
Master Computer Science

Improving the estimation of age at onset for

Huntington’s Disease through the use of Machine

Learning models with the Enroll-HD data.

Name: Julio Cesar Marchiori Dias

Student ID: s3095304

Date: 21/05/2024

Specialisation: Bioinformatics

1st supervisor: Dr. Eleni Mina
2nd supervisor: Dr. Katherine Wolstencroft

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands



Contents

1 Introduction 1
1.1 Huntington’s Disease (HD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Onset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Enroll-HD Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Methods 6
2.1 Software and Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Data Selection (cohort) . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Target Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Proposed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Feature Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Training and Validation datasets . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Training the Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Hyper-parameters Tuning . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Training Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Results 19
3.1 Selected Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Selected Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 AAO Estimations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Penetrant Range Results . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Full Range Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.1 Training Different Target . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.2 Correlational Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Discussion and Conclusion 48
4.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Additional Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



Abstract

Huntington’s disease (HD) is a rare neurodegenerative disorder that is inherited in a
dominant manner and caused by a prolonged CAG repeat in the huntingtin protein. It is
characterised by motor, behavioural and cognitive abnormalities. Age-at-onset (AAO) in
HD refers to the time when symptoms first appear in individuals carrying the CAG repeat
mutation. HD is an incurable condition, which makes the determination of AAO crucial
in identifying factors that may modify it, and in developing and evaluating therapies
aimed at delaying its onset. The HD AAO is significantly correlated with the number
of CAG repeats representing the most significant factor in estimating the AAO. Current
models for AAO prediction utilise the length of the CAG repeat as the primary predictor
variable. Results range between 47% to 72% of the variance considering the diversity
in HD populations, indicating that there should be more factors influencing the onset
than just the CAG repeat. Enroll-HD study is a global, longitudinal investigation of
individuals affected by HD, with over 21,000 participants. It collects uniform clinical
data (baseline and follow-up data) and biological samples from multiple study sites, in
both manifest and premanifest stages of the disease. Although machine learning (ML)
algorithms are powerful tools, they are not frequently utilised in rare disease research,
mainly due to the scarcity of data required for a proper training of such models and
subsequent estimations. In this study, we trained a series of complex ML models using
a highly accurate subset (defined as patients enrolled as pre-manifest and subsequently
manifesting the disease) from the Enroll-HD dataset, aiming to improve the current
clinical AAO estimation method (known as the Langbehn formula). In addition to the
CAG repeat, a group of extra variables were selected and incorporated into the training
process, mostly related to lifestyle aspects. This project also assessed the efficacy of
the trained models by submitting them to the remaining set of data from Enroll-HD
(patients enrolled already as manifest). Results indicated that ML models outperformed
the current used method. CatBoost ML model obtained a R2 of 0.675 compared to
0.534 from Langbehn during test verification. In conclusion, the use of ML models in
conjunction with Enroll-HD additional patient information facilitated the generation of
more accurate predictions of HD AAO. Furthermore, the correlation between lifestyle
aspects and different HD onsets was demonstrated.
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1 Introduction

1.1 Huntington’s Disease (HD)

A rare disease is a medical condition that affects a small proportion of the population, typi-
cally fewer than 1 in 2,000 people, as defined by most health organizations [1]. Huntington’s
disease (HD) is a rare neurodegenerative disorder, with a prevalence of 4.88 cases per 100,000
inhabitants, with lower rates in Asia and higher rates in Europe, North America, and Australia
[2]. HD is inherited in a dominant manner and it is characterized by uncontrolled movements
(chorea), psychiatric and behavioral problems, and cognitive impairment [3, 4]. HD is caused
by a mutation in the HTT gene, which translates into a mutated huntingtin protein [5]. In-
dividuals with HD typically exhibit a cortico-striatal degeneration of white and gray matter,
resulting in a selective loss of medium spiny neurons in the striatum and pyramidal neurons
in the cortex [6]. The HTT mutation (mHTT) that causes HD involves a segment of DNA
known as a CAG trinucleotide repeat, that occurs several times in a row. Normally, the CAG
allele is repeated 10 to 35 times in a gene. In people with HD, the longest CAG segment is re-
peated 36 to more than 120 times. People with 36 to 39 CAG repeats may or may not develop
the signs and symptoms of HD (reduced penetrance), while people with 40 or more repeats
almost always do (fully penetrance) [7]. The length of the CAG trinucleotide expansion has
a strong inverse relationship with the mean age of clinical onset [8]. When the CAG repeats
are greater than 60, it is defined as juvenile Huntington’s disease, which affects children and
teenagers.

1.1.1 Onset

Age-at-onset (AAO) in HD refers to the time when symptoms first appear in individuals carrying
the mutated prolonged CAG repeat. HD is an incurable condition, making the determination
of AAO crucial in identifying factors that may modify it, and in developing and evaluating
therapies aimed at delaying its onset [9]. The Langbehn formula is widely used by clinicians
and HD researchers at the clinic for estimating the AAO [10]. This formula incorporates the
CAG repeat length to estimate the AAO and accounts for between 47% to 72% of the variance
in different HD populations. Residual variability in AAO can be attributed to either genetic
and/or environmental factors [11]. These factors are the focus of current research to determine
which specific environmental or genetic factors may influence the AAO.

1.2 Enroll-HD Platform

Enroll-HD is a worldwide longitudinal study of HD patients that aims to accelerate the devel-
opment of therapies for HD by collecting uniform clinical data and biological samples to better
understand the natural history of the disease [12]. This study collects baseline and follow-up
data from multiple study sites, in the same way and using the same methods, from tens of
thousands of pre-manifest (when participant is a CAG mutation carrier but has not yet shown
HD symptoms) and manifest (when participant is already showing symptoms of the disease)
patients. Enroll-HD was created by integrating two HD datasets: the Cooperative Huntington
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Observational Research Trial (COHORT) in North America and Australia, and REGISTRY,
an observational study of the European Huntington Disease Network (EHDN) [13]. Enroll-HD
also extended research activities in Latin America and Asia. Enroll-HD collects clinical data
from participants through annual visits. The assessments are performed by highly trained clin-
ical personnel. Periodic Dataset Releases (PDS) offer information on Enroll-HD participants
and are shared periodically. Each PDS comprises several files categorized into three groups:
Participant-based (general study-independent information about the participant), Study-based
(specific information about a participant within a study) and Visit-based (visit-dependent in-
formation for the study).

1.2.1 Data Structure

This project uses the Enroll-HD PDS-5 dataset (extraction date on October 31, 2020), which
includes 21,116 participants. PDS-5 comprises 11 data files that are intrinsically connected
through key variable components (as illustrated in Figure 1).

Participant-based data files contain information about the participant, including profile in-
formation, pharmacological and non-pharmacological therapies, and comorbid conditions and
surgeries. Study-based data files store specific details about study participation, including par-
ticipant status, study start and end dates, and whether the participant is enrolled in multiple
studies. Finally, the visit-based data files contain information about the assessments and clinical
data that were collected during each visit. [13]
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Figure 1: Diagram depicts the Enroll-HD entity relation, illustrating the relationship
between the data file components and their key variables (primary keys [PK] and foreign
keys [FK]) necessary for combining the data files. Diagram extracted from Enroll-HD
Data Dictionary document [13].

1.2.2 Data Statistics

Enroll-HD PDS-5 documentation shares statistics about participants data [14]. Some of them
characterized with respect to participant category, sociodemographic variables and clinical
characteristics (as demonstrated in Figure 2).

An important variable called hdcat stores the participant category. It can take on the values
’manifest’, ’pre-manifest’, ’genotype negative’, and ’family control’.

Annual study visits take place during the participant’s routine clinical care visit. The baseline
and annual study visits last between 45 minutes and a maximum of 2.5 hours [15]. A total
of 55,975 annual study visits happened for the 21,116 participants over the years. Table 1
displays the distribution of annual study visits per maximum number of participants.
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Visits 1 2 3 4 5 6 7 8 9
Participants 21116 14368 9498 6079 3261 1284 321 47 1

Table 1: Maximum participant counts for a specific number of Enroll-HD visits.

