
Opleiding Informatica

Determining game values of Hackenbush

with Monte Carlo Tree Search

Esther Koene

Supervisors:
Walter Kosters & Luc Edixhoven

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl July 24, 2024

www.liacs.leidenuniv.nl

Abstract

The research described in this thesis aims to discover to what extent two variants of the
Monte Carlo algorithm, namely the Pure Monte Carlo algorithm and the UCT algorithm,
can determine the game values of game positions of the mathematical game Hackenbush.
Additionally, Pure Monte Carlo is applied to determine game positions’ outcome classes of a
new Hackenbush variant: Multiple move Hackenbush.

To test the effectiveness of the two algorithm variants, they are used on various game
positions with increasingly smaller positive game values. The variants are also used on more
complex Hackenbush positions, like one whose game value is NP-complete to determine.
In order to determine the game value, we present and apply the Monte Carlo Scale Method.
Using this setup, we have determined that Monte Carlo Tree Search can differentiate game
values with a precision of 1/1024 in Classic Hackenbush. Using Pure Monte Carlo, we have
determined the outcome classes of some game positions of Two Move Hackenbush with
various game values with 100% accuracy.

Contents

1 Introduction 1

2 Background 1
2.1 Hackenbush . 2

2.1.1 Nimbers . 3
2.1.2 Determining game values . 4

2.2 Redwood Furniture . 4
2.3 Monte Carlo Tree Search . 5

2.3.1 The UCT Algorithm . 6

3 Multiple Move Hackenbush 7

4 Method 9
4.1 Monte Carlo algorithm . 12

4.1.1 Pure Monte Carlo algorithm . 12
4.1.2 UCT . 12

4.2 Experiments . 13

5 Results 13

6 Conclusion and Further Research 17

References 21

A Additional figures 22

B Additional results 24

1 Introduction

Since its first use as an algorithm for artificially intelligent players in Go [KS06], Monte Carlo Tree
Search (MCTS) has been used extensively to develop game-playing bots or solve sequential decision
problems. Because of its simple yet effective properties, MCTS can be adapted to work well in
different fields and for varying purposes. The possibilities are endless, and new variants can be
employed widely, extending their original purpose. For these reasons, the algorithm is still relevant
and actively researched.
Hackenbush is a simple two-player game that has been used to demonstrate concepts in combina-
torial game theory [BCG04]. Its game positions are used to construct values of the surreal number
system, making the game an interesting visualisation and research tool for mathematicians. In
Classic Hackenbush, two players remove an edge of their colour each turn from a game field
like the one shown in Figure 1. A player loses when they cannot move anymore. Different variants
of Hackenbush exist, and we introduce a new variant: Multiple Move Hackenbush. In this
variant, players have to remove multiple edges per turn. For example, in Two Move Hackenbush,
a player has to remove two edges per turn. The game values of this new variant include so-called
Nimbers, just like the game values of Red-Blue-Green Hackenbush. Interestingly, determining
the game values of a type of position in Classic Hackenbush called Redwood Furniture has
been proven to be NP-complete, meaning that the time needed to determine the game value
grows exponentially with the number of edges [BCG04]. Improving methods to solve NP-complete
problems is a whole field of research in itself, and MCTS or a variation thereof might prove to be a
useful tool in this challenging task.
This bachelor thesis, supervised by Walter Kosters and Luc Edixhoven of LIACS, aims to apply
MCTS to Hackenbush variants and report its effectivenes.
This thesis is structured as follows. In Section 2, both Hackenbush and Monte Carlo Tree Search are
explained in more detail. Section 3 describes Multiple-move Hackenbush using some example game
positions and their values. Then, Section 4 explains the methods used and experiments executed
to acquire the results shown in Section 5. Section 6 reports the conclusion and mentions possible
further research.

Figure 1: A Blue-Red Hackenbush game.

2 Background

The following sections will explain Hackenbush and Monte Carlo Tree Search in further detail.

1

2.1 Hackenbush

Hackenbush is a combinatorial game [ANW19]. It starts with a position like the one shown in
Figure 1. Each turn, a player has to remove an edge of their colour, red or blue. We will refer to the
players as Blue and Red. After a turn, any edges that are no longer connected to the ground (which
is the black line in the figure) are removed as well. If a player cannot remove an edge, they lose.

Figure 2: A Blue-Red Hackenbush game.

We are interested in the outcomes of different game positions, and we can categorise these positions
into four outcome classes: the first player wins, the second player wins, Blue wins regardless of who
moves first or Red wins regardless of who moves first (see Table 1). To illustrate: Figure 1 shows a
position where Blue always wins, and Figure 2 shows a position where the second player wins.

Class Name Definition
N Fuzzy The first player wins
P Zero The second player wins
L Positive Blue wins regardless of who moves first
R Negative Red wins regardless of who moves first

Table 1: The four outcome classes of combinatorial games.

a b c

Figure 3: Simple Hackenbush positions with values 1, −1, 0 and 1
2
from left to right.

We can give numerical values to game positions to quantify each player’s advantage. Looking at
Figure 3a for example, Left has a one move advantage, so the game value is 1 (outcome class L). In
Figure 3b, Red has a one move advantage, so the game value is −1 (outcome class R). We can
also define a game position G by its options G = {GL|GR}, where GL and GR are the set of options
for Blue and Red, respectively. Position c in Figure 3 can then be described as {−1|1}: after Left
moves, position b remains, while a remains if Red moves. This symmetrical position has game
value 0 (outcome class P). For the sets of options, we only consider the best ones. For example,
if Red can either play to a position of value 1 or one of value −1, only the position with value

2

−1 will be considered. The game values of finite Blue-Red Hackenbush positions are dyadic
rationals, rational numbers whose denominators are a power of 2 [ANW19]. To determine the value
of a position G = {GL|GR}, we find the simplest number between GL and GR. The definition of the
simplest number n is as follows:

• If there are integer(s) between GL and GR, then n is the one that is smallest in absolute value.

