
field of concept drift [9]. Synthetic data generators provide annotations regarding the type of
concept drift and the point in time at which the concept drift occurs. On the contrary, real-world
datasets often lack such annotations limiting the evaluation of concept drift detection methods.
Additionally, Souza et al. [9] argue whether real-world datasets truly exhibit concept drift. Namely,
it is oftentimes assumed that a decrease in model performance over time indicates that a real-world
dataset contains concept drift [9].

However, synthetic data generators often do not reflect a real-world dataset’s complexity.
Another disadvantage of synthetic data generators is the risk of committing data bias [9]. For
instance, one can cherry-pick a certain configuration of a synthetic data generator, reflecting a
favourable outcome for a drift detector.

Since we are interested in assessing whether our concept drift detection method is faster
in identifying concept drift compared to classical error rate-based methods, it is crucial to have
precise information regarding the point in time and type of concept drift. Therefore, we decided to
benchmark the detection capabilities of our method on two synthetic data generators. Specifically,
we utilised the SEA generator to simulate sudden drift and the Hyperplane generator to mimic
incremental drift. We generated the synthetic data streams using the free and open-source River [41]
framework. The upcoming subsections will provide a detailed description of the two synthetic data
generators.

5.1.1 SEA

SEA [17] is a data stream generator capable of simulating sudden drift. Each instance consists
of three real-valued continuous features att1, att2 and att3 in the range [0,10] and is linked to a
binary label (i.e., False or True). Moreover, if the sum of the first two features exceeds a certain
threshold (i.e., att1 + att2 > δ) the instance evaluates to True and otherwise to False. SEA contains
the following four thresholds: variant 0: δ = 8, variant 1: δ = 9, variant 2: δ = 7 and variant 4: δ = 9.5.
Sudden drift can be simulated by changing the threshold δ. For instance, the labels of the first
1,000 instances are determined by δ = 8 and the labels of the next 1,000 instances by δ = 9. This
abrupt change in δ simulates sudden drift. A summarised description of the SEA dataset is present
in Table 2.

5.1.2 Hyperplane

The Hyperplane generator [42] initialises a hyperplane in d-dimensional space according to the
following Equation 4:

d

∑
i=1

wixi = w0 =
d

∑
i=1

wi (4)
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in which w represents the coefficients of the hyperplane [42]. By initialising the Hyperplane generator,
a random set of weights w0 with a size equal to d is generated. Per timestep, the Hyperplane
generator samples a random instance of size d with values ranging between [0,1]. If the sum of
the set of weights times the instance is bigger than w0 (see Equation 5) the associated label is
positive. On the contrary, if the sum of the weights times the instance is smaller or equal to w0

(see Equation 6), the associated label is negative.

d

∑
i=1

wixi > w0 (5)

d

∑
i=1

wixi ≤ w0 (6)

To introduce incremental drift, we can alter the original set of weights w0 of the hyperplane.
Specifically, we can increase or decrease the size of each weight in w0 to change the position and
orientation of the hyperplane [42]. The River framework [41] allows the user to set the size of
the change ν ∈ [0,1] and the probability that the direction of change is reversed ζ ∈ [0,1]. With
these two hyperparameters, each weight in w0 can be adjusted as follows: wi = wi + ζν [41]. Table 2
contains summarised information about the hyperplane dataset.

Table 2: Overview of the synthetic data generators used in our experiments. Table adapted from [7].

Dataset Drift Type Features Classes Source
SEA Sudden 3 2 River
Hyperplane Incremental 10 2 River

5.2 Evaluation Methods

Assessing the performance of concept drift detection methods is a challenging task due to the
different properties of synthetic data generators and real-world datasets. Therefore, it is important
to underline whether a metric is appropriate for the given dataset. This is specifically the case for
real-world datasets because they often lack annotations for exact timestamps at which concept drift
occurs and for the specific type of concept drift [9, 20].

As mentioned in Section 2.1.2, concept drift detection methods might suffer from false positives.
False positives are undesirable since unnecessary retraining of a model comes at the cost of resources.
Thereby, we are interested in knowing if a detection strategy is capable of detecting a concept drift
in a reasonable timeframe. For these reasons, the mean time to detection (MTD), the false alarm
count (FAC) and the missed detection count (MDC) [43, 20] are important metrics in assessing the
effectiveness of a detection mechanism. These metrics are only applicable to data streams with
annotations about concept drift.

MTD represents the number of instances between the start position of the concept drift and
the detected point. The lower the MTD value the better the detection mechanism is in detecting
drifts early. FAC denotes the number of times the drift detection mechanism flags drift before the
actual starting point of the concept drift. A lower FAC is desirable since it would save resources.
MDC indicates the number of times the detection mechanism fails to detect concept drift, where a
lower MDC, ideally 0, signifies a better-performing drift detector.
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5.3 Experimental Settings

In this section, we outline the experimental setup. First, we will describe how we generated synthetic
datasets. Second, we will provide details about the training procedures employed for the neural
networks used in our experiments. Third, we will briefly mention the configuration of the α,β-
CROWN neural network verifier. Finally, we will specify the parameters used for the concept drift
detection methods.

5.3.1 Dataset Settings

To benchmark our proposed method, we utilised the SEA generator to mimic sudden drift and
the Hyperplane generator to simulate incremental drift. Each synthetic dataset that we generated
in the context of this research consists of 100,000 instances. The first 5,000 instances originate
from another context than the remaining 5,000 instances. In other words, concept drift starts from
instance 5,000. Furthermore, we decided not to inject noise into the synthetic data streams.

Regarding the SEA generator, we generated all possible combinations of variants resulting in a
total of 6 data stream configurations. This means that the first context is another variant than the
second context. For each possible combination, we generated five data stream instances with seeds
100-104 for the first context and seeds 105-109 for the second context.

