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Abstract

In modern-day machine learning models, effective decision-making is essential. Incorrect med-
ical diagnoses can have significant consequences, highlighting models’ need to convey their
confidence levels. This paper investigates the integration of a reject option in machine learn-
ing models to enhance reliability and explainability. By rejecting uncertain predictions, we can
mitigate risks associated with low-confidence decisions, meaning that the model will be more
reliable. The core contribution of this work is the development and evaluation of AutoGAS-
TeN. This automated pipeline leverages generative adversarial stress test networks (GASTeN)
to generate realistic images at the decision boundary of two classes. We can create custom
datasets with these low-confidence instances for training machine learning models with a re-
ject option. We first examine the impact of various hyperparameter optimization techniques on
GASTeN’s performance. Bayesian optimization and BOHB demonstrate better performance
than the baseline results. This, for example, resulted in a Fréchet inception distance value of
10.12 and an average confusion distance value of 0.34 on the binary MNIST dataset 8 versus
0, where the original work scored 12.71 and 0.42, respectively. Subsequently, we employ Auto-
GASTeN to generate custom datasets with low-confidence instances, training a convolutional
neural network to reject uncertain predictions. The results indicate that the convolutional neu-
ral network, trained with these custom datasets, maintains the same precision, recall, and F1
scores as models trained without the reject option, thereby enhancing overall decision reliability
without sacrificing performance.
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Chapter 1 Introduction

In modern-day machine learning models, effective decision-making is essential when a machine
learning model is uncertain. Machine learning models can identify diseases such as Alzheimer’s,
heart failure, breast cancer, and pneumonia [Ahsan and Siddique, 2021]. However, an incorrect
diagnosis can have serious consequences for patient treatment. For example, while a machine
learning model may accurately identify Alzheimer’s disease in most cases, there are instances
where the model is uncertain about its decision. It is imperative to always involve a human
expert in the decision-making process. When the model is uncertain, it is safer to abstain
from predicting and deferring the decision to a human expert to avoid harmful consequences.
Putting a human in the loop for the decision-making process is essential in healthcare. This
example highlights the critical importance of confidence in machine learning predictions.

The problem is that even if a model is not confident in its decision, it still provides class
predictions without indicating its uncertainty [de Menezes e Silva Filho et al., 2023]. For in-
stance, consider a binary classification scenario where the model encounters an image closely
resembling both classes. The model might predict a given class with low-confidence but still
make a definitive prediction. In such cases, the probabilities alone are unreliable indicators of
the model’s certainty. It would be advantageous if the model could abstain from predicting
when faced with such uncertain instances. Rejecting an instance or abstaining when predicting
is typically done with machine learning with a reject option technique [Hendrickx et al., 2021].
Machine learning with a reject option refers to a classification scenario where the model not
only predicts the class but also has the option to abstain from making a prediction when it
detects high uncertainty. By incorporating this option, machine learning models can enhance
their reliability and explainability. Explainability, as defined by Arrieta et al. [2020], refers to
the capability of an AI system to provide transparent reasons for its decisions. If the model
abstains from predicting a certain instance, users can examine the underlying reasons for this
choice, contributing to the model’s transparency. Reliability, on the other hand, refers to the
ability of an AI system to consistently produce accurate and trustworthy results under various
conditions [Arrieta et al., 2020]. Both explainability and reliability are essential components of
Trustworthy AI, helping to mitigate the risk of incorrect predictions and enhancing the overall
accuracy and dependability of the model.

Specifically, which datasets are suitable for training a machine learning model to abstain from
decision-making? We can utilize a state-of-the-art approach outlined by Cunha et al. [2023] to
address this. The generative adversarial stress test network (GASTeN) is a variation of a gener-
ative adversarial network. GASTeN generates realistic data that lies on the decision boundary
of two classes. It identifies instances classified with low-confidence using a given classifier.
A generative adversarial network typically uses the difference between the generator’s output
and the actual image as an objective. GASTeN extends this with the classifier’s output on the
generated images as part of a new optimization objective for the generator. With GASTeN,
we can create custom datasets with low-confidence instances, which can be used to train a
machine learning model to abstain from decision-making. One of the limitations of GASTeN
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Chapter 1 Introduction

is that the number of hyperparameter combinations tested may not fully represent its behav-
ior, as stated by Cunha et al. [2023]. Generative adversarial networks are known to be highly
sensitive to hyperparameter choices such as learning rates, batch sizes, and network architec-
tures (Lucic et al. [2018]; Sharma et al. [2019]). This sensitivity can significantly influence the
model’s performance and stability. For instance, small changes in hyperparameters can lead
to considerable differences in the quality of the generated data. Therefore, there is room for
improvement, and we can use hyperparameter optimization techniques to improve GASTeN’s
performance. We will use automated machine learning to automate this process [Hutter et al.,
2019].

With hyperparameter optimization techniques such as hyperband introduced by Li et al. [2017],
we can optimize the performance of GASTeN. Hyperband is an automated algorithm config-
uration method for hyperparameter optimization that employs successive halving and early-
stopping strategies. It efficiently allocates resources to promising hyperparameter configura-
tions while discarding poor ones, ultimately identifying a good configuration within a specified
resource budget [Li et al., 2017]. Firstly, we can automate the entire training and optimization
process for GASTeN by creating a pipeline. We call this AutoGASTeN. The pipeline only needs
input on which dataset and classes we want GASTeN to train on. Secondly, with AutoGASTeN,
we can produce images on the decision boundary of two classes. We can use these instances
to fine-tune or train other machine learning models with machine learning with a reject option
techniques to abstain from predicting these instances.

In this work, we will explore a new dimension to the previously mentioned problem: generative
models that can generate realistic images on the decision boundary of two classes. GASTeN is
a generative adversarial network that does precisely this and enables us to develop the images
that the model should abstain from predicting [Cunha et al., 2023]. With AutoGASTeN, we
can effortlessly generate new images on the decision boundary of two classes on new datasets.
Researchers can use these images in training (i.e., informing the model that this is an outlier
class) and testing context (i.e., verifying whether machine learning models correctly abstain
from prediction on complex classes). Moreover, we studied the following research questions:

• RQ1: How do varying hyperparameter optimization techniques impact the performance,
expressed in Fréchet inception distance and average confusion distance, of GASTeN
across small gray-scale datasets?

• RQ2: What is the impact of the integrated rejection architecture on the performance,
expressed in precision, recall, and F1 scores of a convolutional neural network when
handling binary subsamples of small gray-scale datasets with low-confidence instances?

The remainder of this paper is organized as follows: Chapter 2 gives a background on the
relevant topics to form a basic understanding of the problem. Chapter 3 describes the most
important related works, and Chapter 4 describes the proposed methods. In Chapter 5, we re-
port the experimental setup, results, and discussion for RQ1. Chapter 6 details the experimental
setup, results, and discussion for RQ2. Finally, Chapter 7 addresses our research questions,
concluding remarks, and future work.

4



Chapter 2 Background

This chapter provides the background needed to understand the research objectives. It covers
a background on neural networks, hyperparameter optimization, and machine learning with a
reject option.

2.1 Hyperparameter optimization

Automated machine learning (AutoML) automates the selection of machine learning pipeline
components and hyperparameter optimization, democratizing machine learning by making
high-performance models accessible with minimal manual effort [Baratchi et al., 2024]. As
described by Baratchi et al. [2024], machine learning algorithms generate machine learning
models by optimizing all the parameters in the model. Typically, machine learning algorithms
have hyperparameters that need to be set externally by a human. These hyperparameters
control various aspects of the training process and the model. Examples of hyperparameters
include the learning rate in gradient descent algorithms, the number of hidden layers and
neurons in a neural network, and the decision tree depth. To illustrate, modern-day machine
learning models, such as a large language model, can have billions of parameters, such as
weights [Wei et al., 2022] and only ten to fifty hyperparameters. Hyperparameter optimiza-
tion is fine-tuning a machine learning algorithm’s hyperparameters to improve its performance
[Baratchi et al., 2024]. The goal is to find the set of hyperparameters, also called a configu-
ration, that maximizes the machine learning model’s performance on a given dataset or task.
A general formulation for the hyperparameter optimization problem, as outlined in Baratchi
et al. [2024], can be defined as follows:

λ∗ ∈ argmin
λ∈Λ

1

k
·

k∑
i=1

L
(
Aλ,D(i)

train,D
(i)
valid

)
(2.1)

Where A is the learning algorithm, λ is the hyperparameter configuration, and Aλ denotes
that A with the hyperparameter vector. L is the loss measured using a performance metric,
with Dtrain being the training dataset and Dvalid the validation dataset. The hyperparameter
optimization problem can be defined as finding λ∗ that yields the model with the best perfor-
mance on the validation set.

Grid search is one of the easiest and simplest hyperparameter optimization techniques. It sys-
tematically searches through a predefined grid of hyperparameter values and evaluates every
possible hyperparameter configuration until none is left to assess Baratchi et al. [2024]. Con-
tinuous hyperparameters need to be mapped to discrete values in the grid for grid search
to work. Also, continuous hyperparameters become problematic in a high-dimensional search
space. With every addition of another hyperparameter, the completion time scales linearly
O(Nm), where N is the number of values for each hyperparameter, and m is the number of
hyperparameters.
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Chapter 2 Background

Other hyperparameter optimization techniques are evolution strategies and genetic algorithms;
these algorithms are a part of the subset of evolutionary algorithms. An evolutionary algorithm
is a population-based optimization method that uses mechanisms inspired by biological evo-
lution, such as selection, crossover, and mutation, to find Pareto-optimal solutions for multi-
objective problems by simultaneously exploring multiple trade-offs among the objectives [Deb
et al., 2002]. To illustrate, evolution strategies and genetic algorithms are beneficial in black-
box settings such as hyperparameter optimization because they do not require gradients. An
individual in the evolutionary algorithm terminology represents a single hyperparameter con-
figuration; the population is the set of currently maintained configurations. The performance
score of an individual typically measures the fitness of the individual. For instance, if a model’s
generalization error is 0.1, the fitness score could be 10 (i.e., the reciprocal of the error). The
NSGA-II algorithm is an example of a genetic algorithm. NSGA-II improves upon its predeces-
sor by incorporating fast, non-dominated sorting, elitism, and a crowding distance mechanism,
thereby efficiently finding and preserving a diverse set of Pareto-optimal solutions [Deb et al.,
2002]. It utilizes a binary tournament selection based on rank and crowding distance to balance
convergence and diversity in the population.

