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Abstract

With recent advances in AR systems such as the Hololens 2 and Magic Leap 2,
wearable and portable AR systems have become synonymous with immersive mixed-
reality experiences. These systems however still find challenges in terms of real-time
realistic and adaptive virtual content for Optical see-through head-mounted displays.
In this research thesis, we developed a real-time rendering method to enhance virtual
content quality by studying the computational algorithms used for Projection Mapping
systems, and existing relationships with virtual objects, deriving new relationships and
adapting a Deep Learning Convolutional Neural Network to estimate light direction and
intensity. The methods used in our technique adapt to the environment's light and adjust
the virtual content lighting and light intensity in an AR scene rendered using Hololens
2.
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1 Introduction

Augmented Reality(AR) has seen good advancements in recent times, with its definition ex-
tended to the type of content that is augmented. There are different types of AR, such as
marker-based, markerless, location-based, or projection-based, that use different methods to
track and display virtual content in the physical world. Different AR levels, such as augmenta-
tion, annotation, or manipulation, determine how much the virtual content affects or changes
the physical world. By choosing the right type and level of AR, we can create AR experi-
ences that are compatible, coherent, and consistent with the physical world and the user's
goals[4]. Contextual experiences such as Mobile AR, Sonic AR, Spatial AR, Head-mounted
display(HMD) Wearable AR and similar as seen in Figure 1 have become interesting research
areas connected to immersive augmented experiences.

While most researchers have focused on improving technology in terms of hardware and soft-
ware, much less work has been done in exploring the relationships between virtual and physical
content in AR experiences. Here, Virtual refers to the content displayed using projections with
a procam(projector-camera) system or HMD. In contrast, physical refers to the rigid or non-
rigid objects/surfaces in the visible area.

Projection Mapping(PM) on the other hand is a form of Spatial AR which allows viewers
to experience visual content without using an HMD. Some of the latest research trends on
computational PM were identified by lwai [12] suggesting recent cutting-edge technological
advancements in PM. Advanced methods such as Dynamic PM and High-speed PM can
also be used to optimise virtual content using computational projections similar to the work
also presented by Iwai et al .[11] and [13] and hybrid systems such as the Hybrid Optical
see-through head-mounted display with Spatial AR(HySAR) which is a combination of a pro-
jector(projection mapping) and an HMD calibrated together to render content in parallel[9].

Wearable AR - Mobile AB Spatial AR

Figure 1: [llustration of AR experiences by Makhataeva et al.[17]

The need for optimizations has led to the investigation of more relationships between the
virtual and physical content to optimize strategies to tackle the associated challenges such
as alignment, integration, interaction, latency, spatial awareness, and object recognition all of
which will be evaluated to see the impact of the new relationships identified. This brings us to
our research question - how to optimize interaction and realism in AR-HMD for virtual content?



Hence, through this thesis study, we would like to identify relationships, methods and improve-
ments that might answer this question while providing a novel contribution to the combined
field of Augmented Reality(AR) and Projection Mapping(PM) strictly in the case of Optical
see-through AR HMD(OST-HMD). Table 1 compares some important characteristics of three
major AR types - SAR, OST-HMD and VST-HMD. There are various reasons why OST-HMD
is a better choice for this study as compared to video see-through head-mounted display(VST-
HMD) -

1. Real-world interactivity is severely limited in the case of VST-HMD due to distortions
and lags from the camera feed.

2. OST-HMDs maintain a real-time view of the physical world through transparent optics
whereas VST-HMD shows a digitized view of the same.

3. The Field of view(FOV) of the display is limited in VST-HMD by the camera’'s FOV
compared to the flexible FOV(currently narrow) and peripheral vision of OST-HMDs.
An interesting point to note here is that flexible FOV means, the FOV is only limited
by the optical see-through display size. However, images can also be projected on larger

displays.
Characteristic SAR OST-HMD VST-HMD
Field of view Wide Narrow Limited by Camera
Spatial resolution Low High High
Viewpoint independent rendering Not applicable Suitable Suitable
Maximum intensity Low High High
Dynamic range High Low High
Color space Narrow Narrow Wide
Interaction Not applicable Yes Yes

Table 1: Comparison of SAR, OST-HMD, and VST-HMD

Due to the aforementioned reasons, our research study aligns better with OST-HMD as the
immersiveness and interaction on OST-HMD are well suited for optimizing realism for virtual
content on AR HMD. The rest of the report is structured as follows: The related research
section outlines what relatable research has been done in the field of Projection Mapping(PM).
The fundamentals section contains definitions of the concepts used in the following sections.
The methodology section outlines the algorithms that were used and the relationships explored
and analysed. The experiments and results section shows the tests conducted and results
obtained on the new findings. The discussion contains a review of the methods and analysis
of the results, as well as possible future research in this area. Finally, the conclusion includes
a summary of this thesis research and some concluding remarks.



2 Related Research

Within our research, we explored and studied several research papers that found factors im-
pacting how virtual content is integrated into AR. lwai et al.[9] classified virtual content into
two components - view dependent(VD) and view independent(VIl) when combining Projec-
tion mapping(Spatial AR) with Optical see-through HMD(OST-HMD) AR in their work for
a Hybrid Spatial AR(HySAR) demonstrating a hybrid rendering engine equipped with parallel
rendering paths for the improved material rendering of an object. These components are asso-
ciated with the dichroic reflection model[19] where rendered images such as diffuse reflections
are view-independent and specular reflections are view-dependent.

Some hardware enhancements to existing HMDs for enhancing virtual content have been done
such as by Talukder et al.[22], by using a photo and electrical responsive liquid crystal smart
dimmer for augmented reality displays to enhance the ambient contrast ratio for virtual con-
tent when ambient brightness increases. This requires placing the smart dimmer in front of
the AR display which helps to control the incident background light. A balanced ambient
contrast ratio improves relationships with physical objects such as realism where the virtual
content appears to belong in the physical environment, depth perception where an accurate
sense of depth enables interaction with virtual content intuitively and realistically, and visual
consistency where consistent virtual content is more acceptable within the real world context.

In our research, since we aim to enhance AR content in HMDs by using PM(Spatial AR) meth-
ods, it's also essential to know the current methods used in PM. Since PM content tends to be
highly real-time for its context, several research groups have studied and adapted radiometric
compensation techniques. Bimber et al.[8] propose an algorithm that performs content adap-
tation and radiometric compensation in real-time, and reduces visual artifacts while preserving
a maximum brightness and contrast implemented on a GPU. Radiometric compensation is a
widely used method in Projection Mapping(Spatial AR) for colour blending and reproduction,
also used by HySAR[9].

Colour blending is also essential to virtual content integration in AR for OST-HMDs. Langlotz
et al.[15] propose the application of radiometric compensation in optical see-through HMDs
to compensate for colour blending in real-time and with pixel accuracy by adding an additional
beam splitter that helps capture an image of the environment through a camera as seen from
the user’s eye. Although their work is monoscopic, an important relationship - user perception
of the physical objects has been utilized to improve the virtual content overlaid on the HMD
display and can be extended for stereoscopic displays.

Other sophisticated projection techniques such as aligning the projection to the user's view
and position can add more spatial perception of virtual content in AR HMDs. Byun et al.
[3] used a pan-tilted procam (projection-camera) system where the actuated projector orients
itself to match the user’s view of the projected surface helping them to understand better the
spatial relationship of virtual contents in an augmented scene.

