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Abstract

Many advancements have been made in Computational Linguistics and Natural Language
Processing over the past decade, opening up great potential to gain more insight into longer
existing linguistic questions. A popular topic of research within the field has been the differences
in language use between genders due to its compellingness to a general audience. In this
research, we used newly emerging Artificial Intelligence technology to investigate a novel
technique to research these differences. For this, we finetuned an Artificial Intelligence model
to predict a storyteller’s gender based on their language use, measured its performance, after
which we examined the model’s focus. We then compared our findings with pre-existing related
research to analyze if this novel technique can provide any insight into the differences in
language use between (binary) genders. Concretely, we used a subset of the ChiSCor dataset
with gender labels containing 240 freely told stories by 145 children, which we used to finetune
the pre-trained Dutch BERTje model for gender label prediction. To measure performance
we used 10-fold cross validation, after which we used the integrated gradients technique to
produce attribution scores which we combined in rankings. We performed a manual analysis
on these rankings to conclude what the model focussed on. Finally, we compared our model’s
focus with relevant pre-existing research to analyze whether this technique indeed can provide
any insight into the differences in language use between (binary) genders. Our results showed
a performance with an average F1-score of 0.56 and an average accuracy of 0.63, however, we
argued this modest result might not be limited by the capabilities of the model itself, but
instead by the limited dataset. We continued our research on the model’s focus with the best
performing 10-fold cross validation iteration which showed a performance of an F1-score of
0.79 and an accuracy of 0.79. Our model largely considered the presence of verbs, nouns, and
adverbs in domains of adventure and technology as indicators of a male-told story, while it
considered the presence of nouns and personal pronouns in the domains of personal relations
and explicit female characters as indicators of a female-told story. These results were in line
with relevant pre-existing research. This showed the potential one can indeed successfully
finetune a BERT model to predict a storyteller’s gender with relatively high accuracy to
then examine what parts of language it focuses on as a way to gain insight into differences in
language use between the (binary) genders.
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1 Introduction

Language and technology are all around us. It was only quite recently, in the 1950s, that advance-
ments in computing power led people to start analyzing human language by technology in the
emerging fields of Computational Linguistics and Natural Language Processing (NLP) [Jon94]
[Sch20]. Many advancements have been made since then in both fields to process and analyze
language data, perhaps one of the most notable being the introduction of Artificial Intelligence
(AI). These advancements open up great potential to gain more insight into many longer existing
linguistic questions. One particularly popular topic within the field is one about whether and what
language use differences exist between male and female individuals (one that indeed overlaps with
psychology as one’s language use relates to one’s perception and behavior [Who97]).

We aim to investigate a novel technique to research these differences to shed new light on this
century-old question. Our idea is not to analyze text data itself, but rather to finetune a gender
predicting AI model to predict a storyteller’s gender based on their language use, to then examine
what this model focuses on. The reasoning being that if an AI model can determine a storyteller’s
gender with relatively high accuracy by solely focusing on parts of language (i.e. no extracted
features), it must focus on relevant parts of speech input to gain such accuracy. By examining
differences in focus, we can analyze whether clear differences exist and what they are. This limits
the tasks in which humans are involved, therefore having the potential to mitigate –not fully
remove– human interpretation bias. For the creation of such an AI model that can predict a
storyteller’s gender, the popular pre-trained BERT model seemed a promising commencement given
its outstanding performance regarding (con)textual interpretation. To investigate the potential of
this approach we stated the following research question: How successful can a finetuned BERT
model distinguish informal Dutch speech between boys and girls, what parts of language does it focus
on, and can this provide insight into differences in language use between (binary) genders? 1

To answer this research question, we first look in Section 2 at other work related to gender
classification in general and discuss findings and general concerns present in the field. In Section 3,
we discuss certain techniques, introduced in other papers, we used to conduct our research. The
discussion of how we conducted our own research to answer the research question is discussed in
Section 4. In short, we use a subset of the ChiSCor dataset containing 240 freely told stories by 145
children with gender labeled data of the storytellers provided by their parents. We then preprocess
these data to finetune the pre-trained Dutch BERTje model for prediction of the gender label.
Additionally, we search for the most optimal training hyperparameters. To test performance we
use 10-fold cross validation, after which the integrated gradients technique is used to produce an
attribution score per token per story of what the model focuses on. Subsequently, we rank the
acquired attribution scores per token in various ways and perform a manual analysis on these