Figure 2: Figure shows samples of Enroll-HD PDS-5 statistics. Legend contains the pa-
rameter description and its variable data file name in parenthesis. (a) Participant category
(hdcat) at baseline Enroll-HD visit. (b) Sex (sex). (c) Geographical region (region) (d)
ISCED (isced) at baseline Enroll-HD visit. Figure extracted from Enroll-HD Data Sup-
port Document [14].

1.3 Research Objectives

The identification and diagnosis of rare diseases can be challenging due to the limited avail-
ability of data and expertise. Despite HD being a rare disease, the Enroll-HD dataset, which
is sufficiently large, has enabled machine learning approaches to be used. Machine learning
(ML) is a sub-field of Artificial Intelligence that utilises an algorithm, referred to as a model,
to process and analyse data [16]. The data is used to train the ML model to make decisions
or draw conclusions. After training, predictions can be made based on new data.

The main objective of this research is to improve the estimation of AAO for HD, which currently
relies solely on CAG repeat length. Enroll-HD provides high-quality longitudinal data on HD
patients, making it a valuable resource for ML algorithms.

4



1.4 Overview

Chapter 2 outlines the methods employed to address the research objectives, with relevant
background information. The results of the experiment are shared in Chapter 3. Chapter 4 dis-
cusses all achievements and findings, proposes future works and concludes this research.
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2 Methods

The major steps in ML for data analysis are as follows: data preparation, which encompasses
data pre-processing, data selection, target definition and feature selection; algorithms or model
proposition, which includes tasks such as feature scaling, split train/test datasets and method
selection; model training, including hyper-parameter tuning; and results evaluation, with pre-
diction and graph generation. These steps are illustrated in Figure 3 and were followed by this
project. A comprehensive explanation of each step is provided in the subsequent sections.

Figure 3: General method flowchart.

2.1 Software and Data Availability

The algorithms coded for this project were built in Python language (version 3.8.10), and used
the processed and integrated HD Dataset called Enroll-HD. The Enroll-HD periodic dataset
PDS5 was used. Access can be requested at Enroll-HD Data Access [17]. The Python Jupyter
notebooks developed for this project can be reached at the cloud-based Git repository, GitHub
[18].

Most of the code was developed using Jupyter Notebooks [19]. Jupyter is a project aimed
at developing open-source software, open standards, and services for interactive computing
across multiple programming languages. A Python library has been developed to support all
the modules used in these notebooks. Table 2 presents the versions of the Python libraries
used. Certain criteria and assumptions were used to guide the coding for this project. This
includes the concept of randomness and the use of specific evaluation metrics.
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Package Version
keras 2.13.1
matplotlib 3.7.3
numpy 1.22.4
pandas 1.5.3
scipy 1.7.3
seaborn 0.13.0
sklearn 1.3.2
tensorflow 2.13.1

Table 2: List of Python libraries used into this project.

2.1.1 Randomness

The use of a fixed seed assists ML developers in achieving deterministic test execution and
relieves them of the burden of dealing with randomness. However, it is unclear whether this is
always the optimal approach or if there are alternative methods to address flakiness (when a
test passes and fails non-deterministically for the same version of code) [20].

Although useful, this research acknowledges that obtaining an improved estimation of AAO
cannot rely solely on fixed parameters. The use of fixed seeds was limited to certain scenarios,
while experiment evaluations and results were based on the average values of multiple execu-
tions using random seeds. To ensure reproducibility of the results, a list of the seeds used was
provided in the Jupyter notebooks.

2.1.2 Evaluation Metrics

The Mean Absolute Error (MAE) was the primary evaluation metric used to assess the accuracy
of the forecasting model [21]. MAE is a statistical measure that calculates the average mag-
nitude of the errors between predicted and actual values in the units of the response variable
[22]. In this case, the response variable is years. When predicting the target, MAE accumulates
absolute errors, so a lower measurement is preferred. The formula for MAE is:

MAE =

(
1

n

) n∑
i=1

|yi − ŷi|

The coefficient of determination, also called R-Squared (R2), was used as a second evaluation
metric. This metric was first introduced in 1921 [23]. In regression, R2 is a statistical measure
of how well the regression line fits the data. It represents the proportion of the dependent
variable’s variation that can be predicted by the independent variable(s). The coefficient of
determination typically ranges from 0 to 1, with 1 indicating the best performance. Therefore,
a higher measurement is desirable. R2 can be expressed by the formula:
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R2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2

During the training process, a third metric called Root-mean-square error (RMSE) was in-
cluded. RMSE is a widely used measure for evaluating prediction quality [22]. It represents the
standard deviation of the residuals, which are prediction errors. Residuals indicate the distance
of data points from the regression line, while RMSE measures the spread of these residuals. In
essence, it indicates the concentration of data around the line of best fit. RMSE formula can
be represented as below:

RMSE =

√√√√ n∑
i=1

(yi − ŷi)
2

n

2.2 Data Preparation

By combining all Enroll-HD data files, it is possible to evaluate almost 200 variables per
participant. For the purpose of using ML algorithms to analyse this data, it is essential that all
variables are available for all observed participants. Unfortunately, this is not always the case,
with PDS-5 having an estimated 47.15% of values being missing [24]. This can be explained
by different factors, such as errors, inconsistencies, variables not being applicable to specific
patients, or simply missing data. Thus, PDS-5 dataset required a pre-processing step prior to
utilising ML algorithms.

2.2.1 Data Pre-Processing

To prepare the data for analysis by ML algorithms, various manipulation techniques were used.
The BioSemantics team [25] at Leiden University Medical Center (LUMC) has been working
with the Enroll-HD PDS-5 dataset for years. A pre-processing workflow was developed to
manage this data. The workflow merges data files (’enroll ’, ’registry ’, ’adhoc ’, ’profile’ and
’participation’), filters the necessary data for analysis, corrects inconsistent data, imputes
missing values, and outputs the result. The workflow is represented in Figure 4.

Figure 4: Flowchart representation of the workflow created by LUMC BioSemantics for
the pre-processing of Enroll-HD dataset.
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A valuable step in this workflow is the data aggregation that occurs when the results are output.
The data aggregation reduces the number of features either by creating score variables based
on assessments or by combining redundant information into fewer variables. To illustrate, rather
than maintaining two distinct variables, namely ’momagesx ’ (age when mother manifested HD)
and ’dadagesx ’ (age when father manifested HD), a single variable, designated ’parentagesx ’
(either mother or father manifested HD), is employed to store the relevant information. In
the event that both parents are afflicted with the disease, the variable ’parentagesx ’ stores
the AAO of the father. Another illustrative example is the creation of a variable to store
whether the participant engages in drug abuse. A single new variable, named ’nmdrg ’, is used
to aggregate the abuse of different listed drugs, such as cocaine, marijuana, heroin, club drugs,
amphetamines, Ritalin, hallucinogens, inhalants, opium, painkillers, barbiturates, tranquilizers,
and others. Dealing with many variables can be complicated for any ML algorithm, so reducing
the number of features used is extremely helpful for analysis.

The workflow also handles the transformation of string variables into numerical ones. After
manipulating the variables, it may provide a name adjustment. Variables suffixed with ’ filled ’
indicate that they have been transformed, while those suffixed with ’ impFill ’ indicate an
imputed filled feature. It is possible for variables to have both suffixes.

2.2.2 Data Selection (cohort)

Focusing on making AAO prediction, some filters were applied during the pre-processing stage
(section 2.2.1). This research focused on adult patients AAO estimation, so juvenile HD cases
were removed from the dataset. Cases where the participant was not an HD genetic carrier
were also removed.

The Enroll-HD patient dataset comprises participants who were enrolled both before and after
exhibiting symptoms of HD. The patient’s category at the time of enrollment is stored in the
’hdcat 0’ variable, while their current category is stored in ’hdcat l’. A value of 2 indicates ’pre-
manifest’ (gene mutation carriers that do not exhibit any symptoms) and a value of 3 indicates
’manifest’ (enroll-HD participants that exhibit symptoms of HD). To ensure greater precision
and accuracy in determining the age at onset of HD, only those patients who were enrolled as
pre-manifest and demonstrated symptoms during yearly visits (reclassified as ’manifest’) were
included in our analysis. Using a more selective cohort for training and validation purposes
would increase the reliability of the ML model in determining the AAO. Patients enrolled as
manifest were selected for ML model testing purposes. Figure 5 illustrates the step-by-step
filtering process that was used to determine the cohort. Enroll-HD is a longitudinal dataset
and may contain multiple registers for the same patient. To ensure objectivity and avoid bias,
this project has selected only one entry per patient, specifically the first row when the patient
became manifest.
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Figure 5: Cohort selection.