2.2 Machine learning with a reject option

Machine learning models with a reject option can assess the confidence in each prediction;
these models can abstain from making a prediction when they are likely to make a mistake
[Hendrickx et al., 2021]. Machine learning with rejection extends the output space with ®.
This symbol is a new class the classifier can predict or where the classifier abstains from
making a prediction. Formally, Hendrickx et al. [2021] describes that a model with rejection
m : X → Y ∪ ® is represented by a pair (h, r), where h : X → Y is the predictor and
r : R → R is the rejector. The function m(x) outputs the symbol ® if it abstains from
making a prediction. Abstaining happens when the rejector r determines that the predictor
is not confident enough in their decision. If this is not the case, m(x) returns the predictor’s
output:

m(x) =

{
® if the prediction is rejected

h(x) if the prediction is accepted
(2.2)

There are two types of rejections: ambiguity rejection and novelty rejection. Ambiguity rejec-
tion occurs when x falls in a region where the target y is ambiguous [Hendrickx et al., 2021].
This often happens near the decision boundary in classification tasks, where classes overlap,
or in regression, where the target variable has high variance. For example, using linear models
for a non-linear relationship can result in significant prediction errors. Novelty rejection occurs
when x falls in a region with little or no training data. This situation arises when the sampling
distribution differs from the actual distribution. It also includes situations with significant class
distribution skew or when new distributions emerge after training, like in medical applications
with limited data specific to certain demographics [Hendrickx et al., 2021]. For example, a
model trained on diseases common in adults may not perform well on children or rare condi-
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tions.

There are also three common architectural principles that use the function m(x) differently.
In this section, we talk about the separated rejector architecture and dependent rejector ar-
chitecture. We will elaborate on the integrated rejector architecture in Section 4.

2.2.1 Separated rejector architecture

Chapter 2.2 mentions the separated rejector architecture. Specifically, separated rejectors fil-
ter out unlikely examples without relying on the predictor’s output. This architecture uses a
threshold τ , and the rejector r independently learns to reject certain instances. Setting the
threshold τ is essential and can be set with domain knowledge or heuristic methods. Although
this architecture offers flexibility and simplicity, its independent nature can lead to subopti-
mal rejection performance and is generally more suited for novelty rejection than ambiguity
rejection.

m(x) =

{
® if r(x) < τ

h(x) otherwise.
(2.3)

Homenda et al. [2014] describes an advanced pattern recognition method that uses the sep-
arated rejection architecture using ensembles of support vector machines (SVMs). With this
method, Homenda et al. [2014] tries to classify known and foreign elements, where the known
elements are in the dataset but foreign elements are not. They want to improve the accu-
racy and reliability of the classification system. By employing two- and one-class SVMs, the
approach effectively minimizes misclassification of instances not in the original dataset. The
study underscores the significance of rejection in maintaining system integrity. However, it
also highlights the importance of sharing information between the predictor and the rejector
results, often resulting in sub-optimal rejection performance.

2.2.2 Dependent rejector architecture

Chapter 2.2 also mentions the dependent rejector architecture. The dependent rejector ar-
chitecture involves an integrated approach where the rejector uses the predictor’s output to
make rejection decisions. In this architecture, the rejector is not an independent function of
the input X but rather a function of both the input X and the predictor’s output. Formally,
we can represent the model as follows:

m(x) =

{
® if r(x;h) < τ

h(x) otherwise.
(2.4)

Here, the rejector r considers both the input x and the prediction h(x) to determine whether
to accept or reject an example. This integration allows the rejector to use information about
the prediction confidence, uncertainty, or other relevant metrics the predictor provides. The
learning process for a dependent rejector involves training the rejector alongside the predictor,
leveraging the predictor’s output to inform rejection decisions. For instance, if a classifier out-
puts a probability distribution over classes, the rejector can reject examples where the highest
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probability is below a certain threshold, indicating low-confidence in the prediction. Zou et al.
[2011] demonstrate that their multi-class SVM with the dependent rejector architecture option
effectively handles novelty and ambiguity. This method enhances the reliability of fault diag-
nosis in steam turbine generators by abstaining from low-confidence predictions. However, this
integration increases system complexity, necessitating more sophisticated training techniques
to maintain optimal performance.

2.3 Explainable AI

As discussed by Arrieta et al. [2020], explainable artificial intelligence (XAI) focuses on making
the decision-making processes of AI models transparent and understandable to human users.
Often, machine learning models act as a black box, offering no clarity on how they reach specific
outcomes. Explainable artificial intelligence seeks to address this by developing methods to
explain these models’ workings. These methods can be broadly classified into local and global
explainable artificial intelligence. We acknowledge that there are also other explainable artificial
intelligence methods like counterfactual methods; this is visualized in Figure 2.1.

Figure 2.1: Schematic overview of explainable artificial intelligence methods.

Local explainable artificial intelligence focuses on explaining individual predictions made by a
model, providing insights into why a specific decision was made for a particular instance rather
than the model’s overall behavior. One such method is local interpretable model-agnostic
explanations (LIME), which creates a simple, interpretable model, like a small decision tree,
to approximate the black-box model’s behavior for a specific data point. The optimization
problem can be formulated as follows, as described by Ribeiro et al. [2016]:

argmin
g∈G

L(f, g, πx) + Ω(g) (2.5)

Where G is the family of interpretable models, L(f, g, πx) measures the fidelity of the surrogate
model g to the original model f in the vicinity of the instance x, weighted by the locality kernel
πx and Ω(g) is a regularization term to ensure the interpretability of the model g.
Global explainable artificial intelligence aims to understand a model’s behavior comprehen-
sively. It seeks to explain how the model makes decisions across all instances, providing in-
sights into the model’s structure and logic. A commonly used method in global explainable
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Chapter 2 Background

artificial intelligence is the calculation of feature importance, which quantifies the contribution
of each feature to the model’s predictions. A technique for computing feature importance is
permutation feature importance, formulated from Breiman [2001]:

FIi =
1

n

n∑
j=1

[
L(f,D)− L(f,Dperm(i))

]
(2.6)

Where L is a chosen loss function, for example, mean squared error, D represents the original
dataset, Dperm(i) denotes the dataset with the values of the i-th feature permuted, n is the
number of samples. We propose to categorize machine learning techniques with a reject option
under the category of global explainable artificial intelligence. This is because such techniques
learn to make decisions for all instances, explaining why certain instances are rejected.

2.4 Generative AI

Generative methods are a subset of artificial intelligence techniques focused on creating new
data. These methods, including generative adversarial networks [Goodfellow et al., 2014] and
variational autoencoders [Kingma and Welling, 2014], model the underlying distribution of
data to generate new instances such as images. These models are adept at producing novel
outputs that maintain the characteristics of the original data, offering applications in creative
industries and data augmentation [Murphy, 2012]. In contrast, predictive AI focuses on an-
alyzing existing data to make informed predictions and decisions and does not create new
data. Techniques such as regression analysis and decision trees are employed in predictive AI
to predict or classify data [Bishop, 2007].

As mentioned in Chapter 1, GASTeN is a framework and another method that can generate
realistic images on the decision boundary of two classes. It incorporates a target classifier’s
output into the generator’s loss function. Figure 2.2 shows GASTeN’s architecture and how
GASTeN uses the given classifier. The GASTeN framework consists of three main components:

• Generator (G): Similar to a standard generative adversarial network, the generator tries
to produce realistic images (x̂) from random noise vectors, in our case, the vector z.
To address issues such as mode collapse that are common in generative adversarial net-
works, GASTeN uses the deep convolutional generative adversarial network architecture
introduced by Radford et al. [2016]. This architecture incorporates fractionally-strided
convolutional layers, which help in generating high-quality images. The generator aims
to produce realistic images on the decision boundary of two classes. It achieves this by
mapping the noise vector (z) to the data distribution of real images (x), guided by the
loss from the discriminator and the classifier.

• Discriminator (D): The discriminator distinguishes between real images (x) from the
dataset S and generated images x̂. The discriminator uses normal convolutional layers.
Moreover, the objective is to classify real and fake images correctly. The output of the
discriminator is a probability indicating whether an image is real or fake. This output
helps the generator learn to generate images similar to images from the dataset (S).
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Chapter 2 Background

• Classifier (C): The classifier is the addition to the GASTeN framework. The classi-
fier is only used to classify the images of the generator and is trained on the binary
dataset the generator tries to generate. This output can optimize the generator for a
new optimization objective.

Figure 2.2: Schematic overview of the architecture of GASTeN. Figure taken from Cunha
et al. [2023]

The generator’s loss function in GASTeN is modified to incorporate the classifier’s output.
The new loss function is given by:

LGASTeN
G = LGAN

G + α · cd(C(G(z))) (2.7)

Where LGAN
G is the standard loss from the generator, which aims to deceive the discriminator

D, alpha (α) is a hyperparameter that scales the contribution of the confusion distance term.
cd denotes the confusion distance, which measures the deviation of the classifier’s output from
the decision boundary. With the confusion distance, we can calculate the average confusion
distance (ACD) by calculating the mean of all the confusion distance values across all in-
stances. Cunha et al. [2023] introduced this metric and measures a sample’s closeness to the
decision boundary.
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Chapter 3 Related Work

This chapter will discuss related approaches to generating ambiguous or low-confidence in-
stances. Additionally, we will review relevant work on other hyperparameter optimization tech-
niques. Finally, we will examine techniques designed to avoid predicting when dealing with
datasets containing low-confidence instances.