Several research studies have also combined Spatial AR(PM) techniques with AR OST-HMDs
like Hololens in industrial applications such as for Collaborative Robot Programming(Interactive
Spatial AR with Head-Mounted Display, ISAR-HMD) by Bambusek et al.[1]. This approach



however relies on a projector which projects a user interface on a touch-enabled table along
with Kinect sensors to provide interaction with virtual objects. Some works like Mobile Spatial
Augmented Reality on Tangible objects (moSART) by Cortes et al.[5] utilizes the immersive,
wide FOV(Field of view) benefits of Spatial AR by getting rid of the AR display and using a
mobile head-mounted procam (projection-camera) system, however, this has a limitation of
variety of virtual content like 3d objects that can be displayed as well as occlusion problems.
By using PM techniques such as Spatial mapping and 3D reconstruction in AR HMDs for
manipulating virtual content, we could eliminate the need for a projector. This would require
extending the AR HMDs with sensors such as cameras, depth sensors, or LiDAR (light detec-
tion and ranging) to gather information about the objects’ shape, position, and relationship
in the real world.

Einbadi et al.[6] surveyed several deep neural models for light estimation in indoor and outdoor
settings. We studied multiple indoor methods from the survey for both indoor scenes as well
indoor scenes with spatially varying illumination, Gardner et al.[7] demonstrates a method that
trains a DNN to predict the direction, distance, size, and colour of a pre-defined number of
light sources from a single LDR input image. Another interesting approach by Kan et al.[14]
outlines a deep learning-based CNN that can predict a dominant lighting direction using an
RGB-D image as input. The network architecture provided can be trained with synthetic or
real datasets.

Our study shares conceptual parallels with HySAR[9] and ISAR-HMD[1] in its fusion of Op-
tical See-Through Head-Mounted Displays (OST-HMD) and Projection Mapping, alongside
exploring the role of radiometric compensation in Augmented Reality (AR). Diverging from
these works, our research unveils novel interactions between virtual elements and physical en-
vironments. We demonstrate how integrating deep neural networks for light estimation and
object tracking enables the presentation of virtual content in AR OST-HMDs, eliminating the
need for external projectors.



3 Fundamentals

3.1 Optical See-through Head Mounted Displays (OST-HMD)

Optical See-through HMD uses Liquid crystal on silicon (LCOS) [16] material to display images.
The liquid crystal is sandwiched between a layer of glass and a silicon wafer. The silicon wafer's
top metal layer has two key functions: First, it is a mirror that reflects the light, and second,
the mirror's voltage drives the liquid crystal, twisting it to create an image. When the polarized
light reflects from the mirror, the light can project through the optical system so the user can
see the image.

3.2 Projection Mapping and methods used for image processing

1. Projection Mapping
Projection mapping (PM) is a technique in which the system first scans a room with
at least two cameras and then produces an internal map of the space. Based on this
internal map, the system projects virtual content onto the physical surfaces/objects in
the room to create desired effects.

2. Radiometric Compensation

Radiometric compensation is a technique used to correct for variations in lighting condi-
tions and ensure consistent visual appearance in augmented reality (AR) applications. In
procam(projector-camera) systems such as for projection mapping, radiometric compen-
sation is used to adjust the projected image to account for various factors affecting the
quality and clarity of the displayed content. This may involve compensating for ambient
lighting conditions, colour variations, and other environmental factors that can impact
the visibility and legibility of the projected image. By applying radiometric compensation
techniques, projection systems optimize the displayed content to ensure that it is ac-
curately represented and easily viewable by the audience. In general terms, radiometric
compensation involves adjusting pixel values in an image based on factors such as ambi-
ent light, sensor characteristics, and display properties. The goal is consistent brightness
and colour perception across different lighting conditions.

One common approach is to use a gain and offset correction. The corrected pixel value
(P.) can be expressed as:

P. = (P, * gain) + of fset

where:

e P.is the corrected pixel value.

e P is the original (uncorrected) pixel value.

e gain is the gain factor for radiometric compensation.
e of fset is an offset value for additional correction.

The values for gain and offset are typically determined through calibration procedures
that involve measuring the system’s response under various lighting conditions.



3. Bidirectional reflectance distribution function(BRDF) Models

Bidirectional reflectance distribution function(BRDF) is a fundamental concept in com-
puter graphics and vision. BRDF defines the way light is scattered at an idealized point
on an opaque surface when illuminated from a particular incoming direction and viewed
from a particular outgoing direction. It is usually represented as a mathematical func-
tion that takes incoming and outgoing light directions as input and outputs the ratio of
outgoing light radiance to incoming light irradiance. BRDF is used as a key component
in image rendering algorithms and is crucial for displaying realistic and accurate virtual
content. Various BRDF models are developed to simulate the interaction of light and
the choice of a specific BRDF model depends on the characteristics of the material
being simulated and the desired level of realism in the rendered images. For example -
Phong reflectance model also referred to as "Phong Shading” is a BRDF model used
for specular reflections which provide plastic-like specularity.

3.3 Deep learning Convolutional Neural Networks

A Deep Learning Convolutional Neural Network (CNN) is a type of artificial neural network
specialized for processing data that has a grid-like topology, such as images. It employs layers
of convolutional operations, pooling, and often fully connected layers to automatically and
adaptively learn spatial hierarchies of features from input data. CNNs are widely used in image
and video recognition, image classification, medical image analysis, and other tasks involving
visual data.

3.4 Data Augmentation

Data augmentation refers to the process of generating a diverse set of training data by manip-
ulating the lighting conditions, camera positions, and orientations in a simulated 3D environ-
ment. Specifically, we vary the positions and intensities of point light and sunlight and alter
the camera's position and orientation around a 3D object (a cube). This variety in lighting
and viewpoint creates a rich dataset that helps the neural network learn to generalize better,
making it more robust to varying real-world conditions. This technique is particularly valuable
in deep learning for enhancing the model’s ability to understand and interpret different lighting
scenarios and camera perspectives.



4 Methodology

4.1 Relationships review

In this study, various relationships were reviewed between virtual and physical objects in AR
through related literature on Projection mapping and AR HMDs. These relationships concisely
define how an AR experience is built and executed with numerous essential components like
cameras, projectors(in the case of Spatial AR like PM), sensors and computational algorithms
collaboratively working to deliver a coherent output. Based on the PM approach for Spatial
AR, some of the relationships that exist between virtual and physical objects are -

1. Alignment and Integration
This involves aligning virtual content precisely with physical objects. The relationship
here is seamless integration, where virtual elements appear as part of the physical en-
vironment. The quality of this alignment is critical to the effectiveness of the AR expe-
rience. To achieve correct alignment and integration, calibration of the virtual content
concerning its projection environment is required.

2. Spatial awareness
Spatial awareness dictates a precise understanding of the physical environment. This
includes factors such as the dimensions of surfaces, angles, distances, and the overall
3D geometry of the space. High spatial awareness enhances the coherence, realism, and
overall effectiveness of the AR experience.

3. Contextual relevance
Contextual relevance defines the context for selecting virtual content that interacts
harmoniously with physical objects. This includes considerations such as the thematic
connection between the virtual and physical objects and the interaction of virtual content
with physical objects/surfaces. This relationship outlines the significance of classifying
virtual content that can visually pair with the physical surface.

AR OST-HMDs(Wearable AR) are conceptually the same in terms of projecting virtual content
over physical objects/surfaces, they entail the following additional relationships -

1. Object recognition and Tracking
AR HMDs employ object recognition and tracking to identify and track specific objects in
the physical environment, this way they superimpose virtual content onto the identified
physical objects. This relationship relies on computer vision algorithms using cameras
and depth sensors to accurately measure object coordinates, geometry and distance with
machine learning and pattern recognition to enable accurate virtual content overlay on
such objects.

