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Abstract

As reliance on complex digital system grows, ensuring their security has become increasingly
crucial. Proof-of-concept (PoC) exploits are important for understanding and demonstrating
software vulnerabilities within these systems. PoCs provide concrete examples that illustrate
how vulnerabilities can be exploited, thereby facilitating better analysis and remediation. This
study focuses on automating the dynamic analysis of Python PoC exploits. While PoCs are
crucial for showing vulnerabilities, they pose risks if sourced from untrustworthy repositories.
This research aims to improve the efficiency of analyzing these exploits through automation.

The methodology involves processing a dataset of 8,302 Python repositories from GitHub, using
static and dynamic analysis techniques to investigate PoCs. The automated system resolves
dependencies and generates arguments for dynamic analysis through fuzzing techniques.

For this study we developed Codarg, an automated system designed to generate argument
vectors through static code analysis, with the aim to enhance effectiveness of dynamic analysis
by maximizing code coverage. Our findings show that a good combination of static and
dynamic analysis techniques can increase code coverage considerably. For example, when using
exit status-driven arguments, the average coverage increased from 34.07% to 38.42%, and
coverage-driven arguments further raised it to 40.23%. In scenarios where Codarg-generated
arguments were used, the average code coverage improved from 22.63% to 30.75%.

This research demonstrates the potential for automated dynamic analysis to improve the
security evaluation of PoCs. The results suggest that automated systems can play a valuable
role in enhancing cybersecurity practices by providing efficient and reliable analysis of exploit
code.
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1 Introduction

Our society increasingly relies on complex cyber-physical and digital systems that are integral to
critical infrastructure, including finance, healthcare, and transportation. However, these systems
are prone to flaws that can be exploited by attackers. These flaws, known as vulnerabilities, are
cataloged by the Common Vulnerabilities and Exposures (CVE)! system, managed by MITRE?
which assigns unique identifiers (CVE ID) to them.

Proof-of-Concept (PoC) exploits are programs designed to demonstrate the potential of exploiting
these vulnerabilities. Traditionally, PoCs have been used with a benign intent to better understand
systems and improve security through penetration testing. Recently, however, there has been a
concerning increase in malicious PoCs distributed to public platforms like GitHub? | ]. This
platform, unlike established exploit platforms like Exploit-DB* and the Metasploit Framework?®,
does not have a submission process in place to validate the legitimacy of the PoC.

As the number of malicious PoCs grows, so does the challenge of identifying these threats. Dynamic
analysis is a method for examining PoCs by running them and observing their behavior. This
approach is particularly valuable as it provides insights into how PoCs behave under real-world
conditions. Although techniques such as fuzzing and sandboxing are well-documented, their appli-
cation to Python PoCs has so far been limited. Most studies focused on static analysis or dynamic
analysis on binary executables, leaving a gap in the study of Python PoCs.

The aim of this research is to address this gap by automating the dynamic analysis of Python-based
PoC exploits. Manual analysis of PoCs is time-consuming and prone to errors, making automation
a crucial advancement. By automating the process, our research seeks to improve efficiency and
reliability.

Dynamic analysis is most valuable when the PoC is executed as if it were a in real-world sit-
uation. This requires real-world input, often in the form of arguments. These inputs are crucial for
triggering the intended execution paths and gathering meaningful data about the PoC’s behavior.
One of the key challenges in analyzing Python code is determining what arguments a program
accepts, as the expected inputs can vary depending on the (type of) program. Programs typically
accept a mix of positional and optional arguments, which complicates the analysis.

In this work, we present the design and implementation of Codarg, an automated system ca-
pable of generating argument vectors through static code analysis. Codarg is able to generate
argument vectors including optional arguments. This system has been validated experimentally on
a representative sample of 369 Python repositories, demonstrating its effectiveness in improving
the informativeness of dynamic analysis for Python-based PoCs.

"https://cve.org
2https://mitre.org
3https://github.com
“https://exploit-db.com
Shttps://metasploit.com
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Additionally, techniques like feedback-driven fuzzing can complement Codarg by finding valid
positional arguments. This is achieved through the generation of random inputs and observing how
the program reacts, and refining these inputs to maximize code coverage.

Our research methodology involves setting up a virtualized environment to safely execute Python
PoCs. We automate the process of generating input arguments, running the PoCs, and collecting
behavioral data. Automating dynamic analysis reduces the workload on security research and
increases the speed at which new PoCs can be analyzed. This study highlights the importance of
automating dynamic analysis for Python PoCs and provides a framework for further research.



2 Background

This section explores the methods and tools for analyzing Python Proof-of-Concepts exploits. It
addresses the Python language and the unique challenges it poses, such as managing dependencies.
The discussion also covers both static and dynamic code analysis, highlighting how each approach
identifies potential issues in code. Additionally, the chapter introduces fuzzing as a technique for
discovering argument sets that maximize code coverage.

2.1 Python

Python is a versatile and widely used, interpreted language known for its simplicity and readability.
Python’s extensive standard library and the availability of numerous third-party packages make it a
popular choice for a wide range of applications. However, analyzing Python programs presents unique
challenges, not only due to its dynamic nature | ], but also due to differences between Python
versions. Dynamic analyses in particular can be further complicated by the need to accommodate
dependency management.

2.1.1 Differences Between Python 2 and 3

Python 2 and Python 3 incompatibilities are well-documented and have been a common challenge
in the Python community since Python 3 was introduced in 2008 | |. Apart from the transition
from the print statement to the print () function, Python 3 introduces changes in string handling,
integer division, and module names that are not backward compatible with Python 2. This also
means that tools designed for one version might struggle to interpret code written for another
version. This is especially true for programs that utilize Python’s built-in ast® module to parse an
abstract syntax tree (AST). While Python 2 has been officially deprecated in 2020, many legacy
projects still use it.

2.1.2 Dependencies

Managing dependencies is an important aspect of Python project development, often handled using
Pip’, the package installer included with Python. Pip installs dependencies in the environment
it is called from, whether global or virtual. Tools like Virtualenv, Pipenv, and Poetry manage
dependencies by keeping them separate from the global Python installation, which prevents
version conflicts | ]. Conda offers its own tools for managing environments and dependencies,
supporting multiple versions of Python on the same system.

2.2 Static Analysis

Static analysis refers to the examination of code without executing it | |. This type of analysis
is often used to find potential vulnerabilities, coding errors, and adherence to coding standards, but
also for detecting malware. Static analysis tools parse the code and create an abstract representation,
which is then used to detect patterns that may indicate issues.

Shttps://docs.python.org/3/library/ast.html
"https://pip.pypa.io
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2.2.1 Heuristic Scan

Heuristic scanning in static analysis involves using rule-based approaches to detect suspicious
patterns | ]. These rules are often derived from known vulnerabilities and coding errors.
Heuristic scans can identify potential zero-day vulnerabilities by looking for code patterns that are
indicative of malicious behavior or poor coding practices. However, heuristic scans can sometimes
produce false positives due to their reliance on pre-defined rules.

2.2.2 Semantic Scan

Semantic scanning looks at the meaning and flow of the code, not just the syntax [ ]. This
analysis can detect issues that simple pattern matching might miss. It examines how different parts
of the code relate to each other, like variable scope and function calls, to understand the program’s
logic. This helps find deeper problems like logic errors and security vulnerabilities that depend on
context.

While static analysis can be powerful, it has limitations in identifying runtime behaviors that only
manifest during executions. Techniques such as encryption, binary packing, and obfuscation are
often used to evade detection during static malware analysis | |, making dynamic analysis
essential to identify these issues.