3.1 Generative adversarial networks

A generative adversarial network is a framework where two neural networks, a generator G
and a discriminator D, are trained in an adversarial process to produce data resembling a
given dataset [Goodfellow et al., 2014]. The generator tries to confuse the discriminator into
misclassification by generating images that seem real. The discriminator needs to guess which
image is actual and which is fake. The generator aims to minimize the probability that the
discriminator can correctly distinguish samples. The discriminator seeks to maximize that same
probability. The discriminator and generator play the following two-player minimax game with
value function V (G,D), taken from Goodfellow et al. [2014]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(X)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

Where G and D represent the generator and the discriminator, respectively, and V (D,G) is
the value function we try to optimize. The term Ex∼pdata(x)[logD(X)] is the expected value
of logD(X), representing the average log probability that the discriminator correctly identifies
real data samples when x is drawn from the real data distribution pdata(x). Ez∼pz(z)[log(1 −
D(G(z)))] is the expected value of log(1−D(G(z))) representing the average log probability
that the discriminator correctly identifies generated samples as fake when z is drawn from the
noise distribution.

Training a generative adversarial network can be challenging due to mode collapse and the
inherent instability of the network. Mode collapse happens when the generator is trained
too much without updating the discriminator. When this happens, the generator will gener-
ate samples with limited diversity [Goodfellow et al., 2014]. The training process becomes
much more stable with convolutional layers. Deep convolutional generative adversarial net-
work (DCGAN) extends the generative adversarial network framework by using convolutional
layers instead of fully connected ones [Radford et al., 2016]. For example, the generator con-
sists of fractionally-strided convolutional layers. Fractionally-strided convolutional layers apply
a filter to the input, but instead of reducing spatial dimensions, they increase them. These
fractionally-strided convolutional layers allow the generator to learn its upsampling process.
Furthermore, the discriminator uses standard convolutional layers to downsample the images.
Figure 3.1 shows a deep convolutional generative adversarial network. The figure illustrates
how the generator increases the spatial dimensions of the initial vector to generate a feature
map with more significant spatial dimensions than the previous one.
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In addition to generative adversarial networks, variational autoencoders provide another ro-
bust framework for generative modeling. Variational autoencoders, introduced by Kingma and
Welling [2014], combine principles from variational inference and deep learning to generate
new data points similar to a given dataset. Unlike generative adversarial networks, variational
autoencoders use an encoder to map input data to a latent space, from which a decoder recon-
structs the input data. This probabilistic approach allows variational autoencoders to capture
uncertainty and generate diverse outputs. The variational autoencoders’ reparameterization
trick ensures we can train the model using standard gradient-based optimization methods.
This trick makes it an efficient alternative to the adversarial training in GANs.

Figure 3.1: Example of a deep convolutional generative adversarial network, where the
generator uses fractionally-strided convolutional layers and the discriminator uses normal
convolutional layers. Figure taken from Karimi-Bidhendi et al. [2020]

3.2 AmbiGuess

Weiss et al. [2023] introduce AmbiGuess, a novel technique for creating labeled ambiguous
images tailored for image classification tasks. Unlike other approaches, AmbiGuess prioritizes
creating ambiguous data that not even a human domain expert can confidently predict the
class. AmbiGuess uses an autoencoder and an encoder-decoder architecture. The encoder
compresses the image into a smaller latent space. After this, a decoder reconstructs the com-
pressed information back into an image. The discriminator receives the encoded image and
decides if the image is ambiguous enough. Furthermore, the discriminator learns to differen-
tiate encoded images from samples drawn from latent space while the encoder attempts to
fool the discriminator. Weiss et al. [2023] train the autoencoder and the discriminator on only
two classes from a dataset. For example, in vast real-world datasets, ambiguity is much more
prevalent between some combination of two classes than between multiple others, so not all
pairwise combinations are equally attractive for the generation [Weiss et al., 2023]. For exam-
ple, when a medical diagnostic system tries to classify various skin conditions. Psoriasis is a
chronic autoimmune condition that causes rapid skin cell growth and scaly patches. In some
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cases, psoriasis can be challenging to distinguish from eczema because the conditions look
similar, hence having actual ambiguity. There are similarities between eczema and a common
birthmark. So, a genuinely ambiguous image between those two conditions is hard to imagine.

3.3 Dirty MNIST dataset

The dirty MNIST dataset, introduced by Mukhoti et al. [2023], is a modified version of the
standard MNIST dataset to illustrate the challenges associated with uncertainty in machine
learning models. While MNIST consists of well-defined handwritten digits, dirty MNIST in-
cludes additional ambiguous digits, also called ambiguous MNIST, created to have multiple
plausible labels. This modification makes the dataset particularly useful for testing and eval-
uating models’ ability to handle and quantify uncertainty in their predictions. The dataset is
a benchmark for assessing models designed to disentangle aleatoric and epistemic uncertainty
[Hüllermeier and Waegeman, 2021]. Aleatoric uncertainty arises from inherent noise in the
data, such as the ambiguity in labeling the digits, while epistemic uncertainty comes from the
model’s lack of knowledge about the data. For instance, Mukhoti et al. [2023] proved that
the deep deterministic uncertainty method effectively distinguishes between these two types
of uncertainty. Deep deterministic uncertainty outperforms other models in handling both
in-distribution and out-of-distribution data by employing spectral normalization and residual
connections, thereby validating its approach in a practical setting.
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This chapter describes the algorithms and techniques used. First, we discuss the hyperpa-
rameter optimization techniques. Next, we explain how GASTeN works and the process of
generating a custom dataset using clustering techniques with AutoGASTeN and a clustering
technique. Finally, we detail the architecture used for the machine learning model with a reject
option so that another neural network can reject the low-confidence instances.

4.1 Hyperparameter optimization techniques

First, we define our hyperparameter optimization problem more precisely. In the next section,
we will explain that GASTeN’s training process consists of two steps. This is why we face two
optimization challenges: one for the first training step and another for the second training step.
The problem for the first training step is to find the optimal hyperparameters by minimizing
the Fréchet inception distance across the training dataset, as shown below:

λ∗ ∈ argmin
λ∈Λ

LFID

(
Aλ(D(i)

train)
)

(4.1)

For the second training step, the goal is to generate a Pareto front of Pareto optimal solu-
tions by simultaneously minimizing two objectives, the Fréchet inception distance and average
confusion distance, across the same datasets:

λ∗ ∈ Pareto
{(

LFID(Aλ,D(i)
train),LACD(Aλ,D(i)

train)
)
: λ ∈ Λ

}
(4.2)

We will explain these training steps and the Pareto front in more detail in the following sections.

4.1.1 Random grid search

As mentioned in Chapter 2.1, grid search is a straightforward search technique for hyperparam-
eter optimization. In contrast to grid search, random grid search is an alternative method for
hyperparameter optimization that can be more efficient, especially in high-dimensional spaces.
Random grid search involves sampling a fixed number of hyperparameter combinations from
a predefined grid rather than evaluating every possible combination [Bergstra and Bengio,
2012]. This approach helps reduce the computational resources needed while exploring diverse
configurations. However, the predefined grid can limit the exploration of the hyperparameter
space, as it restricts the sampled values to those specified in the grid. This problem can lead to
missing configurations if they lie outside the predefined values. Despite this limitation, random
grid search can still provide diverse configurations within a computationally feasible framework,
making it a practical choice in many scenarios. Our implementation for random grid search is
a simple algorithm that samples random discrete values from a predefined grid for a random
grid search. We use the same algorithm for random search but sample values uniformly within
the specified range. This algorithm can easily create the Pareto front based on all the return
values of random grid search and random search.
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4.1.2 Random search

Random search, in contrast to grid search, does not rely on a predefined grid of hyperparam-
eter values. Instead, it samples hyperparameters directly from specified ranges, allowing for
a more flexible exploration of the hyperparameter space. This method can sample from con-
tinuous distributions, providing a broader and potentially more optimal set of hyperparameter
configurations. By not being constrained to a predefined grid, random search increases the
likelihood of discovering high-performing configurations that grid-based methods might miss.
Studies have demonstrated that random search is often more effective than grid search in find-
ing optimal hyperparameters, particularly in high-dimensional spaces. For instance, Bergstra
and Bengio [2012] highlighted that random search could outperform grid search in many sce-
narios by efficiently exploring the hyperparameter space. This flexibility makes random search
a valuable tool for hyperparameter optimization in machine learning.

4.1.3 Bayesian optimization

Bayesian optimization is a hyperparameter optimization technique for optimizing expensive-
to-evaluate black-box functions [Hutter et al., 2011]. Unlike random or grid search, Bayesian
optimization builds a surrogate model to estimate the objective function and systematically
explore the hyperparameter space. This method involves selecting the most promising hy-
perparameter configurations based on the surrogate model and iteratively refining the model
with new data points. Snoek et al. [2012] demonstrated that Bayesian optimization could
outperform traditional methods by efficiently balancing exploration and exploitation. By incor-
porating prior knowledge and updating the model with observed results, Bayesian optimization
can focus on the most promising regions of the hyperparameter space, thereby finding optimal
configurations with fewer evaluations. This efficiency makes it particularly useful for high-
dimensional and expensive-to-evaluate functions, making Bayesian optimization a powerful
tool for hyperparameter tuning in machine learning.
Since our second hyperparameter optimization problem involves two objectives, we require an
algorithm capable of minimizing both objectives. For this purpose, we use the Python pack-
age SMAC3, developed by Lindauer et al. [2022], which offers a multi-objective optimization
algorithm. Currently, the algorithm uses a mean aggregation strategy to combine multiple ob-
jectives into a single scalar objective. This aggregated objective is then passed to the surrogate
model for the optimizing process. This approach is similarly applied in hyperband and BOHB,
where both methods select the best configurations based on the scalarized single objective.