2. Occlusion
Occlusion is a crucial aspect of creating realistic and immersive AR experiences, as it
helps to blend virtual and physical objects seamlessly. When a virtual object is occluded
by a physical object, it means that the virtual content is visually hidden or obscured by
the real-world object. This creates a more convincing illusion that virtual objects exist
in the same space as physical ones, enhancing the overall sense of depth and realism in
the AR environment.
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4.2 Proposed relationships

To further enhance the capabilities of AR HMDs image rendering, we propose the following
novel relationships -

1. Dynamic Lighting interaction
This aspect involves dynamically adjusting the virtual content’s lighting properties to
align with the physical environment's lighting conditions, including ambient light in-
tensity, color temperature, and direction. Implementing an algorithm to modify virtual
objects’ shading, shadows, and highlights ensures they correspond with the real-world
lighting, enhancing the realism of the augmented scene.

2. Object reflectance/Material Matching
This relationship focuses on analyzing and matching the reflectance properties of physical
objects in the environment with those of virtual objects. By measuring the specular and
diffuse reflection components of physical surfaces, we can dynamically adjust the virtual
object'’s reflectance properties. This approach aims to achieve a seamless blend of virtual
and physical elements, contributing to a cohesive augmented reality experience.

3. Color Distribution/Perceptual Realism
The goal here is to adapt the color grading of virtual objects to mirror the color tem-
perature and white balance of the physical environment. By continuously analyzing the
real-world scene’s color distribution, we can dynamically adjust the virtual object’s color
palette and tones. This ensures consistency and harmony with the surrounding environ-
ment, thus enhancing perceptual realism in the AR experience.

4. User Engagement and Interaction
Finally, We propose adding an interactive layer that enables users to engage with virtual
objects within the physical world. This interaction can vary in form, such as interactive
lighting effects that create visual cues and signals. The aim is to guide user interactions,
fostering active participation and engagement within the augmented environment.

4.3 Virtual Image Enhancement Method

Initially, we aimed to adapt methods used in PM for OST-HMD systems. Several methods
were studied and conceptualized that we can utilize to apply the proposed relationships. One
such method uses the generalized radiometric compensation as shown in section 2 and captures
reference images to calculate a gain and offset. These parameters can then be iteratively tuned
by using an optimization algorithm like linear regression or histogram matching to minimize
the difference between observed pixel values and reference values to obtain the desired image.
However, we find that the iterative nature of this approach and pre-calibration time would be
unsuitable for real-time dynamic rendering on AR HMDs.

Exploring further, we hypothesize adapting radiometric compensation utilized in Projection

Mapping(PM) for OST-HMD displays. The following section describes, how we attempted its
adaptation.
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4.3.1 Adapting radiometric compensation for OST-HMD

As seen in Bimber et al.[2] for their generalized approach for radiometric compensation, the
forward light transport equation can be adapted for AR OST-HMD systems as follows-

C\ — T/\_lp)\ —I— (Y (1)

Here:

¢y is the compensated image on the AR headset display of mxn resolution.

T/\’1 is the pseudo inverse of the light transport matrix, which incorporates the charac-
teristics of the AR HMD technology and how it transforms the input image.

pa is the original image stored on the AR HMD.

ey is the environmental light component to adjust for the display conditions.
e )\ represents a single color channel

To calculate a compensated image(for each colour channel in RGB), we need to acquire the
light transport matrix. This matrix allows the image of any scene to be expressed as a matrix-
vector product. By construction, T takes into account all transport paths from light sources to
camera pixels in procam systems. Therefore, if we know T, we can render the scene from the
camera’s viewpoint under any illumination condition with shadows, caustics and interreflec-
tions all included [O'Toole et al][20].

An issue we see is that the light transport matrix is captured for a static scene with a known
amount of light sources. Common real-life scenarios for AR OST-HMDs however could vary
due to the difference in light sources and the compensation for the projected image may not be
accurate. An adaptive approach to this method would be to capture the light transport matrix
in real-time, however depending on the resolution of the images, the light transport could take
a sparsely large form, which can cause long computation delays for real-time rendering. Addi-
tionally, to compute the light transport matrix, we need the projection light pattern p matrix in
equation 1. For a static scene, this can be pre-generated for calibration. On OST-HMDs, this
is extremely complex for a dynamic lighting scene. Moreover, a direct rendering approach is
generally employed in OST-HMD devices compared to the camera-captured image rendering
in PM. In direct rendering, the virtual content is directly displayed in the display’s field of
view. In contrast, camera-captured image rendering where typically radiometric compensation
is used involves images captured by a camera to compensate for projector characteristics and
environmental factors.

As seen in Langlotz et al.[15], we could also utilize a real-time radiometric compensation that
was applied specifically on a custom-built OST-HMD. The paper describes an approach to
calculating perceived radiance R, the image scene by the user's eye-

R=1tgzE+ IFrg (2)

where the term tgE is the environment light transmitted through the beam splitter B which
is part of the OHMD. The amount of transmitted light depends on the used beam splitter and
its light-transmissive factor tp (e.g., 0.5 for half-transparent mirrors). The term | describes
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the radiance of the displayed image. The form factor F of the device describes the effects of
varying image intensities across the entire display surface; for example, the projected brightness
of a pixel falls off at the edge of the display due to vignetting. The reflected light depends on
the reflective factor rg of the beam splitter used as part of the OST-HMD. However, as these
components play a significant role in evaluating the light transmission and interaction factors,
the actual hardware components and their assembly are proprietary for most commercial AR
HMDs like the one we intended to use for experiments, HoloLens. Since the specific details
of the components are unknown, we could not adapt this approach within the scope of this
research study.

4.3.2 Deep learning-based lighting estimation

Our study of PM methods revealed that accurate lighting estimation is crucial for realistic
virtual object rendering. However, adapting traditional PM methods for real-time rendering
in Augmented Reality Optical See-Through Head-Mounted Displays (AR OST-HMDs) proved
complex and unsuitable for dynamic environments. Consequently, we explored an alternative
approach employing a deep-learning neural network. AR OST-HMDs can leverage such a
trained model to estimate lighting using inputs from their cameras and depth sensors. Given
the requirement for image processing, convolutional neural networks(CNN) emerged as a fit-
ting choice. After reviewing various methods and current research on model inference in AR
systems, we identified the network model from Kan et al.[14] as particularly compatible with
our AR OST-HMD, which provides real-time RGB-D image pairs for input. In contrast to
PM methods, the neural network approach offers dynamic lighting adaptation in AR HMDs,
making it more apt for real-time rendering applications.

Light direction and intensity estimation

Kan et al.[14] described their method to estimate a dominating light direction in terms of
Euler angles [, 6] using a neural network. We adapted this network with additional output
layers to estimate a new light parameter- intensity(/) thereby extending the original model's
capabilities. As described in the previous work, we closely follow the method to estimate relative
Euler angles which are relative to the camera coordinate space and transformed to world space
after estimation. For this, the method adds the direction of the camera also in terms of Euler
angles in world space to the estimated light directions [¢, §]. These computations are described
by below equations:

¢l:¢c+¢ (3>
0, =0,+0 (4)

Finally, the Euler representation of the dominant light direction is transformed into the vector
representation (x, y, z) to be used for rendering.