2.3 Dynamic Analysis

Dynamic analysis involves examining the behavior of a program during its execution | ]. This
type of analysis is important for understanding how a program operates in real-world scenarios,
as it can uncover issues that static analysis might miss. By running the program in a controlled
environment, dynamic analysis tools can observe how the program interacts with system resources,
handles inputs, and responds to different conditions. The program’s behavior can be observed using
two primary methods.

2.3.1 Debugger

A debugger is a dynamic analysis tool that enables automatic runtime observation of a program’s
behavior. Attaching a debugger to a program allows for step-by-step code execution, which enables
the automatic inspection of variables, memory states, and control flow during runtime. This
detailed examination helps identify and understand runtime behaviors and helps pinpoint the exact
circumstances under which vulnerabilities are triggered. However, there are several disadvantages
associated with using a debugger for automatic runtime analysis, including a critical one: some
malware or malicious code can detect the presence of a debugger, after which it might alter its
behavior or disable certain functionalities to evade detection.

2.3.2 Sandboxing

Sandboxing provides a controlled execution environment that is isolated from the rest of the system.
This isolation ensures that any potentially harmful actions performed by the program do not affect
the host system | |. Sandboxing can be achieved by using operating system features such



as chroot jails or containers, or by using virtualization software like VirtualBox® and QEMUY,
and is particularly useful for analyzing untrusted code, as it allows the program to run freely in a
safe environment where its behavior can be monitored without risk. In the context of this thesis,
automated sandboxing using virtualization enables the safe execution of Python Proof-of-Concept
exploits while capturing detailed behavior data.

2.4 Fuzzing

Fuzzing is a technique mostly used to test the robustness of programs by providing randomly
generated inputs | |. In the context of this research, fuzzing is used to discover valid argument
sets that maximize code coverage. Feedback-driven fuzzing involves using execution time, exit codes,
and coverage metrics to guide the input generation process | |. This approach attempts to
select the most effective inputs, and thereby enhances dynamic analysis by covering more code
paths and potentially exposing threats or suspicious behavior in the software.

2.4.1 Time-Based Feedback Loop

In feedback-driven fuzzing, execution time is used as a metric to prioritize inputs. Longer execution
times often indicate more complex code paths being executed, which can lead to higher coverage
and the discovery of more issues. By focusing on inputs that result in longer executions, the fuzzing
process can more effectively explore the program’s behavior.

2.4.2 Exit Code and Other Output

Exit codes and other outputs provide good feedback for fuzzing. A successful execution typically
returns a status code of 0, while non-zero exit codes indicate errors or exceptional conditions.
Analyzing these outputs helps identify which inputs lead to successful executions and which will
trigger errors. This will help guide the fuzzing process to refine the inputs for better coverage.

2.4.3 Coverage Feedback Loop

Coverage-guided fuzzing uses coverage metrics to select inputs that execute previously unexplored
code paths | ]. By focusing on inputs that maximize code coverage, this approach helps the
analysis explore as much of the codebase as possible. This method is particularly effective for
finding parts of the code that may be prone to errors or vulnerabilities.

8https://virtualbox.org
9QEMU (Quick-Emulator) is an open-source machine emulator and virtualizer. https://www.qemu.org
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3 Related work

In this section, we look at past research that relates to our goal of automating the dynamic analysis
process for Python Proof-of-Concepts. Our approach has been influenced by some of these works,
and we will examine their contributions. We will focus on studies about malicious PoC analysis
and automated input argument generation.

Our research builds on the findings of the “Investigating Malicious CVE Proof of Concept Exploits
on GitHub” study by El Yadmani, The, and Gadyatskaya | |. Their study investigates
GitHub-hosted PoC exploits for known vulnerabilities from 2017 to 2021. These Pocs were statically
analyzed using a set of heuristics to identify malicious PoCs. Out of 47,285 repositories analyzed,
899 (1.9%) contain malicious code aimed at exfiltrating data or installing malware. Techniques such
as base64 encoding and hexadecimal obfuscation were commonly used to conceal these payloads.
These findings highlight a significant risk for the security community using GitHub-sourced PoCs
and underscore the need for better detection methods and caution. Our research extends this work
by focusing on the automation of dynamic analysis for Python-based PoCs. While their research
primarily involved static analysis to understand the behavior and impact of the exploits, our
approach seeks to streamline this process through automated dynamic analysis. This automation
involves the use of code analysis to generate input argument vectors.

The automatic generation of arguments was influenced by the research on “Compositional Dynamic
Test Generation” (SMART and DART methodologies) by Godefroid et al. | ]. The principles
of systematic input generation and dynamic testing described in this earlier research influenced
our approach to generating and refining argument vectors. They focused on using dynamic test
generation to explore program paths and use feedback to improve inputs. This is partly mirrored in
our use of fuzzing and feedback loops to maximize code coverage. The idea of compositional testing
in SMART, which summarizes function behavior for higher-level testing, influences our method of
identifying entry points and generating arguments. This automated, iterative process reflects the
dynamic test generation techniques from SMART and DART research.

With studies like one by Holkner and Harland | | highlighting Python programs’ frequent use
of dynamic features, the need for effective dynamic analysis systems is underscored. Since, research
has introduced various frameworks and tools designed to address the unique challenges posed by
Python’s dynamic nature. Examples include a benchmarking tool that tests dynamic linking and
loading capabilities of Python programs [ | and a dynamic analysis framework that offers
runtime analysis using event hooks | |. Although these contributions provide a solid foundation
for understanding Python’s performance characteristics, they do not focus on dynamic analysis in
the context of malware assessment.

Dynamic malware analysis, however, has been broadly studied. Recent advancements include
a model that uses transformer architectures to enhances malware detection and classification
[ ], and a hybrid approach that combines static and dynamic analysis to improve ran-
somware detection | |. Despite these advancements, a notable gap remains in the dynamic
malware analysis of PoC exploits.



To our knowledge, Oei’s research | | is the only study that addresses dynamic analysis in the
context of PoC exploits, specifically focusing on analysis for Java-based PoCs. While Oei’s approach
shares the same overall goal as ours, there are significant differences. The most important being
the type of PoC, which in their study required compilation before being executed. They also chose
for a design that approached the PoCs as a black-box, leaving the inner workings unknown. While
following a similar approach could be considered, Chaudhry et al. | | have demonstrated
the effectiveness of utilizing Python source code analysis tools for automatic project installation.
However, they do not extend to finding intended execution paths, which is an aspect our research
seeks to advance.



4 Data analysis

4.1 Data set

The dataset we use in our research originates from the study by El Yadmani et al. | ]. This
extensive dataset includes a subset of 8 305 distinct Python repositories, with 8,302 currently
accessible. The repositories are clustered by year from 2017 to 2021. These clusters overlap because
they are based on the Common Vulnerabilities and Exposures (CVE) that the PoC exploits target.
Some repositories contain multiple PoCs for CVEs from different years.

El Yadmani et al. focused on GitHub-hosted PoC exploits for known vulnerabilities, which includes
interesting findings related to Python repositories. They found that Python has become the domi-
nant programming language among hackers and exploit developers, primarily due to its extensive
range of libraries that support both fundamental programming and hacking tasks. One notable
example involved CVE-2019-0708'° (BlueKeep), where a base64-encoded line in a Python script
decoded to execute another script, leading to a malicious VBScript on Pastebin, which contained
the Houdini worm malware.

