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Abstract
Rendering is the process of generating images out of a digital environment using

a computer. Rendering is the foundation of all modern video games and blockbuster
movies. As rendering has become more mainstream, so has the drive for ever more
immersive, photorealistic, and advanced scenes, this has dramatically increased the
complexity of the render process. As a single system is constrained in its rendering
capabilities, it becomes imperative to utilize multiple systems.

A rendered scene can feature complex details in an environment, from lighting and tex-
tures to shaders and animations. Render scenes are created in tools such as Blender, a
cross-platform and free 3D creation suite. Blender lacks the functionality to efficiently
distribute renders on a small-scale computer cluster, even though distributing across
multiple servers becomes a necessity at larger scale.

To solve Blender’s limitation, this thesis introduces a software system called DAS-BR.
DAS-BR has been designed to be scalable in both homogenous and heterogeneous en-
vironments. The performance of DAS-BR has been evaluated through the execution
of experiments on GPU environments, the selection of the distribution algorithm, a
thorough examination of the environment, and a comparison to a first-party tool for
distributed rendering. The evaluation results demonstrate that DAS-BR is an efficient
and capable system for distributing Blender renders across a small-scale computing
cluster.
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Preface

The first film I ever saw in a cinema was Toy Story. With its runtime of 77 minutes,
it amazed me as a child. At the time, Toy Story was revolutionary as it was the first
feature computer-generated animation film [1]. With the development of Toy Story
came new computer challenges. The film required a tremendous amount of computer
power to render all the frames. Toy Story required more than 800,000 computation
hours to compute [2]. If the film were computed on a single computer instead of dis-
tributed across a cluster, I would not have had the chance to see it as a child, nor as a
teen, not even when I was an adult. The film would have taken 91 years of rendering.
Therefore, it was not merely a desire to distribute rendering, it was a necessity. The
goal of this thesis is the research and development of a distributed and heterogeneous
rendering system capable of rendering computer-generated content, which provides a
low-cost and convenient way of scaling and speeding up renders.
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Chapter 1

Introduction

Rendering is the process of generating images out of a digital environment using a
computer. Pioneered in 1962 with the computer program Sketchpad [3], developed by
Ivan Sutherland. In 1988, Dr. Sutherland received a Turing Award for this work. Since
1962, computer graphics and rendering by extension have been improved in terms of
realism, diligence, and scale. Rendering has become a pillar of the entertainment [4],
architectural [5] and automotive [6] industry. As rendering has become more main-
stream, so has the drive for ever more immersive [7], photorealistic [8], and advanced
scenes, this has dramatically increased the complexity of the render process.

(a) A dog in Toy Story (1995) (b) A cat in Toy Story 4 (2019)

Figure 1.1: Screenshots of the 1995 Toy Story film and the 2019 sequel, highlighting the
difference in graphic fidelity throughout the years

Due to the complex details of the scene, such as lighting, textures, shaders and
animations, the rendering process can take a long time. The complexity and size of
the environment determine the amount of rendering that needs to be done [9]. The
render time is based on the availability of computer hardware and the complexity of
the rendered scene [9]. The result of a render is usually a single frame or, in the case
of animation, a series of frames.
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Introduction

In 2023, graphic artists use tools like Blender to create render-able scenes. Blender is
a cross-platform free and open-source 3D creation suite. Blender is used for modelling,
animation, simulation, and texturing. Blender features the most demanding graphics
features, such as global illumination and reflections.

To render complex scenes, the need for powerful hardware and the utilization of the
hardware has become a pressing matter. As the computing power of a single machine
is limited by Moore’s law, it would be preferable to distribute the process of render-
ing to multiple machines. The Blender organization has developed a tool capable of
distributing renders, named Flamenco. Flamenco was designed to be used in a local
network of workstations, while this thesis investigates the distribution of render work-
loads for a small-scale cluster of computers. To this end, we will use the small-scale
computer cluster DAS6 located at the Advanced School for Computing and Imaging
as our target platform. Running Flamenco on DAS6 results in numerous challenges,
ranging from the inability to launch multiple workers to the inability to access GPUs.
To facilitate a small-scale computer cluster capable of distributed Blender rendering,
a new system was required.

Developing a standalone system to distribute Blender renders has been done in the
past [10, 11], however, most attempts are several years old, are closed source, only
scale with homogenous hardware, lack acceleration by the graphics processing unit
(GPU) or are unable to run on a small-scale computer cluster such as DAS6. The goal
of this thesis is to develop a system that can alleviate all these points. To develop
such a system, the following research questions have been asked and answered:

RQ1 How can Blender renders efficiently be scaled across a distributed computing
cluster?

RQ2 What effect does GPU acceleration have on render times compared to CPU?

RQ3 How can Blender renders efficiently be scaled across heterogeneous hardware?

RQ4 What are the benefits of a distributed render compared to Blenders native ren-
dering?

To answer all these questions, this thesis has developed a prototype system capable of
GPU- and CPU-based rendering across a diverse and distributed computing cluster.
The objective of this thesis is to provide a comprehensive description of this system
and demonstrate its performance through a series of experiments.

6



Chapter 2

Background

2.1 Heterogeneous computing systems
Merriam-Webster defines homogenous as “of the same or a similar kind or nature.”

Within the scope of computing systems, this means that a homogenous cluster of com-
puters contains the same hardware and software. Homogenous computing contrasts
with heterogeneous computing. In heterogeneous computing, a system contains differ-
ent hardware and software. Heterogeneity in computing can be found in many ways,
from different server farms with their speciality for a single enterprise application to a
CPU-die containing different cores to allow for better power efficiency[12]. The scope
is broad, which is why we have outlined a specific focus for this thesis. Within the
scope of this thesis, we refer to heterogeneous computing systems as servers within the
same cluster that are equipped with different GPUs. The goal of using different GPU
hardware is to accelerate the render speed and decrease the total render time by util-
ising the available GPU compute power. Using different GPUs allows us to leverage
one of the big advantages of a heterogeneous system, which is scalability without need-
ing homogenous hardware. The heterogeneous scalability allows adding more servers
without the need for identical hardware. This means that a cluster can be modified
without an entire overhaul to the cluster. This does not mean that heterogeneous
computing does not come without its challenges. Scheduling, allocating resources and
utilisation remain a constant challenge when it comes to heterogeneous computing [13],
this is because the variety of hardware and software means that each computer needs
tasks tailored to their requirements and capabilities for high utilisation.
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2.2 DAS
The Distributed ASCI Supercomputer (DAS) is a Computer Science infrastructure