Our new light intensity estimation by its nature is independent of such complexity. However, the
intensity value needs to be transformed between two rendering systems Blender-our dataset
source and Unity-our AR rendering system for which no conversion mapping exists as they
use different interpretations of light intensity. Blender uses watts to depict power for light
sources whereas intensity on Unity is used for brightness. Initially, we set the same values
as the estimated values which need to be adapted experimentally. The additional load on
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Figure 2: By Kan et al.[14] Relative Euler angles ¢ and 6 of dominant light direction
which is regressed by the neural network from an input RGB-D image. The angles ¢ and
0 are relative to the camera pose C. L denotes a dominant light direction

the network to regress intensity values as well, requires us to train the network with diverse
datasets where not only light and camera positions are randomized but also a variety of lights
and intensities are incorporated into the training dataset. In the next sections, we describe how
we adapted the Kan et al.[14] network in our research and our modifications to the network
extending its capabilities.

1. Network Architecture The neural network for light source estimation in Kan et al.[14]
uses residual blocks of convolutional layers to avoid the problem of vanishing or exploding
gradients [He et al.][10]. These blocks use a shortcut connection from the beginning to
the end of a block to let the network learn only a residual value from an original input. The
shortcut connection and the result of a block are merged by an addition operation. The
structure of the network for light source estimation is depicted in Figure 3. The network
architecture begins with an input layer designed for images sized 160 x 120 with four
channels, corresponding to RGB-D image data. This is followed by a convolutional layer
featuring 64 kernels, each of size 7 x 7, which also employs strides to reduce the image
size by half. Subsequently, a max pooling layer further halves the image resolution. The
core of the network consists of 48 convolutional layers, organized into 16 residual blocks.
These blocks are structured with an increasing number of kernels, as indicated by the
dotted connections in Figure 3. Following the convolutional layers is an average pooling
layer, leading into four fully connected layers that progressively decrease in neuron count.
All layers utilize the ReLU activation function [Nair et al.][18], except for the final two
dense layers. The network culminates in a layer that directly regresses the Relative Euler
angles (¢ and ) for light direction.

We conceptualized two network models by adapting and scaling the residual neural net-
work from Kan et al.[14]. Our first network as shown in Figure 4 consists of an additional
average pooling with three fully connected(fc) layers that regress the intensity value from
the average pool output. These fully connected layers utilize the ReLu activation func-
tion except for the last dense layer. We hypothesise that the fully connected layers that
are designed to capture high-level features from the pooled feature maps produced by
the convolutional layers and an extra average pooling layer before the fully connected
layers might help in reducing the dimensions of the feature maps and thereby computa-
tional load on the additional fc layers. By adding extra fully connected layers specifically
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for intensity prediction, the network can learn a separate mapping from these high-level
features to intensity values. This allows for better prediction accuracy for light intensity,
which is a scalar value.
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Figure 3: Deep learning residual network by Kan et al.[14]. Shortcuts for residual blocks
[12] are indicated by curved arrows. Shortcut connections from the beginning to the end of
blocks ensure that inner convolutional layers will compute a residual value. Dotted short-
cuts mark the increase in dimensionality. Blocks with different dimensions are highlighted
with different colors. All activation functions are ReLu except the last two layers which
contain linear activations. Each layer indicates the size of a kernel for convolution as well
as the number of kernels. Fully connected layers (fc) indicate the number of neurons
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Figure 4: First network modified with only fully connected layers for intensity prediction

Our second network is built upon the first network and consists of two additional convolu-
tional layers(64 in and out channels, 3x3 kernel filters) after the first input convolutional
layer along with the average pool output layer that connects with the fully connected
layers for intensity prediction. We hypothesise that additional convolutional layers can be
used to extract more complex or abstract features from the input RGB-D data, which
can be useful for understanding intricate patterns or details in the data for intensity
correlation.

2. Dataset Training a deep neural network requires a large dataset with good diversity.
We experimented with multiple data sources both real and synthetic. As the network is
designed to take RGB-D images as input, we generated a synthetic dataset containing
10000 images(RGB and Depth pair) using Blender in a scene where we put a single
shape- a cube on a plane which aligns with our testing scene described in section 4.6.
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Figure 5: Second network modified with additional convolutional layers(64, 3x3) after the
input convolution, average pooling and fully connected layers for intensity prediction

As we intend to experiment with physical cubes and virtual cubes, it is hypothesized
that the network can learn patterns from this scene setup using high-level features like
diffuse and specular reflections, shadows and image angles. Following data augmentation
was necessary for our dataset for the network to learn efficiently as it is considerably
smaller than the dataset used by Kan et al[14], hence in our script, we varied light
types(point and sun), positions, color and rotations(for sun), and camera position and
distance in our script for Blender. This provides us with different angles, shadows and
light reflections on surfaces adding good diversity to the dataset. Our observations
highlighted challenges in Blender, primarily due to platform limitations such as memory
management. These constraints necessitated extensive development time to script a
solution capable of generating large datasets efficiently. As an alternative to Blender,
Unity was also explored to generate a similar dataset as shown in Figure 7. Configuring a
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scene to simultaneously capture depth and RGB images presented challenges. This setup,
involving two cameras with distinct rendering settings, proved inefficient in producing
synchronized RGBD images, despite extensive testing with various settings.

Figure 6: Blender scene for synthetic im- Figure 7: Unity Scene for synthetic im-
age dataset generation age dataset generation

To train and test our network with real-world data, we attempted to capture RGBD
images using a Kinect One. We emulated our Blender scene setup for data acquisi-
tion, utilizing the PyKinect2 Python library, as depicted in Figure 8. The captured data
was validated by normalizing the depth information and integrating it with the RGB
images. However, this approach yielded poor-quality images. Moreover, creating a high-
quality, augmented dataset comparable to Blender's was time-consuming. Consequently,
we opted against using this method and did not include a real dataset. Given the improved
performance of the network in Kan et al.[14] with synthetic data, we are optimistic that
our modifications and diverse dataset will enhance the network's accuracy in estimating
light direction and intensity for our Proof of Concept (POC) scene.

Figure 8: Kinect one setup for real image dataset generation

3. Training We use the same training technique as in Kan et al.[14] with some modifications
and a few considerations based on experimentation. Going incrementally, we first trained
the original network as a baseline to test our dataset, hyperparameters from the previous
work and platform. Based on the findings from our training experiments and platform
limitations, we adjusted the initial learning rate to 0.0001 while also using a learning
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scheduler to optimize the learning rate every 10 epochs and a weight decay of 0.0001 that
penalizes losses which helps in regularizing the model. Using weight decay encourages the
network to maintain smaller weight values, leading to a simpler model which is less likely
to fit the random noise in the training data and more likely to generalize well to new,
unseen data. This is especially useful because we have a limited amount of training data,
and it helps the model focus on learning the most important patterns. The epoch target
was set to 50 but is dependent on the training if we see signs of overfitting or underfitting
for the last 5 epochs. Empirically, we found that a 0.00005 learning rate worked best
for our training dataset, model and platform and hence the model was trained to our
epoch target. Both RGB and depth data were normalized with zero mean normalization
that pre-processes the input dataset. A stochastic gradient descent optimizer was used
to train the network which is generally employed for such image processing tasks. The
order of input data for training was randomized. As deep neural networks require longer
training times with high-quality datasets, we incorporated an early stopping mechanism
to check for signs of overfitting. To achieve this, after every epoch, we calculate average
validation losses and if the validation losses increase consistently for 5 epochs, we stop
the training and save the model. The network was trained using CUDA on Nvidia GTX
1060. We evaluated the results of the network in terms of both mean squared error and
the real-time AR application on HoloLens 2 to assess applicability to the light source
and intensity estimation in real conditions.