4.2 Preliminary Data Analysis

As Python 2 and Python 3 share a lot of incompatibilities, we have analyzed the used Python
versions per repository in order to identify the considerations for designing the automation. Our
analysis of Python versions over the years shows a clear shift towards Python 3. In 2017, Python 2
was more common than Python 3, reflecting the longstanding use of Python 2 in many projects.
By 2018, the number of Python 3 entries increased, showing a move towards the newer version. In
2019, Python 3 entries surpassed Python 2 for the first time, highlighting the community’s effort to
transition. This shift became more evident in 2020 and 2021, with Python 3 entries consistently
outnumbering Python 2. This trend shows the migration from Python 2 to Python 3, likely driven
by Python 2’s end-of-life and the advantages of Python 3. We can conclude from this data that
despite Python 3 has become the more dominant Python version, Python 2 still has a significant
share in the PoCs, meaning our automation should work with both PoCs using Python 2 and
Python 3.

Table 1: Repositories using Python 2 and Python 3
Year Python 2 Python 3

2017 2326 833
2018 2119 1357
2019 1762 1585
2020 292 207
2021 249 715

In our analysis of Python environment managers used in repositories (Tables 2 and 3), we found

Onttps://www.cve.org/CVERecord?id=CVE-2019-0708
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that the majority do not contain any known environment-specific files, which may indicate a reliance
on system-wide packages or a lack of environment management. The most common manager is
venv, a lightweight environment manager included with Python, reflecting its convenience and
ease of use. Pipenv environments are used by a few repositories, which highlights its adoption
for managing dependencies and environments together, though it is not widely popular. Similarly,
Poetry environments are used by a small number of repositories, indicating some preference for its
streamlined package management and environment setup.

Table 2: Python dependency manager usage

Environment manager Count

venv 1632
Poetry 12
Pipenv 11
None / unknown 6896

Table 3: Requirement-specification availability

Requirement-file Count Percentage
requirements.txt 1632 19.08%
Pipfile 5 0.05%
pyproject.toml 4 0.04%
requirements.txt and Pipfile 6 0.07%
requirements.txt and pyproject.toml 8 0.09%
None / unknown 6896 80.64%

We found that pip’s requirements.txt is the most commonly used method for specifying depen-
dencies in repositories, likely because pip is the default package installer included with Python.
Other methods observed include Pipfile, used by Pipenv, which aims to improve dependency
management but has not gained widespread popularity. Pyproject.toml, used by Poetry, simplifies
package management and publishing but is also less commonly adopted. A few repositories use both
Pipfile and requirements.txt or pyproject.toml and requirements.txt, which suggests a
transition phase or a need for compatibility with multiple tools. For many repositories we were
not able to detect the used requirements specification, which may indicate simple projects with no
dependencies, or alternative dependency management practices.

In this preliminary data analysis, we also focused on argument parsing methods due to their
important role in the context of PoC exploits. PoCs are designed to interact with specific systems
or applications, often requiring inputs such as the location of the target, commands to execute, or
necessary credentials. These inputs can be passed through command line arguments. By under-
standing what argument parsing methods are used, we can design a system that can efficiently



generate the appropriate arguments for successful PoC executions. Parsers found in our dataset
include optparse, argparse, getopt, click, pwnargs and docopt.

Table 4: Parsing methods per entry point

Method 2017 2018 2019 2020 2021 | Total %
Sys.argv 880 1227 1941 1205 236 | 5489 36.75%
argparse 1530 1546 1220 467 432 | 5195 34.78%
getopt 386 16 14 20 10 446 2.99%
optargs 188 107 112 9 18 434 2.90%
pwnargs 45 0 0 0 0 45 0.30%
click 7 1 2 10 9 29 0.19%
docopt 3 5 2 0 0 10 0.07%
None / unknown 567 1133 876 377 329 | 3282 21.98%
Error 4 0 1 0 0 5 0.01%

Optparse is the older one, included in Python 2.3, and deprecated in Python 3.2. Argparse,
introduced in Python 2.7 and 3.2, is now the standard. Getopt, available since early versions of
Python, is deemed less user-friendly. Click and docopt are third-party libraries with powerful
features but are less commonly used.

From Table 4, we see that argparse is the most popular parser over the years, likely because it is
part of the standard Python library. The high count of entries categorized as ‘Unknown’ or ‘None
suggests many entry points use custom or no parsing methods. Although sys.argv is not considered
an argument parser, we still included it in our table because many scripts handle command-line
arguments directly using sys.argv without any additional parsing library. Overall, the trend shows
a strong preference for argparse. The errors included in the table are caused by Python files that
could not be opened or read.

Y

10



5 Infrastructure

5.1 Sandboxing

Running untrusted PoC exploits can compromise system integrity. To handle these risks and ensure
a secure environment, we use QEMU along with the KVM!"! accelerator for guest virtualization. This
combination allows QEMU to act as a Type 1 hypervisor, which provides near-native performance
and improved security by running directly on the host machine’s hardware. This setup isolates all
PoC executions on a dedicated sandbox machine, which effectively quarantines any potential threats.

Additionally, this configuration enhances our automation capabilities through the QEMU Machine
Protocol (QMP)'. With QMP, we can execute tasks such as controlling the power state, attaching
or ejecting devices, and handling snapshots for both active and offline virtual machines. These tasks
are essential for maintaining control over the virtualized environment and have it operate smoothly.

We establish communication with the guest machine using SSH'® over a specified port. This
secure channel allows for file transfers and remote command execution, which we need for deploying
and executing PoC exploits in a controlled manner. For file transfers, we use rsync'® over SSH.
The PoC repositories include Git metadata (.git directories) that are irrelevant to our use case.
These files can slow down transfers due to the overhead of transmitting many small files. Using
rsync allows us to exclude these files, streamlining the process.

Snapshots are important for maintaining system integrity. A snapshot captures the exact state
of the virtual machine at a specific point in time. This includes the contents of its memory and
its disk- and device state. By creating snapshots, we can revert the virtual machine to a previous
state if it becomes unstable or compromised. This way each PoC exploit can be analyzed in a clean
environment, free from the influence of previous executions. We use automated scripts to streamline
the creation and restoration of these snapshots. This automation ensures consistency and efficiency
in operating the sandboxed environment.

These processes, as illustrated by figure 1, are integrated into a comprehensive shell script. The script
orchestrates the execution of PoC exploits within our sandboxed environment. It systematically
prepares the environment by setting up the necessary configurations, executes the PoC exploits,
and logs the results. This methodical approach makes sure that each step is performed correctly
and that we achieve a high level of control throughout the process. This detailed and structured
procedure enables us to safely analyze potentially harmful exploits while we protect the integrity of
our systems.

HKVM (Kernel-based Virtual Machine) is a virtualization module in the Linux kernel that allows the kernel to
function as a hypervisor. https://linux-kvm.org

12QMP is a JSON-based protocol that enables machine-level communication with QEMU instances. https:
//wiki.qemu.org/Documentation/QMP

13SSH (Secure Shell) is a network protocol that provides secure, encrypted communication between a client and a
server. https://openssh.com

HMrsync is a utility for transferring and synchronizing files across systems, which can operate over SSH. https:
//rsync.samba.org

11
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Figure 1: Automation sequence

5.2 Guest OS

In this research, we focus on automating a Linux guest machine. We selected Ubuntu 22.04.4
LTS server as the primary guest operating system due to its stability and compatibility with the
automation tools required. The initialization process for the Linux guest machine begins with the
manual installation of the operating system. We use VNC'® for display access, which allows us to
interact with the guest machine’s graphical interface remotely. During this phase, we set up the
filesystem and create user accounts. Next, we install and enable the OpenSSH'? server to facilitate
communication from the host machine to the guest machine. We configure OpenSSH to permit
root logins and make sure that the SSH daemon starts automatically on boot. With SSH set up,
the remaining steps can be completed using an automated script.