• Otherwise, n is the number of the form i/2j between GL and GR for which j is minimal.

For example, the value of G = {0|1} is 1
2
(game value of the position in Figure 3d), and the value

of G = {3 | 71
2
} is 4.

Different Hackenbush game positions can be added together to form a new game position. The
game value of the new game position is the sum of the values of the game positions that it consists
of. Reversely, game positions can be broken up into components when groups of edges are not
interconnected. Then, the value of the total position can be determined by establishing the values
of its components. To illustrate: the position in Figure 2 consists of two components: the left and
the right stack of edges. The value of the left stack is 1

2
, and the value of the right stack is −1

2
.

Therefore, the value of the whole position is 1
2
− 1

2
= 0.

Blue-Red Hackenbush with an infinite number of edges has been used to construct ordinals.
While the values of Blue-Red Hackenbush can be expressed with real numbers, some game
values of other variants cannot. This is where surreal numbers come into play; Red-Blue-Green
Hackenbush can be used to construct star (∗) and all other so-called Nimbers [ANW19], as
described in the next section.

2.1.1 Nimbers

Figure 4 shows a game position of Red-Blue-Green Hackenbush with a single green edge.
Either player can remove the green edge and win, so this position can be written as {0|0}. This is
the combinatorial game value ∗ (pronounced star) [BCG04]. Its outcome class is first player wins,
or N .

Figure 4: Simple Red-Blue-Green Hackenbush position with game value ∗.

If we add a second green edge on top of the first one, we get a position with value {0, ∗|0, ∗}: each
player can play to either a zero or a ∗ position. The value of this situation has been dubbed ∗2
(pronounced star two). Continuing this trend, a stack of n green edges has value ∗n. Stacks of green
edges are identical in game value to heaps in the game Nim: a Nim heap of size n has the Nimber
∗n.
Another way to describe a game position is with its birthday. The birthday of a game G = {GL | GR}
can be defined recursively as follows: it is the maximum birthday of any game in GL ∪ GR plus 1.

3

The base case is that if GL = GR = ∅, then the birthday of G is 0. Furthermore, a game is born by

day n if its birthday is less than or equal to n. The only game born on day 0 is the game 0
def
= { | }.

The four games born by day one are:

0
def
= { | }

1
def
= {0| }

−1 def
= { |0}

∗ def
= {0|0}

2.1.2 Determining game values

There is a simple method to determine the game value of a single stalk of red and blue edges in
Classic Hackenbush [ANW19]. First, we assign the value 1 to edges along the stalk until the
first edge of the other colour is encountered. Then, we divide the value by 2 with each new edge.
The sign of each edge depends on its colour. For example, the value of the stalk in Figure 5 is

1 + 1− 1

2
+

1

4
+

1

8
− 1

16
+

1

32
= 1

27

32

1 1 − 1
2

1
4

1
8

− 1
16

1
32

Figure 5: Value of a LR-Hackenbush stalk.

To determine the game value of any Hackenbush position, the simplest method is to analyse
all the sub-games recursively. In this way, we find the value in the format {. . . | . . .}. Then, the
definition for the simplest number is used to find the game value. Even though the method is
simple, the number of subgames that need to be analysed can be enormous, growing exponentially
with the number of edges in the position.

2.2 Redwood Furniture

Redwood Furniture forms a class of Hackenbush positions which have the following properties:
the red edges do not touch the ground, and each blue edge (called a foot) touches the ground with
one end and a unique red edge (called a leg) with the other end [BCG04]. The value of a piece of
Redwood Furniture is 1

2n
for some n = 0, 1, 2, Figure 6 shows a Redwood Bed. This is a piece of

Redwood Furniture in which all red edges other than the legs each have just one end at the top of
a leg. In this case, its value will be of the form 1

2n
T , where T (called the Redwood Tree) is a subset

of edges of the bed where removing any red edge would disconnect the picture. To determine the
game values of positions of this class, one must determine the smallest Redwood Tree in the bed
which contains all its legs. This problem is NP-complete, so the determination of the game values
of Redwood Beds is NP-complete.

4

Figure 6: A Redwood Bed Hackenbush game position [BCG04].

2.3 Monte Carlo Tree Search

For games, Monte Carlo Tree Search (MCTS) has become a state-of-the-art technique [BPW+12].
In the context of games, the algorithm searches the game tree for optimal moves by balancing
exploration and exploitation. Characteristic of the method is that it relies on repeated random
sampling, using randomness to solve a deterministic problem. For more complex problems, applying
MCTS successfully often requires modification or combination with other methods. The intent
of research regarding MCTS often is to determine how the basic algorithm can be adjusted and
enhanced to suit each specific situation or domain, and how variations and enhancements for one
objective can be applied more widely.
The basic algorithm works as follows: within a predefined computational budget, a search tree is
iteratively built. Then, the action that performed the best is returned. A game state is represented
by a node in the tree, and the directed links between nodes are actions leading from state to state.
Per iteration of the algorithm, four steps are applied:

1. Selection: starting at the root node, a selection policy is used to select child nodes at each
level, descending through the tree, eventually reaching the most urgent expandable node.

2. Expansion: child nodes are added to the node reached in the selection phase. The child nodes
correspond to game states reached by actions available in the selected node.

