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Chapter 1

Introduction

This thesis investigates the usage of symbolic regression through genetic programming (SRGP)
as part of a sequential model-based optimisation (SMBO) algorithm. Until now, the possibility
of using an SRGP algorithm as a model in SMBO has not been investigated. Recent work has
been done to evaluate and compare a large selection of modern SRGP algorithms and other
machine learning (ML) methods by La Cava et al. [3], which indicates that SRGP algorithms
can reach high degrees of model quality on a diverse selection of datasets. It also provides a
good basis to determine which techniques can be considered state-of-the-art, allowing us to
select the top-performing algorithm Operon [2], which uses genetic programming to generate
mathematical expressions, to use in our research.

Sequential model-based optimisation is an approach to optimising functions or processes that
are expensive to evaluate, whether in terms of computational power, time spent waiting, or
labour. Examples include complex industrial simulations and large neural networks, for which
the runtime or training time may be measured in hours or days. In each case, we want to
leverage the knowledge gained from previous evaluations when choosing a new set of inputs or
parameters for our next evaluation. By constructing a model after each evaluation and using it
to make an informed choice for the next inputs, we can reduce the total number of evaluations
required. In practice, reducing the number of evaluations reduces the amount of time, money,
and labour required to optimise the objective function. In our research, we therefore choose
the number of objective function evaluations as the metric by which we evaluate and compare
SMBO algorithms. A popular and robust example of such algorithms is Efficient Global Opti-
misation (EGO) [12], which uses Gaussian processes as models.

Our aim in this thesis is to evaluate the suitability of SRGP algorithms as components in SMBO
approaches. We test this suitability by using the state-of-the-art SRGP algorithm Operon to
construct the models in a novel sequential model-based optimisation algorithm. We compare
this new algorithm to the popular EGO algorithm to determine whether it is competitive. We
formulate our primary research question as follows:

”Can an SMBO algorithm which uses an SRGP method to model the objective function find
better optima than EGO on a set of test problems?”.

We also identify two sub-questions.

• Is there a subset of problems on which SRGP performs especially well or poorly?
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• In cases where the optima found by EGO and Operon are (close to) equal, is there a
difference in the total number of objective function evaluations required to find these
solutions?

This thesis is structured as follows. In chapter 2, we provide explanations of the concepts used
in this thesis, most importantly SRGP and SMBO and provide examples of applications of
these concepts. In chapter 3, we delve into the properties of the Operon algorithm. We focus
on the properties that indicate whether Operon is a suitable choice for the modelling step in an
SMBO algorithm. We look at the effect that the amount of available data has on the quality
of the generated expressions and the (order of magnitude of the) time it takes to generate
expressions. In chapter 4 we cover the full workings of our novel algorithm that uses Operon
and describe the setup and results of an optimisation experiment in which we compare our
approach to EGO. In chapter 5, we draw conclusions from our results regarding the suitability
of Operon for SMBO. We also discuss possible ways to improve the algorithm and alternate
design choices that could be made.
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Chapter 2

Background

In this thesis, we investigate the intersection of two domains, symbolic regression (through
genetic programming) and sequential model-based optimisation. Below, we will explain the
core concepts of both domains, highlight practical applications, and explain choices in our
selection of techniques, such as the selection of Operon as our preferred symbolic regression
implementation. In section 2.1 we cover the fundamental workings and different modes and
applications of symbolic regression, as well as the general strengths of Operon. In section
2.2 we explain the way sequential model-based optimisation works. We also give more details
about EGO.

2.1 Symbolic Regression

The problem of symbolic regression can be defined formally as follows: given some dataset
D = {(xi, yi)}Ni=1, find a function f such that yi ≈ f (xi) for all i. In contrast with other
regression methods such as linear regression, random forests, or neural networks, symbolic re-
gression algorithms do not presuppose a full model architecture. For example, linear regression
learns only coefficients of an assumed linear function and a neural network has a predefined
architecture of neurons for which it learns parameters. In symbolic regression, on the other
hand, we learn both the fundamental structure of the function, expressed in mathematical
operators, and learn the parametrization of this function, in terms of coefficients that may
apply to terms in the function.

Symbolic regression (SR) arose as an application of the more general algorithmic family of
genetic programming (GP), in which small programs are evolved using the principles of evo-
lutionary algorithms. Koza [13] applied the concept of genetic programming to the task of
finding mathematical expressions. Mathematical operators, such as addition and subtraction,
and functions such as sine and cosine form the basic building blocks of these evolved ex-
pressions. Through the repeated application of selection, crossover, and mutation, expressions
are evolved and optimized to describe the given dataset more accurately. In each iteration of
the algorithm, the quality of each expression is evaluated by determining how well it fits the
(training) data. One way of quantifying is fitness is through the determination coefficient R2.
A subset of the population that performs well is selected and used as the progenitors of the
next generation of candidate solutions. New expressions are generated by combining parts of
the selected progenitors. Finally, a small amount of mutation is applied, such as changing a
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single operator, adding a single operation, or removing a small part of the expression.

Aside from genetic programming, symbolic regression has also been approached with other
strategies. These include methods rooted in Bayesian optimisation [11], recurrent neural net-
works [19], and divide-and-conquer methods [24].

A comprehensive evaluation of symbolic regression methods and (classical) machine learning
techniques was recently performed by La Cava et al. [3], providing the field with an open-
source platform (SRBench) to perform further evaluations and giving a robust basis to claims
regarding the state of the art in symbolic regression. The study included ten symbolic re-
gression algorithms based on genetic programming and four SR algorithms grounded in other
techniques. Furthermore, seven non-SR machine learning methods, such as random forests,
linear regression, and multi-layer perceptrons, were included. These algorithms were applied to
252 different problems and ranked by the average predictive quality of the generated models,
as well as their final model size and required training time.

