Bachelor Computer Science

RW*’ The Netherlands

ddes1¥

Optimizing RISC-V Binaries using LLVM-based

Same-Architecture Binary Translation

Tim de Jong

Supervisors:
Dr. K.F.D. Rietveld & Prof.dr. R.V. van Nieuwpoort

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl July 17, 2024



www.liacs.leidenuniv.nl

Abstract

In recent decades, binary translation has been widely used for migrating and emulating
legacy ISAs. A recent study investigated the efficacy of static binary translation using
MCTOLL, an open-source LLVM-based tool for raising x86 and ARM binaries to LLVM
IR. They found that, in some cases, same-architecture binary recompilation had positive
effects on the size of the binary. This would be especially interesting for RISC-V, which
is currently mainly used in resource-constrained embedded systems and IoT devices.
However, MCTOLL only supports raising x86 and ARM binaries. In this thesis, we
expanded MCTOLL by implementing the RISC-V binary raiser to be able to analyze
the effectiveness of same-architecture binary recompilation for 64-bit RISC-V ELF
binaries. Our findings indicate that same-architecture binary recompilation can, in some
cases, lead to a reduction in the size of ELF sections and an improvement in runtime
performance.



Contents

1 Introduction 1
2 Background 2
2.1 RISC-V . e 2
2.2 Binary Translation . . . . . . . . . . ... . 2
2.3 Basic Blocks and Control Flow Graphs . . . . . ... ... ... ... .... 3
24 Compilers . . . . . 3
25 LLVM . . . 4
2.6 ELF . . . . e 5
2.7 MCTOLL . . ..o e 6
2.8 Related Work . . . . . ..o 7

3 Implementation 8
3.1 Representing pointer types . . . . . . . . ..o 8
3.2 Discovering function prototypes . . . . . . . ... Lo 9
3.2.1 Discovering return types . . . . . .. .. Lo 9

3.2.2  Discovering argument types . . . . . .. ..o 10

3.3 Raising machine instructions to LLVM IR . . . .. .. ... ... ... ... 11
3.3.1 Tracking register values . . . . . . . . . ... 11

3.3.2 Promoting registers to the stack . . . . . ... ... ... ... 12

3.3.3 Tracking stack values . . . . . . . .. ..o 12

3.3.4 Type coercion and widening . . . . . .. .. ... 13

3.3.5 Raising return instructions . . . . . . ... ..o 0oL 13

3.3.6 Raising binary operations . . . . . ... .. ... 0L 13

3.3.7 Raising load and store instructions . . . . . . ... ... ... .... 14

3.3.8 Raising call instructions . . . . . ... ... oo 15

3.3.9 Raising PC-relative and absolute accesses . . . . . . . ... ... ... 17

3.3.10 Raising terminator instructions . . . . . .. ... o000 L 18

4 Evaluation 21
4.1 Qualitative Comparison of Feature Support . . . . . . ... ... ... ... 21
4.2 Setup. . . .o 22
4.3 Binary Size . . . . . .. 23
4.4 Runtime Performance . . . . . . . . . ... L 25

5 Conclusions 28
6 Limitations and Future Work 29
References 32
A Example 33

B Reproducibility 38



1 Introduction

Binary translation plays a crucial role for the migration and emulation of legacy instruction set
architectures (ISAs). It is essential for emulating systems that are not easily accessible, such
as emerging architectures or specialized hardware platforms. Additionally, binary translation
enables the migration of software to emerging architectures, which often suffer from a lack
of available binaries. Despite the advancements in binary translation tools, there remains a
significant gap in support for RISC-V. This gap likely arises because RISC-V, being a modern
and open-source architecture, is typically the target ISA for binary translation rather than
the source. Consequently, there is little demand for translating RISC-V binaries to other
architectures such as ARM.

A recent study investigated the efficacy of static binary translation using MCTOLL, a
prominent LLVM-based static binary translation tool | |. They found that raising an x86
binary to the LLVM Intermediate Representation (IR) and recompiling the optimized IR to
an x86 binary (i.e., same-architecture binary translation) had positive effects on the runtime
performance and in some cases on the size of the x86 binary. This would be particularly
interesting in the context of RISC-V, which is mainly used in resource-constrained systems.
However, the lack of binary translation support for RISC-V within existing frameworks
hampers the ability to leverage same-architecture binary translation techniques that have
shown promising results for x86 and ARM.

This thesis aims to address this gap by expanding the capabilities of MCTOLL by adding
support for raising 64-bit RISC-V ELF binaries to LLVM IR. By doing so, we aim to analyze
the effectiveness of same-architecture binary translation for RISC-V, potentially leading
to optimizations that could benefit embedded systems and IoT devices. By introducing a
RISC-V binary raiser in MCTOLL, this research contributes a valuable tool for the community,
possibly stimulating further studies on RISC-V binary translation.

This thesis is organized as follows. In Chapter 2 we will describe the necessary background
information required for this thesis. Chapter 3 describes the implementation of our RISC-V
binary raiser within MCTOLL, which is evaluated in Chapter 4 alongside the effectiveness of
same-architecture binary translation for 64-bit RISC-V ELF binaries. Finally, in Chapter 5
we discuss the results of the evaluation and Chapter 6 identifies the current limitations of our
RISC-V binary raiser.



2 Background

In this chapter, we will describe the necessary background required for the remaining chapters
of this thesis. Furthermore, we will describe the LLVM tool MCTOLL, how it functions, and
its current state and limitations.

2.1 RISC-V

RISC-V is an open standard Instruction Set Architecture (ISA). An ISA defines a set of
available instructions which the processor can execute, as well as the available registers
and main memory on which they operate. Examples of ISAs are x86, ARM, 6502, SPARC,
MIPS, PowerPC, OpenRISC, and many more. Some ISAs are proprietary, such as x86,
ARM, and MIPS, while others such as PowerPC and OpenRISC are open-source and royalty-
free. RISC-V is also open-source and was initially designed for research and education of
computer architecture | |. They considered adopting OpenRISC, but decided against
it because of technical limitations, such as limited space for expansion and branch delay slots
complicating implementations for higher performance. Refer to Listing 1 for an example of a
RISC-V machine function.

Some of the mentioned architectures are RISC (Reduced Instruction Set Computer), while
others are CISC (Complex Instruction Set Computer). RISC ISAs typically have a small
number of simple instructions and a large register set on which the instructions operate. Load
and store instructions are needed to read from and write to memory. Examples of RISC ISAs
are ARM, PowerPC, and RISC-V. CISC ISAs typically have many complex instructions and
they typically operate on memory directly. Examples of CISC ISAs are x86 and 6502.

The fact that RISC-V is freely available for use, combined with the simplicity and extensibility
of the RISC-V ISA make it attractive for manufacturers to use RISC-V to design their
processors. At the moment, RISC-V is mainly used for embedded and IoT (Internet of Things)
devices.

In recent years, the RISC-V ecosystem has matured significantly, which led to RISC-V
also slowly being used for High Performance Computing (HPC) | |. However, RISC-V
HPC is not quite there yet, as performance of x86 and ARM architectures is still an order
of magnitude ahead | |. Last year, a world’s first RISC-V laptop was released by
DeepComputing | , ]. This shows that many companies are contributing to the
RISC-V ecosystem. However, RISC-V is still slightly behind its competitors.

2.2 Binary Translation

In the past decades, binary translation has been extensively used for the migration and
emulation of legacy ISAs. In general, the goal of binary translation is to translate binary code
of a legacy or older ISA to equivalent binary code of a newer ISA [ ]. In dynamic binary
translation, the translation of the binary code occurs at runtime, providing the translator
context about the execution of the program. This approach overcomes issues such as dynamic
linking and indirect jumps at the cost of a significant performance overhead, similar to



interpreted languages [ |. In contrast, a static binary translator translates the binary
code ahead-of-time by reconstructing the Control Flow Graph (CFG) of the program | ].
This has the advantage of being able to perform more optimizations and only needing to
translate the binary once. Additionally, statically translated binaries typically use less memory,
less cycles and less power when compared to a dynamic variant | |. However, issues
such as indirect jumps become more difficult to address, because the target address is only
known during runtime.

There is a slight semantic difference between the terms binary raising and binary translation.
The term binary raising typically refers to the process of transforming machine code into
a higher-level abstraction, whereas binary translation typically maintains the same level
of abstraction between input and output. The term decompilation typically refers to the
process of recovering the original source code from a binary, whereas binary raising focuses
on transforming machine code into a higher-level abstraction for analysis, instrumentation,
and recompilation, rather than aiming to recover the exact original source code.

2.3 Basic Blocks and Control Flow Graphs

A machine function can be divided into basic blocks. A basic block is “a straight-line code
sequence with no branches in except to the entry and no branches out except at the exit” | ],
i.e., a sequence of instructions which are executed sequentially. Identifying the basic blocks
of a machine function involves determining the entry points, also known as leaders. An
instruction is a leader if, and only if:

1. It is the first instruction.
2. Tt is the target of a jump/branch instruction.
3. It is the instruction immediately after a jump/branch instruction.