As for the Hyperplane generator, the number of features as well as the number of drift features
can be set by the user. We opted for the default values of the River framework which means 10
features and 2 drift features. The most important parameters to simulate drift are the size of the
change v and the probability that the direction of change is reversed ζ. For the first context, both
parameters are set equal to zero. Following Raab et al. [1] for the second context, we set v = 0.001.
Since ζ influences the direction of change, we decided to set this parameter to zero for the second
context as well to ensure incremental drift in one direction. Similarly to the SEA data stream
configurations, we generated five instances of the data stream configuration with seeds 105-109.
Detailed information about the specific configurations can be found in Appendix B.

5.3.2 Normalization of the Input Data

The majority of the work in the field of neural network verification focuses exclusively on image
datasets such as MNIST and CIFAR [24]. Image data is typically mapped from [0,255] to [0,1].
Given that we did not use image data, we normalised real-valued features that are not in the range
[0,1] to the range [0,1] following [44, 45]. Normalisation also ensures we can use a consistent set of
ε-drift values across multiple datasets [44] to compute the distance towards the decision boundary
for misclassified instances. Equation 7 demonstrates the min-max normalization which maps a
single feature to the range [0,1]:

x′ = x − xmin

xmax − xmin

(7)

in which xmin represents the minimum value for a specific feature and xmax denotes the
maximum value for a specific feature based on a set of instances. Namely, min-max normalization
transforms a specific feature by setting the minimum value equal to 0, the maximum value to 1 and
the remaining values between 0 and 1. In a setting with a static dataset, these values are trivial to
compute for each feature.

However, an online setting does not allow instant access to the statistics of the evolving
dataset [10]. Therefore, we adopt the min-max normalization function from the River [41] framework.
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During the training phase of an algorithm, we consider a static dataset from which we compute the
min and max values. We maintain and actively update the min and max values as new instances are
incoming. One drawback of the River min-max normalization function lies in its inability to allow
for batch updates. Consequently, the first few instances are incorrectly mapped to the [0,1] range,
leading to incorrect patterns between inputs and targets. Practically, we normalised all generated
SEA datasets.

5.3.3 Neural Network Configurations

Given that our proposed drift detection method relies on neural network verification, we exclusively
utilised neural networks as prediction models. As for the architecture of the neural networks, we
restricted ourselves to fully connected neural networks with ReLU as an activation function for the
nodes. Furthermore, the neural networks and the training procedure exhibit various hyperparameters
to tune such as the batch size, number of epochs, learning rate and optimizer. We performed a
grid search to tune these hyperparameters. Specifically, we assessed the following values for the
batch size: {16,32,64,128}, the following values for the number of epochs: {5,10,25,50,100}, the
following values for the learning rate {0.01, 0.005, 0.001, 0.0005, 0.0001} and the following optimizers:
{SGD, RMSprop and Adam}. To determine the best combination of hyperparameters, we combined
the grid search with a 5-fold cross-validation.

Hence, on each dataset, we performed a grid search together with a 5-fold cross-validation
strategy on the training set consisting of 2,000 instances with the Matthews Correlation Coefficient
(MCC) [46] as an evaluation metric to assess combinations of hyperparameter values. MCC is
mathematically defined in Equation 8 retrieved from [46]:

MCC = TP ⋅ TN − FP ⋅ FN√
(TP + FP ) ⋅ (TP + FN) ⋅ (TN + FP ) ⋅ (TN + FN)

(8)

MCC reflects a score in the interval [-1,1] in which 1 represents a perfect classifier, 0 denotes a
no-skill classifier (i.e., random guessing the class label) and -1 stands for a perfect misclassified.
According to Chicco and Giuseppe [46], MCC provides a more reliable score than accuracy and F1
measures since it is unaffected by class swapping and can handle imbalanced datasets. We utilised
the hyperparameter values of the combination yielding the highest MCC score. The exact neural
network architectures including the best-found combination of hyperparameters per dataset can be
found in Appendix C.

5.3.4 α,β-CROWN Settings

To compute the ε̃∗-drift values within the range of 0.001 to 0.4 at intervals of 0.002 [25], we
utilised the state-of-the-art GPU restricted neural network verifier α,β-CROWN [27]. The GitHub
page1 provides an extensive guide on the configuration of α,β-CROWN. Given that our neural
networks consist of a maximum of 24 neurons (see Appendix C), we first opted for alpha-CROWN
in combination with a MIP solver. Unfortunately, this configuration provided inconsistent outcomes
based on preliminary experiments. As a next step, we tried GCP-CROWN also yielding inconsistent
results on preliminary experiments. Finally, we opted for the configuration beta-CROWN with
ReLU branching which provided expected results based on preliminary experiments. Specifically,
we followed the configuration based on the custom model data example in combination with the
configuration applied in the work of Bosman et al. [25]. Since limited to no information is given

1https://github.com/Verified-Intelligence/alpha-beta-CROWN/blob/main/complete_verifier/docs

27

https://github.com/Verified-Intelligence/alpha-beta-CROWN/blob/main/complete_verifier/docs


about the configuration parameters by the maintainers of the α,β-CROWN GitHub page, we cannot
go into detail about the parameters of the configuration. However, we decided to set a time limit of
600 seconds per ε value. The configuration is present in Appendix D.

5.3.5 Drift Detector Settings

In our experiments, we utilised the following drift detection mechanisms: DDM, EDDM, ADWIN,
KSWIN, Mann-Whitney U test and Threshold. Each of these have specific parameters. For ADWIN
we utilised the default parameters provided by the River framework. Since the default parameters
of the River framework for KSWIN result in non-deterministic behaviour, we decided to adopt a
window size of 200 and a statistic size of 100 as used in the work of Baier et al. [20]. However,
Baier et al. [20] tuned the test statistic value of KSWIN on a validation set if it contains concept
drift and otherwise opted for the default value. From the perspective of real-world datasets, this
procedure is not solid since it is not guaranteed that part of the dataset contains concept drift. For
this reason, we decided to set the test statistic equal to the default value of the River framework
which is 0.005. Similarly, for the Mann-Whitney U test, we applied a reference window of size 100,
a detection window of size 100 and a test statistic of 0.005.