These steps involve updating and upgrading the system to ensure it is current and installing
and configuring all necessary tools. Among these tools are FakeNet-NG'6, Procmon!”, and Sys-

I5VNC (Virtual Network Computing) is a remote desktop protocol that provides a way to remotely control a
computer’s graphical desktop over a network.

16FakeNet-NG is a network simulation tool that mimics network services and records network activity.

"https://github.com/Sysinternals/ProcMon-for-Linux
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mon'®, which will be detailed in section 6.4. We also install Miniconda, a minimal installer for
conda'®. Unlike Python-specific environment managers like virtualenv or venv, conda manages
environments at the system level. This allows us to use different Python versions side-by-side,
which is important because the PoCs in our dataset require different Python versions. We install
both Python 2.7, the final major release of Python 2, and Python 3.11, released in 2022. This dual
installation gives us compatibility with PoCs that span from 2017 to 2021.

After completing the setup and configuration of the guest machine, we create an initial snap-
shot to capture the machine’s clean state. This snapshot acts as a baseline, which allows us to
revert to a known, stable state before analyzing each PoC exploit. By reverting to this snapshot
before each analysis, we make sure that every exploit is executed in a uniform and predictable
environment, free from any prior modifications or contamination.

Although this research focuses on a Linux guest machine, the approach can also work with a
Windows guest. This would involve installing Windows, setting up remote access, and configuring
the monitoring tools?’. While not within the scope of this research, this demonstrates the method’s
flexibility across different operating systems.

5.3 Ethical considerations

Our research involves running potentially harmful Proof-of-Concept (PoC) exploits. To handle
these safely and ethically, we have adopted several practices to keep the experimental environment
secure and well-managed.

We create isolated environments using QEMU with the KVM accelerator, which acts as a Type 1
hypervisor and operates directly on the host machine’s hardware. This containment method helps
keep any threats arising from our experiments confined to the virtual environment. We maintain
security by regularly updating the host machine. This includes keeping both QEMU and KVM
up to date with the latest security patches. While the sandbox operates on a fixed version, the
containment measures prevent potential impacts from affecting the overall system.

Only authorized researchers can connect to the experimental environment via SSH. Access is
restricted to the internal network or through a jump server, which reduces the risk of unauthorized
use or data breaches. Our data does not include any confidential data. The data required for
our experiments, such as the PoC repositories, is protected using the same access controls as
the rest of the system. Since confidential data is not involved, additional data sanitization steps
are not necessary. We handle PoC exploits ethically by using them solely for research purposes.
Exploits remain on the experiment host machine and are only transmitted to the on-device sandbox
environment for execution. This approach guarantees that exploits are not shared or used maliciously.

By following these practices, we make sure our research is both safe and ethical. These mea-
sures protect the integrity of our systems and ensure that our work adheres to high ethical standard.

Bhttps://github.com/Sysinternals/SysmonForLinux
Yconda is a cross-platform package and environment system that handles multiple languages. https://conda.io
20The selected tools have support for both Linux and Windows.
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6 Automation

6.1 Requirements resolution

When performing dynamic analyses on potentially malicious PoCs, it is important that as much
of the code is executed. By maximizing code coverage, we can explore as much detail as possible
about how the PoC behaves, potentially uncovering hidden behaviors. This also means that it is
important for the program not to stop prematurely due to missing dependencies. Typically, these
dependencies are specified in files associated with a package manager.

In our Python repository dataset, the most prevalent dependency file is requirements. txt, which
is commonly used with the pip package installer (see Table 3). Nonetheless, the same data shows
that most repositories either lack a dependency specification or use a format that was not captured
by our analysis. In this case we employ a methodology similar to that used by Chaudhry et al.
[ ], which involves generating a reqs.txt file using the Pipreqs®' module. Pipregs is a
popular Python package that automatically generates a pip-requirements file by analyzing the
imports in the Python code. It is designed to work with both Python 2 and Python 3. However,
issues can arise due to significant differences between the two Python versions.

If a Python 3 Pipreqgs implementation tries to analyze a codebase written in Python 2, it might
encounter syntax it doesn’t understand. This can cause the analysis to fail because in this case
Pipregs expects Python 3 syntax. As a result, Pipreqs may produce errors or an incomplete
requirements file, or no requirements file at all, because it can’t correctly parse the Python 2 code.

To address this issue, we first determine the likely Python version used in the codebase. For
this, we use a package called Vermin??. This package analyzes the source code for every Python file
in a directory to determine the minimum Python version required by the codebase. It does this by
parsing an abstract syntax tree (AST) and matching it to rules that correspond to specific Python
versions. One limitation with this approach is that Vermin relies on Python’s built-in syntax parser.
This means that syntactical incompatibilities can cause Vermin to become unreliable. For example,
using Python 2’s print statement causes an invalid Python 3 AST (section 2.1.1). To minimize these
issues, a pessimistic strategy is used in case of syntax errors: when Vermin encounters an invalid
AST, it automatically assumes Python 2 is used. Another limitation is that some repositories use
mixed Python versions, which, since we cannot detect project boundaries, causes Vermin to assume
a version that fits neither.

Once a minimum Python version is determined, correct Python interpreters can be used to
generate (if necessary) and install the pip requirements. As discussed in section 5, conda is used to
configure environments for both Python 2 and Python 3. The binaries from these environments are in
the following path: path_to_miniconda/envs/<environment name>/bin/python. These can then
be used to run the Pipreqs module (using <python path> -m pipreqs <path_to_repository>)
and pip module (using <python_path> -m pip install). Naturally, the same Python binary is
used in later stages of the automation.

2https://github.com/bndr/pipregs
2Znttps://github.com/netromdk/vermin
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Now that every repository includes a requirements specification, pip can be used to install them.
When pip-install receives multiple package specifications, whether through command line arguments
or via a requirements file, it aborts the entire installation if a single package fails to install. To
circumvent this behavior, every package is installed in a separate pip install run. This ensures
the most available dependencies, reducing the likelihood of a failing execution due to missing
dependencies.

6.2 Entry point identification

Entry points represent the starting points for program execution. In Python projects, entry points
are usually .py files intended to be run as scripts rather than imported as modules. Identifying
these entry points is useful for several reasons.

To begin with, identifying the correct entry points ensures targeted execution. To analyze the
behavior of a Python PoC, we need to execute the script as it would be in real-world usage. This
makes sure that our analysis covers the actual functionality that users would execute. Additionally,
entry points typically include code that processes command-line arguments. Identifying these scripts
allows us to generate and provide correct arguments, which is the basis for thorough dynamic
analysis as intended by this research. Furthermore, running the correct entry points prevents
unnecessary execution of modules that are not meant to be executed directly. This saves a lot of
time during the analysis process.

To identify entry points, we consider a .py file to be an entry point if it contains top-level
code. In Python, “‘top-level code’ is the first user-specified Python module that starts running. It
is ‘top-level’ because it imports all other modules that the program needs” | ] (see Listing 1).

The identification process begins with module import analysis. We first scan all Python files in the
repository to identify import statements. By comparing each file’s relative path with these import
statements, we can determine which files are not imported by others and mark them as potential
entry points. Next, we perform a ‘main check’ for each Python file, which means searching for the
_name__ == "_main__" condition. Files containing this check are also marked as entry points, as
this is a common Python indicator for top-level code. Finally, we combine the results from the
module import analysis and the main check to create a comprehensive list of entry points. This
combined approach makes sure that we accurately identify all relevant scripts for dynamic analysis.