4.1.4 Hyperband

Hyperband is an innovative method for hyperparameter optimization, extending the successive
halving algorithm. It improves traditional hyperparameter optimization techniques by using a
resource allocation approach. This resource allocation approach is called successive halving.
Successive halving uniformly allocates a budget to a set of hyperparameter configurations. For
example, given a total budget of 80 and 8 hyperparameter configurations, each configuration
is initially allocated a budget of 80/8 = 10. This budget can be interpreted as the number
of epochs or the amount of runtime available. Hyperband does not evaluate all configurations
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equally; it dynamically allocates more resources to promising configurations and early-stops
those that perform poorly. This technique aims to maximize the efficiency of hyperparameter
searches. Hyperband ranks the configurations based on performance, eliminates the worst half,
and reallocates resources to the remaining configurations. This process continues iteratively
until only one configuration remains. Hyperband employs successive halving in the algorithm’s
inner loop with a fixed number of configurations n and a fixed budget r. The outer loop
iterates over different values of n and r, reducing n by a factor of η in each iteration. Li
et al. [2017] introduced hyperband, demonstrating its ability to drastically reduce the compu-
tational resources required compared to standard grid and random search methods. By rapidly
narrowing the search space and focusing on the most promising configurations, hyperband is
particularly effective in high-dimensional settings where exhaustive search is impractical. This
method’s ability to balance exploration and exploitation efficiently makes it a valuable tool for
hyperparameter optimization.

4.1.5 BOHB (Bayesian optimization and hyperband)

BOHB (Bayesian optimization and hyperband) combines the strengths of Bayesian optimiza-
tion and hyperband to create a robust hyperparameter optimization method. BOHB uses
Bayesian optimization to model the objective function and predict promising configurations,
while hyperband’s resource allocation strategy guarantees efficient exploration and exploita-
tion of the hyperparameter space. This approach allows BOHB to leverage the benefits of
both methods, providing a balance between the thoroughness of Bayesian optimization and
the resource efficiency of hyperband. Falkner et al. [2018] demonstrated that BOHB could
outperform both Bayesian optimization and hyperband individually by achieving better perfor-
mance with fewer computational resources. By integrating these two techniques, BOHB offers
an efficient solution for hyperparameter tuning, making BOHB suitable for complex machine
learning tasks with large hyperparameter spaces.

4.2 AutoGASTeN

The training of GASTeN begins with initializing the generator and discriminator with random
weights. In the first training step, we train the generative adversarial network using the stan-
dard loss function for ten epochs to generate realistic images. In the second training step of
GASTeN, we introduce the classifier. After this, we can further train the generator and dis-
criminator from the first training step, using the GASTeN loss function for an additional forty
epochs. During each iteration of this phase, synthetic images (x̂) are generated by the gener-
ator from the random noise vector (z). We then update the discriminator with these images
and compute the confusion distance. Finally, we calculate the generator loss (LGASTeN

G ) by
combining the standard generative adversarial network loss with the scaled confusion distance
term, and the generator is updated accordingly. We can automate the process using hyperpa-
rameter optimization techniques by providing the two classes and the dataset. This automated
process ensures that GASTeN consistently generates realistic, low-confidence images. We will
refer to this automated approach as AutoGASTeN. We want AutoGASTeN to perform at
its best to produce realistic images of the decision boundary between two classes. With the
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previously mentioned hyperparameter optimization techniques, we can improve GASTeN’s per-
formance. By evaluating various hyperparameter optimization techniques, we identify the one
that most increases the performance. Subsequently, the automated pipeline consists of the
training process plus the hyperparameter optimization technique.

4.2.1 Optimization criteria

We evaluate GASTeN with two metrics: the Fréchet inception distance and the previously
mentioned average confusion distance. Introduced by Heusel et al. [2017], the Fréchet inception
distance compares the generated and real image distribution using deep features extracted from
a pre-trained inception v3 network. Specifically, it calculates the Fréchet distance between
two multivariate Gaussian distributions representing the activations of the real and generated
images in the Inception network’s feature space. The formula for the Fréchet inception distance
is:

FID = ∥µr − µg∥2 + Tr(Σr + Σg − 2(ΣrΣg)
1/2) (4.3)

Where µr and µg are the mean vectors, Σr and Σg are the covariance matrices of the real
and generated image feature vectors, respectively, and Tr stands for the trace of the matrix,
which is the sum of the elements on the main diagonal. Lower Fréchet inception distance
values suggest that the generated images are more similar to the actual images, thus reflecting
higher image quality and more significant similarity in data distributions.
The confusion distance, introduced by Cunha et al. [2023], guides the generator to produce
images near the classifier’s decision boundary. In the context of binary classification, the clas-
sifier produces a scalar value between 0 and 1. The confusion distance measures the deviation
of the classifier’s prediction from a decision threshold, typically set at 0.5. For a given pre-
diction from the classifier C(G(z)), where G(z) represents the generated image, we calculate
the confusion distance as cd(C(G(z))) = |C(G(z)) − 0.5|. This value quantifies how close
the classifier’s output is to the decision boundary, indicating the level of uncertainty in the
prediction.

4.3 Multi-objective decision making

We need to determine the optimal hyperparameter configuration for AutoGASTeN. This in-
volves minimizing two objectives: the Fréchet inception distance and the average confusion
distance. This process generates a Pareto front of hyperparameter configurations after the
second training step. A Pareto front represents a set of optimal solutions in a multi-objective
optimization problem, where no single solution is better in all objectives. In our context, this
illustrates the trade-offs between the Fréchet inception distance and the average confusion
distance. Ultimately, we aim to produce images with low Fréchet inception distance and low
average confusion distance. However, due to the trade-off mechanism, if the Fréchet inception
distance is low, the average confusion distance tends to be higher, and vice versa. The Pareto
front, shown in Figure 4.1, consists of synthetic hyperparameter configurations that balance
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these competing objectives, visually representing the trade-offs involved.

Figure 4.1: This illustration of the Pareto front serves as an example of the trade-off
mechanism between the Fréchet inception distance and average confusion distance using
hypothetical data points. Black marks represent dominated solutions, while red marks
highlight the Pareto front.

We decided on the knee point in the Pareto Front to choose the optimal hyperparameter
configuration. The knee or elbow point is a concept used in optimization and data analysis to
identify a point on a curve where the curve begins to flatten Satopaa et al. [2011]. This point
represents a trade-off between two competing objectives. It is often chosen as an optimal point
because it balances improving one objective without significantly worsening the other.

4.4 Clustering and image generation

With the optimal hyperparameter configuration, we can generate low-confidence images and
cluster them. Gomes et al. [2024] introduced a clustering technique that involves using classifier
embeddings to cluster similar images and extract the medoid of each cluster. We need this
clustering to generate the custom dataset. The medoid represents the type of image that
challenges the evaluated model. However, for our purposes, we only require the clustering
component of this technique. We use AutoGASTeN to generate the images needed. Then,
we can cluster these images, hand-pick the low-confidence clusters, and use them to create
a custom dataset. AutoGASTeN automates the image generation process, which integrates
well with the clustering approach. The custom dataset consists of the binary dataset and the
low-confidence instances generated by AutoGASTeN. We use this dataset to train another
neural network using machine learning with a reject option technique.
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4.5 Integrated rejector architecture

The integrated rejector architecture in machine learning with a reject option combines a pre-
dictor and a rejector to improve decision-making reliability. This architecture requires unique
algorithms for the simultaneous learning of predictor and rejector functions. Formally, the
model with an integrated reject option acts as:

m(x) ∈ Y ∪ ® (4.4)

The integrated rejector architecture has two main approaches: model-agnostic and model-
specific. To begin with, model agnostic integrates rejection into the predictor’s decision-making
process. Model-specific designs have an objective function of penalizing mispredictions and
rejection. Practical implementations, such as neural networks, have demonstrated the value of
integrated rejectors in tasks such as medical diagnostics and multi-label classification. They can
effectively handle ambiguous cases by rejecting uncertain predictions [Geifman and El-Yaniv,
2019]. Despite their advantages, integrated rejectors demand extensive domain knowledge of
the predictor for effective integration. Also, they require intensive computation due to the need
for retraining when adjusting the rejector component.
In our implementation, we have adopted a model-agnostic approach to the integrated rejector
architecture. This means that the rejection mechanism is incorporated into the decision-making
process without being tied to a specific type of model. Our method can be applied across
different predictive models, including convolutional neural networks, by adding an additional
class for rejection. This flexibility allows the model to reject uncertain predictions based on a
predefined rejection threshold, ensuring that the system can handle ambiguous cases effectively.
By using a model-agnostic approach, we maintain the versatility of our model while still
benefiting from the improved reliability that the integrated rejector architecture offers. We
have implemented the integrated rejector architecture by treating the rejection option as an
additional class that the model can select. With a binary dataset, this results in three classes:
the two normal classes from the dataset and the rejection class (®). For a convolutional neural
network, this setup leads to three output possibilities. We then set a rejection percentage,
meaning if the confidence score for the rejection class reaches 0.1 and the rejection threshold
is also 0.1, the model will always reject that instance.

4.6 Practicalities

The majority of this work was produced using the ALICE cluster used by the ADA research
group1 All code used in this work can be downloaded from and is available at: https://
github.com/LuukdeJong123/gasten

1https://ada.liacs.nl/
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Chapter 5 RQ1: Hyperparameter op-
timization

This chapter describes the datasets and the precise process for the first research question. We
also explain how we evaluate these results and discuss their limitations. Lastly, we note any
practicalities regarding this research’s experimental setup.

5.1 Experimental setup

This section outlines the datasets we used and explains how we evaluated the first research
question.