A jump/branch instruction at the exit point of a basic block is also called a terminator
instruction.

Listing 1 illustrates a simple RISC-V function containing a loop. In this case, every label
represents an entry point to a basic block. The instruction after the branch instruction (bge)
is also a leader. This instruction is not a target of a jump/branch instruction, so the compiler
did not mark it with a label. The label .T1 has been added to represent this basic block. The
program can be divided into six basic blocks: Entry (loop), Loop Check (.L1), Pre-Loop Body
(.T1), Loop Body (.L2), Loop Increment (.L3), and Erit (.L4). Using these basic blocks, a
Control Flow Graph (CFG) can be constructed, where each basic block is represented as a
node. See Figure 1.

2.4 Compilers

In general, a compiler translates high-level source code into low-level machine code that can
be executed by the processor. This compilation process usually consists of five phases: Lexical
Analysis, Syntax Analysis, Semantic Analysis, Intermediate Code Generation, and Machine



loop: .L2:

addi sp, sp, -32 1w al, -20(s0)
sd ra, 24(sp) 1w a0, -24(s0)
sd sO, 16(sp) mulw a0, a0, al
addi sO, sp, 32 swW a0, -24(s0)
sW a0, -20(s0) 1w a0, -20(s0)
1i a0, 1 addiw a0, a0, -1
sW a0, -24(s0) sW a0, -20(s0)
1i a0, O J .L3
swW a0, -28(s0) .L3:
j L1 1w a0, -28(s0)
o 1l 8 addiw a0, a0, 1
1w a0, -28(s0) sSW a0, -28(s0)
1w al, -20(s0) j .L1
bge a0, al, .L4 .L4:
.T1: 1w a0, -24(s0)
j .L2 1d ra, 24(sp)
1d sO, 16(sp)
addi sp, sp, 32
ret

Listing 1: A RISC-V machine function containing a loop.

v

Loop Check

T

Pre-Loop Body

Entry Exit

A,

v

Loop Body Loop Increment

v

Figure 1: A Control Flow Graph representing the basic blocks of the RISC-V machine function
of Listing 1.

Code generation. Compilers are usually divided into a frontend and a backend using an
intermediate representation. The frontend translates the high-level source to the Intermediate
Representation (IR), while the backend translates the intermediate representation to machine
code. This division enables a modular approach, allowing multiple frontends to use the same
backend, which can be seen in Figure 2. Another advantage is that language-indepedent
optimizations can be applied to the intermediate representation.

Binary translation is essentially the inverse of the standard compilation process, the low-level
machine code is translated to a higher-level intermediate representation or to a high-level
target and from there to low-level machine code.

2.5 LLVM

LLVM, originally a research project at the University of Illinois | |, is an open-source
compiler infrastructure that provides libraries and tools for building compilers and other




C C++ Java Fortran Obj-C Ada

IR
x86 ARM AMDO64 VM C

Figure 2: A compiler infrastructure with multiple frontends and backends compiling to and
from a common IR, adopted from https://liucs.net/cs664s16/ir html

programming language-related software | |. Binary translators have been used in com-
bination with LLVM to utilize its optimizations and compiler backends. At the core of the
LLVM project lies its intermediate representation (IR): a low-level, Static Single Assignment

(SSA)-based instruction set | | that serves as a common language for compilation and
optimization. Variables of an SSA-based language are required to be assigned exactly once
and must dominate all its uses | ]. The LLVM IR is targeted by multiple compiler front

ends, most notably the Clang compiler for the C language family, the Rust compiler, and the
Swift compiler. Other significant sub-projects within the LLVM project include LLD, a faster
alternative to system linkers; BOLT, a post-linking optimizer; and, more recently, the MLIR
initiative.

LLVM IR mainly comes in two forms: a human-readable text-based representation of the
IR, and a machine-friendly binary representation known as bitcode (not to be confused
with bytecode). LLVM IR supports a wide range of types, for example integral types (i1, i8,
i64), floating point types (float, double), and also arrays, pointers, and structures. LLVM
IR instructions include binary operations (add, mul, xor), comparison instructions (icmp
sge, icmp ult), control flow instructions (br, ret), and memory operations (load, store, alloca,
getelementptr). The alloca instruction allocates memory on the stack, and the getelementptr
(usually abbreviated to GEP) instruction can be used to compute an address.

The top-level container for an LLVM IR program is called a module. The module contains a
list of functions, global variables, the symbol table, and all other LLVM IR objects | . A
function consists of basic blocks and each basic block contains instructions. An example of
an LLVM IR program can be seen in Listing 22.

2.6 ELF
The Executable and Linkable Format (ELF) is a common file format for executables, object
code, and shared libraries on Unix and Unix-like systems | ]. An ELF file consists of a

header and data. The header contains metadata about the ELF file, for example its class
(32-bit or 64-bit), the endianness, or the file type (executable, shared object, etc.). The data


https://liucs.net/cs664s16/ir.html

of the ELF file is divided into sections. These sections include executable code, initialized
data, uninitialized data, read-only data, symbol tables, relocation information, and more. For
example, the .text section contains the executable code, the .plt section contains a jump table
used for dynamic linking, the .rodata section contains read-only data, and the .data section
contains modifiable data such as global and static variables.

2.7 MCTOLL

S. B. Yadavalli and A. Smith mentioned that new ISAs are constantly being designed, resulting
in the need for (re)engineering binary translators for the resulting legacy ISAs | ]. They
argued that as compiler backends are irrespectively developed for these new ISAs, a static
binary translator should be presented that leverages those backends. This was the motivation
for MCTOLL: an open source LLVM-based tool created and maintained by Microsoft that
raises ELF binaries to LLVM IR and extensively uses data structures, algorithms, and the
code generation from the LLVM infrastructure | ].

At the moment, MCTOLL mainly supports raising x86 binaries, with support for raising
ARM binaries being in its early stages. The raising process of machine code to LLVM IR
consists of six phases. The ELF binary is disassembled to a list of MCInsts, which essentially
are encoded instructions in a generic LLVM data structure. This list is then used to build a
CFG of MachineBasicBlocks containing MachineInstrs, which represent instructions prior
to encoding. Multiple walks over the CFG are necessary for fully forming the LLVM IR.
These walks identify function prototypes and jump tables and raise instructions to LLVM IR.
After the LLVM IR is fully formed, it is emitted. The different phases are shown in Figure 3.
The first two phases are already implemented in a generic way for every architecture adopted
by LLVM.

Legacy binary Disassemble Build CFG - 1st CFG walk -
to Array of »| Raise MClinst > discover function
MClnst to Machinelnstr prototype.
< A\
2nd CFG walk - SIEFG walk 4th CFG walk - .
] : e raise non- : : Emit LLVM
discover jump j raise terminator o
terminator : . IR
tables e instructions

Figure 3: The phases of the raising process of MCTOLL, adopted from | .

To be able to raise an ELF binary to LLVM IR using MCTOLL, it needs to be supplied
with the header files used by the program. For example, when one wants to raise a program
that uses the puts function, MCTOLL needs to be supplied with the full path to the stdio.h
header file. At the moment, MCTOLL is not able to raise some C++-related features such as
virtual tables and exception handling.



2.8 Related Work

In a recent study | |, the efficacy of static binary translation was investigated using
MCTOLL. Their experiments consisted of both cross-architecture binary translation (x86
to ARM) and same-architecture binary translation (x86 to x86), comparing the runtime
performance of the raised and recompiled binary to that of the native binary using the
phoenix-2.0 benchmark | |. They found that same-architecture binary translation
(raising the x86 binary to LLVM IR and re-compiling the optimized IR to a x86 binary) had
positive effects on the runtime performance and in some cases on the size of the binary. The
last finding is especially interesting in the context of RISC-V binaries, where optimization
of binary size holds significant implications for resource-constrained embedded systems and
[oT devices. However, the LLVM-based tool MCTOLL currently only supports raising x86
and ARM binaries [ |. It is also worth mentioning that Fink exclusively conducted
experiments using Clang, but not with the C-compiler of the GNU Compiler Collection
(GCC). Furthermore, a dynamic binary translator that is able to translate RISC-V binaries
to LLVM IR has been presented | ]. However, because of the dynamic nature of this
library, it is not suitable for our research.

Several static binary translators that lift machine code to LLVM IR have been proposed in
the past, such as LLBT | ], rev.ng | |, and RetDec | ]. However, none
of the proposed static binary translators support lifting RISC-V binaries. This likely stems
from the fact that RISC-V is usually the target ISA of binary translation, because of it being
a more modern architecture, and binary translation is mostly used for the migration of legacy
software.

This research aims to expand the MCTOLL tool by implementing the RISC-V binary raiser
to be able to analyze the effectiveness of same-architecture binary recompilation for 64-bit
RISC-V binaries.



