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Abstract

The scarcity of data is a well-known problem in machine learning. This thesis will investigate
various models to generate chest X-rays suitable for machine learning tasks. Four models
are examined: Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs),
Diffusion Models, and Autoregressive Models. The study focuses on their architectures,
mechanisms, and effectiveness in generating realistic images.

The research involves implementing and comparing these models based on their performance
in generating chest X-rays. Different settings and their performance are compared for each
model. A discriminator and a classifier are used to compare the models. The discriminator is
trained in a GAN, and the classifier is a convolutional neural network.

The results indicate that Diffusion Models come closest to the NIH chest X-ray dataset,
followed by GANs, with VAEs in third place. The Autoregressive Model was not tuned well
enough to provide competitive results. This study highlights the strengths and limitations of
each model in creating data and their applications in medical imaging. It provides valuable
insights into the effectiveness of various generative models for augmenting medical imaging
datasets, potentially improving the training of machine learning algorithms in healthcare.
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1 Introduction

X-rays allow humans to examine the inside of a human chest without cutting open a person entirely.
An X-ray can help detect issues mainly with the lungs, heart outline, and bone structure. However,
doctors can find detecting anomalies in this part of the human body challenging and time-consuming.
Nowadays, many algorithms can try to detect these anomalies in the human body. These algorithms
do so by trying to distinguish between a chest X-ray of a good-functioning human and a chest X-ray
of a not-good-functioning human organ. However, identifying the X-rays belonging to non-healthy
persons by solely observing the images can be difficult for the algorithm. Therefore, this thesis will
utilize some newer techniques focused on machine and deep learning. These methods have been
gaining popularity, including in detecting anomalies [PSCVDH21].

Machine learning can be seen as a type of algorithm that learns patterns from data and tries to
make predictions. So Machine learning is rather a focus on learning on the given data rather than
explicitly programming for a specific task. Deep learning on the other hand is a subset of machine
learning. Deep learning is focused on using neural networks with many layers. The architecture
is thus composed of layers of nodes which tend to model how a normal neuron in a human brain
functions. Each deeper layer extracts more abstract features from the data.

One of the problems of these algorithms is that they need a lot of data to function properly.
Sometimes this data is not available, say a rare disease. In those cases, producing synthetic training
data using algorithms can help solve a lot of issues. In other words, these algorithms have the task of
generating images. And that is exactly what this thesis focuses on. The idea is to have a dataset and
try to produce images similar to that dataset so that another machine learning algorithm can learn
from it. This thesis focuses on the following algorithms: Generative Adversarial Networks, Varia-
tional Autoencoders, Diffusion models and Autoregressive models. The intention is to also compare
these models with the discriminator from the Generative Adversarial Network and subsequently
train a discriminator as a normal classifier. Then the idea is to completely compare all of these results.

Different machine learning algorithms can be utilized to use the generated data. One such technique
is an autoencoder network, which encodes unlabelled data to the latent space (a lower-dimensional
space than the input data) and reconstructs the data based on its representation in the latent space.
This algorithm, in particular, has been extensively used in different projects [CPP+20].

For the autoencoder network, the best way to train for anomalies is by simply training it solely on
X-rays where the patient is healthy. Training in this way ensures that when the network encounters
samples that have particular pathologies, the network will give a poor reconstruction, as the autoen-
coder did not learn an image that has a defect. Since the network will try to classify the difference
between the input and output, the distance between the defective image and a non-defective image
should be quite significant (on a per pixel bases as stated in) [CPP+20]. To automate this process
of detecting the difference between a defective and non-defective image, a Convolutional neural
network can be used to predict the probability of an illness or defect in the image given to the
autoencoder [PLP+22].

There have also been instances where only convolutional neural networks are used and no in-
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stance of an autoencoder [RIZ+17]. This was based on a model called CheXNet that consists of
121 layers trained on the CHestX-ray 14 dataset. The weights of this model are from a pre-trained
model on ImageNet. The network utilized the optimizer Adam, a batch size of sixteen, and a
learning rate of 1e-3. This model did perform better than a radiologist in recognizing Pneumonia
on the X-ray images [RIZ+17].

Another method to detect defective samples (samples that have particular pathologies) is by
using the confidence-aware anomaly detection model. This model is made up of an extractor of
features, a detector for anomalies, and a module that predicts the confidence that an image is an
anomaly. If the score from the detection module is significant enough or the module that predicts
the confidence level returns a small enough score then the input will be seen as an anomaly case.
The advantage of utilizing this approach and not the approach of binary classification is that there
is no need to model individual viral pneumonia classes, instead the algorithm attempts to detect
any case of viral pneumonia [unk21].

An additional viable approach would be to utilise a model called an autoencoder with pixel-
wise uncertainty prediction. This model does not only reconstruct a distribution (like the variational
autoencoder network above did). It also estimates how uncertain the reconstruction is for each
pixel, and with that attempts to enhance the defect detection even further. As described in paper
[MXW+20], the reconstruction uncertainty is lower in the region around the lung and because of
that, these scores can be used to detect anomalies. Due to X-rays mainly being used in the region
around the lung area.

An alternative to the above-mentioned ways to find defects in an X-ray image is using a Generative
Adversarial One-Class Classifier. The following paper [TTH+19], describes how three networks,
with input the chest X-ray images, compete and collaborate with one another to reconstruct the
incoming image. (just like in the Generative Adversarial Network). If the reconstructed image does
not look at least equivalent to the input image, thus the reconstruction was poor because the input
image does not look like images used in the training set, then the chest X-ray image should have
some defects.

In this thesis we use the NIH Chest X-ray dataset, This dataset is used because of its large
number of images and the accuracy of the corresponding annotations. It boasts about 112,120 X-ray
images sampled from 30,805 unique patients. These are automatically labelled with a 90 percent
accuracy by an NLP algorithm created by the National Institute of Health in the United States of
America. However, as can be seen from figure 1, the diseases are unevenly distributed throughout
the dataset and there are not a lot of images for the diseases. For those reasons, focusing solely
on generating an X-ray image and not on particular diseases seems better. Figure 2 shows the
visual representation of the data. To address the research objectives, this thesis aims to answer
the following main research question:
”Which algorithm (Generative Adversarial Networks, Variational Autoencoders, Diffusion models,
or Autoregressive models) generates chest X-ray images with the highest fidelity for diagnostic
purposes?” To further explore this main question, several sub-questions will be investigated:

1. How well is the Generative Adversarial Network discriminator at checking how well the other
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Figure 1: The distribution of the number of images in the NIH chest x-ray dataset. From both the
train and test datasets together. No finding means the patient had no illnesses and is thus the
control group. The other images are all illnesses.

Figure 2: A sample of chest X-ray images from the NIH Chest X-ray dataset.
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models are performing at creating a chest X-ray image?

2. How do the algorithms’ generated images (VAE, autoregressive, GAN, diffusion model)
compare to each other through the human eye when compared to the NIH chest X-ray
dataset?

3. How do the algorithms’ (VAE, autoregressive, GAN, diffusion model) compare to each other
through the discriminator of the GAN?

4. How do the algorithms’ (VAE, autoregressive, GAN, diffusion model) compare to each other
through a classifier?

5. Which hyperparameter setting produces a result that is the most similar to the X-ray images
on each algorithm?

6. Which of the algorithms with their optimal hyperparameter settings produces images that
looks the most like X-ray images from the NIH chest X-ray dataset?

7. Which hyperparameter settings of a GAN (batch size, image channels, image size, learning
rate, hidden dimensions, kernel size, padding) give a stable algorithm that generates x-ray
images?

8. How do the baseline GAN generated images compare to the NIH X-ray dataset images
according to the human eye?

9. For which epoch are the GAN generated images closest to the NIH chest X-ray dataset?

10. For which learning rate is the GAN producing X-ray images that are closest to the NIH chest
X-ray dataset?

11. For which image size are the GAN generated images closest to the NIH chest X-ray dataset?

12. For which hidden dimension size are the GAN generated images closest to the NIH chest
X-ray dataset?

13. Which hyperparameter settings of a VAE (batch size, image channels, image size, learning
rate, hidden dimensions, kernel size, padding) give a stable algorithm that generates x-ray
images?