The length of the CAG extension is one of the best variables available for grouping and analysing
patient characteristics. The graph in Figure 6 correlates the patients, either enrolled as pre-
manifest or manifest, with the CAG extension length. Due to its limited scale visualization,
a second graph, represented in Figure 7, illustrates only the curve of patients enrolled as
pre-manifest (in blue). These graphs allow for the visualisation of the similarity between all
curves.

Figure 6: Graph shows the distribution of patients based on their CAG length extension.
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Figure 7: Graph is an amplification of the patients enrolled as pre-manifest and later
diagnosed with HD.

2.2.3 Target Definition

HD typically causes a range of movement, cognitive, and psychiatric disorders, each with
its own set of signs and symptoms. Enroll-HD provides information of each possible on-
set, which is grouped into motor (’ccmtrage’), cognitive (’cccogage’), and behavioural cat-
egories. The behavioural category has distinct onsets for aggressive behaviour (’ccvabage’),
apathy (’ccaptage’), depression (’ccdepage’), irritability (’ccirbage’), perseverative obsessive
behaviour (’ccpobage’), and psychosis (’ccpsyage’). The diagnosis of HD can be made based
on any of these three different groups. The HD onset (in years) is then recorded as a variable
called ’hddiagn’. The variable ’hddiagn’ covered all possible onset scenarios and was therefore
selected as the target for training the prediction algorithms for this project. To fill in any miss-
ing values for this variable, the cohort selection algorithm used the following content in order
of priority: ’ccmtrage’ (motor onset), ’sxrater ’ (rater’s estimate of symptom onset), ’sxfam’
(age when symptoms were first noted by family) and ’sxsubj ’ (age when symptoms were first
noted by participant).

2.2.4 Feature Selection

Feature selection is the process of reducing input variables in a model by using only relevant
data and eliminating noise [22, 26]. It programmatically selects relevant features for an ML
model based on the problem being solved. Reducing input variables is desirable to both decrease
computational costs and improve model performance [27]. Statistical-based feature selection
methods assess the relationship between each input variable and the target variable. The input
variables with the strongest relationship to the target variable are selected.
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Prior to the feature selection process, a preliminary selection of variables from the Enroll-HD
dataset was conducted. The objective was to minimize the potential for introducing noise and
bias into the model [28]. The model was designed to accommodate a heterogeneous patient
population, with the capacity to predict the onset of HD in those who are closer to being diag-
nosed with the disease, or even many years before it. The information extracted from Enroll-HD
to train the model is the first entry that registers when the patient is manifesting the symp-
toms of HD. Consequently, all variables related to the assessment visits were removed. This
was mainly because the assessment information measured when the participant is diagnosed
with HD is already compromised (thereby introducing a degree of bias into the model). The
pre-selection was performed by filtering information related to participants (labeled as ’patient
profile’), which includes data such as sex, race, weight, and lifestyle factors (labeled as ’lifestyle
aspect’), which includes variables such as caffeine use and drug abuse. The variables listed to
be analyzed by the feature selection process are presented in Table 3.

Variable Category Description
caghigh patient profile Research larger CAG allele determined from DNA
caglow patient profile Research smaller CAG allele determined from DNA
sex patient profile Gender
race patient profile Ethnicity
region patient profile Continent
maristat patient profile Marital Status
isced patient profile ISCED education level
parenthd patient profile Father or mother affected
parentagesx patient profile Age at onset of symptoms in father or mother
emplnrsn patient profile Reason (if not employed)
height patient profile Height
weight patient profile Weight
handed patient profile Handedness
res patient profile Residence
jobclas lifestyle aspect Employment status
hxtobab lifestyle aspect Has the participant ever smoked
hxtobcpd lifestyle aspect Cigarettes per day
hxtobyos lifestyle aspect Years of Smoking
hxalcab lifestyle aspect Has the participant had alcohol problems in the past
alcunits lifestyle aspect Alcohol usage: Units per week
nmdgr lifestyle aspect Drug abuse
nmdgr lifestyle aspect Drug abuse frequency
cafab lifestyle aspect Current caffeine use
cafpd lifestyle aspect Does participant drink more than 3 cups of coffee,

tea and cola drinks combined per day?

Table 3: Pre-selected Enroll-HD variables used to feed the feature selection algorithm.
The names may suffer adjustments according to the pre-processing manipulation.
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The algorithm for feature selection was composed using three feature selection techniques, all
of which shared the same set of input data for training and testing. The data was randomly
split by the usage of ’train test split’ python library module (available in Scikit Learn [29]),
with 80% of the cohort dataset selected for training and 20% for validation. The approach
employed to identify the variables to be utilised at the final feature selection stage involved
the execution of multiple runs, with the addition of a single feature at a time. The model’s
performance was then evaluated as the feature set was incrementally increased.

2.2.4.1 SelectKBest - This feature selection technique is available in Scikit Learn Python
library [30]. The feature selection on this method is performed by evaluating the relationship
between each feature and the target variable. Statistical tests such as the chi-squared test,
ANOVA F-test, or mutual information score are used by this method to score and rank the fea-
tures based on their relationship with the output variable [31]. The K features with the highest
scores are then selected to be included in the final feature subset. The higher the score, the
more relevant the feature is considered. The SelectKBest object is instantiated with a scoring
function that selects the feature selection method. For this project, the ’f regression’ scor-
ing function was chosen. This function performs univariate linear regression tests and returns
F-statistic and p-values [32].

2.2.4.2 Mutual Information - Information Gain (IG) calculates the reduction in en-
tropy or surprise resulting from transforming a dataset. It is a measure used in decision trees
to determine the relevance of a feature and define the basic criteria for splitting a node
[33]. IG can also be used for feature selection, by evaluating the gain of each variable in the
context of the target variable. The Python library mutual info regression, from Scikit Learn
[34], estimates mutual information for a continuous target variable using the principle of IG.
It relies on non-parametric methods based on entropy estimation from k-nearest neighbors
distances.

2.2.4.3 Lasso - This is a linear model from Scikit Learn [35] that estimates sparse co-
efficients. This method can be beneficial as it tends to prefer solutions with fewer non-zero
coefficients. If two features are linearly correlated, their joint presence will increase the value
of the cost function. Therefore, Lasso regression will attempt to reduce the coefficient of the
less significant feature to 0 to select the best features [22].

2.3 Proposed Models

In order to select an appropriate model for training purposes, it is necessary to undertake a
series of preparatory steps on the data. Firstly, the features must be rescaled. Next, the cohort
must be divided into training and validation datasets.

13



2.3.1 Feature Scaling

Datasets frequently contain various types of data, with multiple dimensions. In Enroll-HD,
features may have a broad range of values, including years, boolean variables, and categorical
values (where the values simply represent a different classification). Using the original scale
may give more weight to variables with a larger range. To address this issue, it is necessary
to apply feature scaling to the independent variables. This project used standardization, also
known as ”Z-score normalization”, as a feature scaling technique. Standardization rescales the
values of each feature in the data to ensure that the mean and standard deviation are 0 and
1, respectively [22]. The standardization process was applied before the training process. The
Scikit Learn library’s StandardScaler [36] method was utilised. The standardization equation
is shown below:

x′ =
x− x̄

δ
=

x−mean(x)

standard deviation(x)

2.3.2 Training and Validation datasets

Training data, also known as a training dataset, is the initial set of data used to train ML
models. ML algorithms are trained using these datasets to enable them to make predictions.
The validation dataset is a subset of the cohort dataset used to evaluate the trained model.
Both the training and validation datasets must be diverse, representative, and unbiased. To
adhere to these assumptions, we used the python library module (’train test split’), which
prepared the training and validation datasets, for both feature and model selection. This
module was also used during the training process. As a new or random seed was employed, a
new set of test and training datasets was generated as a consequence.