Finally, we chose the first network based on our training and testing experiments. We
observed that the second network did not perform well during training and showed signs
of early overfitting with high training and validation losses. With this experiment, we
learned that deeper neural networks require even larger datasets and longer training times
to perform with better accuracy. However, with adequate data and training optimiza-
tion, we hypothesise that the second network could perform better than our first network
given its design which can be explored in future research. Figure 9 shows training and
validation losses from the training of the first network. Epochs 1-10 were trained with a
learning rate of 0.0001 and Epochs 11-50 were trained with 0.00005 which led to better
training and validation losses over the full course of training.

—— Train Loss
Validation Loss

14 4
12 4

10 4

e .
—_—

e\ N
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Figure 9: Training vs Validation Losses for the first network
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4. Temporal Coherence We follow the same temporal coherence methodology as in Kan et
al.[14]. Testing their effectiveness allows us to transfer proven methodologies to other
AR systems such as OST-HMDs. We initially set the number of light estimations N
to 4 for the outlier filtering which can be updated experimentally. The smoothing is
performed once we have 4 light estimates and use the average of the inliers with a
smoothing and neighbourhood threshold of 0.1 for both the first and second derivatives.
These are described in the equations below-

~ (i) —1(i—1) (5)

021(1) _ol(@)  oli—1) 6
o2 ot ot (6)
5. Rendering As shown in Figure 11, we used HoloLens 2 and its onboard main camera
and depth sensor to capture RGB and depth images respectively while its display shows
the virtual objects with no scene light adjustments. Synchronized RGBD images are
then used to infer from the trained model, which after obtaining multiple light estimates
only from synchronized images, we apply smoothing and add relative camera pose to
transform the estimated light direction in world space. The single dominant directional
light in the scene is then updated with the resulting rotation and intensity. This process
however does not occur in real time due to the limitations of RGBD synchronization
and outlier filtering. If the user does not change position and angles too fast, we can
see a moderate adaptation of the light from these estimated values. The virtual object
consistently appears in the scene while the light estimation is being processed every
frame in the background.

4.4 Object Tracking and Mapping Method

Markers such as QR codes have already been used in Kan et al.[14] and similar previous works
such as HoloLensARToolkit[Qian et al.][21] for AR OST-HMDs to track virtual objects as well
as the RGBD camera. As we aim to obtain a realistic rendered scene as in PM, we explored
a markerless object-tracking technique. Also, this helps us design a scene as realistically as
possible without markers and within the scope and purpose of this research.

4.4.1 Markerless object tracking and model mapping

We experimented with different markerless object tracking such as OpenCV for Unity and
Vuforia framework and decided to use Vuforia for our object tracking and model mapping as
it is publicly available and integrates well with Unity while performing better than Open CV
object tracking especially well suited for AR usecase. The model in this context should not be
confused with the neural network component of our POC application. Here, the model is a 3D
shape that will be used as a virtual object showing interaction with different light directions
and intensities. Below we describe how we approach object tracking and mapping -

1. Model We generated a 3D cube model with dice faces using a combination of Blender
and Inkscape tools which are publically available and give us models in Unity-compatible
format. This model as shown in Figure 10 was later imported into Unity and integrated
with scripts that use the Vuforia framework.
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Figure 10: Model of the virtual cube in the form of a Dice

2. Training Using Vuforia as our markerless tracker, we explored two options for 3D object
tracking training- standard model targets and advanced model targets. Standard model
targets use guide views which are essentially a mesh representation of the 3D shape and
do not require to train object detection. However, they suffer from long first detection,
and low stability and do not work for continuous model tracking. In contrast, advanced
model targets are trained with a 360-degree view of the shape. Both approaches require
a 3D model CAD file. We used the same 3D model that was used for 3D printing a
physical cube to train an advanced model target. We experimented with both object
tracking and found advanced model targets to perform better in terms of detection,
alignment and tracking.

3. Integration Once trained, the generated model database can be imported into Unity
and configured with the means of a script that handles model target behaviour. The
generated model acts as a parent object for the 3D virtual object that we want to
render. During rendering the script tracks the detected physical object every frame and
the 3D virtual object moves with the physical object. We observed fluctuation in tracking
and detection and a reduction in frame rate with real-time tracking since the tracking
is also performed with the same main camera that is being used to capture images for
light estimation. We also observed that the training dataset can be better if a physical
object model with dissimilar faces is used for training, a similarity in two or more faces,
causes inaccurate detections, which can simply be improved by unique faces on each
side of the physical cube.

4.5 AR System Design for Proof of Concept(POC)

As shown in Figure 11, our system running on HoloLens is centred around the collective usage
of Light estimation and Object tracking and mapping modules. Both estimation and tracking
module processes access the RGB and Depth sensor on the HoloLens in every frame of the
rendered scene. As soon as these values are computed, we render the updated parameters of
light while continuously tracking the physical cube which is superimposed with a virtual cube.

21



Light Estimation

Estimate light parameters > 4 5 Physical
S Object

RGB ;f@
Camera ‘ w@] m

o ©
\ HoloLens t— o
Display rD
Depth 3

S

ensor Object Detection m

— and mapping

Detect, apply & track 3D model
Virtual
Object

Figure 11: AR System Design for Proof of Concept(POC)

4.6 Implementation

The network was implemented using PyTorch in Python and subsequent training and testing
was also performed in Python itself. We implemented our methods for RGB-D image capturing
on HoloLens 2 using its research mode capabilities[23]. This required us to build a plugin in
C-++ that interfaces with the research mode APls provided by Microsoft which access the on-
board sensors of the HoloLens 2. This plugin was compiled into a DLL and then integrated with
Unity. The light estimation and object mapping were written in CSharp using Unity(v2022)
and Microsoft's Mixed Reality toolkit(v2.8.3) which is required to deploy applications on the
HoloLens. Despite integrating error handling into our plugin extensively, the experimental na-
ture of HololLens 2 sensors led to unforeseen failures that could not be fully resolved.

RGB-D Frame Acquisiton

We capture RGBA and Depth frames for each Update call of Unity’s mono behaviour scripting
executing per frame. Additionally, we had to incorporate a timestamp technique to get corre-
sponding RGB and depth images from the HoloLens sensors. The accuracy was empirically set
to 100(milliseconds) of time difference as there is a considerable difference in the frame rates
of the main RGB camera(30 fps) and the depth sensor(5 fps). We also observed a delay in
depth frame acquisition from the C++ side to Unity's CSharp side of the implementation and
hence our synchronization method prevents light estimation until we obtain a synchronized
RGBD image input with an acceptable threshold. Once a synchronized frame is obtained, we
scale down and adjust the depth frame(by default 320x288) for potential field of view(FOV)
differences, and calculate corresponding pixel coordinates from the RGB image. These depth
pixel values are then normalized and copied into a single RGBA texture by replacing the alpha
channel values giving us a combined RGBD texture.

Scene

To test and demonstrate the results of light estimation, our POC(Proof of Concept) scene as
shown in Figurell consists of two cubes shown as dice - a physical and a virtual dice. The
physical cube is used for reference to see how closely the virtual cube matches the physical
cube in terms of light interaction and intensity. To accomplish this, we created a scene in Unity

22



with a single cube that will be rendered in an AR scenario superimposed over another physical
cube(10cm) which was custom 3D printed. The superimposed physical cube can manipulate
the virtual cube's position and orientation.

Shaders

Initially, we had explored writing a custom shader for rendering such as the Phong BRDF model
for specular reflections but decided to use Unity's built-in shaders as the focus of our research
was more on light estimation and mapping virtual objects and not specifically rendering.