14. How do the baseline VAE generated images compare to the NIH X-ray dataset images
according to the human eye?

15. For which epoch are the VAE generated images closest to the NIH chest X-ray dataset?

16. For which learning rate is the VAE producing X-ray images that are closest to the NIH chest
X-ray dataset?

17. For which image size are the VAE generated images closest to the NIH chest X-ray dataset?

18. For which hidden dimension size are the VAE generated images closest to the NIH chest
X-ray dataset?
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19. Which hyperparameter settings of an autoregressive model (batch size, image channels, image
size, learning rate, hidden dimensions, kernel size, padding) give a stable algorithm that
generates x-ray images?

20. How do the baseline generated images by the autoregressive model compare to the NIH X-ray
dataset images according to the human eye?

21. For which epoch are the generated images of the autoregressive model closest to the NIH
chest X-ray dataset?

22. For which learning rate is the autoregressive model producing X-ray images that are closest
to the NIH chest X-ray dataset?

23. For which image size are the images generated by the autoregressive model closest to the NIH
chest X-ray dataset?

24. Which hyperparameter settings of a diffusion model (batch size, image channels, image size,
learning rate, hidden dimensions, kernel size, padding) give a stable algorithm that generates
x-ray images?

25. How do the baseline generated images by the diffusion model compare to the NIH X-ray
dataset images according to the human eye?

26. For which epoch are the generated images by the diffusion model closest to the NIH chest
X-ray dataset?

27. For which learning rate is the diffusion model producing X-ray images that are closest to the
NIH chest X-ray dataset?

28. For which image size are the images generated by the diffusion model closest to the NIH chest
X-ray dataset?

By investigating these questions, this thesis seeks to provide a comprehensive comparison of different
generative models in the context of medical image generation, thereby contributing valuable insights
to the field of medical image analysis and synthetic data generation.
This thesis was completed as part of the Bachelor’s program in Data Science and Artificial
Intelligence at LIACS, under the supervision of Prof. dr. Joost Batenburg and Serban Vadineanu.

2 Related Work

2.1 Machine learning algorithms for generating data

A problem in machine learning is that models sometimes do not get enough data to train on. This
problem results in a worse machine learning model than if they had enough data. This mostly
applies to more specific cases like specific illnesses, which do not have a lot of data on them yet.
This thesis aims to figure out which model generates chest X-rays as suitable for machine learning
tasks as possible. First, this thesis will highlight the different algorithms for generating X-ray data.
Then, the machine learning methods for recognizing illnesses will be highlighted. There are multiple
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models suitable for the image generation this thesis aims for:

1. Generative Adversarial Networks (GAN)
As described in [Bha18], the first generative adversarial networks were made using a fully
connected neural network. A fully connected neural network is a network where each perceptron
has a linear transformation to the input through the weights. In favour of more stability
most of the GANs have eliminated the use of fully connected layers [ACB17] [GAA+17]
[MKKY18] [RMC15]. In favour of convolutional GANs, this version relies on convolutional
neural networks. Convolutional neural networks have Convolutional layers that take the dot
product from a part of the input and the kernel. The kernel is like a filter that slides over the
image, highlighting patterns by calculating the dot product. Other than the kernel taking the
dot product, another difference is that not every node is connected. This construction creates
more flexible learning. The weights in each layer are also much smaller, which helps in vision
tasks and other high-dimensional inputs.

2. Variational Autoencoders
The modern VAE (variational autoencoder) version is introduced in [Kin13]. It shows a way
to efficiently perform posterior inference using neural networks. Posterior inference is the
process of updating the probability distribution of a model’s parameters based on observed
data. In 2014, this paper [RMW14] also demonstrated the effectiveness of the methods used
in a variational autoencoder for generative models (like the reparameterization trick shown in
section 2.3.3). There has also been some research to improve the variational autoencoders
in general. VampPrior [TW17] uses a mixture of posteriors to enable a more flexible prior
distribution. Or Hierarchical VAEs [ZSE17] that use hierarchical latent representations to
make more complex data distributions possible. VAE’s have also been shown to be used for
image generation but only on simple datasets like the MINST dataset (a simple standard
dataset used for machine learning tasks, the dataset consists of handwritten numbers).

3. Diffusion
The diffusion model [SD15] and variants of it have seen good results thus far [Ho20, Nic21,
Son20, Rom21, Rua22, Din23a, Din23b, Hua23b], in terms of image [Ho20, Son20] and video
[Ho22, Yin23] generation and much more [Rom21, Rua22, Met22]. The improvements which
led to current version of Diffusion (as of 26-06-2024) started with DDPM [Ho20] which puts
noise onto a picture, and learns to restore photos gradually. Then DDIM [Son20] came around,
which mainly improved the pace of image generation by removing some steps. After that,
the conditional latent diffusion [Rom21] representation came around. This image generation
technique focuses on having multiple conditions like, images and texts and improving the
inference swiftness of the model overall. After all those generations, there was finally the
current day Diffusion [Rom21]. A model capable of generating lifelike photos. Given any text,
its upgraded versions [Zha23, Hua23a, Mou23] have been utilised in many AI-generational
products like Midjourney. [Du23]

4. Autoregressive Models

Autoregressive models are likelihood models that model the statistical distribution of data by
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estimating the substance. The models come close to the maximum likelihood:

”θ∗ = argmax
θ

Ex∼pdata(x)[log pθ(x)]”

[Dal19]. The models learn each probability for the conditions. This characteristic together
with the maximum likelihood formula helps to get a negative log-likelihood (NLL) which is
superior to other methods such as VAEs [Kin13] or flow models [Din16, Kin18]. PixelCNN
[vdOKK16] has a NLL of 3.00 bits/dim on a dataset called CIFAR-10 and was the first
to create a convolutional autoregressive model architecture. The CIFAR-10 dataset is a
dataset commonly used for machine learning algorithms. The data has 10 classes: aeroplanes,
automobiles, birds, kittens, deer, pups, frogs, stallions, ships and trucks. After a few years,
further modifications [VDO16, Par18, Sal17, Che17] made the score lower to 2.85 bits/dim,
which is the best NLL score to date on CIFAR-10.

2.2 Machine learning algorithms for utilizing data

As becomes clear from how these models work, there are significant differences between how they
operate, making them strong candidates to be compared to one another.
The data generated by the algorithms used in this thesis could be used by many different machine
learning algorithms. The most important ones will be highlighted here:

1. Convolutional autoencoder model
Deep learning has been touted as a promising way to automatically classify and detect
anomalies in chest X-ray images these have some good results thus far [WPL+17], [YYH18],
[TWH+18]. The definition of anomaly detection is as follows: ”Anomaly detection is the task
of identifying unusual samples from the majority of the data” [unk21]. The inner workings of
an autoencoder have been explained in the introduction. The algorithm works by encoding
unlabelled data to the latent space (lower dimensional space than the input data). After this
process the data gets reconstructed based on the representation in the latent space. If that
representation is far from the input, then there must be some form of an anomaly. In this
way the model detects anomalies.

2. Confidence aware anomaly detection
Confidence aware anomaly detection has a feature extractor, a detector for anomalies and
a module that predicts the confidence that an image is an anomaly. If the score from the
detection module is significant enough or the module that predicts the confidence level returns
a small enough score then the input will be seen as an anomaly case. Usually, defect detection
focuses on a specific type ”kernel-based one-class classification” [unk21], which includes other
methods like the One Class SVM [SPS+01]. These methods attempt to utilize a hyperplane to
separate the defects from the good samples. The above-described methods have some issues,
like the curse of dimensionality. However, deep learning automatically learns the correct
feature representation from the data. There have already been quite some efforts to get the
advantages of deep learning to the field of anomalies. A deep SVDD model has for example,
the deep neural network attempts to minimize a hypersphere. A deep SVDD model has been
presented by [RVG+18]. Other research has been done that focuses on unsupervised detection,
which works with generative adversarial networks to help detect defects that are unknown
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from OCT images [SSW+19]. These methods are superior to the standard methods like the
kernel based one.

3. Autoencoder with pixel-wise uncertainty prediction
As explained above this model works by not only reconstructing a distribution (like the
variational autoencoder network). But it also estimates how uncertain the reconstruction
is for each pixel, and with that attempts to enhance the defect detection even further. As
described earlier, the reconstruction uncertainty is lower in the region around the lung. There
are often large errors around different regions (say going from the lung to the background),
and this problem may result in more false positives (in other words, a not-ill patient can
be detected as ill.). A solution to this issue is suppressing the reconstruction errors in this
detection. In the following paper, [MXW+20], a probabilistic approach has been used to lower
the importance of the regions with more reconstruction errors.