Based on this robust evaluation, we can draw conclusions regarding the state-of-the-art in
symbolic regression. Operon, developed by Burlacu et al. [2], achieved the highest test per-
formance while keeping the final models small and training times reasonable compared to
other well-performing algorithms. Other high-scoring genetic programming methods are SBP-
GP [25], FEAT [5] and EPLEX [4]. The classical approach XGBoost [6] also performed well,
though its models were significantly larger and more complex.

La Cava et al. [3] make a distinction between black-box problems and ground-truth problems.
In the first case, the data is observational, relating to some (real-world) phenomenon. In the
second category, data is generated from a known mathematical expression. Certain algorithms,
such as AI Feynman [24], are well-suited to finding exact solutions for ground-truth problems
while being ill-suited to approximate the black-box class of problems. Conversely, many of the
top algorithms are not meant to find exact solutions but do well on the approximation task. In
this study, we are solely concerned with the ability to approximate, as sequential model-based
optimisation does not require a perfect model. As long as the generated model has a global
optimum for the same inputs as the function we wish to optimise, it will be effective.

2.2 Sequential Model-Based Optimisation

In sequential model-based optimisation (SMBO), the goal is to optimise1 a function f : X ⊂
Rn → R with a very expensive evaluation, called the objective function, by using a cheaper
surrogate model from which we iteratively sample new inputs and then update again. Exam-
ples of functions we might want to optimise include complex industrial simulations and the
training of large neural networks, for which the runtime or training time may be measured
in hours or days. It may also be applied to non-digital cases, such as the optimisation of the
yield of a chemical reaction. Such functions take a set of input parameters and ultimately yield

1In the experiments performed for this thesis, we will focus on minimisation problems. However, the
concepts we discuss here apply to both minimisation and maximisation. We will usually use the term
’optimisation’ to encompass both variations.
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some numerical output. In the case of the neural network, the inputs would be the values of
the hyperparameters and the achieved accuracy (or other metric) would be the output. For
a chemical reaction, the inputs may include the mass of each included substance, as well as
the temperature at which the reaction is performed, and the output could be the total yield
of the desired substance in grams. Other applications include A/B testing, recommender sys-
tems, robotics, environmental monitoring, combinatorial optimisation, and natural language
processing [21].

Because the evaluations of these objective functions are usually expensive in terms of com-
putational power, time, or labour, it is intractable (or the very least undesirable) to optimise
the function through a naive procedure like random search or grid search. A more informed
alternative would be to have an expert practitioner or researcher in the loop who might anal-
yse previous results to select new promising inputs. However, this approach is susceptible to
human error and bias, does not always provide a structured way to cover the input space, and
is still time and labour-intensive. Other optimisation approaches, such as CMA-ES, which are
sophisticated and powerful, would also not be suitable for such tasks as they require many
function evaluations.

Instead, in SMBO, after each evaluation of the objective function we use the data we have
obtained so far to build a surrogate, a mathematical model that is orders of magnitude faster
to construct and evaluate than the objective function. We use the model to select a new input
vector that will likely perform well. Ideally, we also choose inputs that give a large amount of
information to improve the model. This is especially relevant when the objective function has
many local optima which we might get stuck in using a purely exploitative approach. We define
an acquisition function that determines the quality of potential inputs, usually by balancing
the value of the predicted output and the information that could be gained by selecting the
input. Common options include the probability of improvement [14], expected improvement
[12], and upper confidence bounds [22]. We obtain the most promising input candidate by
maximising this acquisition function, which we then evaluate on the objective function. The
input and the obtained value are then added to our dataset, allowing us to construct a better
model in the next iteration. We can run this procedure until we observe convergence in the
found values, or until we exhaust some predefined budget.

A popular algorithm in SMBO is Efficient Global Optimisation (EGO), which uses a Gaussian
process to model the objective function. The Gaussian process represents a distribution of pos-
sible functions that could yield the sampled values. The mean of this distribution represents
the most likely value for a given input. Additionally, we have information about the variance
for a given input. EGO uses Expected Improvement (EI) as its acquisition function. We provide
a definition for EI in equation 2.1, where Y is the random variable that models the objective
function f . EI balances exploration and exploitation by combining the variance for a given
input with the difference between the predicted mean and the current known optimum. In this
way, inputs can be considered high quality if they either have a predicted mean that far exceeds
the current known optimum or if their variance is very high. This balances the importance of
exploration and exploitation in the algorithm.

EI(x) = E[max(fmin − Y, 0)] (2.1)
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Chapter 3

Investigating Operon

Based on the evaluation of La Cava et al. [3] that we mentioned in the previous chapter, we
identify Operon as the most effective SRGP algorithm, and we therefore elect to use Operon
in our sequential model-based optimisation algorithm. Before we define and test the algorithm,
we want to examine some relevant properties of Operon by itself. Recall from the previous
chapter that in SMBO we want to keep the number of evaluations of the objective functions
to a minimum, and thus we will have relatively few data points to construct (or in this case
evolve) our model. Also, we need the generation of expressions and their evaluation to be orders
of magnitude faster than the objective function we wish to optimise. This chapter evaluates
Operon on these two aspects, data and time, to justify its integration in an SMBO algorithm
and to identify potential weaknesses. Section 3.1 discusses the data efficiency of Operon, that
is to say, the impact of the size of the training set on the predictive quality of the generated
expressions. Section 3.2 considers examples from the literature to assess how much data will
be available in an SMBO experiment. In section 3.3 we examine the time it takes Operon to
generate expressions and the time it takes to evaluate points on them. Note that we are not yet
concerned with highly precise benchmarking, only with the order of magnitude of the durations.