designed by the Advanced School for Computing and Imaging (ASCI) for controlled
experiments with parallel and distributed systems [14]. DAS is a collaborative effort
between public universities and ASTRON, the Netherlands’ Institute for Radioastron-
omy [15]. DAS has six clusters spread around the Netherlands, all connected via
1GB/s [16]. Multiple versions exist of DAS, all are named by the number of their
sequence [17]. For example, DAS-5 is the fifth iteration of DAS. The most recent
version is DAS-6. DAS-6 makes use of the Ada generation of NVIDIA GPUs and
AMD Rome CPUs. Accessing DAS6 is facilitated by SLURM. SLURM is a cluster
workload manager, allowing users to reserve and use the available hardware of DAS6
for research purposes.

Cluster site CPU GPU

VU 24-core AMD EPYC 7402P A4000, A6000, A100, A2
TU Delft 2 × 16-core AMD EPYC 7282 A4000, A5000

Table 2.1: Example DAS hardware configuration

2.3 Hardware specifications
The render capacity of a component is based on its hardware [18]. Two specifi-

cations of hardware are of particular importance for this thesis, namely clock speeds
and thermal design power.

2.3.1 Clock speed
The processor clock coordinates all the CPU and memory operations by periodi-

cally generating a time reference signal called a clock cycle or tick. Clock frequency is
specified in megahertz (MHz), or millions of ticks per second, and determines how fast
instructions execute[19]. This means that a higher clock speed is generally preferable
over a low clock speed when talking about identical chips. The manufacturer will
often set a base-clock speed that a component is expected to reach and a boost clock
that a component can reach under high-load situations. The boost clock is not the
highest achievable clock. Modern GPUs and CPUs attempt to boost to the highest
stable clock speed. The mechanism for the boosting behaviour is referred to as dy-
namic frequency scaling or automatic overlocking (Auto-OC). Auto-OC can therefore
go beyond the boost clock. The clock speed that Auto-OC reaches is not the same
for processors of the same make and model. The clocks that a component can reach
depend on silicon quality, available power, workload, thermal headroom and software
configuration.
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2.3.2 Thermal Design Power
Thermal design power (TDP) is the amount of heat generated by a computer com-

ponent that needs to be dissipated for the manufacturer’s expected performance [20].
TDP is not the maximum amount of heat a system can dissipate. Auto-OC can and
will increase the power draw, and by extension the component heat, above manufac-
turer specification.

2.3.3 Thermal Throttling
Thermal performance is one of the determining factors of hardware performance.

The temperature of a component plays a role in the clock speed, this in turn deter-
mines the computational power of a component. If a component is not adequately
cooled, it will experience a phenomenon called thermal throttling, which means that
the clock speed is lowered for stable and safe operations [21]. Thermal throttling is
a limit usually built-in by the manufacturer or designer of the component [21]. The
thermal throttle temperature is called the maximum junction temperature (TJMax).
The reduction of a processor clock speed effectively reduces its computing power at
that particular moment. A reduction of computing power might sound disadvanta-
geous, but it serves an important purpose, namely protecting the hardware. Elevated
temperatures risk damaging or reducing the lifespan of a component [22, 23].

Figure 2.1: NVIDIA A4000 Temperature levels

When monitoring the performance of a component, there are four temperature
levels of importance:

• Target, this is the temperature that Auto-OC takes into consideration when
determining if it can boost higher and sees as the target of temperature.

• Max operating, This is the temperature level at which Auto-OC will stop boost-
ing higher.

• Slowdown, Thermal throttling will initiate at this point, reducing the clock
speed.

• Shutdown, The processor will perform a hardware shutdown to protect itself.
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In the past (20 years ago) thermal throttling was less of an issue as components could
be cooled by a small fan [24]. Today, the computational power of data centres is more
limited by the cooling capacity than the actual hardware [25]. This is due to both the
higher component heat and increased server density [26]. This has led to the rise of
more complex cooling such as water loops and immersion cooling [27].

Thermal throttling is of particular importance for doing long and computation-
ally intensive operations, such as rendering. Thermal throttling can take a while to
develop, as an inadequate cooling solution can dissipate the initial burst of heat. A
sustained workload on an inadequate cooling solution will eventually overwhelm the
cooling solution, which results in thermal throttling. It only becomes evident after a
prolonged experiment that a thermal solution is inadequate. For this reason, this the-
sis contains an environmental analysis in which we detail the hardware performance
of DAS-6.
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Chapter 3

Related Work

As mentioned in the introduction, creating a distributed Blender rendering system has
been attempted before. In this chapter, we discuss the existing work and where this
thesis intends to improve upon.

3.1 Existing work
One of the earliest attempts at such a system was detailed in M. Z. Patoli et al. [10].

The paper details a service that allows users to submit Blender projects for rendering
and collaboration. After a Blender project has been completed, the user can submit
the project for rendering. The most recent attempt was Ganesh V. et al. [11]. In the
paper, a low-cost, distributed, and efficient rendering system is introduced. The author
detailed how earlier research was focused on large-scale render farms inaccessible to
small-scale users. Comparative testing with the earlier work was not possible. This
was attributable to non-supported versions of Blender, the closed-source nature of the
software, or a lack of functionalities. Furthermore, previous systems lack the three
features that this thesis implements, which would make a comparison ineffectual. The
three features are heterogeneous rendering, performance analysis and GPU-usage.

3.2 Flamenco
As previously mentioned, the Blender organisation has created the tool Flamenco

to aid in distributed scaling for Blender. Flamenco is a lightweight, open-source,
cross-platform framework to dispatch and schedule rendering jobs for smaller teams,
or individuals [28]. There are three primary challenges when using Flamenco on DAS6,
path related issues, GPUs incompatibility, and the dashboard access.