As can be seen in Appendix E, we did not observe enough misclassifications in all datasets to
set up one of the two statistical threshold methods proposed in Section 4.4. Therefore, we used the
non-statistical approach and defined the threshold to be 0.015 based on preliminary experiments
and to ensure consistency across the datasets. This implies that any ε̃∗-drift value exceeding this
threshold indicates the presence of concept drift. note that the threshold method is a special case
and requires further investigation to provide robust outcomes.

5.4 Results

In this section, we present the obtained results through our conducted experiments. We show
the results for synthetic datasets since these allow us to compare the detection capabilities of a
variety of inputs with concept drift detectors. Given that we assessed six combinations for the
SEA generator (i.e., all possible combinations of the four thresholds), we present a subset of the
obtained results representative of the overall findings for this synthetic data generator. The other
set of results can be found in Appendix A.

5.4.1 Synthethic Datasets Results

Our objective for the synthetic datasets is to detect concept drift within a reasonable timeframe.
To this end, we defined an acceptable delay window starting from the moment concept drift occurs.
This means that a drift detector must identify concept drift within this delay window, otherwise, we
consider it a missed detection. For both the SEA and Hyperplane datasets, we set this acceptable
delay window to 1,000 [11].

Furthermore, we utilised three input sources: error rate, features and ε̃∗-drift values. The
error rate for a single instance was obtained by performing a single forward pass through a neural
network to generate the predicted target. A value of 0 was assigned for correct predictions, while a
value of 1 was assigned for incorrect predictions. These binary values were then used as inputs to a
drift detector. Regarding the computation of ε̃∗-drift values, we differentiated between correctly
and incorrectly classified instances. Similar to the error rate, we assigned a value of 0 to correctly
classified instances. For misclassifications, the ε̃∗-drift value was computed. We used the 0’s for
correctly classified instances and the ε̃∗-drift values for misclassifications as inputs to a drift detector.
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Given that we used the complete neural network verifier α,β-CROWN to compute ε̃∗-drift
values, we risked obtaining timeouts or out-of-memory errors. Fortunately, for both the SEA and
Hyperplane datasets, we did not encounter timeouts or out-of-memory errors as presented in
Appendix E.

Regarding the drift detectors, we applied DDM, ADWIN KSWIN and Mann-Whitney U test
in combination with the three inputs. The implementation of EDDM in River explicitly accepts
zeros and ones as input. For this reason, we only combined the error rate with EDDM. Additionally,
we included the threshold drift detection method restricted to ε̃∗-drift values as input. Despite
the current limitations of this drift detector, we think the preliminary results offer a valuable
comparison to other combinations of inputs with drift detectors.

Table 3: Mean time to detection (MTD), false alarm count (FAC) and missed detection count (MCD) for
different input with drift detector combinations on 5 seeded configurations of the SEA dataset with variants
0 (8) and 1 (9). Mann-Whitney U test is abbreviated as MWU. A dash represents that the input with
drift detector combination was unable to flag concept drift within the acceptable delay window. A cross
indicates that the input is not compatible with the drift detector. Bold and underlined entries represent
the fastest and second-fastest combinations respectively. An asterisk stands for the fastest combination
with 0 FAC and 0 MCD.

Drift Detector MTD FAC MDC
error rate features ε̃∗-drift error rate features ε̃∗-drift error-rate features ε̃∗-drift

DDM 37±27 - 57±89 3±4 - 2±2 0 - 0
EDDM 239±52 x x 1±1 x x 0 x x
ADWIN 394±80 - - 0 - - 0 - -
KSWIN - 445±295 - - 3±3 - - 1 -
MWU 167±131 511±82 165±132∗ 0 22±16 0 0 2 0

threshold x x 15±14 x x 0 x x 0

Table 3 denotes the results on the SEA dataset with variants 0 (8) and 1 (9). Based on this
table, the fastest drift detector in combination with error rate is DDM, with an MTD of 37. When
combined with features, KSWIN is the fastest, with an MTD of 445. For the combination with
ε̃∗-drift DDM is again the fastest with an MTD of 57. Overall, error rate with DDM as a drift
detector yields the fastest MTD. However, ε̃∗-drift with DDM exhibits a slightly lower FAC. The
fastest combination with no false positives or missed detections is ε̃∗-drift with Mann-Whitney U
test with an MTD of 165. Notably, the combination of ε̃∗-drift with the threshold drift detector
achieves the fastest combination with an MTD of 15 and no false positives or missed detections.
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Table 4: Mean time to detection (MTD), false alarm count (FAC) and missed detection count (MCD) for
different input with drift detector combinations on 5 seeded configurations of the SEA dataset with variants
1 (9) and 3 (9.5). Mann-Whitney U test is abbreviated as MWU. A dash represents that the input with
drift detector combination was unable to flag concept drift within the acceptable delay window. A cross
indicates that the input is not compatible with the drift detector. Bold and underlined entries represent
the fastest and second-fastest combinations respectively. An asterisk stands for the fastest combination
with 0 FAC and 0 MCD.

Drift Detector MTD FAC MDC
error rate features ε̃∗-drift error rate features ε̃∗-drift error-rate features ε̃∗-drift

DDM 67±57 - 29±30 7±3 - 5±3 0 - 0
EDDM 379±89∗ x x 0 x x 0 x x
ADWIN 707±180 - - 0 - - 1 - -
KSWIN - 445±295 - - 3±3 - - 1 -
MWU 355±159 511±82 353±153 0 22±16 0 1 2 1

threshold x x 65±56 x x 0 x x 0

Table 4 contains the results on the SEA dataset with variants 1 (9) and 3 (9.5). As becomes
clear from this table, the fastest drift detector using error rate is DDM with an MTD of 67. When
combined with features, KSWIN is the fastest, achieving an MTD of 445. For the combination with
ε̃∗-drift DDM is against the fastest with an MTD 29. Thus, ε̃∗-drift with DDM exhibits the fastest
MTD. Error rate with EDDM is the fastest combination with an MTD of 379 yielding 0 FAC and
0 MDC. As for the combination of ε̃∗-drift with the threshold drift detector, it obtains an MTD of
65 with no false positives or missed detections.