4. Generative adversarial one-class learning (specific for chest-x rays)
This network in specific has been inspired by one class classification [MH96], [SKFA18]. and
is quite similar to a generative adversarial network [GPAM+14]. These networks attempt to
put the data in different categories from a set of images only containing that specific category.
As explained earlier, there are three networks in this specific setup, with the chest X-ray
images as input. The three different architectures are a CNN discriminator, an encoder and a
U-Net autoencoder. The networks are competing and collaborating with one and another to
reconstruct the incoming image. (just like in the autoencoder). If the reconstructed image is
not equivalent to the input image, then the reconstruction was poor. The reconstruction is
poor because the received input image does not look like the images used in the training set.

2.3 The architectures

This subsection will provide a more in-depth description of the different architectures used in this
project.

2.3.1 Generative Adversarial Networks

Generative Adversarial Networks (GAN) can be characterised by training two neural networks in
competition with each other. An easy way to look at how these compare is that one neural network
is the image creator, and the other one is the image expert. The creator creates an image, and the
expert judges how good the image is. The creator is the generator, G; The expert is known as the
discriminator D, and aims to tell the image from the dataset and the generated image from the
generator apart. Both G and D are trained simultaneously. The generator receives no images; The
generator learns through the feedback of the discriminator. [Bha18] GANs have shown to be very
capable in the field of image generation and are therefore, a must in this thesis. [HOT06]
In this study, the focus is mainly on the DCGAN (Deep Convolutional Generative Adversarial
Network) (as described earlier in the related work section). DCGAN was first introduced in [RMC15].
The architecture is based on Convolutional GANs. A DCGAN goes one step further and also uses a
strided convolutions. Normally, a convolution goes one step at a time. A strided convolution controls
the step as it is moved over the pixels. Another feature of the DCGAN is the ReLU activation in
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Figure 3: Explanation picture for the Generative Adversarial Network architecture. The boxes
represent the Tensors.

the generator for all layers and the use of a LeakyReLU activation in the discriminator. The ReLU
activation function follows the following function 1:

f(x) = max(0, x) (1)

where x is the input to the neuron, and f(x) the output of the ReLU function. The LeakyReLU has
the following function 2:

f(x) = max(0.01 ∗ x, x) (2)

where x is the input to the neuron, and f(x) the output of the ReLU function. A DCGAN also utilizes
a batchnorm layer to normalize the output of the convolutional layers and with that attempts to
stabilize learning. In the implementation used in this thesis, the LeakyReLU function was used in
the generator to stabilise the GAN. The problem was that the GAN was quite unstable with the
normal ReLU activation functions. The reason LeakyReLU was more stable is likely due to dead
neurons, as when the input of a ReLU is negative, then the output of the ReLU is zero. If a neuron
starts to give output zero, then it might continue to do so and with that stop the learning process.
The final architecture looks quite similar to the one in [RMC15] as shown in figure 3. The generator
ends with a tanh function (which is suitable for normalized image data), and the discriminator
with a sigmoid function (which is suitable for checking if an input is real).
The tanh activation function is as follows:

σ(x) =
ex − e−x

ex + e−x
(3)

where x is the input of the neuron, and σ(x) is the output of the function. The sigmoid activation
function is as follows:

σ(x) =
ex

1 + ex
(4)

where x is the input of the neuron, and σ(x) is the output of the function.
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2.3.2 Diffusion models

Figure 4: Explanation picture for the diffusion models. The blue lines represent the Tensors.

Diffusion models are generative models that were studied for their ability to generate high-quality
images. This model functions by putting noise over a picture and afterwards learning to remove the
noise step by step so that the original data gets recovered.

The first step in the diffusion process is the forward diffusion process. In this process, the model
gradually adds noise until the image only consists of noise. The forward process usually only uses
the Gaussian noise addition with the formula:

φ(Z) =
1

σ ∗
√
2 ∗ π

e
−(Z−µ)2

(2σ2) (5)

Now the reverse diffusion process is considered. When a noisy image enters, the process will
denoise it step by step until the original image is recovered. Denoising is often achieved by a
model that tries to predict and remove noise. The U-Net model is usually used for this step. The
distribution that is left when everything is denoised and the original image is back is the eventual
distribution that is used in the image generation process.
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The U-Net model was first proposed in [RFB15]. Here, the U-Net model is described in figure 4.
First the image starts on the left side of the diagram (the encoder). In this example, the image has
size 572 x 572 x 1. Following the blue arrow, the image goes through convolutional layers. Each
step has two convolutions. Each convolution uses a 3 x 3 kernel, whereafter the ReLU activation
follows. This process doubles the channels in the feature maps. The first convolution makes them
64, the next convolution makes them 128 and henceforth. The process of convolutional layers is
needed because, it allows networks to extract important features out of input images and reduces
complexity. The kernel is like a filter that slides over the image, highlighting patterns by calculating
the dot product. The ReLU activation function makes the model non-linear and helps learn more
complex functions.

Then there are two paths, the data gets transferred to both paths. One corresponds to the
grey arrow, this path is also known as the skip connections. The second path is the contracting path,
the red arrow. First the gray arrow path, the skip connections try to copy the feature map from
the current contracting path and concatenate them with the upsampled version in the expansive
path (the right of the diagram). This should ensure that the spatial information does not get lost,
as every max pooling makes the image’s resolution a tad lower.

The other option is the red arrow, this is the contracting path. Here, there are max-pooling
layers. These layers reduce the spatial dimensions of the feature maps by half. This action is
performed to capture more high-level features and helps reduce the complexity.

Now, onto the expansive path (also known as the decoder). This path reconstructs the lost
spatial dimensions and produces a segmentation map. A segmentation map is a map where a part
of the image is labelled. The first calculation on the decoder is the up-convolution layers. Every step
up samples the feature maps by using a 2 x 2 transposed convolution. This upsampling technique
will ensure that the spatial dimensions get doubled, 28 x 28 to 56 x 56 and henceforth. Like the
convolutional layers described earlier in the contracting path, these layers involve two convolutions
with a 3 x 3 kernel followed by ReLU activation.

2.3.3 Variational Autoencoders

Before explaining what a Variational Autoencoder is, the definition for an autoencoder is needed:
”An autoencoder is a type of algorithm with the primary purpose of learning an ”informative”
representation of the data that can be used for different applications by learning to reconstruct a set
of input observations well enough” [Mic22]. Based on the paper [Kin13], the variational autoencoder
consists of an encoder and a decoder. First, the algorithm starts with an encoder that accepts the
input and creates a latent feature representation (A lower-dimensional version of the original input).
Finally, it ends in a decoder that tries to reconstruct the data back to the original input. The idea
is that what comes out of the decoder should be as close as possible to the dataset given in the
beginning (the input).

The variational Autoencoder (VAE) is an improved version of the autoencoder. Instead of creating a
vector representation for the latent feature representation, the VAE puts the input in a distribution,
and the decoder takes samples from that distribution and constructs an output. KL-divergence is
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used to compare the two distributions.

The variational autoencoder also uses a reparameterization trick to get samples from the la-
tent dimensions during training to help improve the model. First of all, the goal of the encoder
is to compress the input to the latent space, generating a mean and log variance. It first has a
fully connected layer that puts the input dimensions in the latent space. Other connections in the
hidden space are also fully connected. The encoder also uses LeakyReLu layers between the hidden
dimensions.

Next, a bit about the reparameterization trick. The idea behind it is instead of sampling from the
distribution, the sample is taken from the normal distribution and then shifted towards the one
from the encoder. The shifting is performed by the mean and variance that the encoder outputs.
The formula used here is formula 6:

z = µ+ σ ∗ ϵ (6)

with the µ meaning the mean of the latent space distribution, the σ the standard deviation and
the ϵ is random noise sampled from a normal distribution.

Now, we will consider the decoder. The decoder aims to reconstruct the input from the latent space
to the output. The decoder consists of a fully connected layer that expands the latent dimensions
to the hidden ones. After those hidden dimensions, the output layer returns an image. Between all
of these layers LeakyReLu is used. The output layer has used a sigmoid activation function to help
normalize the image between 0 and 1.

2.3.4 Autoregressive models

Autoregressive models are likelihood models that model the statistical distribution of data by
estimating the substance. The models try to come as close as possible to the maximum likelihood
function:

”θ∗ = argmax
θ

Ex∼pdata(x)[log pθ(x)]”

[Dal19]. The models learn each probability for the conditions.