3. Simulation: to get the outcome of the new node(s), a complete random simulation of the
game/problem is run. This is the “Monte Carlo” part of the algorithm.

4. Backpropagation: updates the statistics of the selected nodes by “backing up” the result of
the simulation.

Figure 7 shows one iteration of the MCTS algorithm.

5

Figure 7: The four phases of Monte Carlo Tree Search [BPW+12].

2.3.1 The UCT Algorithm

How a search tree is built depends on which child nodes are selected during the selection phase.
To maintain a proper balance between the exploration of actions that have not been tested well
and the exploitation of the best actions found so far, a tree policy is chosen. The most common
one used in MCTS is the Upper Confidence Bounds applied for Trees (UCT) [BPW+12]. This
algorithm is efficient, simple and ensures that the growth of regret is within a constant factor of the
best possible bound. The choice is modelled as an independent multi-armed bandit problem: the
properties of each node are only partially known at the start of the iterations and become better
known as more iterations are completed. The iterations consist of selecting one of multiple choices
(i.e. arms). In this case, a child node j is selected to maximise

UCT = Xj + Cp

√
2 ln n

nj

where Xj is the average reward for child j (e.g. the win rate), Cp > 0 is constant, n is the visit
count of the current (parent) node, and nj is the visit count of child j. Generally, when nj = 0,
UCT = ∞, ensuring that nodes that have not yet been visited will have priority over all other
options. The fact that every child node has a non-zero probability of selection is essential, given
the random nature of playouts. Different types of play are explored because even children with
a low reward are guaranteed to be chosen eventually (given that the computational budget does
not run out before). Furthermore, the values of Xj are understood to be within [0, 1] [BPW+12].
The term Xj encourages exploitation of child nodes with more promising rewards, while the term√

2 ln n
nj

encourages the exploration of less-visited nodes.

In UCT, Cp is the exploration term; it can be adjusted to increase or lower the amount of exploration
that the algorithm allows. The value

√
2 has been proven effective for Cp, and is commonly used

with rewards in the range [0, 1]. When using rewards outside this range, other values for Cp may be
needed.

6

3 Multiple Move Hackenbush

In the multiple move variant of the game Hackenbush, the player has to choose multiple moves
from their current move set each turn, which are then executed simultaneously. If there are fewer
moves in the player’s move set than the number specified before the game, the player loses. Firstly,
we look at Two Move Hackenbush. In this variant, each player has to execute two moves during
their turn.
Figure 8 shows a few positions with a game value of 0 in Two Move Hackenbush. Blue has the
set of available edges {a} in the first and third position, and the empty set in the middle position.
Red has the set of available edges {1} in the second and third position, and the empty set in the
first position. Because the number of available edges is smaller than the required number of two
moves, neither player can move. The game value is { | }, which is also expressed as 0. The outcome
class of all these positions is P : the first player loses.
In both game positions shown in Figure 9, Blue can move once and Red cannot move, so these
positions have game value 1.
Two games of Two Move Hackenbush are not additive: a single blue edge has value 0, but two
blue edges next to each other have value 1 (and 0 + 0 ̸= 1).

a 1 a 1

Figure 8: Simple Hackenbush positions with combinatorial game value 0 in Two Move Hack-
enbush.

a b 1 a b c

Figure 9: Simple Hackenbush positions with combinatorial game value 1 in Two Move Hack-
enbush.

Figure 10 shows two positions where the next position has game value 0, regardless of whether Red
or Blue starts. This can be written as {0|0}, which is the combinatorial game value ∗. Whoever
starts is the winner, so this position is of class N , or Fuzzy. In Classic Hackenbush, such a
position does not exist. As we’ve seen, in Red-Blue-Green Hackenbush, the position in Figure
10 would be comparable to a single green edge (Figure 4). Figure 11 shows a game position that
has value ∗2 in Two Move Hackenbush.

7

a

1

b

2

Figure 10: Two Hackenbush positions with combinatorial game value ∗ in Two Move Hacken-
bush.

Figure 11: Hackenbush position with combinatorial game value ∗2 in Two Move Hackenbush.

By definition, a game value G is infinitesimal if −n < G < n for all positive numbers n. An example
of such an infinitesimal value is ∗. It is incomparable with 0, and ∗ = −∗. Two more infinitesimal
values are ↑ (pronounced up) and ↓ (pronounced down), which correspond to the game states
{0|∗} and {∗|0} respectively. Both are infinitely small, but ↑ is positive, while ↓ is negative. Just
like numbers, these infinitesimals can be added up. For example, the value of the game in Figure
12 is ↑ + ∗, or ↑ ∗ for short. In this position, Blue has two choices (considering only the most
advantageous moves): either they play to the position 0, or to the position ∗. Because 0 and ∗ have
the same birthday, both options are written in the game state: {0, ∗|0}. The outcome class of this
position is N .
In Figure 13, the most advantageous move for Blue is to remove the two edges in the stalk to the
left, leaving a position with game value 1. Red has no other choice than to remove the two red
edges, also leaving a position with game value 1. This means that the position is of the form {1|1},
which has the game value 1 + ∗, or 1∗ for short.

8

Figure 12: Hackenbush position with combinatorial game value ↑∗ in Two Move Hackenbush.

Figure 13: Hackenbush position with combinatorial game value 1∗ in Two Move Hackenbush.