3 Implementation

This chapter describes the implementation of the binary translation process for RISC-V
ELF binaries using the RISC-V binary raiser within MCTOLL. It describes how the first,
third, and fourth CFG walks (corresponding to the third, fifth, and sixth phases in Figure 3)
are implemented in our RISC-V binary raiser. The first and second phases were already
generically implemented using the LLVM code generators. Furthermore, the second CFG walk
is skipped, because discovering jump tables has not yet been implemented. Some boilerplate
code was already present for the RISC-V binary raiser in the MCTOLL repository, which
enables the use of the RISC-V binary raiser. Refer to Appendix A for an example of the full
raising process.

It is important to note that the binaries are assumed to be unoptimized when raising and
use the standard RISC-V calling convention. A lot of information, which may be needed for
discovering the function prototypes or raising the machine functions, is lost otherwise.

Additionally, it is essential to differentiate between a machine function, machine basic block,
and machine instruction, and their counterparts: function, basic block, and instruction. A
machine entity refers to elements in the assembly or binary code, whereas the other refers to
elements in the LLVM IR.

Finally, for all implemented features, the x86 binary raiser within MCTOLL has been used
as a reference. However, there are some differences in implementations due to the different
natures of RISC-V and x86. In general, the same algorithmic ideas have been used as those
used by the x86 binary raiser, for example discovering function prototypes and promoting
registers to the stack, but some changes and simplifications were made for the RISC-V binary
raiser.

3.1 Representing pointer types

Before we begin with describing the discovery of function prototypes and the raising of
machine functions, it is important to note a key issue regarding pointer types and 64-bit
integers. In general, there is no foolproof method of determining whether a 64-bit word
represents a pointer (ptr) or a 64-bit integer (i64). Consider Listing 2, which illustrates a
machine function that accepts a 64-bit word argument. This argument could be either a ptr
or a i64. In this case, it is not possible to determine whether the 64-bit integer contained in
register a0 represents an address or an integral value.

func:
sd a0, -24(s0)
1d a0, -24(s0)
call <func>
ret

Listing 2: A RISC-V machine function that uses the sd instruction to store its first argument
on the stack. Prologue and epilogue instructions have been omitted.




Due to this ambiguity, we will not use the ptr type to represent addresses. Instead, we will
always use the i64 type for both addresses and 64-bit integers. This approach does not lead to
immediate issues, since addresses and 64-bit integers are essentially the same at the machine
level. However, certain LLVM IR instructions such as loads, stores, and GEP instructions do
require a ptr value. External functions not part of the ELF can also have functions with ptr
arguments.

To address this problem introduced by always using the i64 type for 64-bit word instructions,
we will convert between 164 and ptr types where needed by adding additional inttoptr and
ptrtoint instructions. While this will significantly increase the size of the LLVM IR for some
binaries, these instructions will be optimized out during subsequent optimization steps.

This approach results in the LLVM IR snippet seen in Listing 3 frequently occurring, which
shows an 164 being converted to a ptr via an inttoptr instruction. The pointer is then used
as an operand for a getelementptr instruction together with an index, in this case effectively
calculating the address of the second element of an array.

%0 = ...
%1 = inttoptr i64 %0 to ptr
%2 = getelementptr inbounds i64, ptr %1, i32 1

Listing 3: An LLVM IR snippet representing an address calculation.

3.2 Discovering function prototypes

The first CFG walk is for discovering the function prototypes of the machine functions.
A function prototype is a declaration of a function, consisting of an identifier and a type
signature. To correctly raise a binary to LLVM IR, we need to discover the type signatures of
the functions, as these are used when raising call machine instructions and when referencing
argument values. This includes discovering the return type, the amount of parameters, and
their respective types.

3.2.1 Discovering return types

For discovering the return type of a machine function, we differentiate between three cases:
the function does not return a value (i.e., void), the function returns a 32-bit integer (i32), or
the function returns a pointer type or 64-bit integer (i64). In RISC-V, the return register is
a0. To determine whether the machine function returns a value, we must establish whether
this register is defined in the machine function. However, a0 is also used as the first argument
of a function call. To accurately determine whether a machine function returns a value, we
must only consider the machine instructions from the last call instruction to the end of the
machine function. See Listing 4a and Listing 4b for a comparison between a machine function
that does not return a value and one that does.

Listing 4a shows that func defines register a0, however, this register is used as an argument
and not as a return value. When we only consider the machine instructions after the call




func:
func: auipc ab5, 2
1li a0, O func: addi ab, a5, <X>
call <func> 1li a0, 7 mv a0, ab
ret ret ret

(a) (b) ()
Listing 4: RISC-V machine functions with void (a), i32 (b), and i64 (c) return types.

instruction, we can conclude that this function does not return anything. In Listing 4b, func
does define a0 after the last function call (in this case no function call takes place), so this
machine function does have a return type.

To differentiate between a return type of i32 and 164, we must examine the instruction that
defines the register used for defining a0. In general, the return value is defined through a
move register instruction (e.g., mv a0, ab), through a binary operation (e.g., addw a0, a5, 1),
or through a move immediate instruction (e.g., li a0, 7). A li instruction always indicates
an i32 return type. For the other two, we need to determine how the register of the second
operand is defined. When this register is defined via a 64-bit word load instruction (i.e., Id)
or via an PC-relative or absolute access (i.e., auipc or lui respectively, both followed by an
accompanying addi/ld), we can conclude that the return type of the machine function is i64.
A return type of 132 is assumed otherwise. Listing 4¢ shows a machine function that returns
the address of a global variable X, in which case we deduce the return value to be i64.

3.2.2 Discovering argument types

For discovering the arguments of the machine function and their types, we again differentiate
between 132 and i64. The arguments are passed via the argument registers a0 to a7. When
a function has more than eight arguments, the arguments are passed via the stack!. In
unoptimized RISC-V programs, the argument registers are usually moved to a local register
or stored to the stack after the prologue. To identify the instructions that represent the
storing or moving of the passed arguments, we need to check two conditions:

1. The register that is being moved or stored is one of the argument registers (a0 - a7).
2. The register has not yet been defined in the current basic block.

Only the entry machine basic block of the machine function is considered, as all argument
registers are moved or stored in the entry machine basic block. See Listing 5a and Listing 5b
for a comparison between a function that has two i32 arguments and a function that has two
164 arguments.

Listing ba shows that three argument registers are being moved or stored. However, the
register ab of the second move instruction is already defined in the basic block. Furthermore,
this second move instruction would most likely not be in the entry basic block of the machine

LAt the moment, the discovery of such arguments is unsupported.

10




func: func:
mv a5, a0 sd a0, -24(s0)
sw al, -20(s0) sd al, -32(s0)
mv a0, ab mv a0, ab
ret ret
(a) (b)

Listing 5: RISC-V machine functions with two i32
arguments (a) and two i64 arguments (b).

function. Therefore, the ab register is not classified as an argument and it is concluded that
the machine function has two arguments: a0 and al, both of i32 type. Similarly, Listing 5b
shows two argument registers being stored to the stack using a double word store, indicating
that the machine function has two arguments, both of 164 type.

3.3 Raising machine instructions to LLVM IR

Once the function prototypes are discovered, the third CFG walk is performed?. The machine
functions are raised to LLVM IR, with each machine function being raised individually.
The machine basic blocks within the machine function are traversed in loop traversal order,
ensuring that the machine basic blocks are processed in a manner that respects the control
flow of the program. With loop traversal order, some machine basic blocks are passed twice.
We will only process the primary pass of each machine basic block. During this traversal, a
corresponding basic block is created and stored for future reference. All raised instructions
are inserted into the basic block associated with the machine basic block. Additionally, these
basic blocks also serve as operands for branch instructions.

Every machine instruction within a machine basic block is traversed and will be raised to
one or more LLVM IR instructions. Certain instructions, such as those involving the loading
or storing of the return address or stack pointer, are skipped as they are unnecessary to raise.
In the initial pass, terminator instructions are also skipped since the target basic block might
not yet be raised. Information necessary for raising these instructions in a second pass is
recorded.

3.3.1 Tracking register values

Because of the SSA characteristic of LLVM IR, the infinitely available virtual registers can
only be assigned once. This is not the case for machine registers, which are reused many times.
Therefore, a one-to-one mapping between machine register and a virtual register of LLVM
IR is not possible. Similar to the x86 implementation, we will maintain a mapping from
each machine register to the current SSA value that is assigned to it. This mapping is used
whenever a register’s value needs to be set or retrieved in response to a machine instruction.
An example which illustrates this mapping can be seen in Listing 6a and Listing 6b.

2The second CFG walk is skipped, because discovering jump tables is not yet supported

11




func: define void @func(i32 %0) {

mv a4, a0 %2 = icmp sge i32 5, %0
1i a5, 5 br il %2, <target>, <fall-through>
bge ab, a4, <target>
}
(a) (b)

Listing 6: A RISC-V machine function containing move instructions (a) and the corresponding
LLVM IR function (b) raised using our RISC-V binary raiser.