Table 5: Mean time to detection (MTD), false alarm count (FAC) and missed detection count (MCD) for
different input with drift detector combinations on 5 seeded configurations of the SEA dataset with variants
2 (7) and 3 (9.5). Mann-Whitney U test is abbreviated as MWU. A dash represents that the input with
drift detector combination was unable to flag concept drift within the acceptable delay window. A cross
indicates that the input is not compatible with the drift detector. Bold and underlined entries represent
the fastest and second-fastest combinations respectively. An asterisk stands for the fastest combination
with 0 FAC and 0 MCD.

Drift Detector MTD FAC MDC
error rate features ε̃∗-drift error rate features ε̃∗-drift error-rate features ε̃∗-drift

DDM 18±24 - 10±15 5±2 - 3±2 0 - 0
EDDM 121±22∗ x x 1±1 x x 0 x x
ADWIN 183±48 - 876 0 - 0 0 - 4
KSWIN - 445±295 - - 3±3 - - 1 -
MWU 32±10∗ 511±82 32±10∗ 0 22±16 0 0 2 0

threshold x x 2±3 x x 0 x x 0

Table 5 represents the results on the SEA dataset with variants 2 (7) and 3 (9.5). From this
table, it is evident that the fastest drift detector in combination with error rate is DDM, with an
MTD of 18. When combined with features, KSWIN is the fastest, with an MTD of 445. For the
combination with ε̃∗-drift DDM is again the fastest with an MTD of 10. Consequently, ε̃∗-drift
with DDM is the fastest combination overall. However, the combinations of error rate and ε̃∗-drift
both with Mann-Whitney U test, with an MTD of 32, are the fastest that exhibit no false positives
or missed detections. Notably, the combination of ε̃∗-drift with the threshold drift detector achieves
the fastest combination with an MTD of 2 and also maintains no false positives or missed detections.
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Table 6: Mean time to detection (MTD), false alarm count (FAC) and missed detection count (MCD) for
different input with drift detector combinations on 5 seeded configurations of the Hyperplane dataset with
a size of change v of 0.001 to simulate incremental drift. Mann-Whitney U test is abbreviated as MWU. A
dash represents that the input with drift detector combination was unable to flag concept drift within
the acceptable time window. A cross indicates that the input is not compatible with the drift detector.
Bold and underlined entries represent the fastest and second-fastest combinations respectively. An asterisk
stands for the fastest combination with 0 FAC and 0 MCD.

Drift Detector MTD FAC MDC
error rate features ε̃∗-drift error rate features ε̃∗-drift error-rate features ε̃∗-drift

DDM 382±238 - 357±130 6±5 - 4±4 0 - 0
EDDM 309±173 x x 1±1 x x 0 x x
ADWIN 720±159 - - 0 - - 0 - -
KSWIN - 222±127 - - 11±2 - - 1 -
MWU 387±112 367±159 374±94∗ 0 110±84 0 0 1 0

threshold x x 209±43 x x 0 x x 0

Table 6 depicts the results on the Hyperplane dataset with a size of change of 0.001. Based
on this table, the fastest drift detector with error rate is EDDM, with an MTD of 309. When
combined with features, KSWIN is the fastest, with an MTD of 222. For the combination with
ε̃∗-drift DDM is again the fastest with an MTD of 357. Hence, features in combination with KSWIN
is the fastest combination. However, this combination yields a higher FAC and contains one missed
detection compared to the second fastest combination consisting of error rate with EDDM. The
combination of ε̃∗-drift with Mann-Whitney U test, with an MTD of 374, is the fastest that has no
false positives or missed detections. Notably, the combination of ε̃∗-drift with the threshold drift
detector achieves the fastest combination with an MTD of 209 and also maintains no false positives
or missed detections.

5.4.2 Running Times on Synthetic Datasets

Another interesting aspect is the running time required to obtain the three inputs. Among these,
features demand no computational cost since they are immediately available with the arrival of
a new instance. The error rate requires a single forward pass through a neural network, followed
by a verification step to determine if the predicted target matches the ground truth. Computing
the ε̃∗-drift value for a misclassified instance involves performing a binary search via α,β-CROWN,
which is computationally expensive due to the NP-hard nature of the problem.

Specifically, we analysed the wallclock time in seconds for both the error rate and ε̃∗-drift
values for misclassified instances across all SEA and Hyperplane datasets. For the error rate, the
wallclock time reflects the time it takes to predict an instance. For the ε̃∗-drift value, the wallclock
time describes the time it takes to compute the ε̃∗-drift value for a misclassified instance. Given that
the six SEA dataset configurations utilise the same neural network architecture, which determines
the complexity, we decided to combine the wallclock time results. The minimum, maximum and
mean wallclock times are presented in Table 7.
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Table 7: Minimum, maximum and mean wallclock times in milliseconds (ms) to compute a single error
rate value and in seconds (s) to compute a single ε̃∗-drift value. SEA represents all measured wallclock
times over the six different SEA configurations.

Dataset error rate ε̃∗-drift
Min [ms] Max [ms] Mean [ms] Min [s] Max [s] Mean [s]

SEA 0.05 15.67 0.10 48.20 93.79 60.50
Hyperplane 0.05 15.78 0.14 52.54 2021.86 166.85

As becomes clear from Table 7, computing the error rate is on average 100,000 times cheaper
than computing ε̃∗-drift values. Furthermore, for both the error rate and ε̃∗-drift values, computing
values is more expensive for the Hyperplane dataset compared to the SEA datasets.

5.4.3 Discussion

To summarise, ε̃∗-drift with DDM achieved the fastest drift detection performance in four out of
six cases for the SEA datasets simulating sudden drift. The second fastest combination was error
rate with DDM. Additionally, ε̃∗-drift with Mann-Whitney U test was the fastest combination with
no false positives and no missed detections in four out of six cases. As for the detection capabilities
of ε̃∗-drift with DDM and Mann-Whitney U test, both combinations obtain a similar MDC as error
rate combined with these two drift detection methods.