5.1.1 Dataset

The MNIST dataset is an extensive database of handwritten digits introduced by LeCun et al.
[1998]. Image processing systems use this for training and testing purposes. It consists of
60,000 training and 10,000 testing images, each of which is a grayscale image of 28x28 pixels.
The digits fall into ten classes, from zero to nine. Subsequently, the fashion-MNIST is a dataset
of Zalando’s article images created by Xiao et al. [2017]. The intent is to be a direct drop-in
replacement for the original MNIST dataset for benchmarking machine learning algorithms.
Fashion-MNIST consists of the same number of training and testing images as MNIST, also
in grayscale and of the same size. However, the images in fashion-MNIST represent different
clothing items, which fall into ten classes, such as T-shirts, trousers, and shoes. Table 5.1
shows the training and testing instances distribution for every class of the MNIST and fashion-
MNIST datasets. Additionally, the MNIST and fashion-MNIST datasets are easy to understand
and do not require extensive domain knowledge.

5.1.2 Evaluation

In the first research question, we want to measure the impact of hyperparameter optimization
techniques on GASTeN’s performance. GASTeN’s training process consists of two steps. To
evaluate every hyperparameter optimization technique (random grid search, random search,
Bayesian optimization, hyperband, and BOHB) equally, we give each technique twenty hours
of runtime for the first training step and eighty hours of runtime for the second training step.
The second training step gets more runtime because the training process uses four times as
many epochs. This amount of runtime ensures that each technique can evaluate a sufficient
number of hyperparameter configurations, which provides an understanding of the technique’s
performance. The metrics we use to evaluate the performance are the Fréchet inception dis-
tance and average confusion distance. We focus only on the Fréchet inception distance in the
first training step because the classifier is not present yet. A lower Fréchet inception distance
value indicates a better performance for the hyperparameter optimization technique. We eval-
uate the Fréchet inception distance and average confusion distance metrics during the second
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Table 5.1: Distribution of training and testing instances per class in MNIST and fashion-
MNIST datasets

Class
MNIST Fashion-MNIST

Train Test Train Test
0 5 923 980 6,000 1,000
1 6,742 1,135 6,000 1,000
2 5,958 1,032 6,000 1,000
3 6,131 1,010 6,000 1,000
4 5,842 982 6,000 1,000
5 5,421 892 6,000 1,000
6 5,918 958 6,000 1,000
7 6,265 1,028 6,000 1,000
8 5,851 974 6,000 1,000
9 5,949 1,009 6,000 1,000
Total 60,000 10,000 6,0000 10,000

training step. Given the long-lasting runtime in the second training step, resource efficiency is
also a consideration. For example, the optimal hyperparameter optimization technique quickly
achieves a low Fréchet inception distance in the first training step. It maintains a low Fréchet
inception distance alongside a low average confusion distance in the second step while not
adding noise or sacrificing the realness. Additionally, we manually inspect generated clusters
through visualizations to confirm that the instances are, in fact, low-confidence and look real.
We then select the best-performing hyperparameter optimization technique based on these
metrics.

As discussed in Section 4.1, we use both the simple algorithms for random grid search and
random search and SMAC3 for the other hyperparameter optimization techniques in this ex-
periment. The selected hyperparameters are shown in Table 5.2. During the first training step,
the hyperparameters α and the number of filters (nf ) are excluded from the hyperparameter
grid because AutoGASTeN does not use the classifier yet. So, α and the number of filters are
not applicable. The second training step utilizes all hyperparameters except for the number
of blocks (n blocks). The number of blocks is not used because the architecture of the best
generator from the first training step is fixed and cannot change in the second training step.
Our baseline for the first research question is training GASTeN with the hyperparameter con-
figuration given by Cunha et al. [2023]. We compare the baseline against the results of the
hyperparameter optimization techniques.

5.2 Results

In this section, we present the baseline results and the outcomes of all the hyperparameter
optimization techniques, followed by a discussion of these results.
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Parameter Description Range
G lr Generator learning rate 1e-4 to 1e-3
D lr Discriminator learning rate 1e-4 to 1e-3

G beta1 Generator beta1 0.1 to 1
D beta1 Discriminator beta1 0.1 to 1
G beta2 Generator beta2 0.1 to 1
D beta2 Discriminator beta2 0.1 to 1
n blocks Number of blocks 1 to 5

α Factor for the confusion distance 1 to 30
nf Number of filters for the classifier [1,2,4,8]

Table 5.2: Parameter grid for hyperparameter optimization

5.2.1 Baseline

Figure 5.1 shows the baseline results of the first training step of GASTeN with the binary
MNIST dataset 8 versus 0. The figure shows a stable training process over three runs, with
a 95 percent confidence interval, represented by the shaded area. The three runs narrowed
considerably after the sixth epoch, indicating reduced variability and consistent performance.
After ten epochs, the Fréchet inception distance reaches a value of 17.74.

Figure 5.1: Baseline results for the MNIST 8 versus 0 dataset, step 1: Mean and standard
deviation across three runs.

Figure 5.2 shows the baseline results of training step 2 of GASTeN with the binary MNIST
dataset 8 versus 0. The figure shows a less stable training process over three runs compared to
the first training step. Moreover, the 95 percent confidence interval varies greatly in the first
ten epochs. Following this point, the training process stabilizes with no further improvement.
After forty epochs, the Fréchet inception distance and average confusion distance values reach
12.71 and 0.42, respectively.
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Figure 5.2: Baseline results for the MNIST 8 versus 0 dataset, step 2: Mean and standard
deviation across three runs.

5.2.2 Hyperparameter optimization technique comparison

Figure 5.3 shows a convergence graph for every hyperparameter optimization technique with
the Fréchet inception distance on a log scale y-axis and iterations on the x-axis. One iteration
on the x-axis means an evaluation of a hyperparameter configuration. Every hyperparameter
optimization technique has twenty hours of runtime, but random grid search and random
search have more iterations. This is because of the more straightforward implementation, thus
reducing the overhead code that can slow down the process. All hyperparameter optimization
techniques significantly reduced the Fréchet inception distance value within the first fifty
iterations. Specifically, Bayesian optimization and BOHB performed better, stabilizing with
a lower Fréchet inception distance value of around ten iterations. While also effective, random
grid search, hyperband, and random search are slower in stabilizing. Also, every hyperparameter
optimization technique reaches a better Fréchet inception distance value than the baseline
results, with Bayesian optimization reaching a Fréchet inception distance value of 8.69.
Figure 5.4 shows a cumulative distribution function for every hyperparameter optimization
technique for the first training step. The y-axis represents the cumulative percentage of it-
erations that have achieved the Fréchet inception distance value up to a certain point. For
example, at fifty percent, a Fréchet inception distance value of around 15 is marked, which
means that fifty percent of the iterations have achieved a Fréchet inception distance value less
than or equal to that specific value. This graph shows that Bayesian optimization, hyperband,
and BOHB can find many low Fréchet inception distance values more than random grid search
and random search.
Figure 5.5 shows a scatter plot plus a hexbin plot for Bayesian optimization in the second
training step. The graphs depict the relationship between the Fréchet inception distance and
average confusion distance for Bayesian optimization. Both the scatter and hexbin plots reveal
two distinct groups. The first group, located on the left with lower Fréchet inception distance
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Figure 5.3: Comparison of hyperparameter optimization techniques on the binary MNIST
dataset 8 versus 0: Convergence of Fréchet inception distance value for the first training
step.

Figure 5.4: Cumulative distribution function of different hyperparameter optimization
techniques for the binary MNIST dataset 8 versus 0 for the first training step.

and varying average confusion distance values, shows a tighter clustering of points. In contrast,
the second group on the right shows higher Fréchet inception distance values and lower average
confusion distance values. This pattern is consistent with BOHB but is not observed in random
grid search, random search, and hyperband. These methods do not exhibit the two distinct
groups. This indicates that Bayesian optimization and BOHB can find these two groups because
they can satisfy the second objective with a surrogate model. Random search methods can not
find these patterns. The graphs for BOHB, random grid search, random search, and hyperband
are available in the appendix.
Figure 5.6 shows the visual inspection of instances with a lower average confusion distance.
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Figure 5.5: Evaluation of BOHB on the binary MNIST dataset 8 versus 0: scatter and
hexbin plots of Fréchet inception distance versus average confusion distance

By visually inspecting the instances, we can see that AutoGASTeN added noise to the images,
leading to a lower average confusion distance and higher Fréchet inception distance.

Figure 5.6: Visual inspection of instances where the average confusion distance is around
0.25.

Figure 5.7 shows a cumulative distribution function for each hyperparameter optimization
technique during the second training step, using the same y-axis as Figure 5.4. This graph shows
that Bayesian optimization performs worse than other hyperparameter optimization techniques
when considering only the Fréchet inception distance, as it finds a Fréchet inception distance
value of 10.12 and an average confusion distance of 0.34. As previously noted, a trade-off
mechanism between Fréchet inception distance and average confusion distance indicates that
Bayesian optimization struggles to achieve lower Fréchet inception distance values because
it also aims to maintain a low average confusion distance. Consequently, optimizing for a
low average confusion distance leads to higher Fréchet inception distance values. We can
see these results by taking some points from the scatter plot. For example, we have the
points (29.73, 0.29) and (11.99, 0.43). From this, we can see that Bayesian optimization can
find lower Fréchet inception distance values but also focuses on the other objective, thus
finding lower average confusion distance values sacrificing the Fréchet inception distance. This
results in AutoGASTeN adding noise to the instances to satisfy the average confusion distance
objective.
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Figure 5.7: Cumulative distribution function of different hyperparameter optimization
techniques for the binary MNIST dataset 8 versus 0 for the second training step.