Listing 6a defines the registers a4 and ab and subsequently uses those registers in a comparison
instruction. Instructions such as mv or li do not have a corresponding instruction in the LLVM
IR. The register mapping is updated with the new definition and following instructions can
use the current definitions for each register. This can be seen in Listing 6b, which does not
contain any instructions for moving the values. The values have been directly retrieved from
the register-value map.

3.3.2 Promoting registers to the stack

The register-value map is maintained separately for each machine basic block to handle
branching appropriately. If a register value is not locally defined within the current machine
basic block, we search for its definition in the immediate predecessors of the machine basic
block. There are two scenarios to consider?:

1. Exactly one predecessor defines the register: We simply use this definition as the
value for the current machine basic block.

2. All predecessors define the register: When all predecessors define the register, we
must promote the register to the stack using an alloca instruction. Each branch will
then store to this designated memory address and the current machine basic block will
load from this memory address.

When the referenced register number is not defined locally and also not defined by any of its
predecessors, it is attempted to retrieve the value from the function arguments. This will
only be attempted if the referenced register is an actual argument register, i.e., registers a0
to a7. This algorithm more or less matches the algorithm used by the x86 implementation.

3.3.3 Tracking stack values

To be able to raise machine operands that reference memory on the stack, we introduce an
alloca instruction which will represent a specific stack slot. This is maintained in the form
of a mapping from stack offset to the current alloca instruction representing that stack slot.
This mapping is used whenever a load or store instruction from or to the stack is raised. This
offset-slot map is not maintained separately for every machine basic block, because the stack
slots should be available for all machine basic blocks of the machine function. This approach

3The scenario where more than one predecessor, but not all, defines the register is undefined.

12




is a limitation of the current state of the RISC-V binary raiser, as not all “stack slots” are
explicitly defined. For example a stack load with offset —40 might be accessing the pointer
stored at offset —44 with an offset of 4 bytes.

3.3.4 Type coercion and widening

For function calls, the argument types must exactly match the types specified in the function’s
type signature. Similarly, for return statements, the type of the return value must match the
function’s return type exactly. For example, calling a function that expects an i64 value with
an i32 value is not allowed. Therefore, it is necessary to coerce the types of the arguments or
return value to match the expected type of the type signature in case of a type mismatch.
For integer values, this coercion will be done using a trunc or sext instruction. When the
expected type is a pointer type and the actual type is an i64 (or vice-versa), we will generate
an inttoptr (or ptrtoint) instruction, as described in Chapter 3.1. If the expected type is a
pointer but the actual type is a constant zero, the zero will be replaced with a constant null
pointer. Any other type mismatches will not be coerced and will result in an error.

Similarly, binary operations and comparison instructions also require matching types. In
cases of mismatching types, we will widen the smaller type to match the bit width of the
larger type. This widening is only applicable to integer types.

3.3.5 Raising return instructions

Return instructions are, by far, the simplest machine instructions to raise to LLVM IR. First,
the return type of the discovered function prototype is consulted. In the case of a void return
type, an LLVM IR return instruction is created without an SSA value. For all other return
types, an LLVM IR return instruction is created with the value currently assigned to the
return register, i.e., a0. In the case of a type mismatch between the value currently assigned
to the return register and the return type of the discovered prototype, the return type of the
discovered prototype is coerced upon the return value. An example illustrating the raising of
a return instruction can be seen in Listing 7a and Listing 7b.

func:
1i a5, 3 define dso_local i32 @func() {
mv a0, ab ret i32 3
ret }

(a) (b)

Listing 7: A RISC-V machine function returning the value 3 (a) and the corresponding LLVM
IR function (b) raised using our RISC-V binary raiser.

3.3.6 Raising binary operations

To raise an instruction that represents a binary operation, we must determine the SSA values
for the left-hand side and the right-hand side of the machine instruction. In the case of binary
operations, the left-hand side is a register and the right-hand side can be either a register or

13



an immediate. For the addition instruction shown in Listing 8a, the SSA value assigned to
the register a0 will be determined (in this case the first argument value is used, because a0
is not defined yet and it is an argument register) and a constant integer value representing
the immediate value 1 will be created. These values will then be used to create an LLVM IR
binary operator instruction, which will be appended to the current basic block. It is possible
that a type widening is needed for either the left-hand side or the right-hand side. All binary
operators are raised in this manner. Listing 8b shows the resulting raised LLVM IR function
corresponding to Listing 8a.

define dso_local i32 @func(i32 %0) {
func: %2 = add i32 %0, 1
addiw a0, a0, 1 ret i32 %2
ret }
(a) (b)

Listing 8: A RISC-V machine function containing an addition instruction (a) and the
corresponding LLVM IR function (b) raised using our RISC-V binary raiser.

A single exception is addition instructions that are used to compute an address using a stack
offset*. For example, consider the instruction add a5, s0, -20, which computes the address of
the stack slot at offset —20. When raising these kinds of instructions we will simply set the
value of the destination register to be equal to the alloca instruction currently functioning
as the specified stack slot, no LLVM IR instruction will be generated for these addition
instructions. Adding an offset to an actual pointer is not a problem, because of pointers being
represented as 64-bit integers.

3.3.7 Raising load and store instructions

Both load and store instructions are raised using a similar approach. The process begins
by determining the pointer to load from or store to, which involves using the second and
third operands of the load/store instruction. The second operand is a register containing an
address, and the third operand is an immediate value serving as an offset to that address.
After determining the pointer and applying any necessary offset, an LLVM IR load or store
instruction is created using this pointer.

For store instructions, the current value assigned to the register specified by the first operand
will be used to create the LLVM IR store instruction. For load instructions, the created
LLVM IR load instruction’s result is assigned to the register specified by the first operand.
This LLVM IR load or store instruction is then appended to the current basic block.

For determining the pointer to load from or store to, we consider three scenarios:
1. The load/store is a stack load/store.

2. The load/store is not a stack load/store and the offset is zero.

4This exception arises solely due to the limitations in advanced stack access.

14




3. The load/store is not a stack load/store and the offset is non-zero.

In the first scenario, the pointer to load from or store to is the alloca functioning as the
specified stack slot, similar to the situation described in Chapter 3.3.6. For example, consider
Listing 9a. This unoptimized RISC-V program first stores its argument to the stack, followed
by immediately loading this value again, moving it to the return register, and returning to
the caller. Listing 9b shows how this machine function is raised. An alloca instruction is
created for the stack slot at offset -20. The argument is stored at this address, then loaded,
and finally returned.

func: define dso_local i32 @func(i32 %0) {
mv ab,al %2 = alloca 132, align 4
sw ab5,-20(s0) store 132 %0, ptr %2, align 4
lw ab,-20(s0) %#3 = load 132, ptr %2, align 4
mv a0, ab ret i32 %3
ret }
(a) (b)

Listing 9: A RISC-V machine function that loads from and stores to the stack (a) and the
corresponding LLVM IR function (b) raised using our RISC-V binary raiser.

For the second scenario, the pointer to load from or store to is simply the address contained
in the specified register. This is handled similarly as the previous example, minus the alloca
instruction.

In the case of the third scenario, we need to compute the address using a getelementptr
instruction using the immediate value as the index. However, the immediate value of the
machine instruction represents the offset in bytes, whereas getelementptr instructions work
with indices. We need to determine the alignment of the operation represented by the opcode
of the machine instruction (usually either 4 or 8 bytes) and use that to compute the index.
Listing 10a shows an example of such a load instruction, in this case loading an element of
an array. Listing 10b illustrates how such offsetted loads are raised. An inttoptr instruction is
needed, because getelementptr instructions can only be used with pointers. The offset of 8
bytes is converted to an index of 2, because the alignment of the load instruction is a single
word, i.e., 4 bytes.

3.3.8 Raising call instructions

To raise call instructions, we first need to determine the function prototype of the target
function. This is achieved by using the offset of the jal instruction as a relative offset to
the current instruction to compute the offset of the target machine function. If the target
machine function is found in this manner, it is locally defined, and we can simply use the
function prototype created in the second CFG walk.

When the target function is not locally defined, the offset refers to an entry of the PLT
section of the ELF. Listing 11a illustrates such an entry. The instructions in this entry are
disassembled and the PC-relative offset is computed using the values of the auipc and Id

15




define dso_local i32 @func(i64 %0) {
%2 = alloca i64, align 8
store i64 %0, ptr %2, align 8

func: %3 = load i64, ptr %2, align 8
sd a0,-24(s0) %4 = inttoptr i64 %3 to ptr
1d ab,-24(s0) %5 = getelementptr inbounds 132, ptr %4, i32 2
lw a5,8(ab) %6 = load i32, ptr %5, align 4
mv a0,ab ret i32 %6
ret }

(a) (b)

Listing 10: A RISC-V machine function that loads from the address argument with an
offset (a) and the corresponding LLVM IR function (b) raised using our RISC-V binary raiser.

instructions. This offset should point to a dynamic relocation record with an associated
symbol, an example of which can be seen in Listing 12. Finally, the name of this symbol
is used to locate the function using the included files described in Chapter 2.7. Listing 11b
shows what an LLVM IR function calling an externally defined function would look like.

define dso_local i32 @main() {
printf@plt: %1 = call i32 (ptr, ...) G@printf(ptr Q.str)
auipc t3, 2 ret i32 O
1d t3, t3, -1408 by
jalr t1, t3
nop declare dso_local i32 @printf (ptr, ...)
(a) (b)

Listing 11: A part of the PLT section of a RISC-V ELF binary (a) and an LLVM IR function
illustrating the use of such an externally defined function (b).