4 Method

In order to determine the outcome class of a game position, two Monte Carlo players are set up to
play against each other. The experiment is done twice: once with Blue as the starting player and
once with Red as the starting player. Then, the win rates are used to decide the outcome class: if
the win rates for both starting players are 0%, the outcome class is P (second player wins). If the
win rates for both players are 100%, the outcome class is N (first player wins). If the win rates for
Blue and Red are 100% and 0% respectively, the game is classified as L. The classification of the
game position is R if the rates are inverted. If the win rates are between 0% and 100%, they are
compared to a margin. If a win rate is lower than the margin, it represents a 0% win rate. If it is
higher, it represents a 100% win rate.
As seen in Section 2.1, when two disjoint games of Hackenbush are added together to form a new
position, the game values of the two original positions can be summed up to determine the game
value of the new game position. This property, together with the determination of the outcome
class, is used to determine the game value in a method called the Hackenbush Scale Method.
This method is called the Scale Method because repeatedly adding edges to the position until the
outcome class is P (which can be considered a balanced position) can be compared to determining
an object’s weight using a traditional scale with two dishes.

9

Figure 14: Hackenbush position with combinatorial game value 0 in CLassic Hackenbush,
consisting of two compontents: a stalk with value 1/4 on the left, and a stalk with value −1/4 on
the right.

Figure 14 shows an example of a game balanced using this method. The value of the component
on the left is unknown, but the value of the component on the right (the so-called weighing stalk)
is known. When the outcome of the game played by the Monte Carlo agents is P, the game is
balanced and we can infer that the unknown value is the negative of the value of the weighing
stalk. The game value of this weighing stalk is known: it can be calculated using the properties of a
Hackenbush stalk as explained in Section 2.1.2.
In the function MCGame (see the pseudocode on the next page), a Hackenbush game is played
by two agents. Each turn, the best move is determined using a variant of the Monte Carlo algorithm,
and this move is carried out. In the weighing stalk, the algorithm only tests “smart” moves; we
know that in a stalk of edges of one colour, removing the top edge is the best move. To increase
the speed and win rate of the algorithm, only these moves are considered. If the starting player
wins the game, the function returns True.
The Monte Carlo agents show imperfect play, causing Red to win games where Blue should
theoretically win, and the other way around. To quantify the agents’ success, whole games are
repeated (the number of playouts), and their win rates are used. A margin is used to decide in
favour of which player the game position actually was (or if the game was balanced). Through
experimentation in the development phase, a margin of 0.4 has been proven successful. The results
of an experiment that was done to choose the margin is shown in Figure 20 in Section B. This
figure shows two graphs of the win rates of Blue when Blue started the game and Red when Red
started a game, set out against the number of edges added to the game. The game value of these
particular positions was −1/8, so when four edges were added (one blue edge and three red edges),
the game was balanced. The first graph shows that for this number of edges, the win rate of Blue
falls just below 0.4. The second graph shows that the win rate of Red rises to a little below 0.4 for
the right number of added edges. Assuming that the positions used in this experiment represent
other Hackenbush positions well, 0.4 is an effective margin.
To determine the actual game value of positions with 100% accuracy to verify the outcomes of
the experiments, a brute force method that analyses all subgames recursively was used [Tom11].
The Scale Method has been implemented using a combination of the aforementioned code, an
implementation of Monte Carlo Tree Search [Mic20] and own code.

10

noend 1 The Hackenbush Scale Method

function DetermineOutcomeClass(GameState)
for n = 1, . . . ,Playouts do

if MCGame(Blue) then
BlueWins = BlueWins+ 1

if MCGame(Red) then
RedWins = Redwins+ 1

BlueWinRate← BlueWins/Playouts
RedWinRate← RedWins/Playouts
if BlueWinRate < Margin and RedWinrate < Margin then

return P
else if BlueWinRate > (1−Margin) and RedWinRate > (1−Margin) then

return N
else if BlueWinRate > (1−Margin) then

return L
else

return R

function DetermineGameValue(GameState)
class← DetermineOutcomeClass(GameState)
if class = P then

return 0
else if class = N then

return *
while class ̸= P do

if class = L then
add redEdge to GameState.WeighingStalk
update gameValue

else if class = R then
add blueEdge to GameState.WeighingStalk
update gameValue

class← DetermineOutcomeClass(GameState)

return gameValue

11

4.1 Monte Carlo algorithm

The Hackenbush Scale Method has been implemented to be used with two different Monte Carlo
methods: the Pure Monte Carlo algorithm and UCT (see Section 2.3).

4.1.1 Pure Monte Carlo algorithm

As explained in Section 2.3, the basic MCTS algorithm knows four phases. In the pure version,
these four phases are utilised in the following way:

1. Selection: there is no selection policy in the sense that each available node is explored the
same number of times.

2. Expansion: no expansion takes place, we go directly to the simulation phase.

3. Simulation: a random game is played a certain number of times for each node.

4. Backpropagation: the node with the best win rate is selected and its move is returned.

This version of the Monte Carlo algorithm is not an actual tree search; it does not look further
than the moves that are immediately available.

4.1.2 UCT

In UCT, the four phases are implemented in the following way (see Section 2.3.1):

1. Selection: a node j is selected to maximise

UCT = Xj + Cp

√
2 ln n

nj

.

2. Expansion: if the selected node has children that are not yet part of the tree, one of those is
chosen randomly and added to the tree.

3. Simulation: from the new node’s state, the game is played out randomly; each turn, a move
is randomly selected and played, until a terminal state is reached.

4. Backpropagation: the value of the terminal state is backpropagated to all the nodes visited
during this iteration.

The algorithm terminates and returns the best move that it found only once the computational
budget has been reached. The best move corresponds to the child of the root with the highest visit
count.