4.6.1 Execution of the Deep Learning Network Model on HoloLens 2

DL model
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$
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A
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[ Deployment to HoloLens2 ]

DL model inference
On HololLens2

Figure 12: Overview of the integration of DL network model on HoloLens 2

Figure 12 shows the general integration pipeline for the deep learning neural network model
on HoloLens 2 [Zaccardi et al.][24]. The pipeline works as follows - once the model is trained
using Pytorch, the model is saved in a pytorch format which then needs to be converted to an
ONNX model compatible with Unity and HoloLens. This model is integrated with Unity and
Unity’s Library Barracuda for deep learning model loading and inference, which is then built as
a Universal Windows Platform(UWP) app with ARM64 architecture that can be deployed to
HoloLens 2. On-device loading and inference are performed using Barracuda APls by creating
a tensor from the synchronized RGBD image acquired in real-time and using the tensor as an
input to the model to get the expected output.
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5 Evaluation and Results

5.1 Experiment Setup

Figure 13: Setup 1- Light and object Figure 14: Setup 2- Varying light angles
with Hololens and intensity as well as object position

Shown in Figure 13 and 14 are our two different setups for running experiments. We set up two
different light positions and object positions to test our light estimation and object tracking
to evaluate how our light estimation and object tracking perform with different positions and
angles.

5.2 Rendering

Figure 15: User interaction Figure 16: Light Interaction

Figure 17: Realignment on orientation change Figure 18: Interaction from different angle
In our initial evaluation, we focused on rendering the Proof of Concept (POC) Scene in
an environment with a single dominant light source and ambient lighting. This was tested

on the HoloLens 2, taking into account its computational, rendering, and sensor bandwidth
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limitations. Our assessment involved two distinct modules: first for estimating light direction
and intensity, and the second for object tracking, which aligns a virtual cube model with
a physical blue cube. Figures 15 to 18 illustrate various aspects of user interaction, light
interaction, and the system'’s response to different orientations and angles from our evaluation.
Overall, the system performance was satisfactory under these conditions, with both modules
functioning in tandem. Notably, Figure 17 highlights a minor misalignment issue, attributable
to the added burden of simultaneous image capture and tracking on a single camera stream.
We observed coherence in lighting updates with 4 frames.

5.3 Light Direction and Intensity Estimation

Light Direction Estimation We evaluate the accuracy of light direction estimation on a
synthetic test dataset consisting of 100 images(RGB-D pairs). We measure this in terms of
mean squared error for both the estimated values, and we also measure the angular error for
the estimated light directions to the ground truth light directions.

Histogram of Angular Errors in Light Direction Prediction
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Figure 19: Histogram of angular error in light prediction to ground truth

Figure 19 illustrates the distribution of angular errors between the predicted and actual light
directions in our test dataset. We observed a mean angular error of 56.97 degrees and a mean
squared error of 0.34 on the synthetic test dataset(not seen by the model during training), with
a range of errors that suggest variability in the model’s predictive accuracy. The histogram
exhibits a rightward skew, indicating that while the majority of predictions are close to the
ground truth, as evidenced by the peak at lower error degrees, there are notable instances of
large errors. Despite these outliers, the general trend indicates that the model often predicts
light direction within a small angular deviation from the true values.

The breadth of the error distribution underscores that, although the model displays a reasonable
level of accuracy overall, it does not consistently perform well across all test cases. This
variability highlights opportunities for model refinement. Consistent with the properties of
deep learning methodologies, our analysis suggests that the model's predictive capability could
be enhanced by training on a more extensive and diverse dataset, potentially exceeding 25,000
images. Such an expansion of training data is likely to furnish the deep network with a richer set
of features for learning, thereby improving accuracy and reducing the frequency of significant
prediction errors.
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Intensity Original vs Predicted Histogram of Intensity Prediction Errors
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Figure 20: Scatter plot of Intensity prediction Figure 21: Error in Intensity Prediction

Intensity Prediction Similarly, in assessing the precision of our model’s intensity estimations
on the test dataset, a mean squared error (MSE) of 6.5 was recorded. As depicted in Figure
20, the scatter plot delineates the correlation between the actual and the predicted intensity
values. Data points aligned with the red dashed line represent precise predictions, with prox-
imity to this line reflecting higher accuracy. The dispersion of data points around this ideal
line suggests a variability in prediction precision. Notably, while a significant number of pre-
dictions approximate the actual values, as indicated by their closeness to the line, there is a
discernible dispersal, particularly at higher intensity levels. This dispersal signifies a diminu-
tion in prediction accuracy within this range. Conversely, the histogram of intensity prediction
errors presented in Figure 21 exhibits a distribution that predominantly clusters around zero.
This concentration near the origin implies that the model frequently forecasts intensity values
with minimal deviation from the actual data. The distribution presents as nearly symmetrical
but with a minor skew to the right, hinting at a modest subset of predictions where the errors
exceed the average. The bell-shaped curve of the error distribution is reminiscent of a normal
distribution, which typically denotes that the prediction errors are random rather than indica-
tive of any inherent systematic bias within the model.

Together, these observations suggest that our model achieves a moderate level of accuracy

in intensity prediction, with a tendency towards reliable estimations. However, the increased
prediction error at higher intensities points to a potential area for model refinement.
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6 Discussion

6.1 Contribution

We studied several pieces of literature on PM to identify methods that we could potentially
adapt in our research for optimizing realism and interaction in AR. Despite not finding a
method suitable for dynamic adaptation in this context, we recognized the strong potential of
PM methods in AR OST-HMDs. Through the study of PM methods, we identified essential
components and relationships of an augmented scene and how those components can be
manipulated to create a realistic, interactive and immersive experience. As we could not apply
PM radiometric compensation methods in the time frame for this research, we moved toward
deep learning neural networks and identified a method that could be combined with our research
and adapted with modifications required for our research goal. Our main contribution to realism
and interaction in AR systems is a novel method which innovatively combines light direction
and intensity estimation with markerless object tracking, enabling real-time rendering which is
independent of an AR platform as long as we provide the necessary real-time input data(RGB-
D image in our case). Hence our method can be applied to any AR OST-HMD system that can
run a deep neural network inference in real-time realistic rendering while efficiently computing
the related image post-processing. To the best of our knowledge and study of similar previous
literature, a deep neural network that estimates light direction, as well as intensity, has not
been combined with markerless object-tracking approaches for creating a realistic rendering
system that gives us a similar experience as Projection Mapping while also adding interactivity.

6.2 Dataset

A crucial aspect of employing a deep neural network is its training with an appropriate dataset.
In our study, we faced limitations due to the dataset’s size and its focus on a single shape,
intended to align with the Proof of Concept (POC) scene. This limitation led to less accu-
rate model predictions, despite achieving better validation losses during training. We trained
the model using a synthetic RGB-D dataset, which yielded satisfactory performance in both
synthetic and real-world test scenarios. However, for enhanced accuracy, it's imperative to
train the network with a more extensive and diverse dataset, encompassing both synthetic and
real-world data.

Creating a high-quality synthetic dataset presented significant challenges, particularly when
using tools like Blender and Unity, which impacted both the quality and variety of the data.
In generating this dataset, our scripts were based on several assumptions about real-world
geometry(cube on a plane), possibly leading to less variety in the dataset. This highlights
the importance of pre-filtering the dataset through a robust quality pipeline, a process that
demands an extended timeframe for data acquisition. In parallel, our efforts to capture a real
dataset faced hurdles in pre-processing, a critical step to ensure the data’s suitability for train-
ing. The time-intensive process of obtaining a diverse, high-quality real dataset, coupled with
the absence of suitable open-source alternatives, limited our ability to incorporate such data
within the constraints of our study’s timeline. These experiences underscore the complexities
involved in dataset preparation for deep learning applications, especially in the context of bal-
ancing synthetic and real-world data for enhanced model training and accuracy.
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Despite these challenges, the model demonstrated moderate effectiveness, trained solely on a
synthetic dataset. Our evaluation result trends indicate that training the network with a larger,
high-quality dataset, potentially incorporating both synthetic and real data, could significantly
refine the model and improve prediction accuracy.