3.2.1 Path related issues
Flamenco credentials and configuration files are stored in the home directory. DAS6

synchronises the home directories across all workers. The synchronization stops the
creation of multiple workers, as the newest worker overrides the previous workers’
information, rendering the previous worker inoperable. Flamenco has no command-
line interface functionality allowing the remapping of these paths. In the Flamenco
experiments, the source code has been modified to permit local paths, thereby enabling
the utilization of multiple workers on DAS6.
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3.2.2 GPU compatibility
At the time of writing, it was not possible to use GPUs for Flamenco renders. The

Flamenco system couldn’t convey instructions for GPU rendering, manually forcing
instructions resulted in worker instabilities. The underlying cause of this issue remains
uncertain, and it is possible that it may stem from a driver issue, a permission issue, or
a storage issue. The issues with GPU rendering seem to be specific to the combination
of DAS6 and Flamenco, not necessarily to Flamenco or DAS6 themselves.

3.2.3 Dashboard
Users can interact with the Flamenco manager through the dashboard, a web-based

interface. Using the web-based interface, users can connect to their local installation
of Blender using an address and a port. When Blender is instructed to render their
project, the local installation will contact the web server and instruct Flamenco to
render the project. This creates technical hurdles to overcome when the Flamenco
manager is located on a DAS6 node. DAS6 is inaccessible to the public; therefore, it
necessitates SSH tunnelling from a pre-approved location. The Flamenco manager’s
accessibility is limited to a web-server, which means that a user would require a proxy
to reach the server. Since DAS6 is not publicly available, this requires multiple proxy
servers. Imagine a student enrolled at the Leiden Institute of Advanced Computer
Science (LIACS) who required tunnelling of their local Blender installation to the
Flamenco manager. The student would need to perform 3 tunnelling steps, as shown
in Figure 3.1, to access the dashboard. This need for tunnelling complicates it for
users who are less technically inclined and locks up ports on the shared servers.

Figure 3.1: Tunnelling steps to access the Flamenco dashboard

3.2.4 Conclusion
There were additional concerns regarding Flamenco on DAS6, including the issues

arising from the utilization of the Windows version of Blender for job submissions.
However, we will refrain from addressing these issues as, based on the previous three
obstacles, it can be inferred that Flamenco is not suitable to be used on a small-scale
computer cluster. The three obstacles could be resolved by implementing further ex-
tensive modifications to the code base; however, this would transition Flamenco to
DAS-Flamenco. In conclusion, Flamenco is not suitable to be used on a small-scale
computing cluster such as DAS6 because it introduces user inconvenience for interact-
ing with the dashboard by needing SSH tunnelling, it requires codebase alterations to
solve path related issues, and lacks GPU acceleration.
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3.3 Heterogeneous rendering
Despite the extensive research into the creation of a distributed Blender rendering

system, there is a significant overlap in the content of the various papers. The idea of
heterogeneous rendering is mentioned in the future work section of every paper, but
no papers have developed such a system.

3.4 Performance analysis
In the background chapter, we discussed how render performance varies depending

on the hardware and its operational environment. The effects of the environmental
conditions can take some time to occur, so the goal of this thesis is to thoroughly
study the environment where experiments are done and to analyse the impact on
performance.

3.5 GPU usage
GPUs are capable of outperforming CPUs in rendering [29]. Previous attempts

have not featured the utilization of GPUs. Flamenco can use GPU acceleration; how-
ever, this was not possible on DAS6. GPU acceleration merits further investigation,
as low-cost GPUs possess the capability to surpass CPUs with a higher price tag
in rendering tasks. This thesis aims to use the available GPUs in DAS6 to acceler-
ate renderings and to demonstrate the impact that GPUs can have on the rendering
duration.
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Chapter 4

DAS-BR System design

In the previous chapters, we discussed the research questions, the relevant topics, and
the challenges this thesis aims to solve. This chapter presents a prototype system
that allows the challenges to be solved, and details the decisions that were made in its
design.

4.1 Overview
DAS Blender Render (DAS-BR) is a system designed to distribute the rendering

across a cluster of servers, leveraging the power of multiple machines to decrease
the render time by using the available hardware. DAS-BR is built in Python 3.6 and
requires only a single package that facilitates the import of YAML files. It uses Blender
3.3 LTS as the Blender version, but is compatible with older versions of Blender. The
source code of DAS-BR is publicly available on GitHub[30]. The DAS-BR architecture
is divided into three operator types:

• Master, responsible for managing and maintaining the render farm.

• Worker, responsible for performing the render.

• Client, responsible for submitting operations to the cluster.

Activities within DAS-BR are separated into three categories:

• Operations: An operation is a cluster-wide activity requiring the labour of multi-
ple workers. An operation is responsible for dividing the work among the cluster,
managing the progress, and dealing with arising issues such as node failure. An
example is a Blender render operation.

• Jobs: A job is a division of the operation that an individual worker performs.
The jobs are tailor-made based on the performance of the client. An example
is a Blender render job; the Blender render operation divides the work into the
jobs that each of the nodes needs to perform.

14



DAS-BR System design

• Tasks: A Task is the activity that a worker does to finish a job. In the example
of a Blender render job, it is rendering frames and informing the operator about
the progress.

4.2 Operation execution
Initially, a client submits a request to the master. The request will contain the lo-

cation of the Blender project and render parameters. Based on the request, the master
will initiate a new operation. The operation will manage the progress of the render.
The new operation will guarantee that all worker nodes receive their assigned tasks and
that any arising issues will be addressed. Each worker receives their new job, which
consists of instructions for their designated frames. Based on their job instructions,
the workers will start their tasks. A task is a separated process on the node meant
to be standalone from the DAS-BR worker node system. During the duration of the
task process, the task periodically informs the worker node of its progress. The worker
informs the operation of its progress, which in turn lets the user know the progress of
the render. When the task is complete, the worker will inform the operation. If the
operation has received a message indicating the completion of the task from all the
workers, the operator will proceed to assemble all the frames into a video. The figure
4.1 provides a detailed description of this procedure in a diagram.