12

4.2 Experiments

In order to determine the performance of the Monte Carlo algorithms, experiments were set up
with two variables: the number of times a game position was played out to determine the win rate,
and the number of times a random simulation was run to determine the effectiveness of a move
in the simulation phase of the algorithm. We call the first variable the playouts, and the second
variable iterations. In this case, the number of iterations functioned as the computational budget.
The performance of the algorithms was tested on various game positions of Red-Blue Hackenbush.
Firstly, the precision of the algorithms in determining game values was tested by running the
experiment on positions with dyadic rational numbers as their game values. Positions with values
1/2ℓ with ℓ ∈ [1, . . . , 10] were used. As explained in Section 2.1.2, these positions consist of a single
blue edge with i red edges stacked on top. For the number of playouts, the values [100, 200, 400, 800]
were used. For the number of iterations, the values [100, 200, 600, 1200] were used. An additional
experiment was done with a position valued 1/2048. For this position, the two algorithm versions
were tested with 100 playouts and 1200, 1300 and 1400 iterations.
Additionally, experiments were done to determine the values of Hackenbush positions with a
more random nature. These positions are depicted in Figure 17 (position A), Figure 18 (positions
B and C), and Figure 19 (positions D and E). These positions have negative values, whereas the
positions in the aforementioned experiment all have positive values.
Experiments were run on the Redwood Bed position depicted in Figure 6, and on the Bluewood
version of it: the same position, but with the colours inverted. The experiment was carried out
using UCT, 400 playouts and iterations [600, 1200, 2400, 4800, 9600, 19200].
The function DetermineOutcomeClass (see Section 4) was tested on various Two Move
Hackenbush positions. The values were: 0 of outcome class P, ∗, ∗2, ↑ ∗ and ↓ ∗ of outcome
class N , 1/2 and 1∗ of outcome class L and −1/2 and −1∗ of outcome class R.

5 Results

The tables on the following pages show the results of the experiments mentioned in the previous
section. In each table, each cell contains a pair of numbers: the win rate of Blue when Blue started
the game and the win rate of Red when Red started the game, respectively. When the content of
a cell is red, the algorithm returned the wrong game value: the game value returned was either
overestimated or underestimated. In the case of an overestimation, the table shows the returned
value. In case of an underestimation (in which case the algorithm kept adding edges to the weighing
stalk until a safeguard was triggered), the win rate at the point where the game was balanced and
the algorithm should have returned the value is shown. In some cases, win rates exceeding the
margin would cause a wrong edge to be added. In this scenario, the algorithm would also continue
indefinitely, eventually triggering the safeguard. In the table, this is signified by “F” (for Failed)
written in red.
When running experiments with positions with values 1/2, 1/4, 1/8, and 1/16, the algorithm returned
the correct values with 100% precision. Regardless of the number of playouts and iterations, the
returned win rates were (0, 0). Therefore, the results shown are from 1/32 and smaller values.
Table 2 shows the results of the experiment ran on game positions with values [1/32, 1/64, 1/128,
1/256, 1/512, 1/1024], with varying numbers of playouts and iterations, using the UCT algorithm.

13

Table 8 in Section B shows the results of the same experiments, but with the use of the Pure Monte
Carlo algorithm.
Figure 15 shows the win rate of Blue as a function of the number of iterations that the Pure Monte
Carlo algorithm was carried out with. The game value of the position used was 1/32, and it was
balanced with the Hackenbush Scale Method. Figure 16 shows the win rate of Blue as a function
of the number of iterations that the UCT algorithm was carried out with. This time, the game
value was 1/128, again balanced with the Hackenbush Scale Method.

Figure 15: Graph of the win rate of Blue when Blue starts a game with value 1/32 balanced
using the Pure Monte Carlo Hackenbush Scale Method, set against the number of iterations the
algorithm has run.

Figure 16: Graph of the win rate of Blue when Blue starts a game with value 1/128 balanced using
the UCT Hackenbush Scale Method, set against the number of iterations the algorithm has run.

14

1/32 Number of iterations
Number of
playouts

100 200 400 600 1200

100 0.1, 0 0, 0 0, 0 0, 0 0, 0
200 0.08, 0 0.01, 0 0, 0 0, 0 0, 0
400 0.08, 0 0.01, 0 0, 0 0, 0 0, 0
800 0.10, 0 0, 0 0, 0 0, 0 0, 0

1/64 Number of iterations
Number of
playouts

100 200 400 600 1200

100 0.4, 0 0.09, 0 0, 0 0, 0 0, 0
200 0.4, 0 0.08, 0 0, 0 0, 0 0, 0
400 0.42, 0 0.11, 0 0, 0 0, 0 0, 0
800 0.44, 0 0.08, 0 0, 0 0, 0 0, 0

1/128 Number of iterations
Number of
playouts

100 200 400 600 1200

100 1/64 0.35, 0 0.19, 0 0, 0 0, 0
200 1/64 1/64 0.15, 0 0, 0 0, 0
400 1/64 1/64 0.16, 0 0.01, 0 0, 0
800 1/64 0.39, 0 0.17, 0 0.01, 0 0, 0

1/256 Number of iterations
Number of
playouts

100 200 400 600 1200

100 1/64 1/128 0.21, 0 0.23, 0 0.03, 0
200 1/64 1/128 1/128 0.17, 0 0.01, 0
400 1/64 0.71, 0 0.15, 0 0.22, 0 0.01, 0
800 1/64 0.66, 0 1/128 0.22, 0 0, 0

1/512 Number of iterations
Number of
playouts

100 200 400 600 1200

100 1/64 0.83, 0 1/256 1/256 0, 0
200 1/64 0.86, 0 1/256 0.24, 0 0.03, 0
400 1/128 0.80, 0 1/256 1/256 0.03, 0
800 1/64 0.85, 0 1/256 1/256 0.24, 0

1/1024 Number of iterations
Number of
playouts

100 200 400 600 1200

100 1/128 0.68, 0.11 1/512 1/512 0.37, 0
200 1/128 1/256 1/512 1/512 0.39, 0
400 1/128 1/256 1/512 1/512 0.34, 0
800 1/128 1/256 1/512 1/512 0.35, 0

Table 2: Results of the UCT Hackenbush Scale Method on a Hackenbush game position with
various values. The numbers shown are the win rate of Blue when Blue starts and the win rate of
Red when Red starts respectively. A fraction in red refers to an incorrect, prematurely returned
value.