DYNAMIC RELOCATION RECORDS

OFFSET TYPE VALUE

0000000000002018 R_RISCV_JUMP_SLOT __libc_start_main@GLIBC_2.34
0000000000002020 R_RISCV_JUMP_SLOT printf@GLIBC_2.27

Listing 12: The dynamic relocation records of a RISC-V ELF binary.

After the function prototype is determined, an arguments vector will be constructed based
on the current values assigned to the argument registers. The amount of registers used is
determined by the number of parameters of the prototype of the target function. For example,
if the target function only accepts two arguments, only registers a0 and al will used to
construct the arguments vector. In the case of a variadic function, exclusively the argument
registers that are defined locally are added to the arguments vector to prevent using too
many arguments. In some cases the types of the arguments must be coerced to that of the
prototype of the target function, as was described in Chapter 3.3.4. Finally, we create an

16




LLVM IR call instruction using the target function and the constructed arguments vector,
whose value will be assigned to the return register.

Listing 13a shows a machine function that calls another function. In this case, it is a locally
defined function. From the discovered function prototype, it is known that this function
accepts two arguments, both of i32 type. The values assigned to registers a0 and al are used
as arguments and an LLVM IR call instruction is created. Listing 13b shows the raised result.

main:
1i al, 5 define dso_local i32 @main () {
1i a0, 3 %1 = call i32 @func(i32 3, i32 5)
call func ret i32 %1
ret +

(a) (b)

Listing 13: A RISC-V machine function that arranges two argument registers and calls a
function (a) and the corresponding LLVM IR function (b) raised using our RISC-V binary
raiser.

3.3.9 Raising PC-relative and absolute accesses

PC-relative accesses are characterized by the auipc instruction paired with another instruction,
typically an addi instruction. Importantly, the addi instruction does not necessarily immediately
follow the auipc instruction. This instruction pair computes an address by shifting the
immediate value of the auipc instruction 12 bits to the left and adding the 20-bit immediate
value of the addi instruction to form a relative offset from the current instruction’s position.
The final address is obtained by adding the address of the current instruction and the address
of the text section. In general, this results in an address within the dynamic relocations,
read-only data, or data section of the ELF binary, which may correspond to a global variable
or read-only data such as a string.

To raise PC-relative accesses, the described offset is used to resolve the global variable as
either a dynamic relocation, read-only data, or modifiable data, in that specific order. The
accessed symbol is used to create an LLVM global variable, using its linkage type (i.e, external,
internal, etc.), size, and contents. The size determines the type and alignment of the global
variable. For instance, a symbol with a size of 4 bytes results in a global variable of type i32.
This only applies to dynamic relocations and modifiable data. In contrast, for read-only data
no symbol is consulted. The data is directly extracted from the read-only data section and is
treated as an array of bytes. Global variables are instantiated upon the first access, subsequent
accesses reuse the created global variable. Finally, the created or retrieved global variable is
assigned to the register specified by the first operand of the addi instruction. Listing 14 and
Listing 15 show how such PC-relative accesses are raised.

Absolute accesses are characterized by a lui instruction paired with a complimentary addi
instruction and are raised in a nearly identical manner. The only difference lies in the offset
computation. For absolute accesses, the computed offset is used directly without adding the

17




main:
auipc a5, 2
addi ab, ab, -1640 # 2008 <C>
lw a5, a5, O
mv al, ab
auipc a0, O
addi a0, a0, 36 # 6a0 <_IO0_stdin_used+0x8>
jal ra, 5a0 <printf@plt>

1li a5, 0
mv a0, ab
ret

Listing 14: A RISC-V machine function loading the address of both a global variable and
read-only data.
Ist:implementation:global-variable.riscv

©@C = dso_local global i32 8, align 4
@.rodatal3 = private unnamed_addr constant [12 x i8] c"«
\N01\00\02\00\00\00\00\00%d\OA\NOO", align 8

define dso_local i32 @main () {
%1 = load 132, ptr @C, align 4

%2 = call i32 (ptr, ...) @printf(ptr getelementptr inbounds ([12 x i8¢
1, ptr @.rodatal13, i64 0, i32 8), i32 %1)
ret i32 0
}
declare dso_local i32 @printf (ptr, ...)

Listing 15: An LLVM IR function corresponding to Listing 14, raised using our RISC-V
binary raiser.

address of the current instruction and the base address of the text section, as it represents an
absolute address.

3.3.10 Raising terminator instructions

Most machine basic blocks end with a terminator instruction. As was described in Chapter 2.3,
a terminator instruction is an instruction that terminates a basic block, e.g., a jump or branch
instruction. It is possible that the target basic block of such a terminator instruction is not
yet raised. For this reason, all terminator instructions are skipped in the initial pass and
necessary information — such as the machine instruction and the register values at that time —
is recorded for use at the fourth CFG walk®. It is also possible that a machine basic block
does not end with a terminator instruction. In this case, a fall-through unconditional branch
instruction will be added, with the next basic block as its target. The fourth CFG walk can
be divided into two different scenarios: unconditional branches and conditional branches.

This is not really a CFG walk, as only the recorded terminator instructions are processed.

18




The process of raising unconditional branches is quite straightforward. First, the target
machine basic block is identified using the offset operand of the jump machine instruction.
As mentioned in Chapter 3.3, a mapping between the machine basic block and its associated
basic block is maintained. Using this mapping, the basic block associated with the machine
basic block is determined. Finally, an unconditional LLVM branch instruction targeting the
appropriate basic block is created and inserted at the end of the current basic block.

Raising conditional branches is a bit more complicated. Similar to binary operation in-
structions, the SSA values for the left-hand side and right-hand side of the comparison are
determined. The left-hand side is a register, while the right-hand side can be either a register
or an immediate value. Some comparison instructions implicitly compare against zero, which
requires slightly different handling. Types are once again widened as needed. Using these
values, an LLVM IR comparison instruction is created. Next, the fall-through basic block
and the destination basic block are identified. These, along with the created comparison
instruction, are used to create an LLVM IR branch instruction, which is then inserted at the
end of the current basic block.

func:
addi sp,sp, —48
sd s0,40(sp)
addi s0,sp,48
mv a5, a0
swW a5,-36(s0)
swW zero ,-20(s0)
1w ab5,-36(s0)
sext.w a4,ab
1i ab,2
blt ab,ad4 ,68e <func+0x26>
1i ab,1
sw ab,-20(s0)
J 694 <func+0x2c>
1i ab,3
sw a5,-20(s0)
1w ab,-20(s0)
mv a0, ab
1d s0,40(sp)
addi sp,sp,48
ret

Listing 16: A RISC-V machine function containing both an unconditional branch and a
conditional branch.

Listing 16 and Listing 17 show how both unconditional and conditional branches are raised.
For the conditional branch machine instruction, an LLVM IR comparison instruction (icmp)
is created, whose result is used in the LLVM IR branch instruction (br) right after it. The
unconditional branch machine instruction is raised to an LLVM IR branch instruction without
a comparison.

19




define dso_local i32 @func(i32 %0) {
%2 = alloca 132, align 4
store i32 %0, ptr %2, align 4
%3 = alloca i64, align 8
store i64 0, ptr %3, align 8
%4 = load i32, ptr %2, align 4
% add 132 %4, O
%6 = icmp slt i32 2, %5
br i1 %6, label %8, label %7

7: ; preds = 1
store i32 1, ptr %3, align 4
br label %9

8: ; preds = %1
store i32 3, ptr %3, align 4
br label %9

9: ; preds = %7, %8

%10 = load i64, ptr %3, align 8
%11 trunc i64 %10 to 132
ret i32 %11

Listing 17: An LLVM IR function corresponding to Listing 16, raised using our RISC-V
binary raiser.

20




4 Evaluation

This chapter evaluates the quality of the RISC-V binary raiser by comparing supported
features between the RISC-V and the more mature x86 binary raisers within MCTOLL.
Furthermore, the effectiveness of same-architecture binary recompilation for RISC-V binaries
is evaluated by assessing the binary size and runtime performance of the recompiled RISC-V
binaries. Refer to Appendix B for information on how to reproduce to results of the evaluation.

4.1 Qualitative Comparison of Feature Support

To compare the supported features of both binary raisers, we conducted a qualitative
comparison based on a list of relevant language features, mostly corresponding to the tests
written for our RISC-V binary raiser. The test programs will be raised with both our RISC-V
binary raiser and the x86 binary raiser and the outputted IR will be evaluated, if the raising
process did not fail. The comparative results are summarized in Table 1.