Figure 4.1: Flowchart detailing system activity flow
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DAS-BR System design

4.3 Features
This section highlights the capabilities of the system. We do this based on the two

main criteria: scalability, and performance. The system contains other features, such
as fault tolerance, that will not be discussed, as those features are not intrinsically
linked to rendering.

4.3.1 Scalability
Scalability is at the core of DAS-BR. To utilize a variable amount of worker nodes,

DAS-BR needs to be scalable. We have implemented the following features under the
guise of scalability:
Node registrations

All that is required to add a node to the render farm is to start the worker daemon
and give it the address and port of the master and the worker’s address and port. The
worker daemon will register with the master. The master will return a worker ID to
differentiate between worker IDs.
Dynamic cluster size

As previously mentioned, node registrations also allow the cluster to freely scale,
this means that adding or removing worker nodes can be done at any time with minimal
consequences.
Operation queue

The master will automatically place all incoming messages in a queue. By using
a queue, messages will not prevent the master node from performing important jobs,
such as checking the cluster’s status. The operation queue also allows the master
to operate with multiple workers simultaneously because the master cannot become
overwhelmed by nodes.

4.4 Performance considerations
As Blender renders are computationally intensive, performance has been an im-

portant consideration for DAS-BR. The following features have been implemented to
improve the performance:

Dynamic performance-based scheduling
Each worker node has its hardware capabilities. A node may have an NVIDIA

GPU, an AMD GPU, or no dedicated GPU at all. To accommodate for this variable,
the workers will be benchmarked at initialization. The benchmark score will be used
to measure the performance of the worker and how it compares to other workers in the
cluster. The master will assign a set of frames to each worker based on the benchmark
score when a new render operation starts. This means that which worker does which
frame is established before any frame is rendered. For the remainder of this thesis, this
approach of fixed batches of frames is referred to as the batched scheduling approach.
There is not only one way to approach scheduling; an alternative scheduling approach
is a task queue.

16



DAS-BR System design

Task queue
The queued approach, instead of dividing frames in advance, as is the case with

the batched approach, instructs workers to query the master and ask for a frame to
be assigned. A worker would request frames to render, render the frames, and request
more frames until the queue has been cleared. A task queue would spread out the
workload efficiently because it allows workers to render as many frames as they can
without needing to predict the performance. Flamenco uses a queued approach instead
of a batched approach. Nonetheless, DAS-BR explicitly disapproves of this scheduling
approach. In the early experimenting of Blender, we discovered that Blender spends
a considerable amount of time initializing. The duration of initialization is influenced
by the complexity of the Blender scene and the memory specifications (speed and
capacity) of the graphics card. The Blender render engine necessitates knowledge of
the frames to render before initialization, and such information cannot be altered once
initialized. It is possible that initialization will take longer than rendering the frame.
This makes it undesirable to have to restart the Blender render engine for every new
frame. Based on the slowdown introduced by the initialisation delay, using the task
queue could result in longer render times. Based on the conclusion that task queues
would result in longer render times, we made the decision for a batched approach. The
batched approach means that all frames are distributed at the time of initialization.
As all the frames can be rendered without the need for repeated initialization, the ini-
tialization delay should apply only once. To assess the optimal scheduling approach,
two experiments have been designated for benchmarking the scheduling approaches.

Multiprocessing
As the project was made in Python, we had to find a way around Python’s Global

Interpreter Lock(GIL). The DAS-BR was built with multiprocessing in mind from the
very start. To ensure that no TCP/IP packets are dropped, Python Sockets are han-
dled in a separate process. The rendering phase is handled separately to avoid any
interference from the worker-daemon. The worker-daemon on the main process is only
there to route packets, ensuring that all separate processes can execute their work.
The multiprocessing strategy was devised to safeguard against a potential bottleneck
that could negatively affect performance.

Dynamic Render Engine
To speed up renders, we are using hardware-based acceleration to utilize the hard-

ware as much as we can. By doing this, we can decrease the render time by making use
of NVIDIA OptiX™ or NVIDIA CUDA®. There can be a combination of GPU accel-
eration frameworks, so the entire cluster does not need to adhere to a single framework.
By allowing a combination of GPU acceleration frameworks, we are ensuring that the
heterogeneous nature of DAS-BR does not decrease performance. Furthermore, using
hardware-based acceleration ensures that we take advantage of the hardware features
available.
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Chapter 5

Experiments and Results

The first section discusses the experimental setting, then the experiments, their results,
and their analysis. All the experiments are centred around a rendering operation
that aims to provide insight into the performance in a specific circumstance. For the
rendering project, two projects were selected.

5.1 Projects
5.1.1 Scans Island

Scans Island is a project by art director and concept artist Piotr Krynski. The
project is used within Blender 3.4 as a start-up splash image and has been made
publicly available. This project has been altered to include a camera that flies around
the island. This camera was needed to turn the splash image into an animation video.
Scans Island consists of 187867 objects resulting in a vertices count of 2763097.

5.1.2 Red Autumn Forest
Red Autumn Forest is a project by Senior Concept Artist Robin Tran. The project

was the Blender start-up splash screen for version 2.91 released in November 2020 and
has been made publicly available. Red Autumn Forest has 2903587 vertices spread
out among 1291 objects. No modifications were made for this project.

(a) Scans Island (b) Red Autumn Forest

Figure 5.1: Blender projects used for experiments
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These two projects were chosen for two reasons:

• Professional Blender users made them. Creating complex and large projects
requires skilled users.

• They are graphically demanding enough to put a strain on the most powerful
hardware currently available.

5.2 Experiment context
5.2.1 Experiment procedure

To analyse DAS-BR, five experiments were conducted, and each experiment was
selected to evaluate a distinct aspect of DAS-BR. To prevent mistakes, outliers, and
flukes, every experiment was run for five times on the same hardware without other
experiments running at the same time. Experiment 5 was performed on the LIACS
cluster, and all other experiments were performed on the VU cluster.