2.3.3 Model Selection

This project evaluated two different model approaches on how to predict the HD AAO. One
approach was based on the called classic ML models, as referenced in ref. [37]. The other
approach was based on neural network algorithms. As neural networks represent a specific
type of ML method, which will be explained in more details below, for the purposes of this
discussion, ML models will be used to refer to those non-neural network models.

2.3.3.1 ML Models - Multiple ML models were tested, such as LinearRegression, Ran-
domForest, MLP, CatBoosting and XGBoost, which were also evaluated by Ouwerkerk J. et
al. (2023) [24]. Furthermore, additional models were included into this list, such as ExtraTree,
AdaBoosting and Bagging. The models were submitted to multiple executions using their
default parameters and the cohort dataset. A final and definitive evaluation was conducted
utilising the three most efficacious ML models, in conjunction with the a neural network model.
The models underwent into a minor hyper-parameter adjustment during the final evaluation.
The results can be verified at section 3.2.
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2.3.3.2 Neural Networks - Neural network (NN) is a type of ML algorithm that form
the basis of deep learning (DL) models. NNs consist of layers of decision-making nodes,
including an input layer, multiple decision-making layers, and an output layer [16, 22]. Each
node is an artificial neuron that makes a computational decision based on its weight and
threshold [22]. Although our cohort was relatively small for NNs, we decided to train a NN
model and compare the results with the ML models. This project utilised a Feedforward Neural
Network (FNN) model. FNNs were the first type of artificial neural network invented. Its
architecture consists of three types of interconnected layers of neurons: the input layer, hidden
layers, and the output layer [38]. The interconnection between layers is achieved through
weights. Each neuron in one layer is connected to every neuron in the next layer, making this
a fully connected network. The information moves in only one direction—forward—from the
input nodes, through the hidden nodes, and to the output nodes [22], as illustrated in Figure
8. The TensorFlow/Keras [39] Python library was used to support this model.

Figure 8: Typical FNN architecture.

2.4 Training the Models

In addition to the FNN model, the most effective ML model was selected for the training
procedure. During the training execution, both models were optimised by adjusting their hyper-
parameters.

2.4.1 Hyper-parameters Tuning

Hyper-parameters are configuration variables used in ML to control the learning process. They
are set before the model training process begins, and adjusted as the results are verified. The
objective of hyper-parameter tuning is to identify the values that result in optimal performance
for a given task. Models may have numerous hyper-parameters, and determining the optimal
combination of parameters can be approached as a search problem [40]. GridSearchCV is a
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method from the Scikit Learn library that was used to search for the best set of parameters.
This approach fits the model using all possible combinations after creating a grid of potential
hyper-parameter values [41]. In this project, we used this method to tune the hyper-parameters
of CatBoost. A comparable methodology was employed to optimise the parameters of the
FeedForward Neural Network. However, in this instance, a distinct code (accessible via GitHub)
was developed to enhance control and visibility over the validation process. Multiple runs were
executed until a final set of parameters was determined.

2.4.1.1 CatBoost hyper-parameters - The tuning process for CatBoost involved ma-
nipulation of various parameters. The final configuration is presented in Table 4. All remaining
parameters were set to their default values.

Parameter Description Value
Depth Depth of the trees 3
Iterations The maximum number of trees that can be built 1000
Learning Rate Used for reducing the gradient step 0.01
L2 Leaf Reg Coefficient at the L2 regularization term of the cost 1

function
Seed random state Used to make the behavior of the model deterministic random

Table 4: CatBoost parameter tuning details.

2.4.1.2 FeedForward Neural Network hyper-parameters - The FNN architec-
ture was designed with a single node on the output layer and two hidden layers in the inter-
mediate structure. The final approach and its set parameters are listed in Table 5. Remaining
parameters were set to their default values.
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Parameter Description Value
Input Layer Total neurons on input layer 128
Hidden Layers Total neurons on first hidden layer 256
Hidden Layers Total neurons on second hidden layer 128
Output Layers Total neurons on output layer 1
Kernel Initializer Initializer for the kernel weights matrix normal
Optimizer Optimizer algorithm adam
Learning Rate Step size taken by the optimizer during each iteration 0.005
Epsilon A small constant for numerical stability. This epsilon 0.001

is ”epsilon hat” by Kingma and Ba [42]
Activation Function Calculates the output of the node ReLU
Batch Size Number of samples per gradient update 125
Epochs Number of times the entire training dataset is passed 10

through the model
Seed Used to make the behavior of the initializer random

deterministic
Loss function Compute the quantity that a model should seek to MAE

minimize

Table 5: FNN Architecture and parameter details.

2.4.2 Training Execution

The models were trained in two distinct ranges. The first range, designated the penetrant
range, encompassed patients exhibiting a CAG repeats extension between 40 and 60. The
second range, encompassing the full spectrum of patients, included those with a CAG repeats
ranging between 35 and 60.

The data was standardized during the training process. Once the model was trained, the
target and estimated values were returned to their original scale, so the evaluation could be
more realistic, being measured in years. Although the target information is presented as an
integer variable in years, the estimated output has not been rounded, in order to allow for
a more precise evaluation of models performance. For each execution range, 500 runs were
performed using a random seed and the selected cohort. The parameters used were obtained
from the hyper-parameter tuning step. A list of the seeds used was exported for reproducibility
purposes. The performance of each run was measured using the mean absolute error (MAE),
the root-mean-square error (RMSE) and the coefficient of determination (R2). For the purpose
of comparison and easier comprehension, the MAE and RMSE values were converted back to
their original scale once the dataset was standardized. This allows for the error margin to be
read in years.

The final evaluation is based on the average of all runs. After each run, the model’s efficiency
was evaluated by examining the test set estimation. This project used the term average to
indicate the arithmetic and statistic mean calculated over the values, once all values were
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used and no outliers observed. To establish a baseline for the experience and compare the
performance with a well-used estimation method, we applied the Langbehn formula to the test
dataset.

The combination of hyper-parameters tuning and execution processes is demonstrated in Figure
9.

Figure 9: Figure illustrates dataset distribution for the hyper-parameter tuning and exe-
cution processes.
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3 Results

This chapter presents the outcomes of the various processes implemented throughout the
project. It is divided into four sections: the first section covers the selection of features; the
second section shows the model selection; the third section presents the AAO estimations
results; and the final section presents additional experiments and correlation analysis.

3.1 Selected Features

The feature selection algorithms evaluated and ranked the relative importance of the input
variables (as previously listed in Table 3). It was found that ’caghigh’ had the highest impact
on the target variable, as expected. Other variables, such as ’parentagesx ’ also demonstrated
significant impact. It is not coincidental that these two variables are proposed in the Ranen
formula [49]. Table 6 demonstrates the percentage of importance of the 10 most relevant vari-
ables analyzed throughout the different feature selection methods, summing between 79.57%
(Lasso) to 98.47% (Select KBest). Figure 10 demonstrates the level of importance and how
it accumulates over the analyzed features.

Variable Select KBest Mutual Information Lasso
caghigh 54.46 38.44 31.58
parentagesx impFill 29.39 21.49 17.91
maristat filled impFill 6.72 7.67 6.63
emplnrsn filled impFill 2.41 8.58 6.69
hxtobyos impFill 1.97 8.77 7.22
jobclas filled impFill 1.24 4.68 0.00
region impFill 0.68 1.23 5.52
alcunits filled impFill 0.66 1.30 1.94
nmdrg filled impFill 0.50 1.14 0.00
cafab filled impFill 0.44 0.16 2.08

Total Accumulated 98.47 93.46 79.57

Table 6: Percentage of importance from different variables analyzed by feature selection
methods.
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Figure 10: On top: Feature selection results comparing the three methods. SelectKBest
provided the sort criteria used at this graph, from the most relevant to the less one. On
bottom: Graphs illustrate the cumulative importance obtained by each feature selection
method over feature analyses.