Feature x86-64 RISC-V
v

Return Statements
Binary Operations
Internal Functions
External Functions
Vararg Functions
Local Variables
Global Variables
Strings
Arrays
Matrices
Loops
Branches
Switch Statements
Structures
Pointers
Memory Allocation
File I/O

Vector Instructions

ZENENENENE SN IENENENEN

N N N N N N N N 2N NENENENEN

XX NN

Table 1: A qualitative comparison of supported features between the x86 and RISC-V binary
raisers within MCTOLL, where a checkmark represents full support, a tilde represents partial
support, and a cross represents no support.

It is evident that the x86 binary raiser is more mature. It offers strong feature support across
various functionalities. The only incorrect behaviour observed in the x86 binary raiser was
related to initialized global arrays and matrices. This resulted in IR with instructions that
did not dominate all their uses.

21



The RISC-V binary raiser is capable of raising most basic programs and shows promising
potential. Despite this, the RISC-V binary raiser is not able to raise all benchmarks, due to
some identified limitations, as will be discussed in the next section. For a description of all
limitations of the RISC-V binary raiser, refer to Chapter 6.

4.2 Setup

To evaluate the binary size and runtime performance, we will use the same phoenix-2.0°
benchmarks that M. Fink used in his research. However, due to time constraints, our RISC-V
binary raiser is not yet fully capable of raising the benchmarks without issues. For this reason,
some benchmarks have been slightly modified, while others have been entirely excluded. For
more details on the current limitations, refer to Chapter 6. In particular:

e Our RISC-V binary raiser currently lacks support for vector instructions. Consequently,
we were unable to raise the linear regression benchmark, and it is excluded from
the evaluation.

e The binary raiser also does not support arrays and/or structs on the stack, leading
to issues with functions such as fstat and gettimeofday. Additionally, functions like
pread and mmap still present some challenges. As a result, reading from files has
been completely removed, and all test data is hard-coded into the benchmarks. The
word_count and string match benchmarks use a Lorem Ipsum text and the pca and
matrix multiply use randomly generated data using a user-defined seed.

e Although our RISC-V binary raiser is able to raise the kmeans benchmark, the output
is incorrect for unknown reasons. To avoid any misleading conclusions, this benchmark
is omitted from the evaluation.

e The histogram benchmark originally involved reading from a BMP file, which could not
be easily replaced with hard-coded data. Additionally, this benchmark did not provide
significant added value, as its covered language features are already addressed by other
benchmarks. Therefore, the histogram benchmark is not included in the evaluation.

It is worth noting that the x86 binary raiser within MCTOLL is, with the latest commit
of MCTOLL, also not able to raise the benchmarks without problems. This most likely
has something to do with environment, which illustrates the very sensitive nature of binary
translation.

For the runtime performance and binary size experiments, we will consider four different
binaries:

1. A binary compiled from source using GNU, without optimizations.
2. A binary compiled from source using GNU, with optimizations.
3. A raised binary, recompiled using LLVM without optimizations.

4. A raised binary, recompiled using LLVM with optimizations.

Shttps://github.com/kozyraki/phoenix

22


https://github.com/kozyraki/phoenix

Both raised binaries use the native unoptimized binary (1) as the input. For optimization,
the flag -03 has been used instead of -0z, because the latter did not have any different effect
for these specific programs.

All benchmarks were run on an x86 machine running Zorin 0S 17.1 with an Intel Core
17-13700H (14 cores, 20 threads), and 2 x 16 GB of DDR5 RAM. The native binaries have
been compiled with GNU Compiler Collection 11.4.0 and the raised binaries have been
compiled with Clang 15.0.4, the version which will be build along side the LLVM project
tree mentioned in Appendix B.

4.3 Binary Size

To evaluate the effectiveness of recompilation on the size of RISC-V ELF binaries, we will
measure the size of the four binaries described in Section 4.2. However, because ELF sections
can be removed or re-ordered during raising and optimization, alignment and padding can
be added to the ELF, resulting in a skewed impression. For this reason, we will additionally
measure the total size of the various sections of the binary, as well as the size of the text
section on its own. The results can be seen in Figure 4, Figure 5, and Figure 6 respectively.

To count the sizes, we utilized GNU size” with the Berkeley output style. In this context,
the text section encompasses sections related to program code and constant read-only static
or global variables, such as .interp, .text, .rodata, .plt, and others. Similarly, the data
section includes sections associated with non-zero initialized global and static variables, such
as .data, .dynamic, etc. These two groups, along with the .bss section (zero-initialized
global and static variables), are used to determine the combined size of the sections. An
example output of GNU size can be seen in Listing 18.

text data bss dec hex filename
4089 704 16 4809 12c9 scripts/build/word_count

Listing 18: An example of output from the GNU size program, displaying the sizes of the
text sections, the data sections, the bss section, and the total size in both decimal and
hexadecimal.

Figure 4 shows that the binary size generally increases after raising and optimizing, with
the exception of the string match benchmark. This increase is likely due to alignment and
padding of the sections. Although the size of the text-related sections of the string match
benchmark decreases, this decrease is not as significant as Figure 4 might suggest. So this
significant decrease in size might also be attributed to padding and alignment of the ELF
sections.

An interesting observation can be made for the optimized native binary of the pca benchmark,
which significantly increases in size. However, this increase is not seen in the optimized raised
binary. This increase in size can also be seen in Figure 5 and Figure 6, so this can not be
explained via padding and alignment of sections. While an increase in size is expected for this

"https://www.man7.org/linux/man-pages/manl/size.1.html

23



https://www.man7.org/linux/man-pages/man1/size.1.html

-10*

i Native (-00)
L4} m — | |loNative (-03)
—— — l0Raised (-00)
L3 1] F — liRaised (-03)
~ 1.2
/M
(]
N1
n
1 -
il | il
I “9'\ .a_\ I
C}O\) < 9@&’0 Qo ,\'K)'&Q\ﬂ
«© x,’f«’» A
=) w@x}(’

Figure 4: The binary size of the four benchmarks for both the native and raised binaries.

@ Native (-00)
6,000 - |
’ = l0Native (-03)
[0 Raised (-00)
5,500 |
IiRaised (-03)
5,000 + |
@ —
g 4500 | !
n _ _
4,000 H
3,500 H
3,000 ] H
I > T T
& = O >
3c s> o>
wo* o A
S @@{,‘f«

Figure 5: The combined size of the text, data, and bss sections for the four benchmarks for
both the native and raised binaries.

24



i Native (-00)
4,000 ] = 0 Native (-03)
[0 Raised (-00)
) 3,000 | ]
Q —
N
2,500
2,000 |
1,500 ||
600095, . a,gc.‘ﬁ"

Figure 6: The size of the text section for both the native and raised binaries of the four
benchmarks.

program, due to optimizations like loop unrolling, the extent of the increase is unusually large.
The most plausible explanation is the difference in optimization and instruction selection
between the GNU Compiler Collection and Clang.

Figure 5 and Figure 6 show that binary recompilation does have an effect on the size of the
binary. Both the word_count and string match benchmarks decrease in size when compared
to both the unoptimized and optimized native binaries. Unexpectedly, the matrix multiply
benchmark decreases in size when compared to the unoptimized native binary. Excluding
the optimized native binary discussed earlier, the pca benchmark shows an increase in size.
This increase can be attributed to optimizations that do not always reduce the amount of
instructions. For example, loop unrolling adds instructions to improve instruction scheduling.

The results of Figure 4 roughly match the results of the experiments conducted by M. Fink for
the x86 binary raiser, with the exception of string match. They concluded that recompiling
to improve the size of the binary was not beneficial. However, Figure 5 and Figure 6 show
that their experiment of just measuring the total size of the binary might give the wrong
impression, because we measured a significant impact on the size of the ELF sections.

4.4 Runtime Performance

Although we did have access to a RISC-V development board®, the board was rather old
and it was not able to run our binaries because of an outdated glibc version. To still be

8HiFive Unleashed Developemnt Kit

25



able to measure the runtime performance, we will observe the amount of dynamic guest
instructions for each binary using the RISC-V emulator of QEMU?. QEMU has multiple
logging capabilities. We will be utilizing CPU logging, which logs the CPU state after every
guest instruction. Using a simple script, we can determine the amount of occurrences of the
PC register, which indicates the amount of instructions being executed. It is worth noting
that QEMU, by default, tries to optimize the execution of guest instructions by chaining
together sequences of instructions. This means it translates blocks of guest instructions into
host instructions and then executes them as a unit, which can improve performance. However,
this leads to an under count of instructions, because it executes blocks of instructions as a
unit and skips intermediate states of the guest CPU. That optimization has been disabled
for this experiment. The total amount of dynamic quest instructions for each binary can be
seen in Figure 7.