5.2.2 Experiment metric
The outcome of an experiment is expressed in total seconds. The seconds signify

the amount of time the render took from the point of distribution to the time at
which all frames were rendered. This means that less time rendered is better. The
duration is shown on the y-axis of the graphs. Even though DAS-BR is capable of
assembling the frames into a single video, this post-rendering procedure was disabled
for all experiments. The method of assembling the videos is the same, even when it
comes to Flamenco, as it involves merely contacting the multimedia library FFmpeg to
accomplish this task. The video assembly has therefore been omitted from the results.
Each experiment was done on multiple servers. For instance, a one node test means,
one worker and one master and one client. A four node test means four workers, one
master and one client. The number of workers is shown on the x-axis of the graphs.

5.2.3 Experiment renders resolutions
For the experiments, three resolutions were chosen:

• 1280 by 720 pixels (HD)

• 1920 by 1080 pixels (Full HD)

• 3260 by 2160 pixels (4K)

These resolutions were chosen as these are common and standard ((F)HD [31] and
UHD TV [32]) resolutions for TV on which animations are watched. All experiments
consisted of rendering 120 frames of their designated project at 24 frames per second.
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5.3 Experiment 1: Scaling
The scaling experiment is designed to analyse how the system performs when we

add more nodes and what the impact is of adding more nodes to the rendering cluster.
Scaling will be evaluated by running both projects (Scans Island and Red Autumn
Forrest) with one-worker, two-worker, and four-worker modes.

5.3.1 Results

(a) Scans Island total render time (b) Red Autumn Forest total render
time

Figure 5.2: Scaling test results

5.3.2 Analysis
As can be seen in Figure 5.2, scaling to more nodes reduces the overall render time.

Red Autumn Forest exhibits a significantly lower render time in comparison to the
Scans Island project, due to the lower object count. The scaling in both projects has a
variance and does not scale perfectly. This disparity can be attributed to the difference
in rendering difficult per frame. To illustrate the disparity, the time to render a frame
was recorded. Figure 5.3 shows the result of the render disparity. With this disparity
in mind, a batched approach will prevent a perfectly equal division of labour, as it
assumes the workload is equal. This is less noticeable at lower resolutions, such as
720p, but it starts to become noticeable at 1080p and 4K.

Figure 5.3: Render time variance per frame
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5.4 Experiment 2: Heterogeneous render
In the heterogeneous experiment, we will mix hardware configuration to highlight

how the system performs in a heterogeneous configuration. To evaluate this, we will
use four nodes with varying GPUs and render the Scans Island project in 4K. The
goal of this experiment is to answer research question two: How can Blender renders
efficiently be scaled across heterogeneous hardware? To divide the work across the
nodes, DAS-BR uses the results of a Blender benchmark to calculate the number of
samples a GPU can process. Samples are an indicative measure established by Blender
to quantify the amount of computation the hardware is capable of in a limited time.
The GPUs used for each node configuration can be found in Table 5.1.

Node configuration Hardware

1 Node 1x A6000
2 Nodes 1x A6000, 1x A4000
4 Nodes 1x A6000, 1x A4000, 1x A2, 1x AMD EPYC 7402P

Table 5.1: Hardware used per node for distribution experiment

5.4.1 Results
The experiment results consists of three graphs detailing how the workload has

been divided. Figure 5.4a shows the number of samples each GPU can perform in a
minute. Figure 5.4b details the comparative render times, and Figure 5.5 details how
the work had been divided for each experiment.

(a) Samples per GPU per minute (b) Total render time in the heterogenous ex-
periment setups

Figure 5.4: Samples per GPU and the distribution of algorithm
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Figure 5.5: Distribution algorithm

5.4.2 Analysis
The distribution algorithm utilizes the available resources based on the samples per

minute score, thereby enabling heterogeneous hardware to contribute to the rendering
process. The distribution algorithm considers the render capacity of a node, compares
it to the total render capacity, and then determines the share of the render operation
a node will need to perform. The findings demonstrate that DAS-BR possesses the
capability to adapt to a heterogeneous cluster and effectively utilize hardware resources
to reduce render time.
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5.5 Experiment 3: GPU vs CPU
The objective of experiment three is to determine the impact of different component-

based rendering. We searched for a paper detailing the performance difference of the
Blender render engine using NVIDIA enterprise hardware to establish a baseline of
comparative performance. Unfortunately, we were unable to find any reference to
this. By executing this experiment, we hope to answer research question 3, the impact
of GPU acceleration on the render time. The experiment was performed on nodes
containing an NVIDIA A4000 GPU and an AMD EPYC 7402P CPU whilst rendering
the Red Autumn Forest scene at 720P.

5.5.1 Results

Figure 5.6: Total render time GPU vs CPU

5.5.2 Analysis
The findings clearly demonstrate that the utilization of a GPU reduces the ren-

dering time. The scaling of the CPU is more linear than the GPU. Repeated ex-
perimenting showed the same pattern. The exact cause for this remains difficult to
determine. The CPUs may experience a higher degree of bottle necking in memory
access, resulting in a more linear scaling performance. Establishing the exact cause
requires a more in-depth investigation.
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5.6 Experiment 4: Batched vs Queued scheduling
As previously mentioned, DAS-BR uses a batched approach, where batches of

frames are distributed among the nodes. The assumption was made that rendering
would benefit from rendering a single continuous sequence of frames, thus preventing
the initial Blender render engine loading from increasing the render time. In this
experiment, we will apply the queued scheduling, where each node will ask for an
individual frame, to evaluate whether the previous assumption is justified. Together
with experiment two, this experiment aims to address research question 1 concerning
how effectively and efficiently renderings can be scaled. The experiment was done on
nodes with an NVIDIA A4000 GPU and an AMD EPYC 7402P CPU and running the
Red Autumn Forest scene at 720P.

5.6.1 Results

Figure 5.7: Total render time batched vs queued scheduling

5.6.2 Analysis
As demonstrated, there exists a distinct advantage to utilizing the batched ap-

proach. Compared to the batched approach for a single node, the queueing is 47%
slower, the slowdown is even larger when it comes to the two-node setup where the
slowdown is 54%. Based on these results, we believe that using a batched approach
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is a more efficient way to schedule render jobs in Blender compared to the queued
approach.