The convergence plot and cumulative distribution function indicate that Bayesian optimization,
hyperband, and BOHB are more efficient in identifying optimal hyperparameters, resulting in
faster convergence and better overall performance. The rapid decrease and subsequent sta-
bilization of Fréchet inception distance value suggest that these techniques can significantly
enhance generative models’ training efficiency and quality. Also, every hyperparameter opti-
mization technique finds a better Fréchet inception distance value in the first and second
training steps than the baseline results. Even though there is not a significant decrease in
performance for the Fréchet inception distance values in the second training step, we still find
lower average confusion distance values, suggesting we can discover more low-confidence in-
stances with hyperparameter optimization techniques. We only highlighted the results for the
binary MNIST dataset 8 versus 0, but only some of the results. The appendix shows additional
results for the MNIST datasets, including 7 versus 1, 5 versus 3, and 9 versus 4 comparisons.
Additionally, results for the binary fashion-MNIST dataset, specifically dress versus T-shirt,
are provided. Similar outcomes are observed across all other datasets.

5.3 Limitations

Scale benchmark: Another limitation is that these datasets might only partially represent
AutoGASTeN’s behavior. As datasets become more complex, with color or objects that do
not appear similar, the decision boundaries become less clear-cut. For instance, while digits
like seven and one have some similarities, it is challenging to draw similarities between objects
like a car and a plane. This lack of common ground in decision boundaries can hinder evalu-
ating AutoGASTeN’s effectiveness across different datasets. More comprehensive benchmarks
involving a variety of complex datasets are needed to understand the limitations.
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Chapter 6 RQ2: Machine learning with
a reject option

This chapter describes the datasets and the precise process for the second research question.
We also explain how we evaluate these results and discuss them and their limitations. Lastly,
we note any practicalities regarding this research’s experimental setup.

6.1 Experimental setup

This section outlines the datasets we used and explains how we evaluated the second research
question.

6.1.1 Dataset

As mentioned in Chapter 4 we generate custom datasets with low-confidence instances to
test our second research question. Table 6.1 shows the training and testing distribution for
the binary dataset 8 versus 0 of the MNIST dataset with low-confidence instances. There are
5, 923 training instances and 980 testing instances for class 0, 5, 851 training instances and
974 testing instances for class 8, and 5, 822 training instances and 1, 028 testing instances for
class . Where if the model classifies the class , it rejects the instance. The appendix shows all
the other datasets for the MNIST datasets: 7 versus 1, 5 versus 3, and 9 versus 4. Also, the
results are shown for the binary fashion-MNIST dataset dress versus T-shirt. We focused on
the binary dataset 8 versus 0, as Cunha et al. [2023] focused on the binary dataset 7 versus
1. Using this dataset, we can demonstrate that any subset of the MNIST dataset applies for
hyperparameter optimization.

Table 6.1: Distribution of training and testing instances for the custom MNIST binary
dataset 8 versus 0

Class Train Test
Class 0 5,923 980
Class 8 5,851 974
Class ® 5,822 1,028

6.1.2 Evaluation

In the second research question, we want to measure the impact on performance when we
train a convolutional neural network with integrated rejector architecture and a dataset that
contains low-confidence instances. We give the convolutional neural network one and three
epochs to train on the dataset. The metrics we use to evaluate the performance are precision,
recall, and F1 score. Ideally, adding low-confidence instances to a dataset helps the perfor-
mance of a convolutional neural network. It should have the same or a better performance.
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To see the impact, we will compare the custom binary datasets to a normal binary dataset
without low-confidence instances.

For the implementation, we created a convolutional neural network to classify the classes
from the binary dataset and the reject class. We use an architecture that starts with two
convolutional layers with the rectified linear unit activation, extracting features from images,
followed by max-pooling layers. The feature maps are then flattened into a one-dimensional
vector, passed through a dense layer with 128 neurons, and rectified linear unit activation
for further processing. Finally, the output layer uses a dense layer with three neurons and
softmax activation to classify the input into one of three classes. Our baseline for the second
research question is taking a dataset without low-confidence instances versus a custom dataset
with low-confidence instances. We will compare the results of a convolutional neural network
trained for one and three epochs to determine whether it can accurately reject low-confidence
instances without compromising precision, recall, and F1 score.

6.2 Results

In this section, we present the baseline results and the outcomes integrated rejector architecture
with a custom dataset that contains low-confidence instances, followed by a discussion of these
results.

6.2.1 Baseline

Table 6.2 shows the baseline results for a convolutional neural network trained on the binary
MNIST dataset 8 versus 0. Both tables report the precision, recall, and F1 score after one and
three training epoch (s), averaged over three runs. They consistently perform with all metrics
at or above 0.99 for both classes. This indicates that this binary dataset is easy to classify
for a convolutional neural network. Overall, the convolutional neural network can accurately
classify the digits ’0’ and ’8’, achieving near-perfect scores after just one epoch.

Class Epoch 1 Epoch 3
Precision Recall F1 score Precision Recall F1 score

0 0.99 0.99 0.99 0.99 0.99 1.00
8 0.99 0.99 0.99 1.00 1.00 1.00

Table 6.2: Evaluation of a convolutional neural network on the binary MNIST dataset 8
versus 0: precision, recall, and F1 score after one epoch and three epochs, averaged over
three runs.

Table 6.3 shows the baseline results for the same convolutional neural network trained on the
binary fashion-MNIST dataset dress versus T-shirt. The table reports the precision, recall, and
F1 score after one and three training epoch(s) averaged over three runs. Table 6.3 shows that
after one epoch, the model achieves a precision, recall, and F1 score of 0.95 for both classes.
The table also demonstrates slight improvements after three epochs, with precision, recall,
and F1 scores rising to 0.97 for both classes. These results suggest that this dataset is more
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challenging for a convolutional neural network to classify. Although the model performs well,
and additional training epochs further enhance its accuracy, it does not perform better than
the MNIST dataset. Overall, the convolutional neural network effectively classifies dresses and
T-shirts in the binary fashion-MNIST dataset.

Class Epoch 1 Epoch 3
Precision Recall F1 score Precision Recall F1 score

T-shirt 0.95 0.95 0.95 0.97 0.96 0.97
Dress 0.95 0.95 0.95 0.97 0.97 0.97

Table 6.3: Evaluation of a convolutional neural network on the binary fashion-MNIST
dataset dress versus T-shirt: precision, recall, and F1 score after one epoch and three
epochs, averaged over three runs.

6.2.2 Custom dataset with low-confidence instances

Table 6.4 shows the results for a convolutional neural network with integrated rejector archi-
tecture trained on the custom binary MNIST dataset 8 versus 0. In Table 6.4, we can see
that the convolutional neural network has a harder time classifying this custom dataset than
the baseline dataset. After one epoch, all the classes perform slightly worse than the baseline
results. The recall for the reject class is lower than the other classes because the convolutional
neural network rejects instances that do not need to be rejected, resulting in lower precision
for classes 0 and 8. This indicates that the convolutional neural network has trouble distin-
guishing low-confidence from real instances. However, after three epochs, the convolutional
neural network performed way better. The performance is almost the same as the baseline re-
sults. This indicates that the performance increases with more epochs, and the convolutional
neural network can better distinguish between the low-confidence and MNIST instances with
more training time. These results are obtained without a rejection threshold, relying solely on
taking the maximum value of all the probabilities and then classifying or rejecting the instance.

Class Epoch 1 Epoch 3
Precision Recall F1 score Precision Recall F1 score

0 0.96 0.99 0.97 0.99 1.00 0.99
8 0.93 0.96 0.94 1.00 0.99 0.99
® 0.97 0.90 0.93 0.99 1.00 1.00

Table 6.4: Evaluation of integrated rejector architecture with a convolutional neural net-
work on the custom binary MNIST dataset 8 versus 0: precision, recall, and F1 score after
one epoch and three epochs.

Table 6.5 shows the results for a convolutional neural network with integrated rejector architec-
ture trained on the custom binary fashion-MNIST dataset dress versus T-shirt, or dress versus
T-shirt. We have already seen that a convolutional neural network performs slightly worse if
the complexity of the dataset increases. This case holds because it is even harder to classify the
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fashion-MNIST custom dataset than the baseline dataset, shown in Table 6.5. After one epoch,
all the classes perform worse than the baseline results. In this case, the convolutional neural
network rejects instances that are not low-confidence and classifies instances that the model
needs to reject, resulting in lower precision, recall, and F1 scores for all classes. This indicates
that the convolutional neural network has more trouble distinguishing low-confidence from real
instances with a more complex dataset. However, after three epochs, the convolutional neu-
ral network’s performance improved significantly, closely matching the baseline results. This
indicates that the model’s performance increases with more training epochs, allowing the con-
volutional neural network to better distinguish between low-confidence and MNIST instances
with additional training time. These results are obtained without a rejection threshold, relying
solely on taking the maximum value of all the probabilities and then classifying or rejecting
the instance. Of course, in practice, we would need to assess the most appropriate value using
a holdout set. This can be seen as a limitation. The appendix shows all the other results for
the custom dataset MNIST with low-confidence instances: 7 versus 1, 5 versus 3, and 9 versus
4. Every other custom dataset with low-confidence instances shows similar results with the
integrated rejector architecture.

Class Epoch 1 Epoch 3
Precision Recall F1 score Precision Recall F1 score

T-shirt 0.94 0.89 0.94 0.94 0.94 0.94
Dress 0.83 0.92 0.87 0.94 0.94 0.94
® 0.91 0.87 0.89 0.98 0.98 0.98

Table 6.5: Evaluation of integrated rejector architecture with a convolutional neural net-
work on the custom binary fashion-MNIST dataset dress versus T-shirt: precision, recall,
and F1 score after one epoch and three epochs.