15

Table 3 shows the results of using the Hackenbush Scale Method with Pure Monte Carlo and
UCT on a game position with game value 1/2048.

1/2048 Pure Monte Carlo UCT
1200 1/1024 0.45, 0
1300 1/1024 0.5, 0
1400 1/1024 0.57, 0

Table 3: Results of the Pure Monte Carlo and UCT Hackenbush Scale Method on a Hackenbush
game position with value 1/2048.

Table 4 shows the results of using the win rates of the Pure Monte Carlo algorithm with 100
iterations and 100 playouts to determine the outcome classes of various Two Move Hackenbush
positions. The win rates are shown as well. As can be read from the table, the determination of
outcome classes of these positions is achieved with 100% accuracy.

Actual outcome class Returned outcome class Win rates
0 P P 0, 0
∗ N N 1, 1
∗2 N N 1, 1
↑∗ N N 1, 1
1/2 L L 1, 0
−1/2 R R 0, 1
1∗ L L 1, 0
−1∗ R R 0, 1

Table 4: Results of the determination of outcome classes of various Two Move Hackenbush
positions, using the win rates of the Pure Monte Carlo algorithm.

Table 5 shows the time in seconds that different methods took to determine the value of a position
with game value 1/512. For the two Monte Carlo variants, the variables 100 playouts and 600
iterations were used.

Time in seconds
Determine recursively 0
Pure Monte Carlo 139
UCT 65

Table 5: Time in seconds needed to determine the game value of a position with value 1/512. For
the Monte Carlo algorithms, 100 playouts and 600 iterations were used.

16

Table 6 shows the results of an experiment using UCT on a Redwood Bed position (see Figure 6)
and an experiment on the same position, but with inverted colours. If the algorithm returned an
incorrect value, the cells show that value in red and the win rates in black. If the safeguard of the
algorithm got triggered, the cells show the win rates (in red) at a point where the calculated value
got closest to the actual game value, and they show the closest value. The table on the left shows
that the algorithm returned 1/4 with a budget of 600 iterations. This took 380 seconds. Using the
brute-force method of determining the game value of the Redwood Bed recursively, the value was
determined to be 1/32. This took 175 seconds.

Value Win rate Value Win rate
600 1/4 0.38, 0.35 600 −23/32 0.60, 0.22
1200 3/32 0.65, 0.19 1200 −15/32 0.49, 0.33
2400 1/32 0.83, 0.07 2400 −9/32 0.69, 0.27
4800 1/8 0.40, 0.31 4800 −9/32 0.82, 0.20
9600 1/8 0.37, 0.31 9600 −1/8 0.35, 0.37

Table 6: Results of the determination of the game values of Hackenbush positions of the classes
Redwood Bed (left) and Bluewood Bed (right) (see Figure 6). This table shows the returned value
and the win rates when that value got returned, or the win rates at a point where the calculated
game value got closest to the actual game value.

Table 7 shows the results of using the Hackenbush Scale Method with UCT to determine the values
of several Hackenbush positions (see Figure 17, Figure 18 and Figure 19). For this experiment,
400 playouts and a varying number of iterations were used.

Number of iterations
600 1200 2400

A 0.40, 0.29 0.44, 0.21 F
B 0.475, 0.14 0.28, 0.03 0.13, 0
C 0.01, 0.25 0, 0.26 0.01, 0.21
D 0.67, 0.21 0.54, 0.27 0.53, 0.3
E F F F

Table 7: Results of the determination of the game values of several Hackenbush positions (Figure
17: position A, Figure 18: positions B and C, and Figure 19: positions D and E). Cells show the
win rates of Blue when Blue started the game and Red when Red started the game at the moment
that the game was balanced. An F indicates that a wrong edge got added to the weighing stalk
and no game value got returned.

6 Conclusion and Further Research

To calculate the game values of Hackenbush positions, all subgames have to to be analysed in a
recursive manner. Experiments have been done to see if the game values can be calculated using