Autoregressive models were first introduced in [vdOKK16]. In this paper, the pixel CNN framework
is described. The pixelCNN model tries to generate images pixel by pixel. The model tries to model
the probability of all pixels sequentially, conditioning every pixel on the previously generated ones.
In the implementation, typically Pixelconvlayers instead of the normal convolutional layers are used
here. This custom layer adds a mask to ensure that each pixel is dependent only on the previous pixel.

The heart of this model is the residual block. The residual block first lets the input go into
a 1x1 convolution with a ReLU activation function. The purpose of this convolution is to lower the
depth of the channels not the spatial dimensions. Then the input goes through a pixel convolution
layer. This layer does the same as earlier described, it makes sure that each pixel depends solely on
the previous ones. Then, that input goes through another 1x1 convolutional layer with a ReLU
activation function to restore the input back to its original dimensions. In between connections
there are also once again skip connections. The idea behind these connections is to connect the
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input tensor to the output tensor after the convolutional layers have been performed. These skip
connections intend to lower the chance of a vanishing gradient. The vanishing gradient problem
is a problem where the weights of a network get so small that it stops functioning properly. The
weights of the network also can not get updated anymore due to them being so small.

3 Experiments

The purpose of the experiments is to answer the following research questions from earlier:

1. For each algorithm, which hyperparameter setting produces a result that is the most similar
to the X-ray images in the dataset?

2. Which algorithm, with its optimal hyperparameter settings, produces images that most closely
resemble the X-ray images?

To answer question one, the algorithms and their hyperparameter changes are compared (see
section 3.2 to section 3.5). To answer question two the algorithms’ optimal hyperparameters
were selected. This information was necessary to answer the final question: ”Which algorithm
(Generative Adversarial Networks, Variational Autoencoders, Diffusion models, or Autoregressive
models) generates chest X-ray images with the highest fidelity for diagnostic purposes?”.

3.1 The testing systems

In the experiments two systems having the following specifications were used.
System 1:

1. CPU: Ryzen 7 7700X @ 4.5GHz (16 threads)

2. GPU: RTX 3070 TUF Gaming 8GB of VRAM

3. RAM: 32 GB

4. Motherboard: ROG STRIX B650E-F GAMING WIFI

5. PSU: Corsair RM650

System 2:

1. CPU: 24 Intel Xeon Silver 4214 cores @ 2.20GHz (48 threads)

2. GPU: RTX 3090 24GB of VRAM

3. RAM: 256 GB

The appropriate packages are available in the GitHub repository under requirements.txt and can be
installed through the conda environment. In this particular case, miniconda was used to create the
environments. Due to both systems being relatively low in GPU VRAM, the images were scaled
down to 128, 64, and 32.
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3.2 Generative Adversarial Networks

3.2.1 How the experiment is structured for Generative Adversarial Networks

The question which was attempted to be answered in this section was: ”Which hyperparameter
settings of a GAN (batch size, image channels, image size, learning rate, hidden dimensions, kernel
size, padding) give a stable algorithm that generates x-ray images?”. To answer this question the
hyperparameters have been tuned until an X-ray came out of it. First this model was tested with
the original implementation highlighted in [RMC15]. This implementation was first tested on the
MINST dataset. However, after testing this particular setup on the NIH-X-rays dataset it became
clear that the model becomes unstable after a few epochs (1-5) and does not recover. The final
baseline version used had a few tweaks to battle this instability. Firstly, the activation function has
been switched from a ReLU function to a LeakyReLU with a negative slope of 0.2. LeakyReLU’s
may help because of their ability to avoid dead neurons also called the dying ReLU problem. The
dying ReLU problem occurs when a large number of neurons output zero for all inputs, and with
that, they become unusable for the model. Second of all, the data was normalized (between 0 and
1) and converted to greyscale (most other algorithms also had this change). This normalization
ensures that the model only learns based on the data that it should utilize and makes the code
more efficient. Lastly, the diversity loss has been halved to improve stability. Some other settings,
like the initial weights and parameters have also been finetuned to get better performance. There
were also attempts at: changing the learning rate of the discriminator and the generator, making
sure that the discriminator learned slower than the generator and making the real and fake labels
floats. Nevertheless, these changes did not improve the algorithms performance. For the specific
implementation used in this thesis, the baseline had the following parameters:

1. Batch size: 128

2. Image channels: 1 (greyscale)

3. Image size: 64 x 64

4. Learning rate: 1e-4

5. CUDA: true

6. Hidden dimensions: 64

7. Kernel size: 4

8. Padding: 0

9. Seed: 0

During the production of the plots the model was in evaluation mode and the gradients were
not calculated because torch.no grad() was used. The backpropagation was also disabled during
testing. These settings led to the most stable version of a GAN. Which is why this was the baseline
option and thus answers the question:”Which hyperparameter settings of a GAN (batch size, image
channels, image size, learning rate, hidden dimensions, kernel size, padding) give a stable algorithm
that generates x-ray images?”
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Figure 5: (left) pictures from the dataset itself to compare to the pictures on the right, (right)
pictures generated by the Generative Adversarial Network after 50 epochs and a learning rate of
1e-4.

3.2.2 Visual comparison baseline

The question that was attempted to be answered in this subsection is: ”How do the baseline GAN
generated images compare to the NIH X-ray dataset images according to the human eye?”. This
can be achieved by generating the images and comparing them to the images in the dataset itself.
Figure 5 shows on the left a picture from the dataset and on the right a generated picture by the
GAN. The GAN was trained with 50 epochs, a learning rate of 1e-4, a hidden dimension size of 400
and an image size of 64 x 64, as described in the previous section. Looking at the pictures from
figure 5, it seems that the GAN still has some small issues. This might mean that the program is
overfitting, trying to find a way to overgeneralize what an X-ray of a human chest looks like (this
could be true for either the discriminator or the generator or both). Another explanation could be
that the GAN has not yet learned enough and is underfitting, as the images with problems seem to
have scribbles. Most pictures do seem clear. Fifty epochs is taken as baseline, as fifty epochs was a
common setting in most models and a recommended starting point. The algorithm seems quite
stable with the current settings, as described in section 2.1.1. Regarding computational efficiency,
the algorithm took about a day to train on system 1 while utilizing the GPU.
In conclusion, The images produced are already of quite high quality, however there were still some
small issues likely due to overfitting or underfitting.

3.2.3 Epoch comparison

The question that was attempted to be answered in this subsection is: ”For which epoch are the
GAN generated images closest to the NIH chest X-ray dataset?”. To answer the question the
baseline algorithm is ran for 50 epochs. In figure 6 is shown how the discriminator loss changes
at every epoch of the baseline GAN model described earlier. From the figure, it becomes clear
that the model does improve over the epochs. However there are some limitations here as the
discriminator is trained on samples generated by the GAN model. Because of this limitation, the
discriminator might be biased towards the samples the GAN draws even if those do not represent
the dataset. Figure 6 also shows that the discriminator is usually quite good at detecting the fake
generated samples from the GAN. This might also be because the discriminator was trained with
the generator and has already evaluated these samples. It also shows a high point and the 49th
epoch, likely because of the balance between the discriminator and the generator.
In conclusion, 50 would be the amount of epochs for which the GAN generates images closest to
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the NIH chest X-ray dataset.

Figure 6: Here is a Generative Adversarial Network shown with the discriminator loss per epoch
the network has a learning rate of 1e-4, after 50 epochs, and 64 x 64 as image size.

3.2.4 Learning rate comparison

The question that was attempted to be answered in this subsection is: ”For which learning rate is
the GAN producing X-ray images that are closest to the NIH chest X-ray dataset?”. To answer
the question the baseline GAN, a GAN with a higher learning rate (1e-3) and a lower learning
rate (1e-5) are compared to one and another. Due to the algorithm’s instability, the Generative

Figure 7: (left) pictures from the dataset itself to compare to the pictures on the right and middle,
(middle) pictures generated by the Generative Adversarial Network after 50 epochs and a learning
rate of 1e-5. (right) pictures generated by the Generative Adversarial Network after 50 epochs and
a learning rate of 1e-3.(higher is better as the loss is higher if the discriminator has more trouble
detecting the differences).