6.3 Argument generation

When we run command-line programs, we deal with two types of arguments: positional and optional.
Positional arguments depend on their place in the argument vector (argv). They are straightforward
because we know which argument goes to which parameter based on their position. Optional
arguments are different. They use a name preceded by one or two prefix-characters, like ——help or
/HELP, to indicate that the argument is optional.
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Listing 1: Top-level program

1 # module_example.py

2 def add(a, b):

3 return a + b

4

5 def subtract(a, b):

6 return a - b

1 # main.py

2 import module_example

3

4 def main():

5 print("This is the main program.")
6 result = module_example.add(5, 3)
7 print (f"The result of addition is: {result}")
8

9 "t the ‘main check’ """

10 if __name__ == "__main__":

11 main()

In Python, we can access positional arguments directly using the sys.argv list. For optional
arguments, we often use a dedicated parsing module. Table 4 shows the various argument processing
methods used in Python repositories, detected through basic import string matching for each entry
point. The most common methods are argparse, sys.argv and unknown/none. Since argparse
and sys.argv are best suited for generating arguments, we will focus on these two.

Understanding the need for argument generation involves looking at how it enhances the code
coverage in dynamic analysis. By inspecting the code to determine which positional and optional
arguments a program expects, we can generate arguments that explore more parts of the code.
This leads to better code coverage and a more informative execution. By including the process of
identifying expected arguments as a step in the automation, we increase the likelihood of uncovering
hidden threats and suspicious behavior.

6.3.1 Argument identification

When aiming for maximum code coverage, it is important to understand what argument sets would
be considered valid. This is where Code Analysis Driven Argument Generation (Codarg) comes in.
This method uses the parser’s specification to look for common patterns and matches them to one
of the argument categories as specified in Table 5. These categories and patterns were determined
through manual inspection of the PoCs from the dataset. We rely on the AST to extract these
patterns, focusing on the argument name, its destination, metavar, help string, and expected type
as provided in argparse’s add_argument? method call. The argument name is the most important
identifier, as it is the method’s only required parameter. Destination and metavar are optional but
can provide additional information about how the argument is used. The help string describes the
argument in a human-readable format, which can be used to identify the argument’s purpose. The
expected type is the type that the argument should be converted to. This can be used to determine

Zhttps://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
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the argument’s category, as different types often require different types of arguments. All these
attributes are matched against the patterns in Table 5.

Table 5: Argument categories and patterns

Patterns
Category Value
Names Substrings Chars Types
port [0,65535] port p int, ord, float
IP address 127.0.0.1 hostname, ip host i
url 127.0.0.1:[0,65535] target, url t, u
credential root username, user, usr, str, ascii
password pass, pwd
command uname -a command cmd c
file path file_[1,1000] file, directory, bin, dir d, e, f, 1, file, path, open
input, output, 0

path, payload,
exploit, dump,
exe, binary,
cert, list

During the generation phase, argument vectors are built from the identified arguments in the
entry point. This involves creating suitable values for each identified argument without executing
the script. This phase follows a systematic approach to make sure the arguments are accurately
represented and ready for dynamic analysis.

For categorized arguments, the same specifications used to identify them can be used to gen-
erate corresponding values. This process is done statically, meaning the script is not executed at
this stage. Instead, argument values are constructed based on predefined rules.

Default values are used directly if provided in the entry point. This makes sure the argument
behaves as expected in its default state. When the argument specification includes a set of choices,
the first element from that set is selected. This guarantees the argument always has a valid value.

For arguments in a specific category without default values or choices, the category’s gener-
ate function is used. This function produces suitable values that match the expected data type
and usage context of the argument. For example, a category for port numbers generates a number
within the range of valid port numbers.

If an argument does not match any predefined category, a generic placeholder value like "value" is
used. This means no argument is left out, even if it falls outside the expected categories. Flag-type
arguments, such as help (--help) and version (--version), are intentionally ignored during the
generation phase. These flags usually stop the execution if the script after showing some information.

17



Arguments that are required or positional (i.e., those without prefix characters) are always included
in the argument vector. This mimics real-world usage where these arguments are mandatory. When
an argument takes multiple values (as indicated by the nargs parameter), the generation phase
produces the required number of values. This might involve generating a list or sequence of values
that match the expected format.

Since Codarg relies on parsing the AST, it is only compatible with entry points targeting Python 3.
If the entry point uses an argument parser other than argparse, or if it targets a Python 2 version,
a dynamic approach in the form of fuzzing is used instead.

6.3.2 Fuzzing

Feedback-driven fuzzing is used to dynamically construct an argument vector by iteratively gener-
ating arguments, as illustrated by Figure 2. In this method, per position in the vector, a value for
each category (see Table 5) will be generated. These values are passed sequentially to the entry
point. During this process, after every value has been evaluated, the feedback processor determines
the most suitable argument for the current position. This decision-making process is guided by the
feedback received from the entry point’s execution. Based on this feedback, the fuzzer’s control
flow can be influenced in one of two ways:

e Exit: The fuzzer stops if the execution is successful or if no further improvements are possible
(i.e. the argument set is deemed optimal).

e Continue: The fuzzer proceeds to the next value for evaluation if the current flow should be
continued.

Once the optimal value is selected, the fuzzer iterates to the next position in the argument vector,
continuing this systematic process. The simplified fuzzer used in this research aims for maximum
code coverage, which deviates from the common objective of finding vulnerabilities or code flaws.

A crucial aspect of this approach is the execution of every entry point through the feedback
processor’s run command. This ensures that all information the feedback processor requires in
its evaluation and decision-making is available for every run. We have implemented two feedback
processors, each with its own run command and decision-making process. These will be detailed in
the following sections.

Coverage feedback processor

The coverage feedback processor plays an important role in optimizing the dynamic analyses’
effectiveness by gathering and enhancing runtime metrics to find the most suitable arguments for
the argument vector. This process, known as coverage-guided feedback, relies on collecting detailed
execution data to evaluate and refine the argument sets.

To ensure coverage metrics are collected reliably, all program executions are routed through
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Figure 2: The fuzzer main loop

the coverage.py?* module using the command python -m coverage run [argv...]. This ap-
proach guarantees that data on executed lines of code during runtime is accurately gathered.
Specifically, the module tracks arrays of executable line numbers and executed line numbers for
each module run. However, these raw metrics require further processing to be useful.

The key metric derived from the raw coverage.py data is code coverage, calculated as the
ratio of executed lines to executable lines:

count (executed lines)

Coverage =
8¢~ Count (executable lines)

This metric provides a straightforward measure of how much of the codebase is exercised by the
current argument set.

Additionally, there was a consideration of a metric that evaluates the extent of code exploration by
comparing the highest executed line number with the last executable line number in a file. However,

Z4nttps://github.com/nedbat/coveragepy
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this metric was excluded since it mainly reflects the structural layout of the code rather than the
depth of the execution. E.g. Listing 1 shows a Python program where the last line of code will
always be executed regardless of the input arguments.

The coverage metric is averaged over the executed modules to obtain a general view of the
program’s execution under the current argument set. The feedback processor uses these averaged
metrics to compare the current argument set with previous ones, determining suitability based on
higher coverage.