3.1 Data Efficiency

To determine Operon’s suitability as a surrogate, we examine the relationship between the
amount of available data points and the quality of generated models. We will refer to this
relationship as Operon’s data efficiency. In any optimization procedure, we would like to find
the optimum of the objective function in the least amount of time. Because most of the time
will be spent evaluating the objective function, we want to minimize the number of evaluations
needed to find a good optimum. Consequently, we want our surrogate to perform well with a
limited number of sample points. We, therefore, conduct an experiment in which we generate
expressions using Operon with different subsets of a full training set and evaluate their quality
in terms of the coefficient of determination R2, as defined in equation 3.1. An R2 of 1 indicates
that the model perfectly predicts the data, while a value of 0 would be obtained by always
predicting the mean of the dataset, and negative values indicate the model performs worse
than this baseline. We evaluate R2 over a test set of size N , which is separate from the
training set. We want to understand the relationship between the size of the training set n
and the number of input variables of the problem d on the predictive quality of the generated
expressions, as measured by R2. Understanding this relationship allows us to determine whether
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Operon is likely to do well as a model in SMBO given a problem with known dimensions and
a known budget. If we find that Operon does not approximate well with that number of data
points, we can consider it unsuited to that specific task. By evaluating the quality of generated
expressions over a wide range of dimensionalities, we can also assess whether Operon will be
able to deal well with high-dimensional problems in SMBO. Ultimately, a surrogate that does
not accurately model the value of the objective function, may still model its shape correctly, in
which case it would lead us to the same optima. Therefore, we will also look at some visualised
expressions that may reveal a more nuanced view than just the R2 metric.

R2 = 1−
∑N

i (yi − ŷi)
2∑N

i (yi − yi)
2

(3.1)

We showcase the results of these experiments grouped into three categories of datasets. Two
of them are from the PMLB framework [18] [20], the first being black-box datasets, and
the second ground-truth datasets. The black-box problems range from having 1 to 124 input
variables. The ground-truth problems have between 1 and 9 input variables. The final category
is a group of self-generated synthetic datasets, based on popular optimisation test functions.
Each function is fundamentally based on a summation of terms and can thus be scaled to
an arbitrary number of dimensions. We used functions ranging from 1 to 100 input variables.
The functions we used are the sphere function (3.2), the Rastrigin function (3.3), the Ackley
function (3.4), the Rosenbrock function (3.5), and the Styblinski-Tang function (3.6).

f(x) =
n∑

i=1

x2
i (3.2)

f(x) = An+
n∑

i=1

(
x2
i − A · cos(2πxi)

)
(3.3)

A = 10

f(x) = −a · exp (b

√√√√ n∑
i=1

x2
i )− exp (

1

d

n∑
i=1

cos(cxi)) + a+ e (3.4)

a = 20, b = 0.2, c = 2π

f(x) =
n−1∑
i=1

(
100(xi+1 − x2

i )
2 + (1− xi)

2
)

(3.5)

f(x) =

∑n
i=1 x

4
i − 16x2

i + 5xi

2
(3.6)

We first define a range of training set sizes. Then, for each dataset, we generate an expression
with a random training sample of the full dataset, for each of the sizes. We repeat this process
ten times to obtain averages. We then plot the data sample size against the achieved R2,
grouped by their dimensionality. Figure 3.1 shows the results for black-box datasets and figure
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Figure 3.1: Lineplot of sample size against R2, grouped by dimensionality for the black-box
PMLB datasets.

3.2 shows the results for the ground-truth datasets. The results for the self-generated datasets
are shown in figure 3.3. It should be noted that not all datasets are included in the figures of
the PMLB data. To make the aggregations fair and useful, only datasets with enough data
to be evaluated at each subset size are included (i.e. datasets with fewer points than the
largest sample size are excluded). The dataset sizes used in these experiments are 5, 10, 20,
50, 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500. We use the Symbolic Regressor
framework provided by PyOperon [10], the Python interface to the C++ implementation of
Operon. For the most part, we use the default parameters as configured in that package. How-
ever, we change the operator set to consist of addition, subtraction, multiplication, analytic
quotient [16], and sine. This choice of operators is informed by findings reported by Nicola
and Agapitos [17] concerning the impact of the operator set on the quality of models in SRGP.

For the black-box datasets in figure 3.1, we see that dimensionality is a poor predictor of
the number of training samples required to achieve good or best-possible model quality. The
dimensionalities are haphazardly distributed over the achieved qualities. Looking at the point
where the curves flatten or where noticeable changes in the slope occur, it seems that most of
the improvement occurs in the interval [5, 150], after which most curves settle into a gently
sloped linear improvement. Here too, there is no obvious link to the dimensionality of datasets.
As these datasets are constructed through observations of real-world phenomena, it is likely
that not all variables that play a role in the relevant systems are captured in the data, and as
such the missing data plays a greater role than the mere dimensionality. For most black-box
problems it seems that upwards of a hundred samples may be required.
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Figure 3.2: Lineplot of sample size against R2, grouped by dimensionality for the ground-truth
PMLB datasets.

For the ground-truth datasets in figure 3.2, we see that while datasets of each dimensionality
reach a high level of quality there is some difference between the point at which they reach
their maximum. Especially eye-catching are dimensionalities 1 and 2, which achieve maximum
model quality at the lowest sample sizes. The relationship is not absolute, however. For exam-
ple, looking at the yellowish curve of dimensionality 9, we see it surpasses other curves of lower
dimensionality problems in terms of maximum achieved quality and in terms of the speed of
growth. In a general sense, we can say that training sets in the size of hundreds of samples
are required for high-quality models. These datasets cover a wide array of equations, and it
seems that there are other aspects, besides the dimensionality, which determine its difficulty.
Total size or the occurrence of certain operators and sub-functions may play a key role here.
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Figure 3.3: Lineplot of sample size against R2, grouped by dimensionality for the self-generated
ground-truth datasets.

In figure 3.3, we see our own ground-truth datasets paint a clearer picture. We see the ex-
pected drop in quality as the dimensionality of the problems grows. In contrast to datasets
from PMLB, we have high and low-dimensional versions of each of our used functions, leading
to averaged curves of similar shapes, as other features of each problem are the same between
dimensionalities. Now we also see more clearly the different points at which the curves flatten.
For a 1-dimensional case, we only need a handful of samples, while the high point for the 5-
dimensional case is reached around 250 samples. For dimensionalities 10 and 20, the number
of required samples looks to be 400 and 450 respectively. Beyond that, it is not clear when
the curves will go flat, but we can expect the trend to hold. Naturally, the underlying function
still plays a role, but as we won’t know the specifics of the underlying function when looking
at optimisation later, we cannot use such information to select our surrogate model.