The feature selection process (section 2.2.4) tested a prediction evaluation by adding one
feature at a time, and submitting them into a training and performance verification. The
estimation response increased as more features were added, until the quality of the model
began to degrade. At this point, the process ranked the variables for use in the training phase.
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We evaluated multiple combinations of feature sets composed of the main relevant features,
such as ’caghigh’, ’parentagesx impFill ’, ’hxtobyos impFill ’, ’emplnrsn filled impFill ’, ’maris-
tat filled impFill ’, ’region impFill ’, ’nmdrgfrq filled impFill ’ and ’hxtobab filled impFill ’. The
performance achieved among these different feature sets did not demonstrate significant dif-
ference. Figure 11 illustrates how the error detected in estimating the AAO and how it differs
slightly between different feature sets. Following the evaluation of the model’s performance,
the set of features selected for training the models were: ’caghigh’, ’parentagesx impFill ’,
’hxtobyos impFill ’, ’emplnrsn filled impFill ’, ’maristat filled impFill ’, ’region impFill ’ and ’nm-
drgfrq filled impFill ’.

Figure 11: On top: Feedforward neural network and CatBoost ML model performance
evaluated over error margin (MAE), when each variable is added to the feature set being
trained. On bottom: Different features sets (from 1 to 4) training evaluation after mul-
tiple runs on CatBoost model.
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3.2 Selected Models

The model selection process was conducted in two stages. In the initial stage, the models were
evaluated using their default parameters and a fixed seed, over the penetrant range cohort.
Table 7 shows the results.

Model MAE RMSE R2

Gradient Boosting 5.091941 6.534478 0.645500
Random Forest 5.221921 6.759470 0.621520
CatBoost 5.277280 6.768308 0.620086
Linear Regression 5.339975 6.821404 0.615203
Extra Tree 5.345446 6.877290 0.607164
Linear SVM 5.418970 6.882807 0.607589
FNN 5.526948 7.067763 0.585985
XGBoost 5.572010 7.181605 0.572636
Ada Boosting 5.616858 7.072828 0.584721
Bagging 5.691004 7.311850 0.557478
Langbehn 5.907501 7.833137 0.490806
MLP 7.058624 8.960238 0.334353
KNN 7.213200 8.959386 0.334674

Table 7: Model Selection.

The final stage of the model selection process involved the evaluation of the three most
effective ML models. These were Gradient Boosting, Random Forest and CatBoost. Given the
differences on methodologies employed, we have elected to include Ada Boosting and FNN
models in this final round of evaluation. In order to ensure a better performance of the models,
a hyper-parameter tuning process has been implemented. Figures 12 and 13 display the results
from multiple runs using random seeds.
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Figure 12: On top: Margin error analysis of different ML models after 50 runs. On
bottom: Graphs illustrate the MAE density distribution over the 50 runs executed.
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Figure 13:On top: R2 analysis of different ML models after 50 runs.On bottom: Graphs
illustrate the R2 density distribution over the 50 runs executed.

CatBoost model was identified as the most effective ML model. The mean absolute error
(MAE) results were significantly reduced on the CatBoost model, with higher efficiency ob-
served in the R2 evaluation. Besides CatBoost model, FNN was also selected for the AAO
estimations, due to its neural network approach technique.

3.3 AAO Estimations

The AAO estimation results were divided into two categories: first one covering the ’penetrant
range’ patients (40 <= CAG length <= 60 repeats) and the second one for the ’full range’
patients (35 <= CAG length <= 60 repeats). A comparative analysis was conducted between
CatBoost ML (CatBoost), FeedForward Neural Network (FNN) models, and the state-of-the-
art prediction formula (Langbehn Formula). This analysis was performed on both the training
and test datasets. The Langbehn Formula was calculated exclusively using the test dataset,
which served as the basis for comparison with the models during both the training and testing
processes. Three different performance metrics were collected: MAE, RMSE and R2. The
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presented results are an output of the multiple runs produced. It is important to note that
even after performing a different set of 500 runs, the results differ only slightly. The following
content represents the last execution, also shared on GitHub.

3.3.1 Penetrant Range Results

Penetrant range refers to those HD patients who are mutation carriers with CAG length
greater than 40 repeats. The first metric evaluated was MAE. The initial graphical analysis
demonstrates how this metric varies across each execution, both for CatBoost and FNN. This
can be verified in Figure 14. The horizontal lines in figure represent the average of all the runs.
During training, CatBoost had an average MAE of 5.017, while FNN had an average MAE of
5.242. Both models had lower MAE values than Langbehn, which had an average of 5.961.
Testing returned an average MAE of 5.220 for CatBoost while 5.561 was measured for FNN.
These values can be checked in Table 8.

Figure 14: Penetrant range patients MAE measurements, obtained during the multiple
executions for the models training process. Horizontal lines indicate average values for
training and testing results.

Model MAE (Training) MAE (Test)
CatBoost 5.017453 5.220201
FNN 5.242455 5.560703
Langbehn* 5.960552 5.960552

Table 8: Penetrant Range - MAE average results. *Langbehn value is just a reference that
was obtained by applying its formula over the test dataset.
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A kernel density estimate (KDE) plot of MAE training values was created to allow a better
visualization. KDE is a technique used to display the distribution of observations in a dataset,
similar to a histogram. KDE represents the data using a continuous probability density curve in
one or more dimensions [44]. Figure 15 shows that the training curve shapes for both CatBoost
and FNN are normally distributed, with the average vertical lines almost aligned with the center
of the curves. Additional vertical lines were added representing the testing process.

Figure 15: Graph shows the KDE well-distributed curves for MAE on both trained models.
Vertical lines indicate the average values, including the baseline Langbehn.

The average, median, standard deviation and variance for the MAE values are presented, in
Table 9 for training process and in Table 10 for testing process.

Model Average Median Standard Deviation Variance
CatBoost 5.017453 5.016913 0.272819 0.07443
FNN 5.242455 5.241287 0.301433 0.090862

Table 9: Penetrant Range - MAE Training Statistics.

Model Average Median Standard Deviation Variance
CatBoost 5.220201 5.219023 0.039583 0.001567
FNN 5.560703 5.556367 0.09596 0.009208

Table 10: Penetrant Range - MAE Testing Statistics.

A final MAE graph was generated, representing the same KDE distribution, with the addition
of a testing process curve, as can be observed in Figure 16. The testing curve for density
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distribution is very narrow, creating a clear distinction between the testing and training re-
sponses.

Figure 16: MAE KDE plots for training and testing processes. Vertical lines indicate the
average values, including the baseline Langbehn.

The second metric evaluated was RMSE, which, like MAE, measures the error margin. There-
fore, the lower the value, the better. The results produced by RMSE are highly comparable
to those produced by MAE, particularly in terms of data distribution. Table 11 compares the
RMSE values between training and testing processes. Figure 17 illustrates the RMSE value
measured for each training run. In order to facilitate a more comprehensive analysis, average
horizontal lines were included, for both the training and testing measures.

Model RMSE (Training) RMSE (Test)
CatBoost 6.424858 6.778187
FNN 6.706516 7.195773
Langbehn* 7.692482 7.692482

Table 11: Penetrant Range - RMSE average results. *Langbehn value is just a reference
that was obtained by applying its formula over the test dataset.

27



Figure 17: Penetrant range RMSE measurements, obtained during the multiple executions
for the models training process. Horizontal lines indicate average values for training and
testing results.

Tables 12 and 13 show complementary RMSE statistic measures. Figure 18 demonstrates the
RMSE training density distribution, once again with well-balanced curves. As initially observed
during MAE analysis, Figure 19 shows the narrow CatBoost testing curve, as an indication of
how the model was well-adjusted to the test set.

Model Average Median Standard Deviation Variance
CatBoost 6.424858 6.422787 0.35412 0.125401
FNN 6.706516 6.698522 0.382076 0.145982

Table 12: Penetrant Range - RMSE Training Statistics.

Model Average Median Standard Deviation Variance
CatBoost 6.781384 6.779560 0.046852 0.002195
FNN 7.193796 7.188037 0.112857 0.012736

Table 13: Penetrant Range - RMSE Testing Statistics.
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Figure 18: Graph shows the KDE well-distributed curves for RMSE on both trained
models. Vertical lines indicate the average values, including the baseline Langbehn.

Figure 19: RMSE KDE plots for training and testing processes. Vertical lines indicate the
average values, including the baseline Langbehn.

Lastly, the coefficient of determination R2 is analyzed. Unlike the previous two metrics, this
measure is directly associated with the efficiency of the model. The maximum achievable
value is 1, and in this case, a higher value indicates better performance. Table 14 shows the
comparison between the models during training and testing processes.
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Model R2 (Training) R2 (Test)
CatBoost 0.658454 0.669183
FNN 0.628005 0.627084
Langbehn* 0.573936 0.573936

Table 14: Penetrant Range - R2 average results. *Langbehn value is just a reference that
was obtained by applying its formula over the test dataset.