This comparative analysis influences the fuzzer’s control flow:

e Exit: If the predefined coverage threshold is reached, the fuzzer stops, indicating the current
argument set is adequate for dynamic analysis.

e Exit: If adding an additional argument decreases coverage, the fuzzer should stop, because
further arguments are most likely counterproductive.

e Continue: In all other cases, the fuzzer continues generating and testing new arguments to
improve coverage.

By focusing on these metrics, the coverage feedback processor optimizes the argument sets used
for dynamic analysis for maximum code coverage and deeper code paths, which helps uncovering
potential threats and behavior anomalies more effectively.

( Coverage Feedback Processor ) C Exit status Feedback Processor )

Y Y
Calculate coverage & execution depth Evaluate exit status

Y Y

Yes
Best coverage and depth so far? Exit status is non-zero?
No Y No
[Indicate Continuation}

4’[Indica‘ce Terminationj<—

Figure 3: The feedback procedures

Exit status feedback processor

The exit status feedback processor utilizes another execution metric: the exit status of the program.
This metric provides a direct indication of whether the program terminated successfully or encoun-
tered runtime failures.
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Historically, the concept of exit status codes can be traced back to early UNIX systems [ ].
According to common conventions, particularly those outlined by the C standard library, a zero
exit status indicates successful execution, while non-zero exit statuses signify runtime errors or
failures. This simple interpretation makes exit status a reliable measure of execution effectiveness.

The exit status can be directly obtained from the subprocess result, so there’s no need for special-
ized commands to retrieve it. This simplicity makes the exit status a fast and efficient feedback
mechanism.

The control flow for the exit status feedback processor mirrors that of the coverage feedback
processor:

e Exit: The fuzzer stops upon achieving a successful execution (zero exit status), thereby
marking the current argument set as optimal since it cannot be improved further.

e Continue: The fuzzer continues generating and testing new arguments if the exit status is
non-zero, which indicates runtime failures and the need for further optimization.

It is important to note that since there is no universal standard for exit codes, the results might
vary and could potentially lead to inaccurate interpretations of the program’s behavior. However,
this approach does provide a pragmatic method for leveraging exit statuses to refine the argument
sets and improve the effectiveness of dynamic analysis.

6.4 Execution

The execution phase is arguably the most important part of the dynamic analysis process. Here,
the results from the argument generation phase are put to the test. For each entry point in the
PoC repository the following steps and tools are used to execute Python exploit PoCs within the
sandbox and capture the behavioral data for further analysis:

1. Restore sandbox state
Before executing any entry point, we first restore the sandbox to a clean state. This involves
reverting to the previously created snapshot where the repository and all necessary depen-
dencies are already installed. This way each execution starts from a consistent, known state,
which allows for reproducible results.

2. Start Monitoring Tools
We use several monitoring tools to observe the behavior of the entry points during execution:

(a) FakeNet-NG intercepts and redirects all or specific network traffic while simulating
legitimate network services. It allows us to see how the entry points interact with
network resources, which is important for understanding potential exploit paths.

(b) Procmon traces system call activity, which provides insights into what the entry points
are doing at a low level. For example, Procmon can show file access patterns, and other
system interactions.
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(c) Sysmon logs detailed information about process creation, network connections, file
creation, and more. Sysmon’s logs help us understand the lifecycle of processes spawned
by the entry points and their interactions with the system.

These tools are started beforehand to make sure they capture all relevant data from the
moment the PoC begins execution.

. Execute the PoC

We then execute the entry point of the PoC with the optimal argument set as determined
during the argument generation phase. Fach execution is subject to a timeout mechanism
that will terminate the PoC execution to prevent infinite loops or excessively long runs. A
beneficial side effect of this timeout is our granular control over the execution phase so we
can make sure that each PoC is analyzed within a reasonable timeframe.

. Stop Monitoring Tools

After the PoC execution completes or the timeout is reached, we stop the monitoring tools.
This step makes sure that all the data collected during the execution is finalized and saved. By
capturing the initial and final states of the PoC run with each tool, we gather comprehensive
logs and traces for optimal analysis later on.

. Data Collection and Transfer

The final step is transferring the collected data back to the host machine for later inspection.
This transfer ensures that all execution data is securely stored and available for detailed
analysis. The actual analysis of this data is beyond the scope of this research, but the collected
information serves as a foundation for identifying and understanding the exploit’s behavior.
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7 Experimental Results

In this section, we outline the results of our experiments. We start by discussing how we chose and
prepared our samples, including the methods we used to ensure they were representative. We then
move on to describe the data collection process and the analysis techniques applied. We explain
the sample size calculations and how we distributed samples across different groups. Additionally,
we detail the setup and execution of our experiments, highlighting the tools and procedures used to
gather data. Lastly, we present our findings, showing the capabilities of our automated dynamic
analysis system through an example.

7.1 Sample selection and preparation

As mentioned in section 4, the repositories were preclustered and contained some duplicates. These
duplicates were excluded from the experiment through deduplication. After this correction, the
population size N was determined by subtracting the duplicates from the original dataset.

The sample size was determined using Cochran’s formula: n = % adjusted for finite population
correction, which accounts for the size of the population using n..., = n_L. We used Z = 1,96

N
(corresponding to a 95% confidence level), p = 0.5, and F = 0.05, where Z is the z-score, p is the
estimated proportion of the population, F is the margin of error, and N is the population size
(number of repositories after deduplication).

This results in a representative sample size of 369 repositories. These will be proportionally
distributed over the clustered data. The sample size n; for each cluster ¢ was determined using the
following formula: n; = [<2— X Negr |, where S; represents the size of cluster i, and Syo is the

Stotal
total size of all clusters (which is the same as N).

Table 6: Summary of Data Size and Deduplication Statistics by Year

Year Initial Size Duplicates Size after Deduplication Sample Size

2017 2446 183 2263 103
2018 2586 162 2424 110
2019 2224 84 2140 98
2020 563 35 228 25
2021 734 6 728 33
Total 8553 470 8083 369

7.2 Data Collection and Analysis

The experiment was conducted using QEMU with KVM enabled. The virtual machine was config-
ured with 4GiB of memory and equipped with 4 CPU cores, each operating with a single thread.
For execution parameters, each execution, including those in the fuzzing process, was limited to 4
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seconds. The maximum number of arguments generated per entry point was set to 8. These settings
minimize the experiment duration while preserving efficacy.

As part of the dynamic analysis process, the runtime execution was thoroughly logged using
the tools listed in section 6.4. FakeNet-NG captured network traffic in PCAP?, Procmon logged a
system call trace, and Sysmon produced system event logs. We will explore these collected log files
for one repository from the sample in section 7.3.

In addition, for each entry point per repository, a variety of data was systematically collected to
evaluate code behavior and performance. This includes runtime code metrics both with and without
dependencies installed, and detailed code coverage information from different argument generation
approaches. These include coverage-driven fuzzing, exit status-driven fuzzing, Codarg, and the base
case of no provided arguments. Exit-status results, the argument parser used, and a record of any
exceptions encountered during execution were also documented.

The experiment took approximately 25 hours to complete, averaging about 4 minutes per repository.
This duration includes the additional time it took to collect runtime code metrics, which was about
11 hours, or roughly 2 minutes per repository, meaning a typical run would take slightly more than
2 minutes per repository on average.

Out of the 369 repositories in our sample, spanning 541 entry points, 26 entry points exited
before any code coverage could be measured. This is likely due to invalid syntax, which might have
been caused by incorrect version determination.
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Figure 4: Code coverage before and after requirements resolution (with empty argument vector)

When looking at the code coverage gain from just installing dependencies, we found that the average
coverage without dependencies, with no arguments is 24.76%. When dependencies are installed, the
average coverage with no arguments increases to 29.32%. This results in an average coverage gain
for dependency resolution of 4.56 percentage points (pp).