17

the newly developed Hackenbush Scale Method, a method that utilises variants of the Monte
Carlo Tree Search algorithm. From the results of these experiments, the following conclusions can
be drawn.
Firstly, Table 2 shows a clear increase in accuracy with an increase in the number of iterations. For
example, the results of an experiment on a position with game value 1/64 show that 100 iterations
are not enough to accurately determine the game value. However, when running with 200 iterations
and more, the algorithm consistently returned the right game value. Moreover, the win rate of
Blue seems to decrease as more iterations are done. The results also show that the game value was
increasingly hard to determine as the game values got smaller. Where the position with value 1/32
only needed 100 iterations to determine the value accurately, the position with value 1/1024 needed
at least 1200 iterations. The aforementioned observations can also be made on these results: the
accuracy of the algorithm increases with the number of iterations and decreases as game values
shrink. From the decrease in accuracy, we can conclude that the Monte Carlo agents choose non
optimal moves more often in games with smaller game values. One explanation for this is that
games with smaller game values simply have more edges, which means that there are more options
for moves, which means the probability of choosing a wrong move increases. Another explanation is
that for games with small values, the actual advantage that one player has over the other is small.
This means that even if a Monte Carlo agent plays quite well, the outcomes of individual games are
sensitive to chance, making the win rates less representative for the outcome class. If the outcome
class is determined incorrectly, the algorithm might return the wrong value. This becomes evident
in the experiments on a game with value 1/1024: even when ran with 600 iterations, the algorithm
returns 1/512 instead of 1/1024 (see Table 2).
As shown in Table 3, neither the Pure Monte Carlo nor the UCT version of the Scale Method
returned the right game value for a position with value 1/2048, even when 1400 iterations were
used. From these experiments, we can conclude that for the type of position experimented with,
the accuracy of the Hackenbush Scale Method is 1/1024 when using a computational budget of
1400 iterations, both when using Pure Monte Carlo and UCT.
Figure 15 and Figure 16 show that the win rate of Blue decreased with the number of iterations that
the Pure Monte Carlo algorithm and the UCT algorithm ran. For a balanced game, the expected
win rate of Blue (and Red) is 0, so the decrease in win rate is actually an increase in accuracy. This
result is to be expected: in UCT’s case, more iterations means that it has more iterations to explore
all possible moves and then exploit promising moves. More iterations also means that the effect of
randomness of wins during the simulation phase decreases, which makes the scores of moves a more
accurate representation of how good they actually are. Decreasing the effect of randomness might
be even more relevant when using the Pure Monte Carlo algorithm, which explains the increase of
accuracy with more iterations when using this algorithm as well.
The results in Table 6 show us that the Scale Method does not work on these particular Redwood
Bed and Bluewood Bed positions. For the Redwood Bed, either the algorithm returned a value
prematurely, or it did not return a value at all. The win rates of the experiment with 2400 iterations
show that when the game was balanced in theory and the win rates should have been 0, Blue had
an advantage and won most of the games. Apparently, the Monte Carlo agent is worse at playing
Red than playing Blue in this position. One explanation for this is that the strategy for Red is
more complicated than the strategy for Blue. Blue can remove the legs of the Bed, causing multiple
red edges to disappear if they are still interconnected, while the strategy of Red is to minimize the
number of interconnected parts.

18

In the case of the Bluewood Bed, wrong edges were added to the weighing stalk. The win rates did
not get close to 0, and the algorithm continued until the safeguard was triggered. The results do
show that an increase in number of iterations increased the accuracy as well: −9/32 is closer to
−1/32 than −23/32 is. There seems to be a bias in the program causing Blue to win more often
than Red, which explains the wrongly added edges. The fact that the colours were inverted for this
experiment and the higher win rate of Blue persisted suggests that there is more to the bias than
just a difference in strategy between the two colours. Further development of the method should
include investigating this bias.
In Table 2, the win rate of Red when Red starts the game is always 0. A possible explanation
for this is that this is because of the implementation of a “smart” move that can be made in the
weighing stalk. When the value of a position is positive (which is the case for the positions used for
the experiments done), the weighing stalk consists of one red edge with a number of blue edges
stacked on top of it. With the smart move implemented, Blue always removes the highest edge of
this stack. In the original position, which edge will be removed is determined by the algorithm. As
we explained before, choosing the highest edge is an effective strategy, and this is reflected in the 0
win rate of Red.

In conclusion, the results show us that the values of various Hackenbush game positions can be
approximated with a method using Monte Carlo Tree Search. However, there is no evidence that
this method is quicker or more efficient than the brute force method of analysing all subgames
recursively. Additionally, calculating the value recursively has the advantage of having perfect
accuracy. The Hackenbush Scale Method does not seem to work for all Hackenbush positions.
With the computational budget used in the experiments, stalks with a value of 1/1024 were the
limit, and the method could not accurately determine the value of a Redwood or Bluewood Bed. On
the Redwood Bed, the method also took longer than the brute force method: it took 380 seconds
where the brute force method took 175 seconds. When running the experiment on positions with
a more random nature, some of the game position values could be accurately determined with
differing numbers of iterations. This difference in iterations suggests that the computational budget
needed to determine the game value is dependent on the complexity of the game position as a
whole, not just on the size of its game value. The experiments were done on a limited number
and limited types of positions, not fully representative of the many possibilities of Hackenbush
positions. Lastly, the efficiency and speed of the Scale Method were not optimised. Therefore, the
full potential of the method has not been realised. More research and development should be done
to improve the method further and make it feasible in mathematical research.

A first boundary of accuracy has been set at 1/1024 with the use of 1200 iterations, but additional
research could be done to determine if the method can determine game values even more accurately
when using more iterations or different versions of the Monte Carlo algorithm. In the Monte Carlo
Scale Method, an alternative approach to the interpretation of the win rates could be tried as well:
instead of observing their convergence to 0 or 1, the difference between the win rates could be used.
If the difference between the win rates of the two players is statistically significant, this could be
an effective indicator that the game position is not balanced yet and that more edges should be
added. Additionally, experiments could be set up with different types of Hackenbush positions to
investigate on which types of positions the method works well, and on which it does not. Theoretical
research could be done to classify types of positions. It could, for example, be possible that there are

19

positions where one player needs a complicated strategy to win whereas the other player can win
even with random moves. Redwood Beds could be of this type, and more experimentes should be
done with them to determine whether it is possible to determine their values. Red-Blue-Green
Hackenbush could also have positions worth looking into. If experiments with smaller values
prove to need more iterations, efforts could be made to improve the efficiency of code used to
implement the UCT algorithm, as the run time has proven to be quite high. One improvement
for more complicated positions could be to break positions up into components and use the Scale
Method to determine the values of the various sub-games. A hash table could be used to store
values of components. This approach would be a combination of recursively analysing a game all
the way through and the Scale Method.
For Two Move Hackenbush, the Pure Monte Carlo algorithm has been used to determine
the outcome class of a game position. Future research could explore the possibility of using the
Hackenbush Scale Method to determine the game values as well, combining the single move
weighing stalk with the two move game. Due to additivity of games, the method could be used
in a similar way. However, the weighing stalk should allow only one move, and the original game
position should allow two, because Two Move Hackenbush positions are in itself not additive
(see Section 3). It would be interesting to see if and how the Scale Method can approximate Star
values.