Next, we show a few visualisations of the expressions that Operon generates and we give the
closed-form expressions that were generated, simplified using SymPy [23]. Figure 3.4 through
3.7 show expressions evolved through Operon based on a small sample of points from some
of the functions mentioned in section 3.1 on the domain [−5, 5]. The expression trees these
visualisations are based on are limited to a depth and total node count of 5, to keep the
expression human-readable.
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In figure 3.4 we examine the 1-dimensional version of the function, where Operon had a training
set of 3 samples. In table 3.1, we show the corresponding expressions. We see that expressions
2 and 3 while lacking the many local optima of the true function, do predict its minimum in
the correct region. Expression 1 has two local minimal that are somewhat close to the Ackley
function’s global minimum, however, it predicts even lower values at the edges of the input
interval. We note that expressions 2 and 3 are highly similar, being constructed out of the
same operators but having slightly different coefficients.

Figure 3.4: The 1-dimensional Ackley function along with three expressions generated by Operon
using three training points.

Legend Name Expression
Generated Expression 1 −0.964x1 ∗ sinx1 + 9.144
Generated Expression 2 15.131− 24.516√

(0.436x1)
2+1·
√

x2
1+0.404

Generated Expression 3 15.127− 25.622√
(0.480x1)

2+1·
√

x2
1+0.535

Table 3.1: Generated expressions for the 1-dimensional Ackley function using 3 sample points.
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In figure 3.5 and table 3.2, we show the results for the 1-dimensional Ackley function when
Operon is given 10 sample points to train on. All three generated expressions now have a
highly similar structure, with expressions 2 and 3 being identical. In each expression, the global
minimum now matches that of the Ackley function.

Figure 3.5: The 1-dimensional Ackley function along with three expressions generated by Operon
using ten training points.

Legend Name Expression
Generated Expression 1 8.633 · sin (0.077x1) + 4.791
Generated Expression 2 2.593x1 · sin (sin (0.458x1)) + 4.225
Generated Expression 3 2.593x1 · sin (sin (0.458x1)) + 4.225

Table 3.2: Generated expressions for the 1-dimensional Ackley function using 10 sample points.
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In figures 3.6 and 3.7, we show a visualisation of the Ackley function (left) and an expression
generated by Operon (right) based on training sets of 6 and 20 samples respectively. Tables 3.3
and 3.4 contain the corresponding expressions. We see that Operon has essentially generated a
much smoother version of the true function. Both the maxima in the corner and the minimum
in the middle match the Ackley function. The expressions have a similar structure as those
generated for the 1-dimensional case.

Figure 3.6: The 2-dimensional Ackley function and an expression generated by Operon using 6
sample points.

Legend Name Expression
Generated Expression 15.96− 17.353√

(0.255x1)
2+1·
√

(0.417x2)
2+1

Table 3.3: Generated expression for the 2-dimensional Ackley function using 6 sample points.
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Figure 3.7: The 2-dimensional Ackley function and an expression generated by Operon using 20
sample points.

Legend Name Expression
Generated Expression 16.712− 12.753√

(0.16x1)
2+1·
√

(0.144x2)
2+1

Table 3.4: Generated expression for the 2-dimensional Ackley function using 20 sample points.

From these visualisations, we conclude that Operon will often generate expressions whose global
shape resembles that of the true function, even when it is unable to accurately model a com-
plex landscape containing many local optima. This bodes well for the optimisation task, where
we need the generated expressions to indicate where the optimum of the objective functions is.

3.2 Optimisation Budgets

Now that we have an idea of the amount of data Operon needs to perform well, we examine
the budgets used in optimisation, which are measured in the number of evaluations of the
objective function, to see if we can reasonably expect Operon to be a viable surrogate. Recall
that in an SMBO algorithm, we evaluate a new input in each iteration and add the resulting
data point to the set from which we construct future models. The evaluation budget of our
algorithm thus also determines the amount of available data for our model construction. In
practical use, the cost and availability of computational resources and deadlines will play a role
in determining how much budget is allocated. A reasonable range of what to expect can be
found in the scientific literature. Bossek et al. [1] use a range of static budgets of sizes (24,
.., 29). Mueller [15] uses budgets scaled to the dimensionality of the problem (50d). Scaling
the budget based on the problem’s dimensionality seems sensible given the results we have
seen in section 3.1, which indicate that problems with higher dimensionality require more data.
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Eriksson et al. [7] examine different problems with different budgets, ranging from two thou-
sand to twenty thousand evaluations. Given this wide range of options, and comparing them
to the required sample sizes for Operon we observed in the previous section, we can conclude
that there would be enough data in optimisation procedures for Operon to make viable mod-
els. Considering the computational resources available for this study, as well as keeping a fair
comparison to the Gaussian process (which may not need as many data points as Operon),
we consider a total budget of 10d for the experiments in chapter 4.