ZPCAP (Packet Capture) is a file format for capturing network traffic data. https://tcpdump.org
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The distribution of code coverage varies based on the generation method used and whether
Codarg can be utilized. The sample will be split into two distinct groups that span the entire
dataset. For the 423 entry points that are not supported by Codarg, the average code coverage
without any arguments is 34.07%. When exit status-driven arguments are passed, the average
increases to 38.42%. Using coverage-driven arguments, the average code coverage rises to 40.23%.
There is no available data for Codarg arguments in this category.
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Figure 5: Coverage percentages by generation method per entry point

For the other 118 entry points that are supported by Codarg, the average code coverage without
arguments is 22.63%. When using exit status-driven arguments, the code coverage rises to 22.93%.
Coverage-driven arguments result in an average code coverage of 24.84%. With Codarg generated
arguments, the average code coverage of 30.75% can be observed.

7.3 Running the automated dynamic analysis system

To provide a sense of the resulting data, we select one repository from the sample to illustrate how a
single cycle from the automation might appear in a typical run. The PoC in this section targets CVE-
2019-15107%¢ which uses a command injection vulnerability for Webmin?7, a web-based admin panel.

After the repository is copied to the sandbox, requirement resolution is started. Logging (Listing
2) shows us that this repository did not specify its required dependencies, so a requirements file
had to be generated. The resulting requirements from this Pipregs invocation are installed next
one-by-one to ensure maximum success.

2nttps://www.cve.org/CVERecord?id=CVE-2019-15107
?"Thttps://webmin.com
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Listing 2: Requirements resolution logging

Creating reqs.txt file for poc
creating subprocess: ['/home/pocker/miniconda3/envs/py311/bin/pipreqs', 'poc']

[ truncated ]

subprocess: INFO: Successfully saved requirements file in poc/regs.txt
creating subprocess: ['/home/pocker/miniconda3/envs/py311/bin/python', '-m', 'pip', 'install’,
< 'beautifulsoup4==4.12.3']

[ truncated ]

subprocess: Installing collected packages: soupsieve, beautifulsoup4

subprocess: Successfully installed beautifulsoup4-4.12.3 soupsieve-2.5

creating subprocess: ['/home/pocker/miniconda3/envs/py311/bin/python', '-m', 'pip', 'install', 'Requests==2.32.3']
subprocess: Requirement already satisfied: Requests==2.32.3 in ./miniconda3/envs/py311/1ib/python3.11/site-packages
— (2.32.3)

Once the required packages are installed and a snapshot is created, it is time to generate an
argument vector to use in the actual execution step. We can see in the logging for this step (Listing
3) that the entry point uses argparse for argument parsing, allowing the automation to use Codarg
for argument generation. During the argument identification a match is found for -host and the
arguments with default values are omitted.

Listing 3: Argument generation logging

name_or_flags: ['-host'], kwargs: {'help': 'Host to attack', 'required': True, 'metavar': 'IP'}

name_or_flags: ['-port'l, kwargs: {'help': 'Port of the host ~ 10000 is Default', 'metavar': 'Port', 'default':
— '10000'}

name_or_flags: ['-cmd'], kwargs: {'help': 'Command to execute ~ id is Default', 'metavar': 'Command', 'default':
— 'id'}

found keyword ip in IP

ignoring ['-port'] because it has a default value

ignoring ['-cmd'] because it has a default value

The generated argument vector will be used in the execution phase of the cycle. Listing 4 presents
us with the process creation, along with all the output that the entry point prints to the screen.
This shows the full argument vector and a truncated exception trace reporting that the attempted
connection is refused.

This behavior can be observed in the data produced by both Sysmon (Listing 5), and FakeNet-NG.
We use Wireshark®® to examine the captured packets and filter out the noise provided by the SSH
connection. The TCP?? trace (Figure 6) reflects the request made by the entry point to localhost
(127.0.0.1) on port 10000, showing how the attempt to initiate a secure connection (SYN packets)
is refused (RST and SYN responses).

ZWireshark is a tool for capturing and analyzing network traffic. https://wireshark.org
29TCP (Transmission Control Protocol) ensures reliable and ordered data delivery over a network.
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Listing 4: Execution logging

creating subprocess: ['/home/pocker/miniconda3/envs/py311/bin/python', 'poc/Webmin_exploit.py', '-host',
— '127.0.0.1']

subprocess:

subprocess: 5 ¢

subprocess: ME E]

subprocess: 1.890 expired Remote Root

subprocess:

subprocess: By: nOobité

subprocess: Github: https://github.com/nOobit4

subprocess:

subprocess: Traceback (most recent call last):
[ truncated ]
subprocess: requests.exceptions.ConnectionError: HTTPSConnectionPool(host='127.0.0.1', port=10000): Max retries

— exceeded with url: /password_change.cgi (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection
< object at 0x7fd9ale495d0>: Failed to establish a new connection: [Errno 111] Connection refused'))

Listing 5: Sysmon event logging (excerpt)

<Event>
<System>...</System>
<EventData>
<Data Name="RuleName'">-</Data>
<Data Name="UtcTime">2024-07-29 08:49:36.7556</Data>
<Data Name="ProcessGuid">{4fb92b80-57a0-66a7-126a-650000000000}</Data>
<Data Name="ProcessId">5659</Data>
<Data Name="Image">/home/pocker/miniconda3/envs/py311/bin/python3.11</Data>
<Data Name="FileVersion">-</Data>
<Data Name="Description">-</Data>
<Data Name="Product">-</Data>
<Data Name="Company">-</Data>
<Data Name="OriginalFileName">-</Data>
<Data Name="CommandLine">/home/pocker/miniconda3/envs/py311/bin/python poc/Webmin_exploit.py -host
<« 127.0.0.1</Data>
<Data Name="CurrentDirectory">/home/pocker</Data>
<Data Name="User'">pocker</Data>
<Data Name="LogonGuid">{4fb92b80-0000-0000-e803-000000000000}</Data>
<Data Name="LogonId">1000</Data>
<Data Name="TerminalSessionId">29</Data>
<Data Name="IntegrityLevel">no level</Data>
<Data Name="Hashes">SHA256=52cd9b3c0d00debc101leae7abcb66a5b35572e3d7bebd08b3a2e657e1b0ffb8f</Data>
<Data Name="ParentProcessGuid">{4£b92b80-579f-66a7-126a-650000000000}</Data>
<Data Name="ParentProcessId">5658</Data>
<Data Name="ParentImage">/home/pocker/miniconda3/envs/py311/bin/python3.11</Data>
<Data Name="ParentCommandLine'">miniconda3/envs/py311/bin/python</Data>
<Data Name="ParentUser">pocker</Data>
</EventData>
</Event>
<Event>
<System>...</System>
<EventData>
<Data Name="RuleName">-</Data>
<Data Name="UtcTime">2024-07-29 08:49:37.458</Data>
<Data Name="ProcessGuid">{4fb92b80-57a0-66a7-126a-650000000000}</Data>
<Data Name="ProcessId">5659</Data>
<Data Name="Image">/home/pocker/miniconda3/envs/py311/bin/python3.11</Data>
<Data Name="User'">pocker</Data>
</EventData>
</Event>
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Figure 6: TCP trace viewed in Wireshark

The resulting event logs from Procmon contain only system calls, making it very difficult to analyze
if you do not know what to look for. Additionally, this results in the log file growing very large,
very quickly. These logs can be viewed using Procmon for further inspection. Figure 7 shows a
fragment out of the 102,600 total events.