Regarding the incremental drift mimicked through the Hyperplane datasets, the fastest
combination was features with KSWIN. However, the second fastest combination consisting of error
rate with EDDM yielded a lower FAC and no missed detections. This reasonably fast MTD with
low FAC and no missed detections aligns with expectations, as EDDM is explicitly designed to
handle incremental drift. It would be interesting to adapt EDDM to handle ε̃∗-drift values as input,
which we leave open for future work. Similarly to sudden drift, ε̃∗-drift in combination with the
Mann-Whitney U test is slower in terms of drift detection, but resulted in no false positives or
missed detections. As for the detection capabilities of ε̃∗-drift with DDM and Mann-Whitney U
test, both combinations obtain a similar MDC as error rate combined with these two drift detection
methods.

These results indicate that ε̃∗-drift values effectively detect concept drift. A notable disadvan-
tage of ε̃∗-drift values compared to the error rate is the higher computational cost. Specifically,
ε̃∗-drift values are on average 100,000 times more computationally expensive than the error rate in
terms of wallclock time. However, this could be reduced by improving the computational efficiency
of α,β-CROWN. In settings with a low frequency of incoming instances such as weather stations or
the electricity market, this difference in computational cost may be negligible.

An additional advantage of ε̃∗-drift with DDM over error rate with DDM is the reduced
number of false positives. In the Hyperplane datasets and all six cases of the SEA datasets, ε̃∗-drift
with DDM achieved a lower average number of false positives. Additionally, ε̃∗-drift with the
Mann-Whitney U test was the fastest combination with no false positives and no missed detections
for the Hyperplane datasets and four out of six cases of the SEA datasets

Interestingly, for both sudden drift and incremental drift, ε̃∗-drift with the threshold drift
detection achieved a faster MTD compared to the other combinations except for SEA with variants
1 (9) and 3 (9.5). This might be because this specific configuration of the SEA generator contains
less severe drift compared to the other possible combinations. Namely, the shift from 9 to 9.5
encompasses a small region in which misclassifications occur. Therefore, the chance to observe
misclassifications larger than the predefined threshold becomes smaller or might even be impossible.
while these findings are promising, further assessment of the threshold method is needed to provide
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conclusive statements.

5.4.4 Limitations

The conducted experiments demonstrated that the detection of concept drift through ε̃∗-drift values
is effective and can result in a lower average number of false positives compared to the regular error
rate. However, several limitations are associated with using ε̃∗-drift values.

First, this method relies on the complete neural network verifier α,β-CROWN. Given that
α,β-CROWN is unable to handle regression tasks, the current method is restricted to classification
tasks. Furthermore, while α,β-CROWN guarantees an exact solution given sufficient time and no
out-of-memory errors, verifying such properties is considered an NP-hard problem. In practice, this
makes computing ε̃∗-drift values computationally expensive compared to using the error rate or
features. Since certain data streams might require real-time processing of incoming data [10], the
current latency of α,β-CROWN could limit its application in such settings.

Second, error rate-based methods such as the ε̃∗-drift values generally require access to the
ground truth. However, immediate access to labels is unrealistic in real-world data stream scenarios
due to delays and expenses involved in acquiring true labels [47]. Without access to the ground
truth, it is impossible to compute ε̃∗-drift values.

Third, Raab et al. [1] and Baier et al. [20] introduced a certain percentage of noise in
the synthetic data generators. Specifically, the noise involved in the data generators of the River
framework randomly swaps class labels. This type of noise causes our ε̃∗-drift detector to malfunction.
Suppose that a correctly classified instance with a considerable distance from the decision boundary
undergoes a class swap due to noise. As a consequence, it will be misclassified by the neural network
and receive a large ε̃∗-drift value. In such a case, the drift detector might accidentally identify
concept drift whereas there is no actual concept drift. In other words, this form of noise introduces
a potential increase in false positives.

Finally, for our method to work, we assumed that misclassifications only happen to instances
close to the decision boundary. In real-world scenarios, this is an oversimplistic assumption. Namely,
it might be the case that the coverage of the training instances does not capture the entire space.
As a result, the neural network learns a suboptimal decision boundary and behaves uncertainly in
specific regions. In practice, instances from underrepresented regions may appear during model
deployment potentially causing increased ε̃∗-drift values. Again, the observation of increased ε̃∗-drift
values might trigger the drift detector to incorrectly identify concept drift, increasing the risk of
false positives.
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6 Conclusion and Future Work

In this thesis, we introduced the ε̃∗-drift value. The ε̃∗-drift value represents an approximation of
the distance towards the decision boundary for misclassified instances. Through a hypothetical
scenario based on a simplification of the SEA generator simulating sudden drift, we observed that
these distances increase in the presence of concept drift. Therefore, we decided to utilise ε̃∗-drift
values as input to various drift detectors to detect concept drift. Essentially, ε̃∗-drift values are
an extension of regular error rate-based methods (i.e., binary output) by providing additional
information in the form of the distance to the decision boundary. We computed the ε̃∗-drift values
values for misclassified instances via the complete neural network verifier α,β-CROWN.

Regarding the conducted experiments, we benchmarked our proposed ε̃∗-drift values against
two other input sources: error rate and features. In our experiments, we utilised four classical drift
detectors: DDM, EDDM, ADWIN and KSWIN and included the non-parametric Mann-Whitney U
test. In addition, we decided to test a preliminary threshold method exclusively accepting ε̃∗-drift
values as input. This method flags concept drift as soon as a ε̃∗-drift value larger than the threshold
is observed. As for the datasets, we used two synthetic data generators: SEA simulating sudden drift
and Hyperplane simulating incremental drift. We assessed the input with drift detector combinations
on three metrics: the mean time to detection (MTD) representing the delay in detecting drift in
terms of the number of instances, the false alarm count (FAC) denoting the number of times drift is
detected before the actual starting point of the concept drift and the missed detection count (MDC)
indicating the number of times the detection mechanism fails to detect concept drift. Through the
conducted experiments, we aim to answer the three research questions defined in Section 1.