3.3 Modelling Time

Aside from data efficiency, we have another aspect important to Operon’s viability as a surro-
gate: the amount of time Operon needs to generate an expression. Recall that the purpose of
using a surrogate model is to be able to make an informed decision regarding the selection of
new inputs in order to cut down the number of required evaluations of the expensive objective
function. The combined construction of the model and the selection procedure should thus be
much faster than the full evaluation. Since the exact evaluation time of the objective function
will vary from case to case, we deal in orders of magnitude. In the study done by La Cava et
al. [3], the training speed of SR methods was evaluated. For Operon, they report an average
training time of around 103 seconds. However, they only allowed each algorithm to use a single
processor core. Operon, however, is explicitly designed to leverage parallel hardware to achieve
high performance. The prevalence of multi-core processors in modern hardware leads us to
assume that any practitioner looking to optimise a process using SMBO will have access to at
least some parallel hardware, in which case Operon’s training time will be reduced. We also
note that the number of training samples determines the time spent on each evaluation of an
individual expression and thus plays a large role in the total training time. The data sets used
by La Cava et al. range from a few dozen to hundreds of thousands of samples. Since the size
of training sets in SMBO will be limited by the evaluation budget discussed in section 3.2, we
will likely see shorter training times.
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To get a more reasonable estimate of training times taking into account paralleled hardware
and smaller training sets, we perform a simple evaluation of training times ourselves. We let
Operon generate expressions using subsets of the data we have for the 20-dimensional Rast-
rigin function. We examine subsets of sizes 100, 1000, and 10000. We run Operon 20 times
for each size and record the mean time it takes for it to terminate, as well as the mean time
it takes to evaluate a test set of 10000 samples on the generated expressions. We use the
default settings of the PyOperon [10] package, except we increase the number of threads
Operon may use to 8. We run this test on an 11th Gen Intel Core i7-11700 @ 2.50GHz. The
results are shown in table 3.5. The evaluation shows the combined effect of small training set
size and parallel hardware, as the training times are two orders of magnitude smaller than the
average reported by La Cava et al. Evaluation time is a negligible fraction of the training time.
We can safely conclude that Operon is fast enough to generate models in an SMBO algorithm.

# Training Samples Training Time (s) Evaluation Time (ms)
100 0.723 0.490
1000 2.038 0.540
10000 13.288 0.574

Table 3.5: Mean training time in seconds and evaluation time in milliseconds of Operon using
default settings and different numbers of training samples.
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Chapter 4

SMBO Experiment

Given its adequate performance in terms of data efficiency and training speed, we conclude that
Operon may be a viable surrogate model. Having clarified its general suitability, we proceed
with its evaluation by comparing it to alternatives. We, therefore, conducted an experiment in
which we compared it to two approaches. The most important one is EGO (algorithm 1) which
uses a Gaussian process as a model and the Expected Improvement acquisition function. The
other is a naive baseline method: random search using Sobol sampling. For Operon, we start
with a purely exploitative method, in which we find the optimum of the generated expression
and take the corresponding inputs for the next objective function evaluation. We also test an-
other version which includes a simple exploration scheme. We generate q separate expressions,
optimise each of them and then choose the best of those optima. The intuition behind this
procedure is that sampling multiple possible expressions will result in a higher chance that we
sample an expression with a very extreme shape leading to a new possible optimum. In the
best case, such an extreme shape actually occurs in the objective function, helping us leave
a local optimum. In the worst case, this will help us fill the gaps in the training set since
extreme shapes are more likely to occur where data is scarce, as we discussed in section 3.1.
This simple exploration scheme is expected to yield improved results over the purely exploita-
tive approach where q = 1. We provide pseudocode for our SMBO approach using Operon
in algorithm 2. The pseudocode includes the potential exploration scheme. In principle, any
maximisation method that can be performed in a small amount of time is suitable to maximise
the generated expressions. We choose to use CMA-ES for this task. We run the algorithm with
a population of n = 4 + ⌊(3 · ln(d))⌋. We stop after ten generations of no improvement or
after 100 generations at the latest.
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Algorithm 1 Efficient Global Optimisation (EGO)

1: Input: Objective function f(x) : X → Y , initial sample size n, evaluation budget N
2: Output: Optimal function value f(x∗) ∈ Y and corresponding input x∗ ∈ X
3: Initialize the dataset D with n Sobol samples from X : D = {(xi, yi)}ni=1, where yi =

f(xi)
4: for t = n to N do
5: Fit a Gaussian Process (GP) model to Dt−1

6: select xt by optimising the Expected Improvement (EI) acquisition function:

xt = argmax
x

EI(x)

7: Evaluate the objective function at the new point: yt = f(xt)
8: Update the dataset Dt ← Dt−1 ∪ {(xt, yt)}
9: end for

10: Return: The best observed point x∗ = argminx y and the corresponding value f(x∗)

Algorithm 2 Global Optimisation with Operon (GOO)

1: Input: Objective function f(x) : X → Y , initial sample size n, evaluation budget N ,
function sample count q

2: Output: Optimal function value f(x∗) ∈ Y and corresponding input x∗ ∈ X
3: Initialize the dataset D with n Sobol samples from X : D = {(xi, yi)}ni=1, where yi =

f(xi)
4: for t = n to N do
5: Generate expressions {e1, .., eq} using Operon and training set Dt−1

6: select xt by finding the optimum of all expressions xt = argminx{e1, .., eq}
7: Evaluate the objective function at the new point: yt = f(xt)
8: Update the dataset Dt ← Dt−1 ∪ {(xt, yt)}
9: end for

10: Return: The best observed point x∗ = argminx y and the corresponding value f(x∗)

For Operon, we consider a few different hyperparameter configurations, as shown in table 4.1.
Q refers to the number of generated expressions in each iteration, which influences our simple
exploration scheme. Max depth refers to the maximum depth of the tree structures underlying
the expressions generated by Operon and max length refers to the maximum number of nodes
in said trees. These two values dictate the size and complexity of generated expressions. Values
that deviate from the standard ones in the O-1 configuration are marked in bold. The allowed
operator set for all configurations consists of subtraction, addition, multiplication, analytic
quotient, and sine. For any unmentioned settings, the default values in the PyOperon pack-
age [10] were used, notably a population size of 1000 and a total evaluation budget of 1 million.
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Configuration Q Max Depth Max Length
O-1 1 20 100
O-2 5 20 100
O-3 1 10 50
O-4 1 5 25

Table 4.1: Hyperparameter configurations for Global Optimisation with Operon. O-1 is consid-
ered the standard, and deviating parameters are marked in bold.