The series of graphs generated for MAE and RMSE were employed in a similar manner for the
calculation of R2. Figure 20 shows the R2 measures during the executions, while Figure 21
demonstrates the training KDE distribution. Besides the fact that higher performance for the
models means higher R2, both graphs have similar behavior compared to MAE and RMSE.
The only difference lies in the reversed analysis.

Figure 20: Penetrant range R2 measurements, obtained during the multiple executions
for the models training process. Horizontal lines indicate average values for training and
testing results.
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Figure 21: Graph shows the KDE well-distributed curves for R2 on both trained models.
Vertical lines indicate the average values, including the baseline Langbehn.

The average, median, standard deviation and variance for the R2 values are presented in Tables
15 and 16. Figure 22 illustrates the KDE distribution, with the addition of the testing process
curve.

Model Average Median Standard Deviation Variance
CatBoost 0.658454 0.659634 0.04006 0.001605
FNN 0.628005 0.630412 0.043034 0.001852

Table 15: Penetrant Range - R2 Training Statistics.

Model Average Median Standard Deviation Variance
CatBoost 0.669183 0.669369 0.004494 0.000020
FNN 0.627084 0.628134 0.012221 0.000149

Table 16: Penetrant Range - R2 Testing Statistics.
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Figure 22: R2 KDE plots for training and testing processes. Vertical lines indicate the
average values, including the baseline Langbehn.

3.3.2 Full Range Results

The Full Range model refers to the results of training across the entire range of CAG (length
equals or greater than 35 repeats). The same analytical structure utilised previously for the
penetrant range, was extended to cover the full range. The initial graphical analysis of the first
metric evaluated, MAE, demonstrates how this metric varies across each execution, both for
CatBoost and FNN. This can be seen in Figure 23. During the training phase, the CatBoost
model had an average MAE of 5.126, while the FNN model demonstrated an average MAE
of 5.308. Both models exhibited lower values than the Langbehn model, which reached an
average MAE of 6.204. These values can be verified in Table 17. The test phase yielded an
average MAE of 5.282 for CatBoost, 5.611 for FNN, and Langbehn exhibited an average MAE
of 6.204.
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Figure 23: Full range patients MAE measurements, obtained during the multiple execu-
tions for the models training process. Horizontal lines indicate average values for training
and test results.

Model MAE (Training) MAE (Test)
CatBoost 5.126210 5.281829
FNN 5.308015 5.611258
Langbehn* 6.204296 6.204296

Table 17: Full Range - MAE average results. *Langbehn value is just a reference that was
obtained by applying its formula over the test dataset.

The KDE plot of the MAE training values was subjected to analysis. Figure 24 illustrates that
the curves for both CatBoost and FNN, with the average vertical lines almost aligned with the
center of the curves, indicate a balanced distribution of measured values.
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Figure 24: Graph shows the Full range KDE well-distributed curves for MAE on both
trained models. Vertical lines indicate the average values, including the baseline Langbehn.

The average, median, standard deviation and variance for the MAE values are presented, in
Table 18 for the training process and in Table 19 for the test process.

Model Average Median Standard Deviation Variance
CatBoost 5.12621 5.141751 0.256939 0.066017
FNN 5.308015 5.331178 0.299391 0.089635

Table 18: Full Range - MAE Training Statistics.

Model Average Median Standard Deviation Variance
CatBoost 5.281829 5.277104 0.038977 0.001519
FNN 5.611258 5.60588 0.080977 0.006557

Table 19: Full Range - MAE Testing Statistics.

A final MAE graph was generated, representing the same KDE distribution, with the addition
of a test process curve, can be observed in Figure 25. The test curve for density distribution
is very narrow, reinforcing the clear distinction between the test and training outcomes.
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Figure 25: Full range MAE KDE plots for training and testing processes. Vertical lines
indicate the average values, including the baseline Langbehn.

The second metric evaluated was RMSE. Table 20 compares the RMSE values between training
and testing processes. Figure 26 illustrates the RMSE value measured for each training run,
for both CatBoost and FNN. In order to make it easier for analysis, average horizontal lines
have been included for training and test measures.

Model RMSE (Training) RMSE (Test)
CatBoost 6.557404 6.850843
FNN 6.829016 7.278167
Langbehn* 8.199180 8.199180

Table 20: Full Range - RMSE average results. *Langbehn value is just a reference that
was obtained by applying its formula over the test dataset.
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Figure 26: Full range RMSE measurements, obtained during the multiple executions for
the models training process. Horizontal lines indicate average values for training and test
results.

Tables 21 and 22 show complementary RMSE statistic measures. Figure 27 demonstrates
the RMSE training density distribution, once again demonstrating well-balanced curves. As
previously observed during MAE analysis, Figure 28 illustrates the narrow CatBoost test curve,
indicating that the model was well-adjusted to the test set.

Model Average Median Standard Deviation Variance
CatBoost 6.557404 6.566822 0.32037 0.102637
FNN 6.829016 6.853157 0.370344 0.137155

Table 21: Full Range - RMSE Training Statistics.

Model Average Median Standard Deviation Variance
CatBoost 6.850843 6.84656 0.041282 0.001704
FNN 7.278167 7.267424 0.103467 0.010705

Table 22: Full Range - RMSE Testing Statistics.
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Figure 27: Graph shows the KDE well-distributed curves for RMSE on both trained
models. Vertical lines indicate the average values, including the baseline Langbehn.

Figure 28: RMSE KDE plots for training and testing processes. Vertical lines indicate the
average values, including the baseline Langbehn.

Finally, the R2 metric was provided for the full range results. Table 23 shows the comparison
results between the models during training and testing processes.

Model R2 (Training) R2 (Test)
CatBoost 0.672105 0.67456
FNN 0.644561 0.632634
Langbehn* 0.533868 0.533868

Table 23: Full Range - R2 average results. *Langbehn value is just a reference that was
obtained by applying its formula over the test dataset.
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Figure 29 illustrates the R2 values observed during the execution of the models, while Figure
30 depicts the training KDE distribution.

Figure 29: Full range R2 measurements, obtained during the multiple executions for the
models training process. Horizontal lines indicate average values for training and testing
results.

Figure 30: Graph shows the Full range KDE well-distributed curves for R2 on both trained
models. Vertical lines indicate the average values, including the baseline Langbehn.

Tables 24 and 25 show the average, median, standard deviation and variance obtained from
R2 measures. Figure 31 shows the R2 full range results curve behavior, where the vertical line
for CatBoost testing average is higher than the training one.
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Model Average Median Standard Deviation Variance
CatBoost 0.672105 0.676800 0.036403 0.001325
FNN 0.644561 0.648622 0.039711 0.001577

Table 24: Full Range - R2 Training Statistics.

Model Average Median Standard Deviation Variance
CatBoost 0.67456 0.674979 0.003928 0.000015
FNN 0.632634 0.633792 0.010492 0.000110

Table 25: Full Range - R2 Testing Statistics.

Figure 31: Full Range R2 KDE plots for training and testing processes. Vertical lines
indicate the average values, including the baseline Langbehn.

3.3.3 Summary

Table 26 presents a summary of the results obtained during the training and testing steps for
both the CatBoost and FNN models. All the metrics employed during the processes are listed.
Additionally, relevant statistical information is provided, including average, median, standard
deviation (Std), and variance values.