1. Is it possible to utilise ε̃∗-drift values for the identification of concept drift?
The results obtained through the conducted experiments in this thesis indicate that ε̃∗-drift values
are capable of detecting concept drift. In more detail, ε̃∗-drift with DDM and Mann-Whitney U test
obtained similar MDC scores compared to error rate in combination with these two drift detectors.
This means that ε̃∗-drift values with DDM and Mann-Whitney U test did not miss the occurrence
of concept drift more than error rate with these two drift detectors on the datasets in the context of
this thesis. As for the combination of ε̃∗-drift with threshold method, it correctly identified concept
drift across all datasets. However, it is important to mention that currently ε̃∗-drift values are
on average 100,000 times more expensive to compute in terms of wallclock time than the error
rate. Depending on the setting and by making α,β-CROWN more computationally efficient, this
difference in wallclock time can be minimised. Another interesting aspect to assess is the MTD
metric, bringing us to the second research question.

2. Do ε̃∗-drift values in combination with a drift detector allow for detecting concept
drift in an earlier stage than regular error rate-based methods?
Regarding the obtained results on the SEA configurations, ε̃∗-drift with DMM achieved the fastest
drift detection performance in 4 out of 6 cases. The second fastest combination was error rate
with DDM. This also applies to the error rate and ε̃∗-drift values combined with Mann-Whitney
U test. While both combinations produced no false positives and no missed detections on four
out of six SEA configurations, ε̃∗-drift was equally fast for one SEA configuration and faster on
the remaining SEA configurations compared to error rate. ε̃∗-drift with threshold method was
the fastest combination in five out of six SEA configurations yielding no false positives or missed
detections compared to all other combinations.

As for the outcomes from the Hyperplane datasets, the fastest combination is features with
KSWIN. However, this comes at the cost of a missed detection and a higher FAC compared to the
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second fastest option: error rate with EDDM. The reasonably fast average MTD with a low FAC
and no missed detections aligns with expectations since EDDM is explicitly designed to handle
incremental drift. Given that the current implementation of EDDM accepts binary input making
it incompatible with ε̃∗-drift values, an interesting future direction could be to adapt EDDM to
accept ε̃∗-drift values and assess if ε̃∗-drift with EDDM is faster compared to error rate with EDDM.
Again, ε̃∗-drift with Mann-Whitney U test was faster in detecting concept drift than error rate
with Mann-Whitney U test. ε̃∗-drift with threshold method yielded no false positives and no missed
detections and was the fastest combination compared to all other combinations.

Based on these results, we can conclude that ε̃∗-drift values are faster in the majority of the
datasets but not consistently faster than the regular error rate.

3. Do ε̃∗-drift values in combination with a drift detector result in a lower number of
false positives compared to regular error rate-based methods?
Similarly to error rate with Mann-Whitney U test, ε̃∗-drift with Mann-Whitney U test obtained no
false positives on the Hyperplane and SEA datasets. ε̃∗-drift in combination with DDM achieved
a lower average FAC than error rate with DDM across the Hyperplane datasets and all six SEA
configurations. Furthermore, ε̃∗-drift with threshold method obtained no false positives for all
Hyperplane and SEA datasets. These results reflect that ε̃∗-drift values obtain a similar number or
lower number of false positives compared to the error rate.

As for future work, we recommend improving the computational efficiency of α,β-CROWN to
decrease the wallclock time needed to compute ε̃∗-drift values. Furthermore, we restricted the
experiments to synthetic data generators for binary classification tasks. We encourage investigating
the usage of ε̃∗-drift values for concept drift detection in multiclass classification as well as
regression settings. Error rate in combination with EDDM was the second fastest combination on
the hyperplane datasets simulating incremental drift. It would be interesting to adapt EDDM to
handle ε̃∗-drift values as input and compare the performance of ε̃∗-drift with EDDM against error
rate with EDDM on incremental drift. We did not inject noise in the form of class swapping in
our synthetic data generators since this could negatively impact the number of false positives. In
future work, it could be interesting to investigate this relationship between noise and the potential
increase in false positives.

Within the data stream community, there is a distinction between synthetically generated
datasets and real-world datasets. Synthetically generated datasets provide annotations such as the
exact point in time at which concept drift occurs and the type of concept drift. Currently, this
information is often not available for real-world datasets. However, disadvantages of synthetically
generated datasets include the lower complexity of the datasets and the risk of committing data
bias [9].

Souza et al. [9] published the Insects dataset being a semi-real-world dataset. The data was
collected from optical sensors under controlled conditions to identify six types of flying insects.
Importantly, the wing-beat frequency of a flying insect allows for distinguishing between different
insect species. Changes in the temperature impact the wing-beat frequency of the flying insects.
By changing the temperature under controlled settings, the researchers introduced simulated
different types of concept drift such as sudden and incremental drift. We encourage the data stream
community to provide more open-source real-world datasets such as the Insects dataset from [9]
with annotations about concept drift.

In Section 4.1, we explored the usage of approximating distances to the decision boundary for
correctly classified instances through ε̃∗ values. One of the proposed methods involved splitting the
distribution of ε̃∗ values based on the class label. As depicted in Figures 7a and 8a, there is a clear

35



difference in terms of observed ε̃∗ values before and after concept drift. Due to concept drift, the
distribution of ε̃∗ values for the orange class after concept drift is missing smaller ε̃∗ values. This
shift is demonstrated in Figure 11a.

Based on initial findings obtained in an early experimental phase, we observed that splitting
the distribution of ε̃∗ values based on the class label is slower and yields a higher number of false
positives compared to the error rate. Nevertheless, this approach indicates a distinct shift in the
distribution of ε̃∗ values before and after concept drift. Therefore, it is worth further investigating
this shift for the detection of concept drift.