For this optimisation experiment, we use the same functions that we used to generate our
own datasets, as shown in equations 3.2 through 3.6. We conduct separate experiments for
different dimensionalities d (2, 3, 5, 8, 13), totalling 25 different settings. We clip input values
to the interval [−5, 5] in each of the dimensions. Each experiment has a total budget of 10d
evaluations of the objective function. The first 3d evaluations are obtained randomly through
Sobol sampling, to give the surrogate models an initial training set to work with. Intuitively,
this means the initial models are based on an evenly spread set of values, rather than just a
singular value that may bias the initial model. Work by Bossek et al. [1] has investigated the
optimal size or proportion of such an initial budget and concluded that small initial budgets
are often optimal. Based on their findings, we consider that our initial ratio budget of 0.3 can
be considered reasonably well-performant for EGO, while also providing Operon with a solid
foundation. Each combination of an objective function, dimensionality, and surrogate model
is run 20 independent times.

In table 4.2, we show the best function values found by each algorithm. Each row shows the
median of the final objective function values achieved by each algorithm (configuration) on a
combination of function and dimensionality d, as well as the known optimum f(x∗) for that
setting. The lowest value found in each setting is marked in bold. We also mark settings with
an asterisk if both EGO and Sobol sampling are outperformed by all Operon configurations. For
each setting, we provide plots for the best-so-far value at each iteration. The full collection of
plots can be found in appendix A. We highlight a few of these plots with notable observations.

Table 4.2 shows that in 20 of the 25 settings, some configuration of our Operon-based algo-
rithm outperforms EGO. In 5 settings Operon does not perform best. We see that 4 of the 5
settings where EGO finds a better optimum belong to the Styblinski-Tang function. Notably,
the Operon-based configurations struggle to outperform the Sobol sampling for this function.
The fifth setting in which EGO performs best is the 13-dimensional Rastrigin function.

In 7 of the settings EGO is outperformed by every configuration of Operon, but in 13 oth-
ers, the specific hyperparameter values determine whether or not Operon beats EGO. In the
remaining five, EGO outperforms every version of Operon. In table 4.3, we show the number
of settings in which a specific Operon configuration beats both EGO and Sobol sampling. We
see that the O-3 configuration, which does not use our exploration scheme and which has
a reduced maximum size and complexity of expressions, has the most robust track record.
The O-4 configuration, which is limited to even smaller expressions manages to find the best
optimum in a few low-dimensional settings, but often yields a bad result in high-dimensional
cases. In these settings, not all of the input variables can be modelled due to the restrictions,
leading in predictably poor performance. Configuration O-3, however, does not suffer from
this issue, as the dimensionalities used in this experiment do not exceed the capacity of its
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Function d f(x∗) EGO Sobol O-1 O-2 O-3 O-4
Sphere* 2 0.0 2.2e-4 0.721 4.9e-12 2.4e-12 1.3e-12 4.1e-16
Sphere* 3 0.0 8.6e-4 3.045 1.1e-6 2.2e-6 7.1e-7 2.8e-6
Sphere* 5 0.0 1.2e-3 7.967 8.4e-6 1.4e-5 6e-6 1.2e-4
Sphere 8 0.0 4.1e-3 19.554 1.6e-5 1.3e-5 1.8e-5 0.49
Sphere 13 0.0 0.011 46.092 1e-4 7.6e-5 7.2e-5 4.3

Rastrigin* 2 0.0 5.12 10.05 1.01 0.41 1.09 0.56
Rastrigin* 3 0.0 12.32 20.74 3.76 3.05 1.08 2.61
Rastrigin* 5 0.0 16.88 42.61 5.38 7.18 1.37 6.13
Rastrigin* 8 0.0 26.55 78.92 23.82 18.46 16.0 22.37
Rastrigin 13 0.0 39.86 146.92 57.84 59.19 43.77 77.76
Ackley* 2 0.0 0.17 4.72 5e-4 3.8e-4 3.3e-4 4.1e-4
Ackley* 3 0.0 0.39 5.09 7.5e-4 6.7e-4 3.8e-4 6.5e-4
Ackley* 5 0.0 0.73 6.31 7.1e-4 8.9e-4 6.9e-3 1.3e-3
Ackley* 8 0.0 1.61 7.21 1.3e-3 1.4e-3 1.2e-3 1.204
Ackley 13 0.0 2.92 7.93 0.014 0.015 5.2e-3 3.353

Rosenbrock* 2 0.0 1.61 12.03 0.38 0.7 0.15 0.21
Rosenbrock 3 0.0 14.3 119.04 19.16 16.98 5.54 3.7
Rosenbrock* 5 0.0 81.11 2268.68 62.67 63.92 32.76 8.66
Rosenbrock 8 0.0 134.44 8837.5 74.27 167.96 50.55 103.25
Rosenbrock 13 0.0 263.95 29997.73 401.68 255.1 249.16 1122.81

Styblinski-Tang 2 -78.332 -69.23 -61.59 -67.72 -71.21 -73.82 -65.49
Styblinski-Tang 3 -117.498 -106.46 -94.57 -92.36 -95.18 -97.01 -80.64
Styblinski-Tang 5 -195.831 -179.75 -141.89 -141.89 -125.76 -128.33 -123.37
Styblinski-Tang 8 -313.329 -276.19 -205.48 -195.35 -191.02 -189.66 -170.87
Styblinski-Tang 13 -509.160 -438.43 -281.84 -279.73 -285.7 -269.71 -277.22

Table 4.2: Median optimisation results from 20 independent runs for each algorithm in the 25
different settings. The best result per setting is marked in bold. An asterisk behind the function
name indicates that all Operon configurations outperformed EGO and Sobol sampling in that
setting.

Configuration # Settings
O-1 18 / 25
O-2 17 / 25
O-3 20 / 25
O-4 16 / 25

Table 4.3: Number of settings in which a given Operon configuration outperforms both EGO
and Sobol sampling.
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expressions. Furthermore, the enforced simplicity seems to yield better results when compared
to the larger expressions in O-1 and O-2. Comparing configurations O-1 and O-2, we see no
consistent ranking between the two. This indicates that our simple exploration scheme yields
no meaningful benefit. Neither does it cause the algorithm to find worse optima, but since
it does increase the runtime of the algorithm proportionally to the value of q, overall it is
detrimental.