The results illustrate that the raw overhead introduced by raising is significant, as can be
seen from the unoptimized raised binaries (“Raised (-00)”) in Figure 7. This is in line with
the results of M. Fink’s research. The generated instructions are far from optimal and also
contain numerous unnecessary casts and sign extensions. However, after optimizing the raised
LLVM IR, the resulting binary outperforms the unoptimized native binary. It does not
outperform the optimized native binary, except for loop-heavy programs such as the pca and
matrix multiply benchmarks. Once again, this can most likely be attributed to differences
between the optimization passes of GCC and Clang.

Shttps://github.com/qemu/qemu

26


https://github.com/qemu/qemu

105 word_count 104 string match

1.15 | ] . ]
4.6 |- N 8
1.1} . 4.4 .
4.2 8
1.05 | .
4 - _
1 - -
3.8 .
|_|l_| ]
104 pca 106 matrix multiply
5.45 : 3.2 .
541 . 31 i
] 28| |
5.35 1 .
26 .
2.3 .
24 :
2.25 a 991 |

liNative (-00)lINative (-03)U0Raised (-00)IIRaised (-03)

Figure 7: The total amount of dynamic guest instructions for each of the four benchmarks
for both the native and raised binaries.

27



5 Conclusions

In this thesis, we have described the implementation of our RISC-V binary raiser and evaluated
the effectiveness of same-architecture binary recompilation on the binary size and runtime
performance of 64-bit RISC-V ELF binaries. Our findings indicate that same-architecture
binary recompilation positively impacts the size of the sections of the ELF, though the total
binary size may increase due to padding and alignment adjustments.

The raising process initially introduces substantial raw overhead in runtime performance.
However, optimizing the raised LLVM IR effectively mitigates this overhead. For loop-heavy
programs, we observed a significant improvement in runtime performance, outperforming
both the unoptimized and optimized native binaries. No significant positive effect was found
for programs that are not loop-heavy.

Finally, binary translation is highly sensitive to the environment. Variations in compiler or
enabled RISC-V extensions can substantially influence the resulting machine code, thereby
complicating the raising process. Even so, the RISC-V binary raiser demonstrates promising
potential despite some identified limitations. Future efforts should aim to address these
limitations, thereby improving the overall functionality and compatibility of the RISC-V
binary raiser within MCTOLL.

28



6 Limitations and Future Work

This chapter describes the limitations of the RISC-V binary raiser within MCTOLL and
the required future efforts for improving the overall functionality and compatibility of the
RISC-V binary raiser.

In particular, the binaries are assumed to have been compiled with GCC and with the
“Compressed” extension enabled. The reason for this is that GCC uses the compressed jump
instruction c. j for unconditional branches, while Clang uses the pseudo-instruction j, which
is an alias for a jal instruction with the zero register as the link register. Due to a presumed
bug in the CFG building algorithm of MCTOLL, jal instructions with the zero register are
not recognized as terminator instructions, resulting in incorrect basic blocks and ultimately
an incorrect CFG.

Due to this limitation, we were unable to perform certain experiments. These included
comparing binary size and runtime performance for binaries compiled with GCC versus those
compiled with Clang, as well as testing the impact of enabling compressed instructions on
binaries that were originally compiled without them.

The following is a list of identified unsupported features:
e Raising 32-bit binaries is not supported and was outside the scope of this thesis.
e Raising vector instructions is not supported and was outside the scope of this thesis.

¢ Raising optimized binaries is not fully supported. Some limited testing has been
done with optimized binaries, however, this might not always work correctly.

e Raising binaries compiled with Clang or binaries compiled without the “Compressed”
extension is not supported.

e Raising binaries compiled without the fno-stack-protector flag is not supported,
because otherwise functions such as __printf_chk would be included in the binary,
which we were not able to find a corresponding header file for to include.

e Discovery of jump tables, the second CFG walk, is not implemented. As a result,
complex switch statements that utilize jump tables are not accurately raised at this
time. However, simple switch statements are supported.

e Support for initialized global strings is not implemented. In these cases, the symbol
is stored in the data section of the ELF file, while the actual value resides in the
read-only data section. This separation adds a layer of complexity, and a solution has
not yet been devised due to time constraints. Nonetheless, addressing this issue should
not be overly difficult.

e Advanced stack accesses, such as accessing properties of a local struct or elements
of a local array, are not supported. This is because the struct or array is stored at a
base offset on the stack (e.g., —40), and accesses occur at an offset from this base offset
(e.g., —52). Our offset-slot map is not designed to handle these cases. As a result, local

29



variables representing structs or arrays are not supported. This also means that passing
structs by value is not yet supported, as this typically occurs via the stack. However,
passing structs by reference is supported.

e The limitations related to structs and stack accesses also affect file I/O functions.
Operations such as using fstat or reading into a local buffer are currently not supported,
due to use of local structs. For unknown other reasons, file I/O functions such as mmap
and pread are also not supported.

30



References

[Bro24]

[CM96]

[Com95]

[Dee23al

[Dee23b]

[DFFA18]

[Eng21]

[Fin22]

[FRT+23]

[HP11]

[KMZ17]

[LAO4]

[Lat02]

Nick Brown. Risc-v for hpc: Where we are and where we need to go. arXiw
preprint arXiv:2406.12398, 2024.

Cifuentes and Malhotra. Binary translation: Static, Dynamic, Retargetable? In
1996 Proceedings of International Conference on Software Maintenance, pages
340-349. IEEE, 1996.

TIS Committee. Executable and Linkable Format (ELF) Specification, 1995.
Accessed: 2024-05-29.

DeepComputing. DC-ROMA RISC-V LAPTOP II. https://deepcomputing.
io/product/dc-roma-risc-v-laptop-ii/, 2023. Accessed: 2024-06-26.

DeepComputing. World’s First RISC-V Pad with LTE Launched by DeepCom-
puting at RISC-V Summit 2023. https://riscv.org/blog/2023/12/worlds-f
irst-risc-v-pad-with-lte-launched-by-deepcomputing-at-risc-v-sum
mit-2023/, 2023. Accessed: 2024-06-26.

Alessandro Di Federico, Pietro Fezzardi, and Giovanni Agosta. rev. ng: A multi-
architecture framework for reverse engineering and vulnerability discovery. In
2018 International Carnahan Conference on Security Technology (ICCST), pages
1-5. IEEE, 2018.

Alexis Friedrich Engelke. Optimizing performance using dynamic code generation.
PhD thesis, Technische Universitat Miinchen, 2021.

Martin Fink. Translating x86 Binaries to LLVM Intermediate Representation.
Bachelor’s thesis, Technische Universitat Miinchen, 2022.

William Fornaciari, Federico Reghenzani, Federico Terraneo, Davide Baroffio,
Cecilia Metra, Martin Omana, Josie E Rodriguez Condia, Matteo Sonza Reorda,
Robert Birke, Tacopo Colonnelli, et al. Risc-v-based platforms for hpc: Analyzing
non-functional properties for future hpc and big-data clusters. In International
Conference on Embedded Computer Systems, pages 395-410. Springer, 2023.

John L Hennessy and David A Patterson. Computer architecture: a quantitative
approach. Elsevier, 2011.

Jakub Kioustek, Peter Matula, and Petr Zemek. RetDec: An open-source machine-
code decompiler. In July 2018, 2017.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In International symposium on code generation
and optimization, 2004. CGO 2004., pages 75-86. IEEE, 2004.

Chris Arthur Lattner. LLVM: An infrastructure for multi-stage optimization.
Master’s thesis, University of Illinois at Urbana-Champaign, 2002.

31


https://deepcomputing.io/product/dc-roma-risc-v-laptop-ii/
https://deepcomputing.io/product/dc-roma-risc-v-laptop-ii/
https://riscv.org/blog/2023/12/worlds-first -risc-v-pad-with-lte-launched-by-deepcomputing-at-risc-v-summit-2023/
https://riscv.org/blog/2023/12/worlds-first -risc-v-pad-with-lte-launched-by-deepcomputing-at-risc-v-summit-2023/
https://riscv.org/blog/2023/12/worlds-first -risc-v-pad-with-lte-launched-by-deepcomputing-at-risc-v-summit-2023/

[Pro02]

[Pro24]

[RRP*07]

[SCHY12]

[WLP+14]

[YS19]

Mark Probst. Dynamic binary translation. In UKUUG Linux Developer’s Con-
ference, volume 2002, 2002.

LLVM Project. The LLVM Compiler Infrastructure. https://11lvm.org/, 2024.
Accessed: 2024-05-16.

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Chris-
tos Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems.
In 2007 IEEE 13th International Symposium on High Performance Computer
Architecture, pages 13-24. leee, 2007.

Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. LLBT: an
LLVM-based static binary translator. In Proceedings of the 2012 international
conference on Compilers, architectures and synthesis for embedded systems, pages
51-60, 2012.

Andrew Waterman, Yunsup Lee, David Patterson, Krste Asanovic, Volume I User
level Isa, Andrew Waterman, Yunsup Lee, and David Patterson. The risc-v
instruction set manual. Volume I: User-Level ISA’, version, 2:1-79, 2014.