Finally, we foresee that ε̃∗-drift values could be used for applications beyond concept drift
detection. For instance, ε̃∗-drift values could be used in a self-monitoring AI model to enhance
performance. Such a method could aim for a low range of ε̃∗-drift values during the training phase of
the model (i.e., similarly to the threshold method) to ensure robust and reliable model performance.
By observing a sufficient number of ε̃∗-drift values during training, we could compute the probability
of encountering a specific ε̃∗-drift value. A probability smaller than 0.05 could be considered an
indication of concept drift. Alternatively, we could compute the mean and standard deviation of the
observed ε̃∗-drift values during training. If a ε̃∗-drift value deviates by three standard deviations
from the mean, it could also be considered concept drift.

Another application could be to combine covariate shift with ε̃∗-drift values. In this thesis, we
specifically focused on concept drift. However, another important type of data drift is covariate shift
(see Figures 1a and 1b). Covariate shift represents a shift in the distribution of the features, while
the relationship between instances and targets does not change. As a result model performance
might or might not be impacted. The latter is also known as virtual drift.

We think that ε̃∗-drift values in combination with covariate shift detectors could provide
information about the behaviour of the model. For instance, with the detection of covariate shift,
we could utilise ε̃∗-drift values to identify how far away misclassification are from the decision
boundary. Namely, this could indicate underrepresented regions which, depending on the context,
might require extra attention. Via ε̃∗-drift values, we could identify these regions and retrain the
model accordingly to potentially improve performance in the case of covariate shift.
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A SEA Results

Table 8: Mean time to detection (MTD), false alarm count (FAC) and missed detection count (MCD) for
different input with drift detector combinations on 5 seeded configurations of the SEA dataset with variants
0 (8) and 2 (7). Mann-Whitney U test is abbreviated as MWU. A dash represents that the input with
drift detector combination was unable to flag concept drift within the acceptable delay window. A cross
indicates that the input is not compatible with the drift detector. Bold and underlined entries represent
the fastest and second-fastest combinations respectively. An asterisk stands for the fastest combination
with 0 FAC and 0 MCD.

Drift Detector MTD FAC MDC
error rate features ε̃∗-drift error rate features ε̃∗-drift error-rate features ε̃∗-drift

DDM 69±62 - 92±168 3±4 - 2±2 0 - 0
EDDM 303±88 x x 1±1 x x 0 x x
ADWIN 539±127 - - 0 - - 1 - -
KSWIN - 445±295 - - 3±3 - - 1 -
MWU 456±243 511±82 251±129 0 22±16 0 1 2 1

threshold x x 29±35 x x 0 x x 0
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Table 9: Mean time to detection (MTD), false alarm count (FAC) and missed detection count (MCD) for
different input with drift detector combinations on 5 seeded configurations of the SEA dataset with variants
0 (8) and 3 (9.5). Mann-Whitney U test is abbreviated as MWU. A dash represents that the input with
drift detector combination was unable to flag concept drift within the acceptable delay window. A cross
indicates that the input is not compatible with the drift detector. Bold and underlined entries represent
the fastest and second-fastest combinations respectively. An asterisk stands for the fastest combination
with 0 FAC and 0 MCD.

Drift Detector MTD FAC MDC
error rate features ε̃∗-drift error rate features ε̃∗-drift error-rate features ε̃∗-drift

DDM 28±24 - 22±34 3±4 - 2±2 0 - 0
EDDM 167±30 x x 1±1 x x 0 x x
ADWIN 272±72 - - 0 - - 0 - -
KSWIN - 445±295 - - 3±3 - - 1 -
MWU 89±12 511±82 81±11∗ 0 22±16 0 0 2 0

threshold x x 5±4 x x 0 x x 0

Table 10: Mean time to detection (MTD), false alarm count (FAC) and missed detection count (MCD) for
different input with drift detector combinations on 5 seeded configurations of the SEA dataset with variants
1 (9) and 2 (7). Mann-Whitney U test is abbreviated as MWU. A dash represents that the input with
drift detector combination was unable to flag concept drift within the acceptable delay window. A cross
indicates that the input is not compatible with the drift detector. Bold and underlined entries represent
the fastest and second-fastest combinations respectively. An asterisk stands for the fastest combination
with 0 FAC and 0 MCD.

Drift Detector MTD FAC MDC
error rate features ε̃∗-drift error rate features ε̃∗-drift error-rate features ε̃∗-drift

DDM 11±7 - 5±3 7±3 - 5±3 1 - 1
EDDM 117±46 x x 0 x x 0 x x
ADWIN 221±90 - - 0 - - 0 - -
KSWIN - 445±295 - - 3±3 - - 1 -
MWU 55±15 511±82 47±11∗ 0 22±16 0 0 2 0

threshold x x 4±3 x x 0 x x 0
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B Dataset Configurations

Dataset SEA
Configuration Name SEA 8 9
#instances context 1 5000
#instances context 2 5000
#total instances 10.000
drift postition 5000

parameters context 1
variant = 0
noise = 0
seeds = 100-104

parameters context 2
variant = 1
noise = 0
seeds = 105-109

Dataset SEA
Configuration Name SEA 8 7
#instances context 1 5000
#instances context 2 5000
#total instances 10.000
drift postition 5000

parameters context 1
variant = 0
noise = 0
seeds = 100-104

parameters context 2
variant = 2
noise = 0
seeds = 105-109

Dataset SEA
Configuration Name SEA 8 9.5
#instances context 1 5000
#instances context 2 5000
#total instances 10.000
drift postition 5000

parameters context 1
variant = 0
noise = 0
seeds = 100-104

parameters context 2
variant = 3
noise = 0
seeds = 105-109

Dataset SEA
Configuration Name SEA 9 7
#instances context 1 5000
#instances context 2 5000
#total instances 10.000
drift postition 5000

parameters context 1
variant = 1
noise = 0
seeds = 100-104

parameters context 2
variant = 2
noise = 0
seeds = 105-109

Dataset SEA
Configuration Name SEA 9 9.5
#instances context 1 5000
#instances context 2 5000
#total instances 10.000
drift postition 5000

parameters context 1
variant = 1
noise = 0
seeds = 100-104

parameters context 2
variant = 3
noise = 0
seeds = 105-109

Dataset SEA
Configuration Name SEA 7 9.5
#instances context 1 5000
#instances context 2 5000
#total instances 10.000
drift postition 5000

parameters context 1
variant = 2
noise = 0
seeds = 100-104

parameters context 2
variant = 3
noise = 0
seeds = 105-109
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Dataset Hyperplane
Configuration Name HYP m001
#instances context 1 5000
#instances context 2 5000
#total instances 10.000
drift position 5000

parameters context 1

n features = 10
n drift features = 2
mag change = 0.001
sigma = 0
noise = 0
seeds = 105-109

parameters context 2

n features = 10
n drift features = 2
mag change = 0.001
sigma = 0
noise = 0
seeds = 105-109
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C Neural Network Configurations