The poor performance of the Operon-based algorithm on the Styblinski-Tang function could
be a result of the chosen operator set for Operon. The function contains a summation over
a 4th-degree polynomial, but the operator set does not contain exponentiation, which means
these parts of the function will have to be modelled through repeated multiplication of the
same input. This becomes especially difficult in high dimensions. Each of the used functions
also includes a summation operator, which provides a succinct way to denote the application
of the same term to each input, while Operon has to reconstruct this term for each input.

While Operon performs well in most cases, we observe that EGO shows a strongly early start
in some cases. In the 13-dimensional Rosenbrock and sphere functions, for which the results
are shown in figures 4.1 and 4.2, we observe that EGO has a lead on Operon for a large
part of the run. In the sphere function, it is in the lead for around 40 iterations, and in the
Rosenbrock this lead lasts around 60 iterations. In cases with very little budget, this could be a
weakness for Operon, which needs more data to start generating solid expressions, especially in
high dimensions. However, we do not observe this phenomenon in the results of the Rastrigin,
Ackley, and Styblinski-Tang function, where Operon is either in the lead from the start and
remains there, or the progress of both algorithms is similar until EGO overtakes Operon.
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Figure 4.1: Results for the 13-dimensional sphere function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 39 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure 4.2: Results for the 13-dimensional Rosenbrock function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs using a loga-
rithmic y-scale. The first 39 values are chosen through Sobol sampling in all cases, after which
an SMBO algorithm takes over.

In many settings, such as the 13-dimensional Ackley function (figure 4.3), we observe that all
algorithms are still making progress toward better optima by the end of the budget. If more
budget is available, even better values may be found. It is possible that an algorithm surpasses
another that performs better on a smaller budget. However, this seems unlikely in this specific
example.

Even though our simple exploration scheme does not offer a measurable benefit to the Operon-
based algorithm, we still manage to outperform EGO, which includes a powerful exploration
mechanism. Exploration is usually considered important in function landscapes with many lo-
cal optima. Aside from the sphere function, all of our functions have multiple local optima.
The Rastrigin and Ackley functions have a particularly large number of local minima, but
barring the 13-dimensional Rastrigin setting, Operon is able to beat EGO without considering
exploration in its acquisition function. Given the absence of long plateaus at the end of most
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Figure 4.3: Results for the 13-dimensional Ackley function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 39 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure 4.4: Results for the 13-dimensional Styblinski-Tang function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs. The first 39
values are chosen through Sobol sampling in all cases, after which an SMBO algorithm takes
over.

settings, we do not think that the algorithm converges in most cases on the given budget and
can therefore not rule out that the global optimum would be found on a larger budget. On
the Styblinski-Tang function, we do see the algorithms converge. See, for example, the 13-
dimensional setting in figure 4.4. Both EGO and all Operon configurations converge without
reaching the global optimum. The Styblinski-Tang function does not have a landscape with
as many local minima as the Rastrigin or Ackley function, though it does have some, unlike
the sphere function. It seems likely that the problem of modelling the exponentiation that we
mentioned before is the culprit here. A stronger exploration, if it results in a better spread
of data points, could help Operon overcome this hurdle. However, parameters of the Operon
algorithm such as maximum length and depth, or population size, may play a larger role.
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Chapter 5

Conclusions and Discussion

In this chapter, we reflect on the results of our experiments. In section 5.1, we draw con-
clusions pertaining to the questions laid out in chapter 1. In section 5.2, we discuss possible
improvements to our algorithm and suggest directions for further research into the application
of SRGP in SMBO.

5.1 Conclusions

In this thesis, we have proposed and evaluated a novel sequential model-based optimisation
(SMBO) algorithm that uses symbolic regression through genetic programming (SRGP) to
construct models of the objective function. We used the state-of-the-art SRGP implementa-
tion called Operon. We compared this approach to the Efficient Global Optimisation (EGO)
algorithm and to a Sobol sampling baseline. Our primary research question was: ”Can an
SMBO algorithm which uses an SRGP method to model the objective function find better
optima than EGO on a set of test problems?”.

Based on the results of the comparison, we conclude that, for most of the tested settings,
our Operon-based algorithm finds better optima within the budget of 10d evaluations. We
tested several hyperparameter configurations for our algorithm and observed that all of them
exceeded the performance of EGO in a majority of settings. We, therefore, conclude that SRGP
is indeed a viable choice for the modelling step in SMBO algorithms, as exemplified by Operon.
On the relatively modest budget sizes we used, we do not always see convergence for our al-
gorithm, nor for EGO. Relative performance may therefore be different on higher budgets, but
in most cases, the slopes of the optimisation curves would indicate that our algorithm remains
competitive.

Our evaluation specifically dealt with two subquestions. The first question is about the sort
of problems SRGP is suitable for: ”Is there a subset of problems on which SRGP performs
especially well or poorly?”.
In the settings where EGO was able to find better optima, the function is often hard to
model for Operon due to the function’s complexity. A high dimensionality is part of this, but
more important is the lack of an exponentiation operator in our configuration of Operon.
This makes it difficult for Operon to build accurate models of the Styblinski-Tang function,
which includes summation over a 4th-degree polynomial. As the quality of models generated
by Operon drops, the overall efficacy of our SMBO algorithm suffers. We also see that when we
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reduce the maximum size and complexity of generated expressions significantly, our algorithm
struggles with high-dimensional functions. We conclude that our algorithm underperforms in
cases where the problem is too complex for Operon to model.
Our second subquestion concerns the number of required evaluations: ”In cases where the op-
tima found by EGO and Operon are (close to) equal, is there a difference in the total number of
objective function evaluations required to find these solutions?”. We do not observe this. When
the algorithms find similar values, their speed toward those values is similar. In some cases,
EGO starts faster than our algorithm and is only overtaken near the end of the budget. Since we
used relatively modest budgets, we do not consider this a significant weakness of our approach.