Figures 6.1 and 6.2 show the reject percentage and F1 score versus the reject threshold on
the task of rejecting low-confidence instances from custom binary MNIST dataset 8 versus 0
after one and three epoch(s) of training. Both figures show that if the rejection threshold is
0.0, the F1 score decreases significantly. If the rejection threshold is 0.0, the model will always
reject the instance if the probability of rejection is above 0.0. After one epoch of training, we
can see that with a reject threshold of 0.1, the F1 score is lower than with a higher reject
threshold. This indicates that the convolutional neural network is not confident enough because
it assigns a probability equal to or higher than 0.1 to the reject class. The rejection percentage
is also higher at a reject threshold of 0.1. This result occurs because the overall rejection
percentage increases when more instances have the potential to be rejected. We can see that
this pattern disappears after three epochs of training. With three epochs of training time and
a reject threshold of 0.1, the F1 score is the same as a reject threshold of 1.0, meaning the
convolutional neural network is more confident in its decision.
Figures 6.3 and 6.4 show the reject percentage and F1 score versus the reject threshold on
the task of rejecting low-confidence instances from the custom binary fashion-MNIST dataset
dress versus T-shirt, or dress versus T-shirt, after one and three epoch(s) of training. Both
figures show the same pattern as the Figures 6.1 and 6.2. The only difference is at a rejection
threshold of 0.3 and 0.4. The higher F1 score at rejection thresholds of 0.3 and 0.4 suggests that
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Figure 6.1: Evaluation of reject threshold impact on the custom binary MNIST dataset 8
versus 0: F1 score and Rejection Percentage after one training epoch.

Figure 6.2: Evaluation of reject threshold impact on the custom binary MNIST dataset 8
versus 0: F1 score and Rejection Percentage after three training epochs.

these thresholds are more effective at balancing the trade-off between precision and recall. At
these levels, the model rejects enough uncertain instances to avoid many incorrect predictions
while still making enough correct predictions to maintain a high F1 score. In contrast, higher
thresholds reduce the rejection rate too much, leading to more incorrect predictions and a
lower F1 score. This pattern also disappears after three epochs of training time, suggesting
that the model is more confident in its decision and that the precision and recall are always
balanced.
These results show that training another neural network with a custom dataset containing low-
confidence instances is possible. With enough training time, a convolutional neural network
can find the same results on both the MNIST and fashion-MNIST datasets. Both the MNIST
and fashion-MNIST datasets are datasets where almost every convolutional neural network can
find high F1 scores, so obtaining higher performance, in this case, is impossible. Investigating
whether a convolutional neural network can achieve comparable or superior results with more
complex datasets would be interesting. The appendix shows all the other results for the custom
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Figure 6.3: Evaluation of reject threshold impact on the custom binary fashion-MNIST
dataset dress versus T-shirt: F1 score and Rejection Percentage after one training epoch

Figure 6.4: Evaluation of reject threshold impact on the custom binary fashion-MNIST
dataset dress versus T-shirt: F1 score and Rejection Percentage after three training epochs

dataset MNIST with low-confidence instances: 7 versus 1, 5 versus 3, and 9 versus 4. Every
other custom dataset with low-confidence instances shows similar results with the integrated
rejector architecture.

6.3 Limitations

Subjectivity: A limitation of this work is requiring humans to decide what low-confidence
is and is not. The difference between an eight and a zero is subjective. Some will view an
image as clearly an eight or zero, and others can disagree. The same holds for every dataset,
becoming even more pronounced as it grows in complexity. For example, in the fashion-MNIST
dataset, what one person identifies as a T-shirt, another might see as a dress. This variability
highlights the challenge of creating universally applicable low-confidence thresholds.
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Chapter 7 Conclusion

This paper explores ways to improve GASTeN’s performance by generating realistic images on
the decision boundary of two classes and integrating a reject option in machine learning models
to improve decision-making accuracy and reliability. By enabling models to abstain from de-
ciding on low-confidence instances, we can enhance their trustworthiness and not worsen their
performance. Our primary contribution is the development of AutoGASTeN. This automated
pipeline uses GASTeN to generate realistic images on the decision boundary of two classes.

The objective of the first research question was to see if hyperparameter optimization tech-
niques can improve GASTeN’s performance across small gray-scale datasets. Our findings
indicate that even basic hyperparameter optimization techniques, such as random grid search
and random search, yield better results compared to the baseline in step 1 of the training
process, see Figure 5.3. Bayesian optimization improves GASTeN performance the most with
a Fréchet inception distance value of 8.69. We observe similar improvements in step two of the
training process. Bayesian optimization achieved a Fréchet inception distance value of 10.12
and an average confusion distance value of 0.34 on the binary MNIST dataset 8 versus 0,
where the original work scored 12.71 and 0.42, respectively. Although the improvement of the
Fréchet inception distance is modest, the average confusion distance shows more improvement.
Figures 5.5 and 5.6 illustrate that Bayesian optimization can achieve lower Fréchet inception
distance values but also prioritizes the other objective, leading to an improvement of the av-
erage confusion distance. As a result of this improvement, AutoGASTeN introduces noise to
the instances to better satisfy the average confusion distance objective. So, we need to be
cautious when selecting a hyperparameter configuration. With visual inspection, we can select
the hyperparameter configuration for AutoGASTeN, which can generate more instances of low
confidence.

The objective of the second research question was to see the impact of the integrated rejec-
tion architecture on the performance of a convolutional neural network when handling binary
subsamples of small gray-scale datasets with low-confidence instances. First, we created cus-
tom datasets with low-confidence instances, which are essential for training models to handle
ambiguous scenarios effectively. Subsequently, we use these custom datasets to train a convo-
lutional neural network with an integrated rejector architecture. The results demonstrate that
the convolutional neural network trained with these datasets achieves similar precision, recall,
and F1 scores, effectively rejecting low-confidence instances without compromising overall per-
formance. We can see that by looking at Table 6.4. After three epochs, a convolutional neural
network reaches the same precision, recall, and F1 score as the baseline results, indicating
that the network can correctly reject low-confidence instances. The same results hold for the
fashion-MNIST dataset. Also, looking at the rejection threshold in Figure 6.1 and 6.2 reveals
that after one epoch of training, an F1 score is lower with a reject threshold of 0.1 compared
to a higher threshold. This suggests that the convolutional neural network lacks confidence,
assigning a probability of 0.1 or higher to the reject class. The rejection percentage is also
higher at a threshold of 0.1 because more instances are likely to be rejected, but this pattern
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disappears after three epochs, where the F1 score at a 0.1 threshold matches that of a 1.0
threshold, indicating increased confidence in the network’s decisions.

Future work

Scale benchmark: Future research should focus on extending the application of AutoGAS-
TeN to more complex and diverse datasets beyond MNIST and fashion-MNIST. Datasets such
as CIFAR-10, ImageNet, and domain-specific datasets in fields such as medical imaging can
provide insights into the scalability and robustness of the proposed methods in more challeng-
ing and varied environments.
Metric development: Additionally, future research should aim to develop a metric for mea-
suring low-confidence. This work uses the Fréchet inception distance and average confusion
distance as low-confidence indicators. We then supplement these metrics with visual inspec-
tion to determine whether an instance is truly low-confidence. As previously mentioned, this
approach keeps humans in the loop. Ideally, we aim to remove human involvement and allow
AutoGASTeN to autonomously make the best low-confidence decisions. Introducing an addi-
tional metric could enhance AutoGASTeN and the quality of the instances it generates.
Network architecture: Further research should also investigate other network architectures
to enhance AutoGASTeN’s performance. This involves experimenting with various neural net-
work models to identify the most effective structure for different data types and applications.
Exploring alternative architectures could broaden the range of potential applications and en-
hance the robustness of AutoGASTeN in various contexts.
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Chapter A Additional results

All additional results, including figures and tables, will be presented in this section.

A.1 Binary MNIST data 8 versus 0

Figure A.1: Evaluation of random grid search on the binary MNIST dataset 8 versus
0: scatter and hexbin plots of the Fréchet inception distance versus average confusion
distance.

Figure A.2: Evaluation of random search on the binary MNIST dataset 8 versus 0: scatter
and hexbin plots of the Fréchet inception distance versus average confusion distance
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Figure A.3: Evaluation of hyperband on the binary MNIST dataset 8 versus 0: scatter
and hexbin plots of the Fréchet inception distance versus average confusion distance

Figure A.4: Evaluation of BOHB on the binary MNIST dataset 8 versus 0: scatter and
hexbin plots of the Fréchet inception distance versus average confusion distance

A.2 Binary MNIST data 7 versus 1

Table A.1: Distribution of training and testing instances for the custom MNIST binary
dataset 7 versus 1

Class Train Test
Class 1 6742 1135
Class 7 6265 1028
Class ® 5822 1028

Class Precision Recall F1 score
1 0.99 0.99 0.99
7 1.00 1.00 0.99

Table A.2: Evaluation of a convolutional neural network on the binary MNIST dataset 7
versus 1: precision, recall, and F1 score after one epoch averaged over three runs.
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Figure A.5: Baseline results for the MNIST 7 versus 1 dataset, step 1: Mean and standard
deviation across three runs.

Figure A.6: Baseline results for the MNIST 7 versus 1 dataset, step 2: Mean and standard
deviation across three runs.

Class Precision Recall F1 score
1 1.00 1.00 1.00
7 1.00 1.00 1.00

Table A.3: Evaluation of a convolutional neural network on the binary MNIST dataset 5
versus 3: precision, recall, and F1 score after three epochs averaged over three runs.

Class Precision Recall F1 score
1 0.98 0.99 0.99
7 1.00 0.94 0.97
® 0.94 0.99 0.96

Table A.4: Evaluation of integrated rejector architecture with a convolutional neural net-
work on the custom binary MNIST dataset 7 versus 1: precision, recall, and F1 score after
one epoch.
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Figure A.7: Comparison of hyperparameter optimization techniques on the binary MNIST
dataset 7 versus 1: Convergence of the Fréchet inception distance score for the first training
step.

Figure A.8: Cumulative distribution function of different hyperparameter optimization
techniques for the binary MNIST dataset 7 versus 1 for the first training step.