Adversarial Network has been tested for 50 epochs for 1e-5 as learning rate the result can be seen in
figure 7. Sometimes, the model falls apart, meaning that the entire set of pictures becomes blurry,
unclear, or has artefacts. An artefact is a picture where there are clear blocks of distortion or
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Figure 8: Picture of a Generative Adversarial Network that has fallen apart in epoch 50 with
learning rate 1e-3 and has some artefacts.

off-color pixels (for example, figure 8). Sometimes the model recovers from these issues, In this case
under the 50 epochs no model was having artefacts. Previous iterations did have some artefacts,
the GAN with a learning rate of 1e-3 for an example. Initially, this model ran with the same
hyperparameters as described in the baseline section, however the model became unstable and gave
the result of figure 8. To counteract these issues, the number of hidden layers was increased for
both the generator and the discriminator to 128 instead of 64 for the 1e-3 variant. This change
may have increased performance due to a regularizing effect, which makes the model less prone to
overfitting as the model is generalizing less. Some other settings were attempted to be changed
like: loss function (Least squares loss and wasserstein), the betas of the optimizer, the optimizer
(adamW instead of adam), changing the kernel size and increasing the diversity loss. However,
these changes did not achieve a better result. The other learning rates still had the same settings
as set in the baseline. In figure 9 the comparison between different settings of the GAN can be
seen. It becomes clear that the baseline presents the highest scores out of all of them. The GAN
model with a learning rate of 1e-5 is performing the least well, the reason for this might be that
the lower learning rate made the model learn the data at a slower rate. The lower the learning rate,
the lower the influence on the model’s parameters, which, in this case, is the model’s weight. The
higher learning rate of 1e-3 might be performing better, however the model might be overshooting
the more optimal solution that the baseline model finds. For those reasons, the baseline could be
optimal as is visible because of its highest peak score in the graph. This result could be tainted as
the discriminator has come from the baseline GAN.
In conclusion, the baseline outperforms all of the other learning rate settings. Likely due to the
1e-5 learning slower and the 1e-3 overshooting the optimal weights.

3.2.5 Image size comparison

The question that was attempted to be answered in this subsection is: ”For which image size are
the GAN generated images closest to the NIH chest X-ray dataset?”. To answer the question the
baseline GAN (64 x 64), a GAN with a image size (128 x 128) and a lower image size (32 x 32)
are compared to one and another. Figure 10 shows 32 x 32 images generated by a GAN with a
learning rate of 1e-4 after 50 epochs with 64 hidden layers. The images are a tad more blurry than
the ones in the baseline, other then that there are not any major flaws visually. The same can not
be said for figure 11. In this figure, a GAN generated 128x128 images with 64 hidden layers, a
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Figure 9: Discriminator loss after attempting to compare: the baseline, a learning rate of 1e-5 and
a learning rate of 1e-3. These tests are on a Generative Adversarial Network after 50 epochs and
an image size of 64 x 64.

learning rate of 1e-4 and after 50 epochs. Visually these images do not look like X-ray images. This
model was very unstable and did not recover from its issues. In order to utilize a 128 x 128 image
the GAN and discriminator needed an extra layer, this extra layer caused the model to be very
unstable. To stabilize this GAN the following has been tried: changing the kernel size, changing the
learning rate to 1e-5, changing the learning rate to 1e-6, giving the generator and the discriminator
a different learning rate (1e-4 and 1e-5 respectively), making the gap between the two learning
rates bigger (5e-4 and 1e-6 respectively), changing the input noise vector (both lower and higher
has been tried), changing the number of hidden layers (128, 64, 32 have all been tried). However in
almost all cases the model collapsed in the first two - three epochs. Yielding the result of figure 11.
Figure 12 contains a graph which compares the discriminator loss per epoch per different image
size setting. For each image size the discriminator is also trained on that image size. Looking at
figure 12, it becomes clear that the GAN model with image size 128 had some spikes. During those
spikes the image was somewhat visible (but also very noisy) which may have lead to higher scores
from the discriminator. The discriminator might not be able to recognize the X-rays due to the
noise in the generated images. Both the baseline and image size of 32 come out on top. For the
comparison of the image size of 32 a discriminator for the image size of 32 is used which has one
layer less than the 64 version. This layer change may have improved the model’s performance, as
there are fewer variables to tune.
In conclusion, the baseline and the 32 x 32 variants both created images close the dataset. However,
in the exact loss numbers it became evident that the baseline outperformed the 32 x 32 variant.

3.2.6 Hidden dimension size comparison

The question that was attempted to be answered in this subsection is: ”For which hidden dimension
size are the GAN generated images closest to the NIH chest X-ray dataset?”. To answer the question
the baseline GAN (hidden dimension size 64), a GAN with a hidden dimension size 128 and a lower
image size hidden dimension size 32 are compared to one and another. Figure 13 shows 64 x 64
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Figure 10: (left) pictures from the dataset to compare to those on the right, (right) pictures
generated by the Generative Adversarial Network after 50 epochs and an image size of 32 x 32.

Figure 11: (left) pictures from the dataset to compare to those on the right, (right) pictures
generated by the Generative Adversarial Network after 50 epochs and an image size of 128 x 128.
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Figure 12: (left) pictures from the dataset to compare to those on the right, (right) pictures
generated by the Generative Adversarial Network after 50 epochs and an image size of 32 x 32.

images generated by a GAN with a learning rate of 1e-4 after 50 epochs with 32 channels, one with
128 channels and an image from the dataset. Figure 14 shows the graph comparing discriminator
loss of GAN model between the different channel sizes (the baseline performs as well as the channels
= 32). In the visual comparison, it becomes clear that the model might overgeneralize in the hidden
dimension is 32 version, as there are fewer channels, the model might not be able to extract the
right amount of features due to there being less depth in the model. From the graph and the
visual representation it becomes clear that the 128 channels might be a too complicated model to
stabilize properly, giving the artefacts shown in the figure and the high fluctuations in the graph.
The baseline performs the same as the channels of 128. In this implementation no changes were
made to the baseline other than that the amount of channels changes.
In conclusion, the baseline model generates images that are closest to the dataset the model with
32 hidden dimensions might be too simple and the 128 hidden dimension version too complicated.

3.3 Variational Autoencoder

3.3.1 How the experiment is structured for the variational autoencoder

The question which was attempted to be answered in this section was: ”Which hyperparameter
settings of a VAE (batch size, image channels, image size, learning rate, hidden dimensions, kernel
size, padding) give a stable algorithm that generates x-ray images?”. To answer this question the
hyperparameters have been tuned until an X-ray came out of it. The variational autoencoder
(VAE) was also hard to stabilize like the GANs compared to the first tests with the MINST dataset
(an easier dataset to learn, about handwritten numbers). In the encoder/decoder itself, the VAE
initially had only two hidden layers. However, the VAE could not capture any complex structures
with that. That is why the VAE now has four hidden layers, it also has a leakyReLU function
instead of the normal ReLU activation. The LeakyReLU gives more stability as it does not have
the dying ReLU problem. The number of hidden dimensions was also too low initially, when testing
for the MINST dataset 200 was enough. However, for the X-ray dataset 400 was adequate. Due to
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Figure 13: (left) pictures from the dataset itself to compare to the pictures on the right, (middle)
pictures generated by the Generative Adversarial Network after 50 epochs and a channel size of 128.
(right) pictures generated by the Generative Adversarial Network after 50 epochs and a channel
size of 32.

Figure 14: Graph containing the GANs where the hidden dimension size is tested (32, 64 and 128).
The models ran with a learning rate of 1e-4, and 50 epochs exactly as the baseline.

instability, the learning rate was also a tad too high at 1e-3 initially and now at 1e-5. The same
can be said for the amount of epochs which was first 20 now 50. The biggest problem was that
even with all of these changes, the model would not stabilize. The model worked only after giving
more data by providing higher-resolution images (The image size 128 instead of 64 was used).
The images were also normalized between 0 and 1 and set to greyscale before feeding them to
the model. Cudnn.benchmark was also enabled to make faster learning possible. For the specific
implementation used in this thesis the baseline had the following parameters:

1. Batch size: 128
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2. Image channels: 1 (greyscale)

3. Image size: 128 x 128

4. Learning rate: 1e-4

5. CUDA: true

6. Hidden dimensions: 400

7. Seed: 0

During the production of graphs the model was on evaluation mode and the gradients were not
calculated because torch.no grad() was used. The backpropagation was also disabled during testing.
To conclude, the parameters stated above are the correct ones to have a stable algorithm that
generates X-ray images.

3.3.2 Visual comparison baseline

The question that was attempted to be answered in this subsection is: ”How do the baseline VAE
generated images compare to the NIH X-ray dataset images according to the human eye?”. This
can be achieved by generating the images and comparing them to the images in the dataset itself.
Figure 15 shows images from the dataset next to images generated by the baseline version of a
Variational autoencoder. As is visible from figure 15, the Variational autoencoder might try to
generalize the images too much. The pictures also seem not as detailed as the real images are (and
as well as the other algorithms are recreating the X-rays).