Dataset Seeds Architecture (units) Batch Size Epochs Optimizer Learning Rate
SEA 8 9 100;105 3-2-2 16 100 Adam 0.005
SEA 8 9 101;106 3-2-2 16 100 Adam 0.005
SEA 8 9 102;107 3-2-2 64 100 RMSprop 0.005
SEA 8 9 103;108 3-2-2 32 100 RMSprop 0.01
SEA 8 9 104;109 3-2-2 128 100 Adam 0.01

SEA 8 7 100;105 3-2-2 16 100 Adam 0.005
SEA 8 7 101;106 3-2-2 16 100 Adam 0.005
SEA 8 7 102;107 3-2-2 64 100 RMSprop 0.005
SEA 8 7 103;108 3-2-2 32 100 RMSprop 0.01
SEA 8 7 104;109 3-2-2 128 100 Adam 0.01

SEA 8 9.5 100;105 3-2-2 16 100 Adam 0.005
SEA 8 9.5 101;106 3-2-2 16 100 Adam 0.005
SEA 8 9.5 102;107 3-2-2 64 100 RMSprop 0.005
SEA 8 9.5 103;108 3-2-2 32 100 RMSprop 0.01
SEA 8 9.5 104;109 3-2-2 128 100 Adam 0.01

SEA 9 7 100;105 3-2-2 128 100 Adam 0.01
SEA 9 7 101;106 3-2-2 32 100 Adam 0.005
SEA 9 7 102;107 3-2-2 64 50 Adam 0.01
SEA 9 7 103;108 3-2-2 16 100 Adam 0.005
SEA 9 7 104;109 3-2-2 64 100 Adam 0.005

SEA 9 9.5 100;105 3-2-2 128 100 Adam 0.01
SEA 9 9.5 101;106 3-2-2 32 100 Adam 0.005
SEA 9 9.5 102;107 3-2-2 64 50 Adam 0.01
SEA 9 9.5 103;108 3-2-2 16 100 Adam 0.005
SEA 9 9.5 104;109 3-2-2 64 100 Adam 0.005

SEA 7 9.5 100;105 3-2-2 32 100 RMSprop 0.005
SEA 7 9.5 101;106 3-2-2 64 100 RMSprop 0.01
SEA 7 9.5 102;107 3-2-2 64 100 Adam 0.01
SEA 7 9.5 103;108 3-2-2 128 100 RMSprop 0.01
SEA 7 9.5 104;109 3-2-2 32 100 Adam 0.005

HYP m001 105;105 10-8-4-2 16 100 SGD 0.01
HYP m001 106;106 10-8-4-2 16 100 SGD 0.01
HYP m001 107;107 10-8-4-2 16 100 Adam 0.001
HYP m001 108;108 10-8-4-2 16 100 SGD 0.01
HYP m001 109;109 10-8-4-2 16 100 SGD 0.001
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D α,β-CROWN YAML configuration file

1 specification:

2 norm: .inf

3 epsilon: 0.001 (example)

4 solver:

5 batch_size: 2048

6 beta-crown:

7 iteration: 20

8 lr_beta: 0.03

9 mip:

10 parallel_solvers: 8

11 solver_threads: 4

12 refine_neuron_time_percentage: 0.8

13 bab:

14 branching:

15 candidates: 5

16 reduceop: max

17 timeout: 600
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E Misclassifications

Dataset Seeds
Misclassifications
Training Phase

First Misclassification
After Concept Drift

Timeouts out-of-memory errors

SEA 8 9 100;105 6 5003 0 0
SEA 8 9 101;106 5 5036 0 0
SEA 8 9 102;107 9 5000 0 0
SEA 8 9 103;108 30 5008 0 0
SEA 8 9 104;109 7 5009 0 0

SEA 8 7 100;105 6 5008 0 0
SEA 8 7 101;106 5 5005 0 0
SEA 8 7 102;107 9 5005 0 0
SEA 8 7 103;108 30 5007 0 0
SEA 8 7 104;109 7 5000 0 0

SEA 8 9.5 100;105 6 5003 0 0
SEA 8 9.5 101;106 5 5011 0 0
SEA 8 9.5 102;107 9 5000 0 0
SEA 8 9.5 103;108 30 5000 0 0
SEA 8 9.5 104;109 7 5006 0 0

SEA 9 7 100;105 9 5005 0 0
SEA 9 7 101;106 5 5005 0 0
SEA 9 7 102;107 11 5000 0 0
SEA 9 7 103;108 10 5007 0 0
SEA 9 7 104;109 6 5000 0 0

SEA 9 9.5 100;105 9 5003 0 0
SEA 9 9.5 101;106 5 5011 0 0
SEA 9 9.5 102;107 11 5041 0 0
SEA 9 9.5 103;108 10 5000 0 0
SEA 9 9.5 104;109 6 5006 0 0

SEA 7 9.5 100;105 6 5003 0 0
SEA 7 9.5 101;106 19 5005 0 0
SEA 7 9.5 102;107 8 5000 0 0
SEA 7 9.5 103;108 6 5000 0 0
SEA 7 9.5 104;109 9 5000 0 0

HYP m001 105;105 10 5115 0 0
HYP m001 106;106 13 5020 0 0
HYP m001 107;107 12 5122 0 0
HYP m001 108;108 5 5091 0 0
HYP m001 109;109 32 5004 0 0
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