During the experiment, we observed a benefit of the queuing approach. It appears
that reinitializing the same project after a render was completed is faster than the
first initialization. This is likely due to caching on the GPU side. This means that
the original assumption that repeatedly restarting the render pipeline was less severe
than expected.

Another observation of the queued scheduler was that the utilization of the cluster
was higher. Previous experiments have shown that at the end of the render, a situa-
tion occurs in which only a single node is actively rendering while the rest of the cluster
is idle. This did not occur during the queuing approach. However, this situation only
presents itself because the nodes spend a considerable time performing computations
that were not necessary for the batching approach.

In the future, repeating the experiment with more nodes might be worth it. Future
GPUs might have faster memory, which reduces or eliminates the start-up time. The
queued approach allows for a more natural distribution based on actual performance
rather than hypothetical performance expectations of the batched approach.
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5.7 Experiment 5: Flamenco VS DAS-BR
To compare Flamenco with DAS-BR, an experiment was created that looks at their

performance on identical hardware.As mentioned in Chapter 3, Flamenco was unable
to run with GPUs; therefore the experiment was performed with only CPU nodes that
contained the AMD EPYC 7402P CPU. As render project, the Red Autumn Forest
scene at 720P was picked. In Chapter 4 we mentioned that DAS-BR uses a batched
approach while Flamenco uses a queued approach. In this experiment, we compare
the queued and batched scheduler of DAS-BR to Flamenco’s queued scheduler.

5.7.1 Results

Figure 5.8: Total Flamenco vs DAS-BR render times

5.7.2 Analysis
As Figure 5.8 shows, there is a clear advantage to using DAS over Flamenco when

looking purely for the shortest render time. Even though Flamenco is slower than
DAS-BR, this might be a trade-off that would be worth it for people running Flamenco
outside DAS6. The overhead of Flamenco is contributed to the other functionalities
of Flamenco. The added functionality of the storage manager and post-processing
nodes allows users to move, edit and post-process (for example, adding audio) while
the remainder of the render is still being done or the dashboard providing a clearer
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view of the running job. These are features that DAS-BR does not contain.

Compared to the GPU-based scheduling experiment detailed in Figure 5.7, the dif-
ference in render time between scheduling algorithms is comparatively smaller when
performed using CPUs. This can be contributed to the smaller impact of the initial
loading time. The initial loading time represents a larger part of the GPU render cy-
cle, since GPU’s render frames faster, whereas CPUs are comparatively slower, which
means that the initial loading time represents a smaller part of the render cycle.

A future experiment could prototype a batched approach, or a queued-batched ap-
proach, into Flamenco to see how it impacts the overall render time and what bot-
tlenecks might be introduced regarding the functionalities that provided the overhead
in the experiment. Another idea for a future experiment would be to use GPU’s. As
previously mentioned, GPU’s were unable to work on DAS6 at the time of running,
but this might not be the case in the future.
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Chapter 6

Discussion

6.1 Environment analysis
As mentioned in the background chapter, the environment of the system can play a

significant role in the computing power of the system. To determine the quality of the
results, a considerable amount of time has been spent on analysing the environmental
performance. During an earlier evaluation of DAS-BR, DAS system performance was
evaluated on the cluster of the technical university of Delft (TUD). In the earlier
evaluation, the nodes were evaluated by using the Blender benchmark in a sequential,
meaning node after node, and a parallel, meaning all nodes at once, order. Upon
analysis of the results, the presence of thermal throttling was apparent. There was a
noticeable decrease in performance when running all the systems at the same time.
The results of this evaluation can be seen in Figure 6.1.

Figure 6.1: Difference in sequential versus parallel render times on TUD
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For this thesis, we used the DAS cluster of the VU. TUD was occupied by other
researchers and lacked different GPUs for conducting the heterogeneous experiments.
As the TUD cluster had thermal throttling issues, we requested access to the NVIDIA
System Management Interface (NVSMI). NVSMI is a command line utility intended
to aid in the management and monitoring of NVIDIA GPU devices [33]. With NVSMI
we can observe the clock speeds, temperature, utilization and throttling issues. The
goal of this analysis was to detail the performance of the environment in a separate
research sub-question and analyse the impact it had on the results.

After performing the same experiments as done during the earlier evaluation, we
discovered throttling. In contrast to TUD, the throttling on VU was not thermal
throttling, but power throttling. DAS6 VU prevents GPUs from going above the
TDP. This meant that the GPUs could not draw more power and were unable to
boost higher. The advantage of limiting the available power is lower power usage and
better thermals. As previously mentioned, running hardware at a lower temperature
will increase the lifespan. This also meant that the node-to-node performance was
more similar in comparison to the earlier evaluation.

Figure 6.2: Difference in clock speeds

Figure 6.2 shows that the largest difference in average clock speed is between
node009 and node011. The difference is 3.1%. While this might sound like a notable
difference, in terms of render performance, the sample difference is 983 for node009
compared to 982 for node011. This means that for rendering purposes, there is no
practical difference. As a follow-up experiment, we investigated bypassing the TDP
limit. At the time of writing, there are three ways of bypassing these limits.
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1. Increasing the power limit in software. This is the easiest option, but it requires
the user to manually set the frequencies of the clock. This effectively disables
Auto-OC, as the clock is manually supplied instead of the card reaching the
maximum clock dynamically. The challenge with this approach is that it allows
the user to enter an unstable clock, which causes it to crash. Furthermore, it
only allows clock speeds that NVIDIA designates as acceptable.

2. Shunt modding. The most difficult approach. The practice of de-soldering and
removing resistors that prevent the power limit protection from triggering. This
approach tricks the GPU into thinking it is drawing 140W while being able
to draw all the wattage the system is capable of supplying. As the NVIDIA
A4000 uses a 6-pin ATX cable, which can supply 75W, and uses power from the
PCI-E slot, which is capable of 75W, the remaining 10W could potentially be
made available. However, the GPU will likely draw more than 150W, causing
the system to crash. The NVIDIA A6000 can draw more power and a higher
available power budget, but these were usually occupied by other researchers. It
is important to note that soldering the GPU will void the warranty.