To conclude the VAE does have some issues with generating images, it might try to overgeneralize.

3.3.3 Epoch size comparison

The question that was attempted to be answered in this subsection is: ”For which epoch are the
VAE generated images closest to the NIH chest X-ray dataset?”. To answer the question the baseline
algorithm is ran for 50 epochs. Figure 16 shows the discriminator loss over the baseline of the VAE.
The figure shows that the discriminator cannot tell the difference well between the different epochs.
This might be because the discriminator is solely trained on the images the generator from a GAN
would reproduce. Those images are already quite detailed, and the VAE creates images that are
not detailed but do improve.
In conclusion, the amount of loss per epoch does not change much which is why the baseline was
kept.

3.3.4 Learning rate comparison

The question that was attempted to be answered in this subsection is: ”For which learning rate is
the VAE producing X-ray images that are closest to the NIH chest X-ray dataset?”. To answer
the question the baseline VAE, a VAE a lower learning rate (1e-5) and one with a learning rate of
(1e-6) are compared to one and another. A higher learning rate caused instability likely due to its
too aggressive way of updating and is for that reason not added to the model.
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Figure 15: (left) pictures from the dataset itself to compare to the pictures on the right, (right)
pictures generated by the Variational Autoencoder and a learning rate of 1e-4, after 50 epochs, 128
x 128 as image size and a hidden dimension size of 400.

Figure 17 shows the discriminator loss against the different learning rate settings in a VAE. In
figure 17, it becomes visible that all the learning rates produced similar results. The discriminator
might not be able to pickup the difference between them. This comparison was also difficult with
the naked eye as the X-rays looked alike no matter the learning rate. A learning rate higher than
the baseline created artifacts which is why only learning rates below the baseline were chosen. The
models were not changed from their baseline other than the learning rate to perform these graphs.
In conclusion, as the changes were not visible the baseline version is kept as the most appropriate
one.

3.3.5 Image size comparison

The question that was attempted to be answered in this subsection is: ”For which image size are
the VAE generated images closest to the NIH chest X-ray dataset?”. To answer the question the
baseline VAE (128 x 128), a VAE with a image size (64 x 64) and a lower image size (32 x 32)
are compared to one and another. The 256 x 256 version was too unstable. The 64 x 64 version
was stabilized by using a much lower learning rate (1e-6). In figure 18 the different image sizes
have been compared (128, 32 and baseline) against the discriminator loss. In figure 19 the images
generated by img size 32, 64, 128, and a picture of the dataset can be found. From the graph, the
64 and 128 image sizes had similar performance. However, the image size = 32 made the biggest
difference. This difference might be because the discriminator might have some trouble detecting
the 32 x 32 variants because their resolution is lower and they are a bit less sharp than their GANs
counterparts. One hidden layer for the 32 x 32 counterparts has been removed to make the model
more stable. The rest of the parameters stayed the same. From the visual representation the 32
and 128 variants are also close. However, because of the big difference in the discriminator scores

23



Figure 16: This graph compares the discriminator loss of the baseline per epoch. The VAE is trained
on a 128 x 128 image size, with learning rate 1e-4 and hidden dimension size 400.

the image size of 32 was performing the best.
In conclusion, the image size of 32 was closest to the NIH chest X-ray dataset. Perhaps due to its
lower resolution that the discriminator was less accurate.

3.3.6 Hidden dimension size comparison

The question that was attempted to be answered in this subsection is: ”For which hidden dimension
size are the VAE generated images closest to the NIH chest X-ray dataset?”. To answer the question
the baseline VAE (hidden dimension size 400), a VAE with a hidden dimension size 500 and a lower
image size hidden dimension size 300 are compared to one and another. In figure 20 is shown how
the different hidden dimension sizes compare through the discriminator loss. In figure 21 the hidden
dimension sizes generated images can be compared, left is an image from the dataset, left middle is
the baseline, right middle is the hidden dimension size of 300 and right is the hidden dimension
size of 500. All the VAE’s had a learning rate of 1e-4, an image size of 128 x 128 and was ran for
50 epochs. From the figure no notable differences emerge, between the different hidden dimension
settings. From the graph it becomes clear that the hidden dimension of 500 had a better final
outcome but the learning curve was a bit more unstable then the others. This might be due to the
fact that more dimensions allow the algorithm to learn more complex representations of the data.
The instability might be because there are more parameters if the amount of hidden dimensions
increases. The baseline and the VAE with 300 hidden dimensions had about the same result.
In conclusion, due to the instability of the hidden dimension size of 500 and no visible changes or
difference with the 300 version, the baseline was favourable.
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Figure 17: Variational Autoencoder and a learning rate of 1e-4 (baseline), 1e-5 and 1e-6 after 50
epochs, 128 x 128 as image size and a hidden dimension size of 400.

Figure 18: This graph compares the different image sizes of a variational autoencoder. The VAE is
tested with an image size of 32, an image size of 128 and the baseline algorithm.

3.4 Autoregressive model

3.4.1 How the experiment is structured for diffusion models

The question which was attempted to be answered in this section was: ”Which hyperparameter
settings of an autoregressive model (batch size, image channels, image size, learning rate, hidden
dimensions, kernel size, padding) give a stable algorithm that generates x-ray images?”. To answer
this question the hyperparameters have been tuned until an X-ray came out of it. This model was
also quite stubborn in stabilizing. The baseline is therefore not stable. Here are the modifications
that were attempted to make the algorithm function: Changing kernel size (both higher and lower),
changing amount of layers (both higher and lower), changing number of channels, changing the
image size, adding more epochs, changing the probability function (softmax to logistic mixture),
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Figure 19: This figure is a visualization of the image sizes, baseline (128 x 128) (middle left), 64
(middle right) and 32 (right) compared to the sample from the dataset (left)

Figure 20: This graph compares the parameter hidden dimensions of a variational autoencoder.
The VAE is tested with a hidden dimension of 300, 500 and 400 (baseline), with a learning rate of
1e-5 and 128 x 128 images.

changing the ReLU’s to LeakyReLU’s, changing the size of the masks, changing the amount of
A layers so that those layers do not have access to the future information. However, all of these
changes were to no avail. The baseline model was still unstable. Regarding computational efficiency,
the algorithm took about a day to train on system 1 while utilizing the GPU. It took about two
days for the image size 128 on system 2, while utilizing the GPU. For the specific implementation
used in this thesis the baseline had the following parameters:

1. Batch size: 128

2. Image channels: 1 (greyscale)
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Figure 21: This figure is a visualization of the VAE generated images for the hidden dimensions,
baseline (400) (middle left), a hidden dimension size of 300 (middle right) and a hidden dimension
size of 500 (right) compared to the sample from the dataset (left)

3. Image size: 64 x 64

4. Learning rate: 1e-4

5. Kernel size: 7

6. layers: 10

7. CUDA: true

8. channels: 400

9. Seed: 0

In conclusion, the above mentioned parameters are the baseline parameters for the autoregressive
model.

3.4.2 Visual comparison baseline

The question that was attempted to be answered in this subsection is: ”How do the baseline
generated images by the autoregressive model compare to the NIH X-ray dataset images according
to the human eye?”. This can be achieved by generating the images and comparing them to the
images in the dataset itself. In figure 22 there is a comparison between a picture from the dataset
and an image created by the baseline of the model. From these, it becomes clear that the model
only got a part of an X-ray correctly. This might be due to either overfitting, making the model
give artefacts, or underfitting, meaning the model has not been able to adapt to the format of an
X-ray. Either way, the model is not functioning well.
In conclusion, the autoregressive model is not functioning well against the NIH chest X-ray dataset.
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Figure 22: This figure contains (left) Image from the dataset, (right) image generated by the baseline
autoregressive model.

3.4.3 Epoch size comparison

The question that was attempted to be answered in this subsection is: ”For which epoch are
the generated images of the autoregressive model closest to the NIH chest X-ray dataset?”. To
answer the question the baseline algorithm is ran for 25 epochs. Figure 23 contains the baseline
autoregressive model against the discriminator. From the graph it becomes clear that the model
does not improve much, as the lower the loss of the discriminator the more correct the discriminator
is with recognizing the generated images.
In conclusion, due to the model not being as fine tuned as a whole the model is kept at 25 epochs.