6.3 Results

The outcomes of our Proof of Concept (POC) strongly align with the theoretical relationships
outlined in section 4.2. Our deep learning neural network model excels in estimating light direc-
tion and intensity, a critical component for facilitating dynamic lighting interaction as per our
proposed framework. This proficiency is integral to achieving perceptual realism in Augmented
Reality (AR). It allows for the precise adaptation of virtual lighting to reflect real-world condi-
tions, thereby ensuring that the virtual object’s shading, shadows, and highlights are consistent
with the physical environment's lighting. This alignment significantly improves how the ob-
ject’s highlights and colors are perceived through the AR Optical See-Through Head-Mounted
Display (OST-HMD), echoing our intended relationship of color distribution and perceptual
realism. Moreover, the ability of our approach to adapt virtual objects’ material properties
enhances object reflectance. This is evident in the seamless integration of virtual objects with
their physical counterparts, ensuring that their specular and diffuse reflection components are
in harmony.

Additionally, our object-tracking module plays a pivotal role in fostering user engagement
and interaction. It creates a seamless bridge between the physical and virtual worlds, allowing
for intuitive and meaningful interaction with virtual objects. This not only resonates with
our proposed relationship of user engagement and interaction but also enriches the overall
experience by introducing interactive elements and visual cues that encourage user participation
in the augmented environment. Overall, the distinct modules of our POC collectively contribute
to an immersive AR experience that closely adheres to our proposed relationships. This not
only validates our theoretical framework but also demonstrates its practical applicability in
enhancing physical-virtual object interaction, both in terms of visual congruence and user
interactivity.

6.4 Limitations and Future Work

In developing a real-time light estimation and rendering system for this research, we faced
numerous challenges and made strategic decisions. These choices, while not ideal in every
aspect, were optimized to demonstrate the effectiveness of our approach. A significant lim-
itation was our inability to implement a radiometric compensation method for AR Optical
See-Through Head-Mounted Displays (OST-HMDs), a technique that would have brought us
closer to integrating Projection Mapping methods in AR. This limitation was primarily due to
the constraints of our chosen AR platform and the inherently static nature of conventional
PM approaches. This experience highlights the distinct limitations and potential applications
of Spatial AR(PM) versus Wearable AR(OST-HMD), underscoring the unique challenges in
adapting technologies across different AR applications.

We decided to use one of the two proposed neural network architectures due to its suitability
for the time frame of this research. As outlined in the Training section of the methodology,
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the second network when trained with appropriate data could potentially perform much better
than the first network adding more accurate light estimation for real-time rendering. Since we
could not evaluate this network, we find that experimenting with the second network could be
a good case for future research.

We performed transformation from camera space to world space in our prediction tests with
synthetic test dataset, but we did not perform this transformation in our POC implementa-
tion for testing on HoloLens as our camera is aligned with the user's field of view and also
since obtaining camera pose from HoloLens presented challenges that could not be resolved.
However, by adding the relative camera Euler angles to the estimated light direction, a better
accuracy in the light direction can be obtained.

Finally, our approach involved using RGB-D inputs for both training and evaluating our neural
network, where depth values were integrated into the alpha channel of RGBA images. This
methodology, while effective, presents opportunities for enhancement. One notable improve-
ment would be the addition of a separate channel to the image input to incorporate surface
normals. Integrating surface normals would provide the model with more detailed information
about the geometry of the observed scene, potentially leading to more accurate light estima-
tion and rendering. This additional data could help the network better understand the nuances
of object surfaces and their interaction with light, thereby improving the overall quality and
realism of the AR experience. Furthermore, integrating surface normals could aid in refining
the model's ability to interpret complex scenes, particularly those with intricate geometrical
features, enhancing the model’s applicability and robustness in diverse real-world applications.

HoloLens 2

Figure 22: Hololens 2 front view by Microsoft
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Y H

Figure 23: RGBD frames from Hololens 2

HoloLens Research Mode and Real-time RGB-D frame acquisition An AR platform is
a crucial component of developing an approach for realistic rendering. A substantial effort was
spent in this research to develop a plugin that can provide real-time depth image frames from
the depth sensor on HoloLens using its research mode capabilities[23]. Currently, the depth
sensor provides a hexagonal frame where its field of view does not fully align with the field
of view of the Hololens RGB camera and the camera and sensor are located at an offset on
the setup of HoloLens 2 shown in Figure 22. This limitation was unknown when we chose this
platform as a testing AR system for our approach.

Acquiring an undistorted depth frame which is accurately synchronized with the frame capture
from the RGB camera is currently not possible with HoloLens 2 due to the difference in their
frame rates, field of view and offset between the sensors. However, complex approaches like
using sensor poses to find sparse correspondences through back projection and reprojection
might give better results. Figure 23 shows different frames when visualized as a PNG image
normalized to RGB colour range(0-255). We implemented a timestamp technique to identify
synchronized frames within a threshold, we did not find a frame less than 100 ms of difference
between the frame acquisition from both sensors, this led to possibly less inaccurate represen-
tation of the real-world scene, and consequently less accurate predictions from the model for
light estimation and intensity. Moreover, as the camera is shared between the RGBD frame
acquisition and object tracking, the frame rate of the cameras due to shared usage is dropped
which does not give us sufficient synchronized frames for real-time lighting changes in the
rendered scene. Hence a moderately accurate result was obtained. If these limitations are
addressed, our method could also potentially be further enhanced by utilizing inertia measure-
ment units(IMU) like the accelerometer and gyroscope data to track user pose and apply this
information while rendering the virtual objects.
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7 Conclusion

The work undertaken in this project, which involved studying Projection mapping methods,
adapting the Deep Light model for intensity prediction in augmented reality (AR) applica-
tions and its integration with an object tracking framework, presented a series of challenges
and learning opportunities. Creating a specialized dataset and iteratively refining the model
showed us the adaptability and complexity inherent in deep learning. A critical aspect of our
success was the precise adjustment of the network architecture and the training of a 3D model
for object tracking, both essential for improved real-time rendering performance. Our results
demonstrate notable advancements in light direction estimation, intensity prediction, and ob-
ject tracking. However, they also reveal the intricate balance required in the training of both
Deep Convolutional Neural Networks and object-tracking models, highlighting the need for on-
going optimization and refinement. This project lays important groundwork for future research
in AR, illustrating the potential and challenges of applying deep learning in specific, real-world
scenarios. It is a significant step forward in the integration of complex computational models
within the dynamic realm of AR.

Acknowledgements We would like to express our deepest gratitude to Edwin van der Heide, our
first supervisor, for their invaluable guidance in navigating the complexities of our research question,
their patience, and their expert advice throughout this research. We are also grateful to Daisuke
Iwai from Osaka University for joining us as a second supervisor midway through our thesis. His
guidance, constructive advice, and critical feedback have been instrumental in shaping our research.
We sincerely thank the faculty and staff of LIACS, Leiden University, for their unwavering support
and assistance. Our heartfelt thanks go to my colleague, Adel Qaddoumi, who inspired us to delve
into the field of Extended Reality (VR/AR). His insights and assistance have significantly enhanced
the quality of this work. We are equally thankful to the Leiden Learning and Innovation Center for
their generous support in providing a HoloLens 2 device, which was crucial for our research. Finally,
we wish to thank all those who have directly or indirectly contributed to the completion of this thesis.