S. Bharadwaj Yadavalli and Aaron Smith. Raising Binaries to LLVM IR with
MCTOLL (WIP Paper). In Proceedings of the 20th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Embedded
Systems, LCTES 2019, page 213-218, New York, NY, USA, 2019. Association for
Computing Machinery.

32


https://llvm.org/

A Example

This chapter illustrates the various phases of the RISC-V binary raiser using a program
that calculates the factorial sequence recursively. Listing 19 illustrates the input source code
written in C. The source is compiled to RISC-V without optimizations, which can be seen
in Listing 20. The resulting ELF binary is used as input for MCTOLL, which results in
the LLVM IR seen in Listing 21. Directly compiling the source code to LLVM IR results in
Listing 22. Listing 23 represents the optimized and recompiled version of Listing 21.

#include <stdio.h>

int factorial(int n) {
if (n == 0) {
return 1;
}
return n * factorial(n - 1);

3

int main() {
int f = factorial (5);
printf ("%d\n", £);
return O0;

Listing 19: An example C program that will calculate the factorial of 5 recursively.

33




factorial:
addi
sd
sd
addi
mv
sSwW
1w
sext.w
bne
1i

.L2:
1w
addiw
sext.w
mv
call
mv
1w
mulw
sext.w
0 1B §
mv
1d
1d
addi

jr

sp,sp, 32
ra,24(sp)
s0,16(sp)
s0,sp,32
a5, a0
ab5,-20(s0)
ab,-20(s0)
ab,ab
ab,zero,.L2
a5,1

.L3

a5,-20(s0)
ab,ab,-1
ab,ab

a0, ab
factorial
ab,al
ad,-20(s0)
ab,a4d,ab
ab,ab

a0, ab
ra,24(sp)
s0,16(sp)
sp,sp,32
ra

main:

addi
sd
sd
addi
1i
call
mv
sSW
1w
mv
1la
call
1i
mv
1d
1d
addi
jr

sp,sp,-32
ra,24(sp)
s0,16(sp)
s0,sp,32
a0,5
factorial
ab,al
a5,-20(s0)
a5,-20(s0)
al,ab

a0, .LCO
printf@plt
a5,0

a0, ab
ra,24(sp)
s0,16(sp)
sp,sp,32
ra

Listing 20: An example RISC-V program corresponding to Listing 19

34




@.rodatal3 = private unnamed_addr constant [12 x i8] c"«
\N01\00\02\00\00\00\00\00%d\OA\OO", align 8

define dso_local i32 @factorial(i32 %0) {
%2 = alloca 132, align 4
store 132 Y0, ptr %2, align 4
%3 = load i32, ptr %2, align 4
%4 = add i32 %3, O
%x15_stack_slot = alloca i32, align 4
%5 = icmp ne i32 %4, O
br i1 %5, label %7, label %6

6: ; preds = %1
store i32 1, ptr %xl15_stack_slot, align 4
br label %15

7: ; preds = %1
%8 = load 132, ptr %2, align 4
%9 = add i32 %8, -1
%#10 = add i32 %9, O
%11 = call i32 @factorial(i32 %10)
%12 = load 132, ptr %2, align 4
%13 = mul i32 %12, %11
%14 = add i32 %13, O
store i32 %14, ptr %xl1l5_stack_slot, align 4
br label %15
15: ; preds = %7, %6
%16 = load 132, ptr %x15_stack_slot, align 4
ret 132 %16
}
define dso_local i32 @main() {
%1 = call i32 @factorial(i32 5)
%2 = alloca 132, align 4
store i32 %1, ptr %2, align 4
%3 = load 132, ptr %2, align 4
%4 = call i32 (ptr, ...) @printf(ptr getelementptr inbounds ([12 x i8¢
], ptr @.rodatal13, i32 0, i32 8), i32 %3)
ret i32 0
}
declare dso_local i32 @printf (ptr, ...)

Listing 21: An example LLVM IR program corresponding to Listing 20, raised using our
RISC-V binary translator. Some information is left out for brevity.

35




@.str = private unnamed_addr constant [4 x 18] c"%d\0A\OO", align 1

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @factorial(i32 noundef %0) #0 {

%2 = alloca 132, align 4

%3 = alloca 132, align 4

store i32 %0, ptr %3, align 4

%4 = load i32, ptr %3, align 4

%5 = icmp eq i32 %4, O

br i1 %5, label %6, label %7

6: ; preds %l
store i32 1, ptr %2, align 4

br label %13

7: ; preds hl
%8 load i32, ptr %3, align 4

%9 load i32, ptr %3, align 4

%10 sub nsw i32 %9, 1

%11 call i32 @factorial(i32 noundef %10)

%12 mul nsw i32 %8, %11

store i32 %12, ptr %2, align 4

br label %13

13: ; preds = 47, %6
%14 = load 132, ptr %2, align 4
ret i32 %14

; Function Attrs: noinline nounwind optnone uwtable
define dso_local i32 @main() #0 {
%1 = alloca 132, align 4
h2 alloca i32, align 4
store i32 0, ptr %1, align 4
%3 = call i32 @factorial(i32 noundef 5)
store i32 %3, ptr %2, align 4
%4 = load 132, ptr %2, align 4
%5 = call i32 (ptr, ...) @printf(ptr noundef @.str, i32 noundef %4)
ret 132 0
}

declare i32 @printf (ptr noundef, ...) #1

Listing 22: An example LLVM IR program corresponding to Listing 20, compiled using Clang.
Some information is left out for brevity.

36




main:

addi sp,sp,-16

sd ra,8(sp)

lui a0,0x10

addi a0,a0,1472 # 105c0 <_IO_stdin_used+0x10>
1i al, 120

jal ra,104e0 <printfQ@plt>

1i a0,0

1d ra,8(sp)

addi sp,sp,16

ret

factorial:

mv al, a0

sext.w a0,al

beqz a0,1058e <factorial+0x16>
1i al0,1

addiw a2,al,-1

mulw a0,a0,al

mv al,a2

bnez a2,10580 <factorial+0x8>
ret

1i al0,1

ret

Listing 23: An example RISC-V program corresponding to Listing 21, optimized recompiled
with Clang.

37




B Reproducibility

In this chapter, we describe how to setup an environment that is able to reproduce the results
of the experiments described in Chapter 4. The source code for the RISC-V binary translator
can be found in our fork of the MCTOLL repository!®, where the following information can
also be found.

It is assumed that a Linux system is used. Both the RISC-V GNU Compiler Toolchain!! and
a RISC-V root file system'? need to have been installed, and both the LLVM project!® and
MCTOLL tool** need to have been cloned. The MCTOLL repository documents the exact
commit of the LLVM project that should be used for building MCTOLL. At the time of
writing, this is commit 5c68alcb123161b54b72ce90e7975d95a8eaf2a4. For further details for
installation, please refer to the README document of MCTOLL.

Once everything is installed and cloned, the bash scripts inside the scripts directory can be
used to initialize the build files, build the projects, and run the experiments. Building the
entire LLVM project can take a while, because of 30004 objects needing to be build. It is
highly recommended to use the LLVM linker lld instead of your system linker to significantly
speed up the process. Please refer to the README document within the scripts directory
for more information about the scripts.

Ohttps://github.com/tdejong00/11vm-mctoll/tree/riscve4
Uhttps://github.com/riscv-collab/riscv-gnu-toolchain
2https://toolchains.bootlin.com/downloads/releases/toolchains/riscv64-1p64d/tarballs/
Bhttps://github.com/11vm/1lvm-project/tree/5c68a1cb123161b54b72ce90e7975d95a8eaf2ad
Yhttps://github. com/microsoft/l1lvm-mctoll

38


https://github.com/tdejong00/llvm-mctoll/tree/riscv64
https://github.com/riscv-collab/riscv-gnu-toolchain
https://toolchains.bootlin.com/downloads/releases/toolchains/riscv64-lp64d/tarballs/
https://github.com/llvm/llvm-project/tree/5c68a1cb123161b54b72ce90e7975d95a8eaf2a4
https://github.com/microsoft/llvm-mctoll

	Introduction
	Background
	RISC-V
	Binary Translation
	Basic Blocks and Control Flow Graphs
	Compilers
	LLVM
	ELF
	MCTOLL
	Related Work

	Implementation
	Representing pointer types
	Discovering function prototypes
	Discovering return types
	Discovering argument types

	Raising machine instructions to LLVM IR
	Tracking register values
	Promoting registers to the stack
	Tracking stack values
	Type coercion and widening
	Raising return instructions
	Raising binary operations
	Raising load and store instructions
	Raising call instructions
	Raising PC-relative and absolute accesses
	Raising terminator instructions


	Evaluation
	Qualitative Comparison of Feature Support
	Setup
	Binary Size
	Runtime Performance

	Conclusions
	Limitations and Future Work
	References
	Example
	Reproducibility