3. BIOS-flashing. A BIOS is the Basic Input Output System (BIOS) of a graphics
card or the integrated graphics controller in a computer [21]. There is no need to
trick the GPU into using more power as with the previous approach, as the BIOS
will allow the system to clock higher. There are challenges with this approach.
A BIOS must originate from NVIDIA or its partners. They do not wish for
people to perform these types of operations, which makes it unlikely to receive
one. It appears the most efficient way of getting a BIOS is asking around on
overclocking forums, and one might magically appear in your inbox.

As is hopefully clear, there is no easy and safe way of removing this limit. Further-
more, there is no practical use for it for the evaluation of DAS-BR at the current time
because the improvements would be negligible, and we are more interested in the scal-
ing of the system than the render speed of the experiment environment. In a follow-up
study, in which we have access to more powerful hardware or a more strained cooling
environment, this should certainly be investigated. The potential for varying clock
frequencies and by extension the experiment reproducibility could differ. To conclude,
the environment evaluation, with the low variance in clock speed and the intentional
nature of the throttling, we feel confident that throttling had no meaningful impact
on the experiment results.
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6.2 8K experiments
We attempted to use higher resolutions, such as 7680 by 4320. The system func-

tions as expected, but we were running into environmental limitations. During the
preliminary experimenting, we encountered excessively long render times. The average
render time for a frame at 8K was 39 minutes, this was merely the time to render a
frame, not including initialisation. As DAS6 has limits on how long users can reserve
slots, rendering the entire video would not have been possible. Furthermore, doing so
would have been a waste of DAS-6 resources and quite frankly the electricity neces-
sary to run this. We could have changed the experiment variables to make 8K doable
within our constraints. This could have been accomplished by reducing the length of
the video or the frame rate. We decided not to evaluate 8K because the main issue
was not the DAS-BR, it was the limitations of DAS-6.

Figure 6.3: Screenshot of 8K render, frame number 9

6.3 Blender benchmark
At the start of the project, the Blender benchmark seemed as a reasonably accurate

way to measure and compare the performance of each GPU. During the experimenta-
tion phase, a fundamental flaw was discovered with the benchmark. The benchmark
ignores the set-up time of a benchmark. We discovered that the time to load the
kernel was affected by the amount of video memory. More video random access mem-
ory (VRAM) meant increased loading times. With the NVIDIA A100, a GPU with
40 GB of video memory, this meant an excessively loading time. Curiously enough,
this played no role in the resulting score. Where the CPU-based (AMD EPYC 7402
24-Core) rendering experiment received a lower score than the A100, it completed the
experiment in less than a third of the time. This means that the resulting score of the
A100 is not comparable to other GPUs. There is no easy solution to this problem.
The benchmark could be updated to feature a score based on the set-up time, with
the side effect of invalidating previous results of the benchmark database.
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6.4 Project variety
Even though great care was taken in selecting projects, an unfortunate bias was

detected during the analysis phase. Particularly when it comes to Nvidia Optix and
Nvidia CUDA. Both are technologies are used for GPU-based acceleration. Optix is
specifically a render-oriented GPU acceleration. Optix makes use of Nvidia’s propriety
ray tracing cores. Under normal circumstances, these cores should improve their
performance when performing light-based operations such as reflections. Optix is
intended to be significantly faster but takes a considerable amount of time to set up.
When rendering a new or modified project, it loads a render kernel. In our experiments,
we experienced upwards of 15 minutes for the Blender benchmark. The kernel loading
duration is not affected by other factors, such as the number of frames that need to be
rendered. The delay can cause short renders to increase dramatically in render time
compared to CUDA. For a comparison in CUDA and Optix render time, we performed
an experiment shown in Figure 6.4

A future study should feature a more diverse batch of renders. The initial aim
was to get projects made by professionals who are skilled with Blender. A better
alternative would be to gather a variety of projects as possible, made by a diverse
group of authors. This approach would make the experiments more representative of
the Blender user base and the (potential) DAS-BR user base. A future scheduler could
also take these measures into account. If a user wants to render a few frames, it is not
worth it to enable Optix due to the kernel loading delay.

Figure 6.4: Render time per GPU
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Chapter 7

Future work

In the previous two chapters, we discussed the experiments, the results and noteworthy
findings. In this chapter, we propose a series of follow-up experiments and guiding
principles. The goal of these propositions is to inspire follow-up research, address
how we would have solved certain shortcomings, and give suggestions based on our
experience.

7.1 Single machine multi-GPU compatibility
DAS-BR scales across servers with varying hardware to utilize the hardware avail-

able. One type of system that DAS-BR does not utilize is a single system with mul-
tiple GPUs. Evaluating the performance of a single machine with a multi-GPU con-
figuration could pose some unique challenges. It could introduce bottlenecks such
as IO limits of the storage cluster [34]. Other than a system with multiple GPUs,
there are also systems with interconnected GPUs by technologies such as Nvidia’s
NVLINK/NVSwitch. It would be interesting to analyse the performance of these
systems as well.

7.2 Batched-Queued scheduler
In experiment 1, 4 and 5 we mentioned the impact of the scheduler and highlighted

the flaws present. In situations where the same number of frames must be rendered, the
Blender render engine prefers a single extended render over several short renders. The
single extended render prevents repeated initialisation, which causes a slowdown. For
a distributed render, if the amount of computation per frame is not equal, the batched
approach causes underutilisation. The underutilisation is caused by the imperfect
division of the total computation power, as not all frames require the same amount of
computation. The queued approach does not have this specific kind of underutilisation.
A future study could therefore introduce a combination of both schedulers, a batched-
queued scheduler. It would be interesting to see if it is possible to prevent the batched
underutilisation, but also limit the queued initialisation time.
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7.3 Power efficiency scheduler
The node with the highest power draw in our system has a 400W Nvidia A6000

GPU and a 225W Intel Xeon Gold 6342 CPU, which means the nodes can use over
625W on GPU and CPU. It would be interesting to develop a power efficiency scheduler
that would schedule frames based on the power efficiency of each node. For instance,
a user may specify the desired render outcomes, and an eco-friendly scheduler will
allocate the compute task in a manner that prioritizes the power-efficient nodes for
rendering.