Figure 23: This graph contains the baseline autoregressive model against a discriminator.

3.4.4 Learning rate comparison

The question that was attempted to be answered in this subsection is: ”For which learning rate is
the autoregressive model producing X-ray images that are closest to the NIH chest X-ray dataset?”.
To answer the question the baseline autoregressive model, a autoregressive model with a higher
learning rate (5e-4) and a lower learning rate (1e-5) are compared to one and another. Figure
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24 shows a graph from the autoregressive model with different learning rates, 1e-5, 5e-4 and the
baseline. These models did not have other variables that were different from the baseline. Only
the learning rate was changed. From figure 24 it becomes clear that the discriminator can not tell
at all if the fake samples are fake or real in this particular case. The only reason the 5e-4 scored
much lower is because most of the images are darker. Because the images are darker they look a
bit less like X-rays and the discriminator can tell the difference easier. The baseline and the lr =
1e-5 versions have lighter images which makes the discriminator even less capable of noting the
difference, as it uses the same greyscale as an X-ray. The images of lr 1e-5 and lr 5e-4 can also be
compared in figure 25. figure 25 compares the generated images from the different learning rate
settings to an image from the dataset.
In conclusion, due to the algorithm not being fine tuned well enough the baseline of 1e-4 is kept.

Figure 24: This figure contains a graph from the autoregressive model with different learning rates,
1e-5, 5e-4 and the baseline of 1e-4.

Figure 25: This figure contains: (left) a picture from the dataset (middle) a diffusion generated
picture with a learning rate of 5e-4, (right) with a learning rate of 1e-5. Here a visual comparison
between the two learning rates can be made.
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3.4.5 Image size comparison

The question that was attempted to be answered in this subsection is: ”For which image size are
the images generated by the autoregressive model closest to the NIH chest X-ray dataset?”. To
answer the question the baseline autoregressive model (64 x 64), an autoregressive model with a
image size (128 x 128) and a lower image size (32 x 32) are compared to one and another. From
figure 26 becomes clear that the model with image size 128 has the highest score, the image size
32 had the lowest, and the baseline was in between. Image size 32 had images closest to an X-ray
image but were still quite noisy. However, because the image size 32 had the images closest to a
real X-ray is the reason why it has such a low score as the discriminator can identify the X-rays
and add them to the fake labels. Figure 27 has a visualization of the generated images in the
different image size settings. In that figure the problem of image size 32 is visible. The other image
sizes however did not resemble an X-ray image, image size 128 was mostly white which is why the
discriminator could not recognize it at all as a fake image and said it was real. Most likely because
of the greyscale of the images. The same can be applied to the baseline.
In conclusion, the image size of 32 delivered the most promising results even if the discriminator
might be less accurate on lower resolution images. The visual comparison still made it clear that
the 32 image version of the autoregressive model was closest to the NIH chest X-ray dataset.

Figure 26: This figure contains a graph from the autoregressive model with different image sizes,
128, 64 (baseline) and 32.

Figure 27: (left) pictures from the dataset itself to compare to the pictures on the right, (middle)
pictures generated by the autoregressive models after 25 epochs and an image size of 128.(right)
pictures generated by the autoregressive model after 25 epochs and an image size of 32.
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3.5 Diffusion model

3.5.1 How the experiment is structured for diffusion models

The question which was attempted to be answered in this section was: ”Which hyperparameter
settings of a diffusion model (batch size, image channels, image size, learning rate, hidden dimensions,
kernel size, padding) give a stable algorithm that generates x-ray images?”. To answer this question
the hyperparameters have been tuned until an X-ray came out of it. For the specific implementation
used in this thesis the baseline had the following parameters:

1. Batch size: 128

2. Image channels: 1 (greyscale)

3. Image size: 64 x 64

4. Learning rate: 1e-4

5. CUDA: true

6. precision: fp16

7. Seed: 0

8. Kernel size: 4

9. Padding: 0

10. Output channels for the UNet blocks: 128, 256, 512

11. Gradient accumulation steps: 1 (Off)

12. Warmup steps: 500

During the production of graphs the model was on evaluation mode and the gradients were not
calculated because torch.no grad() was used. The backpropagation was also disabled during testing.
In conclusion, the parameters above were chosen as the baseline parameters because of its stability
and the images it generated where close to the NIH chest X-ray dataset.

3.5.2 Visual comparison baseline

The question that was attempted to be answered in this subsection is: ”How do the baseline
generated images by the diffusion model compare to the NIH X-ray dataset images according to the
human eye?”. This can be achieved by generating the images and comparing them to the images in
the dataset itself. Figure 28 shows on the right an image from the dataset and on the left an image
generated by the diffusion model. From the figure becomes clear that the model did overall fairly
well, sometimes the algorithm still has some pictures that are not that well identifiable. Regarding
computational efficiency, the algorithm took about 3.5 days to train on system 1 while utilizing the
GPU and about 1,5 days to train on system 2. Due to the lower VRAM on system 1 the algorithm
could never save the model since it kept crashing.
In conclusion, the diffusion model comes very close to the NIH chest X-ray dataset, visually even
as close as the GAN.
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Figure 28: (left) pictures from the dataset itself to compare to the pictures on the right, (right)
pictures generated by the Diffusion model and a learning rate of 1e-4.

3.5.3 Epoch size comparison

The question that was attempted to be answered in this subsection is: ”For which epoch are the
generated images by the diffusion model closest to the NIH chest X-ray dataset?”. To answer the
question the baseline algorithm is ran for 50 epochs. Figure 29 shows the baseline diffusion model
against the discriminator loss per epoch. The discriminator seems quite capable of detecting the
difference between a real sample or a sample generated by the diffusion model. This might be due
to its training on the GANs, which were already quite accurate, therefore training the discriminator
on high-quality samples. It might also be due to the way the generator generates its images that
creates the same noise as the diffusion model does. To conclude the baseline amount of 50 is kept
due to the low amount of difference.

3.5.4 Learning rate comparison

The question that was attempted to be answered in this subsection is: ”For which learning rate
is the diffusion model producing X-ray images that are closest to the NIH chest X-ray dataset?”.
To answer the question the baseline diffusion model, a diffusion model with a higher learning rate
(5e-4) and a lower learning rate (1e-5) are compared to one and another. Figure 30 shows on the left,
an image from the database in the middle images generated by the diffusion model with a learning
rate of 5e-4, and on the right generated images with a learning rate of 1e-5. Figure 31 shows a graph
comparing the discriminator loss against different learning rate settings for the diffusion model.
As becomes clear from the figures (figure 30 and figure 31), a higher learning rate would perform
about the same as the baseline. The results overall do look quite similar. The 1e-5 might be a bit
unclear as a lower learning rate makes sure that the model updates its weights slower. Other than
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Figure 29: The discriminator loss for detecting the difference between the fake sample and a real
sample (higher is better as the higher the discriminator loss the harder it must have been for the
discriminator to detect the fake samples generated by the diffusion model).

the learning rate changes, the hyperparameters stayed the same as in the baseline model.
In conclusion, the baseline performed as well as the higher learning rate, for that reason the higher
learning rate is kept.

Figure 30: This figure contains: (left) a picture from the dataset (middle) a diffusion generated
picture with a learning rate of 5e-4, (right) with a learning rate of 1e-5. Here a visual comparison
between the two learning rates can be made.
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Figure 31: This graph contains a comparison between the different learning rate settings of the
diffusion model and the discriminator loss per epoch

3.5.5 Image size comparison

The question that was attempted to be answered in this subsection is: ”For which image size are
the images generated by the diffusion model closest to the NIH chest X-ray dataset?”. To answer
the question the baseline diffusion model (64 x 64), and a lower image size (32 x 32) are compared
to one and another. A higher resolution image was not taken as the amount of GPU VRAM the
algorithm needed was more then there was available on both system 1 and 2. A too complicated
model for a 32 x 32 image size created a black image like in figure 32. To combat this the model
for 32 x 32 has been heavily simplified, the model has only three layers for downsampling: 2D
ResNet Downsampling Block, 2D ResNet Downsampling Block with Spatial Self-Attention and
then another 2D ResNet Downsampling Block. For up sampling it has a similar configuration but
then with upsampling blocks instead of down sampling blocks. The model is as follows: 2D ResNet
Upsampling Block, 2D ResNet Upsampling Block with Spatial Self-Attention, and a 2D ResNet
Upsampling Block again. Other attempts at stabilizing the diffusion model by lowering the learning
rate, changing the optimizer, changing the precision, changing the loss function did not help as
much. Other than the model changes the hyperparameters stayed the same as the baseline model.
Due to limitations of both systems the 128 x 128 diffusion model could not be tested, the code
required more VRAM then available on these machines. However, after simplifying the model, the
diffusion model could produce proper images. In figure 34 The comparison between the dataset
itself (left), and the diffusion model after 50 epochs and an image size of 32 x 32 (right) is visualized.
In figure 33, the difference between the baseline and the image size = 32 for the discriminator loss
is visualized. Image size 32 has a much higher discriminator loss, this might be due to there being
less pixels and the discriminator might not be able to quantify as well if there is less data.
In conclusion, the image size of 32 has created images closer to the NIH chest X-ray dataset both
through the human eye and the discriminator.