31



References

[1]

[10]

[11]

Daniel Bambusek et al. “Combining Interactive Spatial Augmented Reality with
Head-Mounted Display for End-User Collaborative Robot Programming”. In: 2019
28th IEEE International Conference on Robot and Human Interactive Communica-
tion (RO-MAN). 2019, pp. 1-8. DOI: 10.1109/R0-MAN46459.2019.8956315.

O. Bimber and G. Wetzstein. “Radiometric Compensation through Inverse Light
Transport”. In: Computer Graphics and Applications, Pacific Conference on. Los
Alamitos, CA, USA: IEEE Computer Society, Sept. 2007, pp. 391-399. DOI: 10.
1109/PG.2007 .47. URL: https://doi.ieeecomputersociety.org/10.1109/PG.
2007 .47.

Junghyun Byun and Tack-Don Han. “PPAP: Perspective Projection Augment Plat-
form with Pan-Tilt Actuation for Improved Spatial Perception”. en. In: Sensors
(Basel) 19.12 (June 2019).

LinkedIn community. How do you design AR for spatial and contextual awareness
and understanding? URL: https://www.linkedin.com/advice/0/how-do-you-
design-ar-spatial-contextual-awareness.

Guillaume Cortes et al. “MoSART: Mobile Spatial Augmented Reality for 3D In-
teraction With Tangible Objects”. In: Frontiers in Robotics and AI 5 (2018). 1SSN:
2296-9144. por1: 10.3389/frobt.2018.00093. URL: https://www.frontiersin.
org/articles/10.3389/frobt.2018.00093.

Farshad Einabadi, Jean-Yves Guillemaut, and Adrian Hilton. “Deep Neural Mod-
els for [llumination Estimation and Relighting: A Survey”. In: Computer Graphics
Forum 40.6 (2021), pp. 315-331. DOL: https://doi.org/10.1111/cgf . 14283.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14283. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14283.

Marc-André Gardner et al. “Learning to Predict Indoor Illumination from a Single
Image”. In: CoRR abs/1704.00090 (2017). arXiv: 1704.00090. URL: http://arxiv.
org/abs/1704.00090.

Anselm Grundhofer and Oliver Bimber. “Real-Time Adaptive Radiometric Com-

pensation”. In: ACM SIGGRAPH 2006 Research Posters. SIGGRAPH ’06. Boston,

Massachusetts: Association for Computing Machinery, 2006, 56—es. ISBN: 1595933646.
DOI: 10.1145/1179622.1179686. URL: https://doi.org/10.1145/1179622.

1179686.

Takumi Hamasaki et al. “HySAR: Hybrid Material Rendering by an Optical See-
Through Head-Mounted Display with Spatial Augmented Reality Projection”. In:
IEEE Transactions on Visualization and Computer Graphics 24.4 (Apr. 2018),
pp. 1457-1466. 18SN: 1077-2626. DOI: 10.1109/TVCG.2018.2793659. URL: https:
//doi.org/10.1109/TVCG.2018.2793659.

Kaiming He et al. Deep Residual Learning for Image Recognition. 2015. arXiv: 1512.
03385 [cs.CV].

Daisuke Iwai. Computational Projection Display for AR/VR. 2017. URL: https :
//daisukeiwai.org/share/paper/Iwai_IMID17.pdf.

32



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[23]

Daisuke Iwai. “Latest Research Trends on Computational Projection Mapping”. In:
(2018).

Daisuke Iwai, Yuta Itoh, and Parinya Punpongsanon. “Computational Augmented
Reality Displays”. In: Proceedings of the 2018 ACM International Conference on
Interactive Surfaces and Spaces. 1SS ’18. Tokyo, Japan: Association for Comput-
ing Machinery, 2018, pp. 477-479. 1SBN: 9781450356947. DOI: 10.1145/3279778.
3279808. URL: https://doi.org/10.1145/3279778.3279808.

Peter Kan and Hannes Kaufmann. “DeepLight: light source estimation for aug-
mented reality using deep learning”. In: The Visual Computer 35.6 (June 2019),
pp- 873-883. 1SSN: 1432-2315. DOI: 10.1007/s00371-019-01666-x. URL: https:
//doi.org/10.1007/s00371-019-01666-x.

Tobias Langlotz, Matthew Cook, and Holger Regenbrecht. “Real-Time Radiometric
Compensation for Optical See-Through Head Mounted Displays”. In: IEEE Trans-
actions on Visualization and Computer Graphics 22 (July 2016), pp. 1-1. DOI:
10.1109/TVCG.2016.2593781.

Po King Li. “LCOS and AR/VR”. In: Information Display 34.2 (2018), pp. 12—
15. DoL: https://doi.org/10.1002/j.2637-496X.2018.tb01068 . x. eprint:
https://sid.onlinelibrary.wiley.com/doi/pdf/10.1002/j.2637-496X.
2018.tb01068.x. URL: https://sid.onlinelibrary.wiley.com/doi/abs/10.
1002/3.2637-496X.2018.tb01068. x.

Zhanat Makhataeva and Huseyin Atakan Varol. “Augmented Reality for Robotics: A
Review”. In: Robotics 9.2 (2020). 1SSN: 2218-6581. DOI: 10.3390/robotics9020021.
URL: https://www.mdpi.com/2218-6581/9/2/21.

Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on In-
ternational Conference on Machine Learning. ICML’10. Haifa, Israel: Omnipress,

2010, pp. 807-814. 1SBN: 9781605589077

Shree K. Nayar, Xi-Sheng Fang, and Terrance Boult. “Separation of Reflection
Components Using Color and Polarization”. In: International Journal of Com-
puter Vision 21.3 (Feb. 1997), pp. 163-186. 1sSN: 1573-1405. DOI: 10. 1023 /A :
1007937815113. URL: https://doi.org/10.1023/A:1007937815113.

Matthew O’Toole and Kiriakos N. Kutulakos. “Optical Computing for Fast Light
Transport Analysis”. In: ACM Trans. Graph. 29.6 (Dec. 2010). 1ssN: 0730-0301. poOI:
10.1145/1882261.1866165. URL: https://doi.org/10.1145/1882261.1866165.

Long Qian, Anton Deguet, and Peter Kazanzides. “ARssist: augmented reality on
a head-mounted display for the first assistant in robotic surgery”. In: Healthcare
technology letters 5.5 (2018), pp. 194-200.

Javed Rouf Talukder, Hung-Yuan Lin, and Shin-Tson Wu. “Photo- and electrical-
responsive liquid crystal smart dimmer for augmented reality displays”. In: Opt.
Express 27.13 (June 2019), pp. 18169-18179. por: 10.1364/0E.27.018169. URL:
https://opg.optica.org/oe/abstract.cfm?URI=0e-27-13-18169.

Dorin Ungureanu et al. “HoloLens 2 Research Mode as a Tool for Computer Vision
Research”. In: arXivw:2008.11239 (2020).

33



[24] Silvia Zaccardi et al. “On-Device Execution of Deep Learning Models on HoloLens2
for Real-Time Augmented Reality Medical Applications”. In: Sensors 23.21 (2023).
ISSN: 1424-8220. DOI: 10.3390/s23218698. URL: https://www.mdpi.com/1424-
8220/23/21/8698.

34