7.4 Continuous node integration
DAS-BR does not redistribute a running render job when a new node is introduced

into the network. This means that a new node is waiting until the current render job
is finished. This causes an underutilisation of available hardware. This could be
implemented in the future, but within the scope of the thesis it was of no importance;
hence it was postponed.

7.5 Higher resolution renders
As previously mentioned, higher resolution renders such as 8K resolution were not

conducted. The primary reason was the long render times. This does not mean this
pain point cannot be alleviated. Using a less complex scene, adding more nodes to
the cluster or reserving the hardware for a long time are all solutions to the problem.
The main reason to do a higher resolution render is to see the impact of a GPU-based
render where the VRAM is not sufficiently large. In such a situation, there will be an
increased level of storage access, which will cause a slowdown across the cluster. It is
currently unclear how realistic such a situation is, as modern GPUs can have 24 GB,
48 GB or even 80 GB of VRAM.

7.6 Security
DAS-BR was not made with security in mind. It is simple to spoof messages,

perform man-in-the-middle attacks, or turn DAS-BR into a botnet. DAS6 is blocked
off from the wider internet and requires a university gateway to access, this makes
the network isolated. A future revision of DAS-BR meant for a public release should
certainly contain more security measures such as encrypted traffic, credentials for
nodes and tighter package limitations.

7.7 Predictive scheduling
Even though two ways of scheduling have been presented, neither is perfect. In

an ideal world, DAS-BR would know how computationally intensive each frame is
that needs to be rendered and allocate work based on this computational intensity.
Unfortunately, Blender lacks a function that returns this information. Regardless of
the feature set of Blender, there are ways we can improve the scheduling. A solution
would be to analyse the system resources the render engine uses to estimate when
a particular frame is complex or is becoming complex. By using the frame rate of
the animation, DAS-BR could take an educated guess to predict which frames will
be complex. This solution does have its weaknesses and its effectiveness is difficult to
predict. Another solution would be to do a post-mortem on render operations. This
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would aid in the improvement of subsequent operations of the same variety. Imagine
a project in which renders are done frequently, and only minor changes are made to
the project. In such a situation, DAS-BR could use a predictive frame distribution
model to optimize render time. Once again, how applicable, and effective this would
be in practice remains difficult to predict.

7.8 GPU-Hardware choices
DAS-6 was chosen out of necessity, it was the only freely available high-performance

computing cluster. DAS-6 was built with Nvidia enterprise GPUs that are built for
data centres. For example, the NVIDIA A100 was developed with data science and
artificial intelligence applications in mind, and excels at large data set interaction
and tensor-based computation, not rendering. The Nvidia A100 has a 10,000 EURO
manufacturer-suggested retail price (MSRP) [35], but it is outperformed by consumer
GPUs of less than 500 Euros in rendering tasks1. A future study might best be
performed with consumer GPUs for a more affordable and cost-benefit-based cluster
representative of a potential user.
Unfortunately, NVIDIA puts users in a bind when it comes to rendering. Using Con-
sumer GPUs in data centres is prohibited by NVIDIA’s end-user licence agreement [37].
A future study might prefer to use hardware from a different manufacturer or acquire
many workstations with NVIDIA GPUs rather than a data centre setup. As mentioned
in the discussion chapter, there are ways of improving the performance by using less
orthodox methods that we were unable to perform. If a follow-up study does not use
DAS, it might be interesting to attempt of these methods for optimising performance.

1For example, when performing the Blender benchmark in CUDA, it is outperformed by a 2060
SUPER by 21.8% [36]. The 2060 SUPER has an average score of 1374.82 while the A100 has a score
of 1075.96 in CUDA. The 2060 SUPER is a budget GPU with an MSRP of 414 EURO.
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Chapter 8

Conclusions

To render the evermore complex scenes, the need for powerful hardware and the uti-
lization of the hardware has become a pressing matter. As a single computer can only
become so powerful, there is a need for distributed rendering. There is currently no
effective and convenient way of performing distributed Blender renders on small-scale
computer clusters, this thesis set out to solve this problem by creating DAS-BR. The
thesis started by introducing the research questions, followed by detailing key concepts
for the thesis, such as component specifications and the DAS. The background was
followed by a review of existing works in which we brought attention to what this the-
sis aims to present new work, particularly when it comes to heterogeneous rendering,
GPU usage, and environmental awareness. After the existing works, we discussed the
experiments, followed by showing the empirical results, discussing research findings
and proposing follow-up research. Based on the experience and results, we can now
answer the research questions.

RQ1: How can Blender renders efficiently be scaled across a distributed
computing cluster?

The architecture presented in DAS-BR has shown its efficacy. Render times have
improved significantly, for every doubling of comparable hardware the render time
halves. When looking at the results of experiment four, the overhead of DAS-BR is
minimal.

RQ2: What effect does GPU acceleration have on render times compared
to CPU?

As shown in the results of experiment three, the difference is significant. GPUs are
at a serious advantage when it comes to rendering times. GPUs spend less time com-
puting light and waiting on memory operations. The impact is so noteworthy that
modern GPUs regardless of make and model are likely to be advantageous and users
are encouraged to use them if possible.
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RQ3: How can Blender renders efficiently be scaled across heterogeneous
hardware?

Heterogeneous scaling based on a benchmark has shown its benefits. Utilizing hard-
ware, regardless of power, has an impact on lowering the overall render duration. With
those questions answered, we can now comfortable answer the question central to the
usability and applicability of DAS-BR:

RQ4: What are the benefits of a distributed render compared to Blenders
native rendering?

DAS-BR is an effective way to utilize the available hardware (CPU and GPU) and de-
crease the total wait time for rendering by utilising both heterogenous and homogenous
systems.
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