20

References

[ANW19] Michael H. Albert, Richard J. Nowakowski, and David Wolfe. Lessons in Play. CRC
Press, second edition, 2019.

[BCG04] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for your
Mathematical Plays. A.K. Peters, second edition, 2004.

[BPW+12] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I.
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis,
and Simon Colton. A survey of Monte Carlo tree search methods. IEEE Transactions
on Computational Intelligence and AI in Games, 4(1):1–43, 2012.

[fil23] file-acomplaint. Hackenbush: Pocket edition. https://fi-le.itch.io/hackenbush,
2023. Version: 0.6. Accessed: 21-06-2024.

[KS06] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European
Proceeding Conference on Machine Learning, pages 282–293. Springer, 2006.

[Mic20] Michael Bzms. Monte Carlo Tree Search c++ implementation & application to quoridor.
https://github.com/michaelbzms/MonteCarloTreeSearch, 2020. Accessed: 20-06-
2024.

[Tom11] Tom Davis. Hackenbush in c. http://www.geometer.org/puzzles/hack.c, 2011.
Accessed: 04-02-2024.

21

https://fi-le.itch.io/hackenbush
https://github.com/michaelbzms/MonteCarloTreeSearch
http://www.geometer.org/puzzles/hack.c

A Additional figures

Figure 17: Hackenbush position A with game value −3/16 [fil23].

(a) Hackenbush position
B.

(b) Hackenbush position
C.

Figure 18: Two Hackenbush positions with game value −1/8 [fil23].

22

(a) Hackenbush position
D.

(b) Hackenbush position
E.

Figure 19: Two Hackenbush positions with game value −1/8 [fil23].

23

B Additional results

1/32 Number of iterations
Number of
playouts

100 200 400 600 1200

100 0.31, 0 0.19, 0 0.06, 0 0.05, 0 0, 0
200 0.43, 0 0.18, 0 0.07, 0 0.04, 0 0, 0
400 0.34, 0 0.21, 0 0.18, 0 0.05, 0 0, 0
800 0.35, 0 0.18, 0 0.09, 0 0.04, 0 0, 0

1/64 Number of iterations
Number of
playouts

100 200 400 600 1200

100 0.54, 0 0.35, 0 0.18, 0 0.16, 0 0.02, 0
200 0.59, 0 0.39, 0 0.21, 0 0.09, 0 0.03, 0
400 0.57, 0 0.32, 0 0.15, 0 0.10, 0 0.02, 0
800 0.53, 0 0.35, 0 0.19, 0 0.12, 0 0.03, 0

1/128 Number of iterations
Number of
playouts

100 200 400 600 1200

100 1/64 0.53, 0 0.33, 0 0.25, 0 0.06, 0
200 1/64 0.56, 0 0.32, 0 0.23, 0 0.07, 0
400 1/64 0.52, 0 0.26, 0 0.20, 0 0.06, 0
800 1/64 0.56, 0 0.30, 0 0.19, 0 0.06, 0

1/256 Number of iterations
Number of
playouts

100 200 400 600 1200

100 F 1/128 0.5, 0 0.34, 0 0.14, 0
200 F 1/128 0.47, 0 0.32, 0 0.14, 0
400 1/128 1/128 0.46, 0 0.34, 0 0.10, 0
800 1/128 1/128 0.48, 0 0.32, 0 0.15, 0

1/512 Number of iterations
Number of
playouts

100 200 400 600 1200

100 F 1/256 1/256 0.5, 0 0.12, 0
200 F 1/256 1/256 0.47, 0 0.2, 0
400 1/128 1/256 0.59, 0 0.45, 0 0.25, 0
800 F 1/256 1/256 0.47, 0 0.22, 0

1/1024 Number of iterations
Number of
playouts

100 200 400 600 1200

100 1/256 F 1/512 1/512 0.36, 0
200 F F 1/512 0.64, 0 0.35, 0
400 1/256 F 1/512 1/512 0.36, 0
800 F F 1/512 0.59, 0 0.35, 0

Table 8: Results of the Pure Monte Carlo Hackenbush Scale Method on a Hackenbush game
position with various values. The numbers shown are the win rate of Blue when Blue starts and
the win rate of Red when Red starts respectively.

24

(a) (b)

Figure 20: Win rate of Blue when Blue started the game and Red when Red started the game, set
out against the number of edges added to the game. Results of positions shown in Figure 18a and
Figure 18b.

25

	Introduction
	Background
	Hackenbush
	Nimbers
	Determining game values

	Redwood Furniture
	Monte Carlo Tree Search
	The UCT Algorithm

	Multiple Move Hackenbush
	Method
	Monte Carlo algorithm
	Pure Monte Carlo algorithm
	UCT

	Experiments

	Results
	Conclusion and Further Research
	References
	Additional figures
	Additional results