Class Precision Recall F1 score
1 0.98 1.00 0.99
7 0.98 0.98 0.98
® 0.99 0.97 0.98

Table A.5: Evaluation of integrated rejector architecture with a convolutional neural net-
work on the custom binary MNIST dataset 7 versus 1: precision, recall, and F1 score after
three epochs.
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Figure A.9: Cumulative distribution function of different hyperparameter optimization
techniques for the binary MNIST dataset 7 versus 1 for the second training step.

Figure A.10: Evaluation of random grid search on the binary MNIST dataset 7 versus
1: scatter and hexbin plots of the Fréchet inception distance versus average confusion
distance.

Figure A.11: Evaluation of random search on the binary MNIST dataset 7 versus 1: scatter
and hexbin plots of the Fréchet inception distance versus average confusion distance
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Figure A.12: Evaluation of Bayesian optimization on the binary MNIST dataset 7 versus
1: scatter and hexbin plots of the Fréchet inception distance versus average confusion
distance

Figure A.13: Evaluation of hyperband on the binary MNIST dataset 7 versus 1: scatter
and hexbin plots of the Fréchet inception distance versus average confusion distance

Figure A.14: Evaluation of BOHB on the binary MNIST dataset 7 versus 1: scatter and
hexbin plots of the Fréchet inception distance versus average confusion distance
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Figure A.15: Evaluation of reject threshold impact on the custom binary MNIST dataset
7 versus 1: F1 score and Rejection Percentage after one training epoch

Figure A.16: Evaluation of reject threshold impact on the custom binary MNIST dataset
7 versus 1: F1 score and Rejection Percentage after three training epochs
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A.3 Binary MNIST data 5 versus 3

Table A.6: Distribution of training and testing instances for the custom MNIST binary
dataset 5 versus 3

Class Train Test
Class 3 6131 1010
Class 5 5421 892
Class ® 5822 1028

Figure A.17: Baseline results for the MNIST 5 versus 3 dataset, step 1: Mean and standard
deviation across three runs.

Figure A.18: Baseline results for the MNIST 5 versus 3 dataset, Step 2: Mean and standard
deviation across three runs.
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Figure A.19: Comparison of hyperparameter optimization techniques on the binary
MNIST dataset 5 versus 3: Convergence of the Fréchet inception distance score for the
first training step.

Figure A.20: Cumulative distribution function of different hyperparameter optimization
techniques for the binary MNIST dataset 5 versus 3 for the first training step.

Figure A.21: Cumulative distribution function of different hyperparameter optimization
techniques for the binary MNIST dataset 5 versus 3 for the second training step.
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Figure A.22: Evaluation of random grid search on the binary MNIST dataset 5 versus
3: scatter and hexbin plots of the Fréchet inception distance versus average confusion
distance.

Figure A.23: Evaluation of random search on the binary MNIST dataset 5 versus 3: scatter
and hexbin plots of the Fréchet inception distance versus average confusion distance

Figure A.24: Evaluation of Bayesian optimization on the binary MNIST dataset 5 versus
3: scatter and hexbin plots of the Fréchet inception distance versus average confusion
distance
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Figure A.25: Evaluation of hyperband on the binary MNIST dataset 5 versus 3: scatter
and hexbin plots of the Fréchet inception distance versus average confusion distance

Figure A.26: Evaluation of BOHB on the binary MNIST dataset 5 versus 3: scatter and
hexbin plots of the Fréchet inception distance versus average confusion distance

Class Precision Recall F1 score
3 1.00 0.99 0.99
5 0.99 1.00 0.99

Table A.7: Evaluation of a convolutional neural network on the binary MNIST dataset 5
versus 3: precision, recall, and F1 score after one epoch averaged over three runs.

Class Precision Recall F1 score
3 1.00 1.00 1.00
5 0.99 1.00 1.00

Table A.8: Evaluation of a convolutional neural network on the binary MNIST dataset 5
versus 3: precision, recall, and F1 score after three epochs averaged over three runs.
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Class Precision Recall F1 score
3 0.99 0.95 0.97
5 0.95 0.95 0.95
® 0.91 0.96 0.93

Table A.9: Evaluation of integrated rejector architecture with a convolutional neural net-
work on the custom binary MNIST dataset 5 versus 3: precision, recall, and F1 score after
one epoch.

Figure A.27: Evaluation of reject threshold impact on the custom binary MNIST dataset
5 versus 3: F1 score and Rejection Percentage after one training epoch

Class Precision Recall F1 score
3 0.99 0.99 0.99
5 0.98 0.99 0.99
® 1.00 0.98 0.99

Table A.10: Evaluation of integrated rejector architecture with a convolutional neural
network on the custom binary MNIST dataset 5 versus 3: precision, recall, and F1 score
after three epochs.
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Figure A.28: Evaluation of reject threshold impact on the custom binary MNIST dataset
5 versus 3: F1 score and Rejection Percentage after three training epochs

50



Chapter A Additional results

A.4 Binary MNIST data 9 versus 4

Table A.11: Distribution of training and testing instances for the custom MNIST binary
dataset 9 versus 4

Class Train Test
Class 4 5842 982
Class 9 5949 1009
Class ® 5822 1028

Figure A.29: Baseline results for the binary MNIST 9 versus 4 dataset, step 1: Mean and
standard deviation across three runs.

Figure A.30: Baseline results for the binary MNIST 9 versus 4 dataset, step 2: Mean and
standard deviation across three runs.
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Figure A.31: Comparison of hyperparameter optimization techniques on the binary
MNIST dataset 9 versus 4: Convergence of the Fréchet inception distance score for the
first training step.

Figure A.32: Cumulative distribution function of different hyperparameter optimization
techniques for the binary MNIST dataset 9 versus 4 for the first training step.

Figure A.33: Cumulative distribution function of different hyperparameter optimization
techniques for the binary MNIST dataset 9 versus 4 for the second training step.
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Figure A.34: Evaluation of random grid search on the binary MNIST dataset 9 versus
4: scatter and hexbin plots of the Fréchet inception distance versus average confusion
distance.

Figure A.35: Evaluation of random search on the binary MNIST dataset 9 versus 4: scatter
and hexbin plots of the Fréchet inception distance versus average confusion distance

Figure A.36: Evaluation of Bayesian optimization on the binary MNIST dataset 9 versus
4: scatter and hexbin plots of the Fréchet inception distance versus average confusion
distance
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Figure A.37: Evaluation of hyperband on the binary MNIST dataset 9 versus 4: scatter
and hexbin plots of the Fréchet inception distance versus average confusion distance

Figure A.38: Evaluation of BOHB on the binary MNIST dataset 9 versus 4: scatter and
hexbin plots of the Fréchet inception distance versus average confusion distance

Class Precision Recall F1 score
4 1.00 0.99 0.99
9 0.99 1.00 1.00

Table A.12: Evaluation of a convolutional neural network on the binary MNIST dataset
9 versus 4: precision, recall, and F1 score after one epoch averaged over three runs.

Class Precision Recall F1 score
4 1.00 1.00 1.00
9 1.00 1.00 1.00

Table A.13: Evaluation of a convolutional neural network on the binary MNIST dataset
9 versus 4: precision, recall, and F1 score after three epochs averaged over three runs.
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Class Precision Recall F1 score
4 0.98 0.89 0.93
9 0.96 0.95 0.95
® 0.87 0.95 0.91

Table A.14: Evaluation of integrated rejector architecture with a convolutional neural
network on the custom binary MNIST dataset 9 versus 4: precision, recall, and F1 score
after one epoch.

Figure A.39: Evaluation of reject threshold impact on the custom binary MNIST dataset
9 versus 4: F1 score and Rejection Percentage after one training epoch

Class Precision Recall F1 score
4 0.99 0.99 0.99
9 0.95 1.00 0.97
® 1.00 0.95 0.98

Table A.15: Evaluation of integrated rejector architecture with a convolutional neural
network on the custom binary MNIST dataset 9 versus 4: precision, recall, and F1 score
after three epochs.
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Figure A.40: Evaluation of reject threshold impact on the custom binary MNIST dataset
9 versus 4: F1 score and Rejection Percentage after three training epochs
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A.5 Binary fashion-MNIST data dress versus T-shirt

Table A.16: Distribution of training and testing instances for the custom fashion-MNIST
binary dataset dress versus T-shirt (dress versus top)

Class Train Test
Class 0 6000 1000
Class 3 6000 1000
Class ® 5822 1028

Figure A.41: Baseline results for the fashion-MNIST dress versus T-shirt dataset, step 1:
Mean and standard deviation across three runs.

Figure A.42: Baseline results for the fashion-MNIST dress versus T-shirt dataset, step 2:
Mean and standard deviation across three runs.
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Figure A.43: Comparison of hyperparameter optimization techniques on the binary
fashion-MNIST dataset dress versus T-shirt: Convergence of the Fréchet inception dis-
tance score for the first training step.

Figure A.44: Cumulative distribution function of different hyperparameter optimization
techniques for the binary fashion-MNIST dataset dress versus T-shirt for the first training
step.

Figure A.45: Cumulative distribution function of different hyperparameter optimization
techniques for the binary fashion-MNIST dataset dress versus T-shirt for the second
training step.
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Figure A.46: Evaluation of random grid search on the binary fashion-MNIST dataset dress
versus T-shirt: scatter and hexbin plots of the Fréchet inception distance versus average
confusion distance.

Figure A.47: Evaluation of random search on the binary fashion-MNIST dataset dress
versus T-shirt: scatter and hexbin plots of the Fréchet inception distance versus average
confusion distance

Figure A.48: Evaluation of Bayesian optimization on the binary fashion-MNIST dataset
dress versus T-shirt: scatter and hexbin plots of the Fréchet inception distance versus
average confusion distance
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Figure A.49: Evaluation of hyperband on the binary fashion-MNIST dataset dress versus
T-shirt: scatter and hexbin plots of the Fréchet inception distance versus average confusion
distance

Figure A.50: Evaluation of BOHB on the binary fashion-MNIST dataset dress versus T-
shirt: scatter and hexbin plots of the Fréchet inception distance versus average confusion
distance
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