39



Phase Metric Statistics
Penetrant Range Full Range

CatBoost FNN CatBoost FNN

Training

MAE

Average 5.0175 5.2425 5.1262 5.3080
Median 5.0169 5.2413 5.1418 5.3312
Std 0.2728 0.3014 0.2569 0.2994
Variance 0.0744 0.0909 0.0660 0.0896

RMSE

Average 6.4249 6.7065 6.5574 6.8290
Median 6.4228 6.6985 6.5668 6.8532
Std 0.3541 0.3821 0.3204 0.3703
Variance 0.1254 0.1460 0.1026 0.1372

R2

Average 0.6585 0.6280 0.6721 0.6446
Median 0.6596 0.6304 0.6768 0.6486
Std 0.0401 0.0430 0.0364 0.0397
Variance 0.0016 0.0019 0.0013 0.0016

Testing

MAE

Average 5.2202 5.5607 5.2818 5.6113
Median 5.2190 5.5564 5.2771 5.6059
Std 0.0396 0.0960 0.0390 0.0810
Variance 0.0016 0.0092 0.0015 0.0066

RMSE

Average 6.7782 7.1958 6.8508 7.2782
Median 6.7764 7.1866 6.8466 7.2674
Std 0.0460 0.1172 0.0413 0.1035
Variance 0.0021 0.0137 0.0017 0.0107

R2

Average 0.6692 0.6271 0.6746 0.6326
Median 0.6694 0.6281 0.6750 0.6338
Std 0.0045 0.0122 0.0039 0.0105
Variance 2.0e-05 0.0001 1.1e-05 0.0001

Table 26: Summary table with all the statistics results after training and testing the
CatBoost and FNN models.

The baseline information for comparison is the Langbehn formula, which resulted in the data
summarized in Table 27.

Range MAE RMSE R2

Penetrant Range 5.9605 7.6924 0.5739
Full Range 6.2042 8.1991 0.5338

Table 27: Summary of Langbehn formula results applied to the test dataset.
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3.4 Additional Experiments

3.4.1 Training Different Target

The target variable used for the HD AAO estimation experiment was ’hddiagn’, which was
described as the age at which the patient was diagnosed with HD. This variable exhibited
varying degrees of correlation with different HD onsets. This is demonstrated in Figure 32. As
illustrated, motor onset (represented by variable ’ccmtrage’) exhibited the strongest correlation
(0.94) with ’hddiagn’.

Figure 32: Heatmap correlating hddiagn and other different HD onsets.

In light of the observed correlation between ’hddiagn’ and ’ccmtrage’, an additional experiment
was conducted. The same infrastructure (cohort, features, models and hyper-parameters) used
for the ’hddiagn’ prediction task, was employed for a new training run targeting ’ccmtrage’
instead. Table 28 contains all the results obtained from the new experiment. Figure 33 shows
the MAE results obtained when training the CatBoost and FNN models targeting the motor
onset.

41



Phase Metric Model
Penetrant Range Full Range
hddiagn ccmtrage hddiagn ccmtrage

Training

MAE
CatBoost 5.0175 4.7853 5.1262 4.8937
FNN 5.2425 4.9887 5.3080 5.0647
Langbehn 5.9605 5.3479 6.2042 5.6555

RMSE
CatBoost 6.4249 6.1977 6.5574 6.3294
FNN 6.7065 6.4808 6.8290 6.5881
Langbehn 7.6924 7.0246 8.1991 7.7208

R2

CatBoost 0.6585 0.6749 0.6721 0.6846
FNN 0.6280 0.6445 0.6446 0.6584
Langbehn 0.5739 0.6121 0.5338 0.5482

Testing

MAE
CatBoost 5.2232 5.0913 5.2792 5.1503
FNN 5.5589 5.4806 5.6137 5.5259
Langbehn 5.9605 5.3479 6.2042 5.6555

RMSE
CatBoost 6.7813 6.5841 6.8481 6.6483
FNN 7.1937 7.0787 7.2778 7.1432
Langbehn 7.6924 7.0246 8.1991 7.7208

R2

CatBoost 0.6688 0.6592 0.6748 0.6650
FNN 0.6272 0.6060 0.6326 0.6131
Langbehn 0.5739 0.6121 0.5338 0.5482

Table 28: Summary table with all the statistics results after training and testing the
CatBoost and FNN models for the ’ccmtrage’ target, compared to previous ’hddiagn’
runs.

Figure 33: MAE KDE plots for training and testing processes for motor onset target
(’ccmtrage’). Vertical lines indicate the average values, including the baseline Langbehn.
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Additionally, this project produced statistical correlational analysis. The graphical results as-
sisted in the comprehension of how specific environmental and lifestyle variables could con-
tribute to the onset estimation, further discussed in chapter 4. Figure 34 shows the distribution
of different HD onsets over the Enroll-HD dataset, and how each one of these onsets triggers
the patients over different ages.

Figure 34: On top: Distribution of HD onsets. On bottom: KDE density graph showing
the occurrences of HD onsets over range of ages.

Figure 35 demonstrates the onset variation (in years) over the different CAG repeats range.
It can be observed that the range between 36 and 39 repeats exhibits a non-linear behaviour
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that differs from the above 40 repeats.

Figure 35: Age at onset variation over different CAG repeats.

Considering that the CAG repeats length can be used as the most efficient variable to group
the HD patients together, different HD onsets can be visualized according to this variable.
Figure 36 shows 4 different HD onsets correlated with the CAG repeats.

Figure 36: Graph shows the HD onset occurrences correlated with CAG repeats.
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3.4.2 Correlational Analysis

A noteworthy range for the observation of CAG repeats is between 40 and 45. This range
accounts for 76% of the total Enroll-HD cases, as it is illustrated in Figure 37.

Figure 37: Graph shows the HD onset occurrences correlated with CAG repeats.

The range between 40 and 45 CAG repeats also represents the group of patients with a wider
range of onset, displaying the majority of outlier cases (as previously demonstrated in Figure
35), sometimes with the onset ranging from 23 years up to 90 years old, as indicated for those
patients with CAG length of 42 repeats. Table 29 shows the statistics of this range, where the
onsets are based in years.

CAG Repeats Onset avg Onset min Onset max
40 63.5 28.0 87.0
41 59.3 27.0 89.0
42 55.0 23.0 90.0
43 50.2 23.0 76.0
44 46.3 22.0 70.0
45 43.2 22.0 65.0

Table 29: Enroll-HD occurrence statistics. First column represents the length of CAG
repeats for the carriers patients. Other columns display statistics (average, minimum and
maximum values) of the HD onset.

A number of graphical correlations were developed by cross-referencing lifestyle variables with
CAG repeat values, ranging between 40 and 45 repeats, with the objective of identifying
different HD onset patterns. These correlations are presented in the following figures. Figure
38 contains the percentage of patients who self-identified as drug abusers and the age when
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depression was triggered on them, stratified by CAG repeats. Figure 39 illustrates the number
of HD patients diagnosed with depression, stratified by marital status, and the distribution
of these statuses across the different age groups of onset, once again organized by CAG
repeats.

Figure 38: On top: Percentage distribution of patients diagnosed with HD depression
self-identified as drug abusers. On Bottom: Correlation between the use of drugs and
depression onset, stratified by CAG repeats.
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Figure 39: On top: Total number of Enroll-HD patients diagnosed with depression, or-
ganized by marital status. On Bottom: Average curves of depression onsets, distributed
by marital status and grouped by CAG repeats.
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4 Discussion and Conclusion

4.1 Achievements

In this project we aimed to improve the AAO estimation for HD gene carriers. Although ML
algorithms are powerful tools, they are not frequently utilised in rare disease research due to
various factors. For instance, these algorithms require access to a large number of samples to
effectively detect patterns, which can be scarce in the case of rare diseases [45]. Moreover,
even when a sufficient number of samples is available, biological data may contain several fea-
tures and characteristics that can either introduce noise to the analysis or cause issues when
dealing with high-dimensional data, commonly referred to as the ’Curse of Dimensionality’
[22], which requires a precise feature selection effort. The processes we created for feature
and model selection helped finding the optimal combination of algorithm hyper-parameters
and set of variables, thus enhancing the accuracy of the AAO estimation. A cohort extracted
from the Enroll-HD dataset was the dataset used to train two different models: FNN and
CatBoost. The results demonstrated that both CatBoost and FNN outperformed the current
formula that is being used for AAO estimation, the Langbehn formula. The small variation
between the different runs of the algorithms indicates the stability of the models. The proximity
between the average and median indicates the balance of the results. The reduced variance
observed corroborates the assertion that the number of executions was sufficient, and that
the models did not diverge significantly from the median across the runs. The low standard
deviation observed in the testing measures indicate that the models were well-adjusted to the
test dataset, as reported in Table 26. To illustrate, in the penetrant range CatBoost analysis,
a training MAE average of 5.02 was registered with a standard deviation of 0.27, while for the
testing process the MAE average was 5.22 with a significantly reduced standard deviation of
0.04. Nevertheless, FNN did not demonstrate the same level of performance as CatBoost. As
is typical of neural networks, it requires a substantial quantity of data in order to achieve a
level of understanding and performance that is superior to that of traditional ML algorithms.
Table 30, extracted from section 3.3.3, illustrates the average reduced MAE error margin and
efficiency achieved by both models in comparison to the Langbehn formula.