3.6 Comparison based on the human eye

The question attempted to answer in this subsection is: ”How do the algorithms’ generated images
(VAE, autoregressive, GAN, diffusion model) compare to each other through the human eye when
compared to the NIH chest X-ray dataset?”. This question will be answered by the writer comparing
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Figure 32: Picture of a diffusion model when there are too many layers when the resolution of the
pictures is 32 x 32.

Figure 33: The discriminator loss for detecting the difference between the fake sample and a real
sample. Diffusion algorithm with inputs 32 x 32 and inputs 64 x 64 (baseline).

the differences between the images. Figure 35 displays an image from the dataset, the GAN baseline
generated image, a VAE generated image, an autoregressive model generated image, and an image
generated by the diffusion model. The autoregressive model does not seem to be stable. Therefore,
this model is the least close to the NIH chest X-ray dataset. The VAE model, does not seem to
generate very detailed images. Because of that, the VAE model is also not close to the NIH chest
X-ray dataset. The GAN while close to the dataset still has some small artefacts and somewhat
unclear images. That is why the diffusion model is closest to the dataset, it also has very little
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Figure 34: (left) pictures from the dataset itself to compare to the pictures on the right, (right)
pictures generated by the Diffusion model after 50 epochs and an image size of 32 x 32.

Figure 35: (left) pictures from the dataset itself to compare to the pictures on the right, (middle
left) pictures generated by a VAE after 50 epochs and an image size of 32 x 32. (Middle right)
images generated by the baseline autoregressive model. (right) pictures generated by the Diffusion
model after 50 epochs and an image size of 32 x 32.

artefacts in its generated images. In conclusion, the results suggest that the diffusion model is the
closest to the dataset, then the GAN, then the VAE and lastly the autoregressive model.
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3.7 Comparison based on the discriminator

3.7.1 Results from the discriminator that is from the Generative Adversarial Network

The question attempted to be answered in this subsection is: ”How do the algorithms’ (VAE,
autoregressive, GAN, diffusion model) compare to each other through the discriminator of the
GAN?”. To answer this question all the hyperparameters that the previous results suggest were
optimal were chosen for the algorithms. Then they were all compared using a discriminator from
the GAN in its 50th epoch. Figure 36 compares the discriminator loss of all the best versions of the
models together. Generally, higher is better however if a model does not produce images that look
like X-rays then the discriminator will also give it a high score. The models that utilize a 32 x 32
image size also use a 32 x 32 discriminator as that discriminator model is slightly different. This
may impact the results as the 32 x 32 discriminator model has one layer less and also has less data
as 32 x 32 is less data than 64 x 64. This graph shows that the VAE and autoregressive models
have the most challenging images for the Discriminator to detect. Simply because they look less
like an X-ray image from the dataset. The best-performing model with this graph combined with
the visual representation is the diffusion model. As that model creates an accurate X-ray image. In
conclusion, the diffusion model is the algorithm that has a combination of the highest score of the
discriminator while still creating images close to the NIH chest X-ray dataset.

Figure 36: The discriminator loss against all models per epoch (the VAE has the same values as
the autoregressive model).

3.7.2 Results from the discriminator that is trained as a classifier

The question attempted to be answered in this section is: ”How do the algorithms’ (VAE, au-
toregressive, GAN, diffusion model) compare to each other through a classifier?”. To answer this
question all the hyperparameters that the previous results suggest were optimal were chosen for the
algorithms. Then they were all compared using a classifier algorithm. In figure 37 is shown classifier
scores of a trained classifier on all the best versions of the models. The trained classifier is a trained
CNN model with as training data the NIH X-ray images and the same amount of images per model.
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The trained model consists of two convolutional layers, a max pooling layer and two linear layers.
The activation functions are sigmoid to help get the output between 0 and 1. The value of 0,5
means that the classifier thought these images were generated. The VAE and the diffusion model
are at the 0,5 mark. In conclusion, the VAE and the diffusion model were both easily detectable
for the classifier algorithm. The GAN and the autoregressive model however proved to be tougher.
These might also be harder to detect as the model does not recognize the autoregressive model
images well enough and the GAN because it was already accurate. Because the GAN was the only
one of the two that also produced images that are visually close to the algorithm it performed the
best for this subsection.

Figure 37: The classifier loss against all models per epoch
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4 Discussion

The diffusion model generated the most suitable X-ray images to be used by other machine learning
algorithms. This conclusion was based on evaluations through visualisations and comparison graphs
of both the discriminator and the classifier. The GAN was in the second place, followed by the VAE.
The autoregressive model demonstrated instability and could not be tested adequately, indicating a
need for improvement through future research.

During this study, problems arose. Finetuning the models was sometimes challenging as cer-
tain models proved unstable when adjusted to various configurations. In additon, it took a long
time to test all the conditions. One run of 50 epochs of the diffusion model alone took about two
or three days, as training takes one day and generating a graph another day. The models could
be more accurately finetuned if there was more time, which would be a good starting point for
a future study. More time spent on the autoregressive model would also be beneficial for future
research. It would also be a good idea to add the classifier during testing of the hyperparameters,
to obtain a more balanced view of how the models perform overall.

The most surprising results were that the 32 x 32 models performed the best overall, in al-
most every model. Usually, less data results in a poorer performance than having more data. The
better performance was likely due to the discriminator and the classifier having less data to recognise
the generated images and not because they were higher-quality images. In addition, the GAN also
likely had higher scores for the discriminator because the generator and the discriminator were in
balance with one another. During the previous epochs (before the 50th), the discriminator had al-
ready utilised the generated images, and perhaps it recognised them and thus give them a lower score.

No statistical testing was performed in this study. The reason was that it would have been
challenging to compare the visual manual inspection of the generated images with the discriminator
and classifier scores.

For future work, it would be beneficial to develop a more reliable autoregressive model to enable
comprehensive testing and comparison. Additionally, utilising more powerful systems that are
capable of generating higher-resolution images could reveal more detailed flaws in the various
methods. The current systems’ limitations in VRAM prevented the diffusion model from running at
128 x 128 dimensions. Hence, future studies should employ systems with higher VRAM capacity.

Further research could also be conducted using a different comparison method, as the discriminator
from the GAN had already been trained on the GAN. This point could have lowered the results
against the GAN. The discriminator might be less able to find the difference in images generated
in other ways than using a GAN.

Overall, enhancing the stability of the autoregressive model and increasing the system’s capabilities,
as well as using unbiased evaluation methods, are crucial steps for advancing the field and achieving
accurate image generation. The ultimate aim is to test what model for medical X-ray images gener-
ates images the best images for use by other machine learning algorithms. The trained algorithms
can be used to generate 10,000 images each. The images can then be given to an algorithm that is
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trained on the NIH chest X-ray dataset (see section 2.2). The levels of recognition can be tested by
examening how the machine learning algorithms for utilising data classify images.

5 Conclusion

To conclude, different models were tested and each models hyperparameters that comes closest
to the NIH chest X-ray dataset were chosen. This should help in answering the final question:
”Which algorithm (Generative Adversarial Networks, Variational Autoencoders, Diffusion models,
or Autoregressive models) generates chest X-ray images with the highest fidelity for diagnostic
purposes?”. For the diffusion model was that the image size of 32, for the Variational Autoencoder
(VAE) too and for the Generative Adversarial Network (GAN) and autoregressive model the baseline
was closest to the NIH chest X-ray dataset. After that the models were compared by a discriminator
of a GAN and by a classifier. Combining those results with the human eye comparison, it was clear
that the diffusion model was closest to the NIH chest X-ray dataset.

A The code

The code can be found here:
https://github.com/DMR-max/gen_x_ray_images
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