>>> ProcessMonitor (2.0.0) << Start Time: Total Events:
08:49:28 102600

newfstatat 2 (No such file or directory dfd=94183035705264 filename=10 18 81 6d fc
atat 2 (No such file or directory B 9 3 2 filename=10 18 81 6d fc
wait -002 fi n ULL
atat - 9 lename=10 18 81
i 9 (%) events=NULL
how=140722145663056 nset=NULL oset=0xfffffffe7fffffff

how=140722145662720 nset=0x7ffc6d811780 oset=NULL

rt_sigprocmask 5 456 nset=0x7ffc6d81178@ oset=NULL

waits 97 7 6 stat_addr=0x7ffc6d811780 optio

gettid 2

timerf im - fl utmr=NULL mr=NULL
timeout=0

gett

epoll_wait 1 . 54438816
ULL flag
ULL fla

(Invalid argument)

24
185
0x00007f0ea0185000

4383054438816
ULL fla:
fla
(No such file or directory .012 ilen 90 6d 1b a0 e 7 7 mod

94383054438816 even 6187 ti
(No such file or ectory 5 7 126 filenami

(No such file or directory

F8

Figure 7: Procmon event trace
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8 Discussion

8.1 Ewvaluation

Different methods of argument generation were examined for entry points both supported by Codarg
and those that are not. For entry points not supported by Codarg, the system started with a decent
level of code coverage without providing any arguments. This coverage increased when using more
complex feedback processors. In contrast, entry points that do support Codarg began with a much
lower initial code coverage. Although the use of fuzzing techniques led to some improvements, these
gains were a lot more balanced compared to non-Codarg entry points. However, when Codarg
generated arguments were used, there was a substantial increase in code coverage. This shows that
argument generation using Codarg can be a powerful approach to boost code coverage.

The difference in coverage gains between Codarg-supported and non-Codarg-supported entry
points can be attributed to the reliance on named arguments in Codarg-supported entry points.
These arguments tend to be more complex and context-specific. This means that naive guessing is
much less effective due to the number of possible combinations. By taking advantage of Python’s
interpretive nature, where the code can easily be read and analyzed, the system can effectively
narrow down the combination space, leading to higher coverage.

A less groundbreaking finding is that installing software dependencies indeed does help run
the program. This is an expected outcome but it still plays an important role in the rest of the
automation. As seen in Figure 4, there is a noticeable coverage improvement when the necessary
requirements are identified and installed. Where initially entry points often exited early due to
unavailable modules, after the requirements are resolved, the program is able to proceed beyond
these limitations. This lead to a more effective and thorough analysis.

8.2 Limitations

Our current system for detecting Python 2 projects has a significant limitation due to exclusively
testing the Python version with a Vermin release that only supports Python 3 syntax. This means
our automated argument generation and dynamic tests are not fully effective for Python 2 projects.
Additionally, we are unable to identify project boundaries if there are multiple entry points within a
single repository that target different Python versions. This makes our version detection unreliable
under these circumstances, potentially resulting in undetected compatibility issues or incorrect test
results.

The software has not been tested on Windows or macOS. If a repository uses operating system-
specific APIs, this might cause errors when the software runs on Linux. This means that functions or
features designed for Windows or macOS could behave unpredictably or fail when executed on Linux.

A coverage metric on fuzzing can be misleading because it does not always reflect how well
a fuzzer tests a program. If our simplified fuzzer sends invalid or too few arguments, the program
might enter different code paths, like those that show help messages for proper use. These alternate
paths might increase the coverage metric but do not test the program in the same way valid
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arguments would. As a result, the fuzzer could mistakenly conclude that these paths are preferable,
leading it to a local optimum and giving a false sense of thorough testing.

The current system only supports identifying arguments for the argparse module. Although
this might seem like a limitation at first glance, it is not really a drawback because argparse is
the most commonly used tool for parsing command-line arguments in our dataset and in general.

Input generation for Python programs that do not receive their inputs through command-line
arguments is not supported. This limitation means we cannot generate inputs for entry points that
require input from the standard input stream or a configuration file, or rely on hard-coded ‘inputs’.
Graphical applications are also not supported for input generation.

8.3 Future work

While the current system automates the execution and logging phases of dynamic analysis, it does
not perform the actual analysis. It currently prepares logs for human review rather than interpreting
them by itself. To create a truly automated system, it is necessary to integrate an interpreter that
can process and understand these logs. This interpreter would need to evaluate whether the PoC is
benign or malicious. Without this analysis capability the system is not fully automated, as it still
depends on manual inspection.

In addition to achieving full automation, further enhancements could be made to increase the
effectiveness of the dynamic analysis. For example, maximizing code coverage could be improved by
implementing ‘controlled inputs’ for our argument generation and dynamic testing. Passing a specific
IP address and port combination and making sure the test environment has a service listening on
that port could increase code coverage. The same is true for passing a valid file path and name to test
file operations, etc. By implementing these controlled inputs, out dynamic analyses would be able to
simulate real-world conditions more accurately, which will likely lead to more informative executions.

Another interesting possibility for enhancing the argument generation is the usage of Al-driven
code analysis. By feeding the source code to machine-learning models, these can understand the
handling of input arguments and ‘usage strings’, which are usually used to output information on
how to use the program when e.g. ——help was entered as an argument. The models might even be
able to understand the PoC to such a degree that it can reliably generate a few argument vectors
that together produce a code coverage that approaches 100%, which might make fuzzing and our
current argument generator (Codarg) obsolete.
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9 Conclusions

This research aimed to automate the dynamic analysis of Python Proof of Concept (PoC) exploits.
We achieved this by developing and testing an automated system. This system processed a rep-
resentative sample of Python PoC repositories, where the entry points in each repository were
dynamically analyzed in a sandboxed environment.

We started by creating a virtualized environment to safely execute Python PoCs. This envi-
ronment used QEMU and KVM for virtualization, which made sure that the tests ran in isolation
to protect the host system from any potential harm. We automated the creation and restoration of
snapshots to streamline the process and allow for predictable and reproducible analyses.

Next, we automated the dependency resolution process. Using the Pipreqs module, we gen-
erated missing requirements specifications to make sure all necessary dependencies were identified
and installed before executing the PoCs. This step was important because missing dependencies
could halt the analysis prematurely.

We then moved on to the argument generation phase. Codarg was designed to generate argu-
ment vectors through static code analysis. Codarg was supplemented by fuzzing techniques to
maximize code coverage. The generated arguments were used in the execution phase, and their
effectiveness was measured. One limitation here was the restriction of Codarg to entry point that
use argparse for argument handling.

The execution phase involved running the PoCs with the generated arguments while monitoring
their behavior using FakeNet-NG, Procmon, and Sysmon. These tools provided detailed logs and
traces, capturing the interactions of the PoCs with the system and network resources.

Our results showed that the automated system notably improved the code coverage of Python PoCs.
For instance, using exit status-driven arguments, the average code coverage increased from 34.07%
to 38.42%. Coverage-driven arguments raised it further to 40.23%. When using Codarg-generated
arguments on supported PoCs, the average code coverage improved from 22.63% to 30.75%. These
results indicate that Codarg can effectively boost code coverage, although Codarg supported roughly
20% of repositories.

In conclusion, automating the dynamic analysis of Python PoCs is not only feasible but also

beneficial. While there are limitations, particularly concerning the Python version determination,
the overall approach demonstrates significant potential as a foundation for further research.
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