Phase Metric
Penetrant Range Full Range

CatBoost FNN Langbehn CatBoost FNN Langbehn

Training
MAE 5.0175 5.2425 5.9605* 5.1262 5.3080 6.2042*
R2 0.6585 0.6280 0.5739* 0.6721 0.6446 0.5338*

Testing
MAE 5.2202 5.5607 5.9605 5.2818 5.6113 6.2042
R2 0.6692 0.6271 0.5739 0.6746 0.6326 0.5338

Table 30: Result table demonstrating the CatBoost and FNN performances in compar-
ison with Langbehn formula. *Same values obtained from testing process were used for
comparison purpose.
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The findings indicated that the models exhibited a slight reduction in MAE performance when
trained with the full range CAG repeat in comparison with the penetrant range. However,
this reduction in performance was more pronounced for the Langbehn formula. To illustrate,
CatBoost differed its MAE measures from 5.2202 to 5.2818 (1.18% loss) for the test dataset,
FNN went up from 5.5607 to 5.6113 (0.91% loss) and Langbehn from 5.9605 to 6.2042
(4.09% loss). The R2 measures worked differently across the models, which does not necessarily
indicate a problem (as R2 is not the optimal evaluation metric [46]), but it is nevertheless
noteworthy. For example, in the case of CatBoost, the test R2 performance exceeded the
training one, for both penetrant and full ranges. Furthermore, Langbehn demonstrated losses
when comparing the R2 performance from penetrant to full range. In fact, the CAG repeat
range between 36 and 39 repeats exhibits a non-linear behaviour that differs from the above
40 repeats, as previously demonstrated in Figure 35. The discrepancy for this specific range
justifies the erroneous calculation from Langbehn when such a range is involved, as it relies on a
linear regression calculation. In contrast, CatBoost and FNN employ distinct methodologies for
handling the predictions, resulting in superior performance. In a previous research, Ouwerkerk
J. et al. (2023) [24] successfully developed ML models using a similar version of the Enroll-HD
dataset to improve HD AAO estimation and compared it to the well-used Langbehn formula.
Ouwerkerk also used two different ranges to compare his results with the Langbehn formula,
as it was initially proposed for CAG repeats between 41-56. In our project, the range definition
differs slightly from Langbehn’s and Ouwerkerk’s previous works, providing a wider spectrum
of analysis.

An additional achievement of this project was the utilisation of the models to validate the
Enroll-HD dataset. The training process was limited to those patients that were enrolled as
pre-manifest and became manifest, with the objective of selecting the most reliable data from
Enroll-HD. In parallel, the remaining patients (i.e., those enrolled already as manifest) were
used as a test dataset. The results indicated that training dataset was sufficiently representative
for training the model effectively (especially for CatBoost), and that the Enroll-HD test dataset
was accurate to a certain extent, once the trained models performed very well when submitted
to the test dataset. This conclusion is evidenced by the Results (Chapter 3), as illustrated in
Figures 25, 28, and 31. In addition to the reduction in standard deviation observed between
the test and training datasets, these Figures illustrate the high efficiency achieved by CatBoost
training, as well as its narrow testing curve.

4.2 Additional Findings

In section 3.4, we performed a new experiment using the motor onset ’ccmtrage’ instead of
the ’hddiagn’ target variable. The results demonstrated an enhanced performance, especially
for CatBoost model. As ’hddiagn’ can be defined as the age at which different forms of HD
symptoms may manifest (motor, cognitive or behavioural), the implementation of individual-
ized training estimation facilitated a more comprehensive understanding and accurate onset
predictions. It is evident that there has been an improvement in performance, especially in
error margin metrics. There were exceptions on performance enhancement, particularly in the
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case of R2 evaluation for CatBoost and FNN testing runs. The R2 results presented do not
fully reflect the gain obtained in terms of the error margin measure. This is why such experi-
ments do not rely on a single performance metric, especially R2, which may be misinterpreted
as a result [46]. The observed improvement in motor onset model performance, even in the
absence of any feature change or hyper-parameter adjustment, suggests that there is potential
for further enhancement of onsets estimation, especially if each one of them is treated in an
individualized form. This implies that not only hyper-parameters can be adjusted, but also the
features selected to compose the training dataset. Indeed, it is acceptable that the variation
of HD onsets may be influenced by multiple lifestyle aspects at different levels. As observed
in Figure 36, the various onset curves exhibit a comparable shape, although they indicate the
occurrence in different stages of life. Once again, it can be noted the non-linear behaviour for
those HD carrier patients with CAG repeats ranging between 36 and 40.

The analysis of individual HD onsets, crossed with some lifestyle aspects, and grouped by such
specific CAG repeats ranges, reveals some intriguing correlations, that inspire further investiga-
tion into the possible underlying causes and consequences. Some examples were demonstrated
in Figures 38 and 39, where the correlation suggests how marital status or drug abuse may
influence the HD depression onset, once again subject of further analysis.

4.3 Future Work

The achievements and findings provided by this project encourage further researches. To begin
with, previous studies have shown that genetic factors can affect the HD AAO [47, 48].
This project demonstrated that variables associated with environmental and lifestyle factors
can also contribute in the onset estimation. The enhanced performance achieved with ML
models, compared to the Langbehn formula (that is currently being used by clinicians for
HD AAO estimation), can be further augmented by training such models with a new and
expanded cohort. The criteria used to select the training data for this project can be extended
to include more participants, including patients who were enrolled as manifest in Enroll-HD,
once the models demonstrated that the information entered by clinicians is as reliable as that
from patients enrolled as pre-manifest. This cohort expansion would also contribute to an
improvement in the NN models’ performance. Furthermore, new approaches can be used to
improve the HD AAO estimation, such as survival analysis. Survival analysis is a statistical
method that examines the expected duration of time until a well-defined event occurs [49].
It means that, as the Enroll-HD is a longitudinal study, all the historical data related to the
participants could be used and contribute to the AAO estimation, rather than only the data
specific to when the onset happened.

Moreover, this project demonstrated that different types of HD onsets (e.g. motor onset) can
be estimated in an individualized way. A significant proportion of HD studies are focused on
predicting the motor onset. However, the use of different ML models, which shall receive inde-
pendent training, and have their own set of selected features, can provide more accurate and
improved behavioural and cognitive onset estimations. This approach can also assist in identi-
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fying which variable factors have a stronger relationship with the onset being examined.

Furthermore, the HD AAO prediction models can be enhanced by incorporating additional
features. In addition to the participants’ personal information and lifestyle factors, data related
to non-pharmaceutical, pharmaceutical, and nutritional information can be incorporated into
the feature selection process.

Finally, all the processes can be updated with the latest Enroll-HD PDS release, which includes
more years of clinical data, and a collection of prediction models can be constructed to provide a
more robust and multi-technique tool, capable of achieving more accurate HD AAO estimations
and being accessible to clinicians to guide their patients.

4.4 Conclusion

In conclusion, the results of this project demonstrated that the use of machine learning al-
gorithms to estimate the age at onset of Huntington’s disease, using a highly reliable cohort
(defined as patients who were enrolled as pre-manifest before becoming manifest) extracted
from the Enroll-HD dataset, is more accurate than the widely used Langbehn formula method.
This was achieved by training a neural network (feedforward neural network) and an algorithm
for gradient boosting on decision trees (CatBoost) using variables selected from patients’ pro-
files and their lifestyle information. This demonstrated the importance of such aspects on the
course of the disease. Furthermore, a reliability assessment was conducted on the remaining
Enroll-HD data using the patients enrolled already as manifest as a test dataset. This demon-
strated excellent performance with the trained machine learning models. Moreover, we have
outlined future research directions based on our findings and achievements of this study, that
can influence lifestyle decisions of individuals carrying the HD gene mutation.
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