Our algorithm can be considered purely exploitative. We evaluated the effect of an exploration
mechanic based on a simple intuition regarding the way expressions are constructed. We con-
clude that this exploration scheme did not have a positive effect on the found optima. While
our exploitative approach outperforms the EGO algorithm, which does include exploration, we
find it reasonable to assume that the addition of a more sophisticated exploration scheme to
our proposed algorithm could boost it even further.

We see the results of this study as a proof of concept for the use of symbolic regression algo-
rithms in the domain of SMBO. Operon has proven itself as a suitable approach to generate
expressions, and it is not unreasonable to think that other symbolic regression algorithms could
also fulfil that role. We conclude that sequential model-based optimisation algorithms using
SRGP are a viable and promising alternative to existing SMBO methods.

5.2 Discussion

While the results in this study are favourable for our novel algorithm, the comparison to EGO
is only a start to determine where our algorithm shines. Future research may look to extend
the evaluation to a larger set of test problems, such as the BBOB test suite of the COCO
framework [9]. At the same time, a larger variety of optimisation algorithms may be used
to put our novel algorithm into a broader context. If the COCO framework is used, work by
Hansen et al. [8] may provide an indication of which algorithms are worthwhile to compare
against.

Since the proposed exploration component for our algorithm in this study proved ineffective,
we consider an effective exploration method to be a promising addition to the algorithm.
One approach that could be explored is based on the distance of new inputs to their nearest
neighbours in the training set. By defining an acquisition function that values a mix of the
predicted value and the distance to the nearest neighbours, the algorithm could fill in the
gaps between distant sampled points. Candidate inputs with a high distance to their nearest
neighbours would be valued to encourage exploration, while inputs with an optimal predicted
output would be valued to encourage exploitation. Such an acquisition function could include
weights for both components to allow for tuning.

We have identified a potential weakness of our algorithm in functions that are complex to
model, either because of operators that are difficult for Operon to replicate or because of high
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dimensionality. Research dealing with complex or high-dimensional functions should focus on
the operator set and the maximum size and complexity of generated expressions. The complex-
ity of generated expressions also plays a role in the study of explainable AI. Determining the
lower bounds of complexity for which expressions still adequately model functions in SMBO
could help to create algorithms from which we derive not just an optimal value, but also a
final model that is human-interpretable.

Finally, investigating the efficacy of the algorithm at higher budgets could be worthwhile.
Currently, we have no clear view of the budget our algorithm needs to converge. In our ex-
periments with a limited budget, the algorithm was not able to find the global optimum, but
it also did not converge to a local optimum. Evaluating the algorithm on large budgets could
tell us whether it can find the true optimum of a given function or if it will get stuck in a local
optimum.

In conclusion, the results obtained in this thesis show great promise for the use of SRGP in
SMBO. By improving on the proposed algorithm, and investigating a broad array of relevant
properties, this new approach to SMBO can be developed into a full-fledged family of powerful
algorithms.
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Appendix A

Experimental Results

Figure A.1: Results for the 2-dimensional sphere function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 6 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.2: Results for the 3-dimensional sphere function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 9 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.3: Results for the 5-dimensional sphere function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 15 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.4: Results for the 8-dimensional sphere function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 24 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.5: Results for the 13-dimensional sphere function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 39 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.6: Results for the 2-dimensional Rastrigin function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 6 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.7: Results for the 3-dimensional Rastrigin function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 9 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.8: Results for the 5-dimensional Rastrigin function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 15 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.9: Results for the 8-dimensional Rastrigin function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 24 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.10: Results for the 13-dimensional Rastrigin function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 39 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.11: Results for the 2-dimensional Ackley function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 6 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.12: Results for the 3-dimensional Ackley function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 9 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.13: Results for the 5-dimensional Ackley function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 15 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.14: Results for the 8-dimensional Ackley function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 24 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.15: Results for the 13-dimensional Ackley function. Curves indicate the median found
optimum after each objective function evaluation over 20 independent runs using a logarithmic
y-scale. The first 39 values are chosen through Sobol sampling in all cases, after which an SMBO
algorithm takes over.
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Figure A.16: Results for the 2-dimensional Rosenbrock function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs using a log-
arithmic y-scale. The first 6 values are chosen through Sobol sampling in all cases, after which
an SMBO algorithm takes over.
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Figure A.17: Results for the 3-dimensional Rosenbrock function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs using a log-
arithmic y-scale. The first 9 values are chosen through Sobol sampling in all cases, after which
an SMBO algorithm takes over.
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Figure A.18: Results for the 5-dimensional Rosenbrock function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs using a loga-
rithmic y-scale. The first 15 values are chosen through Sobol sampling in all cases, after which
an SMBO algorithm takes over.
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Figure A.19: Results for the 8-dimensional Rosenbrock function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs using a loga-
rithmic y-scale. The first 24 values are chosen through Sobol sampling in all cases, after which
an SMBO algorithm takes over.
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Figure A.20: Results for the 13-dimensional Rosenbrock function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs using a loga-
rithmic y-scale. The first 39 values are chosen through Sobol sampling in all cases, after which
an SMBO algorithm takes over.
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Figure A.21: Results for the 2-dimensional Styblinski-Tang function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs. The first 6
values are chosen through Sobol sampling in all cases, after which an SMBO algorithm takes
over.
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Figure A.22: Results for the 3-dimensional Styblinski-Tang function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs. The first 9
values are chosen through Sobol sampling in all cases, after which an SMBO algorithm takes
over.
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Figure A.23: Results for the 5-dimensional Styblinski-Tang function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs. The first 15
values are chosen through Sobol sampling in all cases, after which an SMBO algorithm takes
over.
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Figure A.24: Results for the 8-dimensional Styblinski-Tang function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs using. The
first 24 values are chosen through Sobol sampling in all cases, after which an SMBO algorithm
takes over.
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Figure A.25: Results for the 13-dimensional Styblinski-Tang function. Curves indicate the median
found optimum after each objective function evaluation over 20 independent runs. The first 39
values are chosen through Sobol sampling in all cases, after which an SMBO algorithm takes
over.
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