1In this research, we are not looking to challenge whether gender is a binary construct or not. Butler [But90] and
others have already shown how a strictly binary approach to gender identity in society sells short of capturing the
nuances this social construct contains. That is why for our research, as discussed in more detail later, we only train
our model on stories of children whose parents considered their child to be of either male or female gender at the
time of data collection when an option to leave the question blank was given. This way we hope to gain insight into
language differences between people who wish to fall into one of these categories. Although indeed, the participants
did not choose this gender categorization themselves, we assume the categorization their parents made coincided
given their age.
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rankings. To mitigate the problems our limited size test set creates, we create an additional extended
test set to gain better insight into the model’s focus, although introducing unlabeled data does
introduce other additional problems. We discuss the findings of model performance and focus in
Section 5. In Section 6 we deeper analyze these findings and discuss our model’s generalizability
by comparing it to other relevant pre-existing research to gain an answer to all three parts of
our research question. Finally, in Section 7 we discuss some potential points of improvement
and opportunities for future research we gathered in the process of this research. We end with a
conclusion and summary of our entire paper in Section 8.

2 Related work

Research on variances in language use between genders has long been a popular topic of research.
This popularity can partly be explained by the topic’s compellingness to a general audience [KC17]
caused by numerous factors such as curiosity (people are naturally curious about how gender might
influence behavior and aspects of life), relatability (everyone can relate to the topic as it pertains
to fundamental aspects of human identity), cultural relevance (gender roles are a relevant topic in
today’s society), combined with the perceived objectivity of scientific articles.

A widely known article –because of its rigorous scope– on the topic of gender variances in language
was published in 2008 by Newman et al. [New+08]. For their research, 14,000 text samples were
combined, capturing both spoken and written texts from 70 separate studies to conduct a robust
analysis using LIWC software2on differences in message content, word usage, phrase usage, and
sentence structure. Over all documents regarding message content, they found women were more
likely to discuss internal processes with others, including doubts, thoughts, emotions, senses, and
other people. Conversely, men were more likely to discuss external events, such as objects, processes,
occupation, money, and sports. On a linguistic word level, they found women to show greater use of
pronouns and adverbs, while men showed greater use of numbers, articles, long words, and swearing.
Additionally, women showed a small tendency towards more polite phrases, and negations. However,
it is generally important to note that a strong influence of culture on gender behavior exists [BP19].

Research on authorial gender differences can largely be placed in one of two methodological strands:
descriptive, where an explanation of observed differences ought to be analyzed, and predictive,
where an author’s gender ought to be recognized based on certain measures. The latter has recently
gained popularity with the increasing popularity of Machine Learning (ML) techniques and resulted
in current relatively high gender author discernment accuracy. However, as Koolen and Cranenburgh
in their 2017 paper highlighted [KC17], it is difficult to accurately explain what exactly gives rise to
these results as often many confounding contextual factors exist, and to not resort to stereotyping
and essentialism. Interpretations are often performed with gender stereotypes in mind, resulting in
an emphasis on difference which enlarges the perceived gap between female and male authors, while
an even larger overlap is left unconsidered. They analyzed two theoretical and two practical issues
that arise and should be considered when performing NLP research into gender differences. The

2LIWC (Linguistic Inquiry and Word Count) is a popular language analysis software tool that analyzes texts and
places words in linguistic, psychological, and topical categories.
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theoretical issue of preemptive categorization captures that categorization can become problematic in
cases where differences between the categories are in fact caused by unconsidered factors. Choosing
to categorize in such cases and explain the observed outcomes (influenced by unconsidered factors)
can reinforce essentialistic ideas and enlarge stereotypes. This issue is enlarged by NLP’s semblance
of objectivity : the automation of gender difference analysis and prediction seems objective by its
automatic nature. However, often unconsidered is the human researchers’ share to gather the data,
select categories, and their desire to build a successful classification model. This results in a model
with certain analysis or predictive successes, but in actuality does not capture anything regarding
the explanatory value of its output. Linked to these unavoidable theoretical issues are two practical
ones: dataset bias and interpretation bias. Dataset bias refers to any bias in the output of the model
caused by a skewed and inaccurate representation of the population (in this case, the population of
males and females). In practice, this usually means for gender prediction models the neglectance
of contextual and external author variables, such as time of data collection, physical location of
recording, etc. A clear example of this is Baker’s research [Bak14] which indicated that gender
differences were quite prominent in the British National Corpus. However, upon closer inspection
the context turned out to be different: men were mostly recorded at work, while women were
mostly recorded at home. Lastly, interpretation bias is the phenomenon when researchers too easily
attribute differences to gender, when in fact other factors could be at play. Additionally, further
supporting research beyond the chosen dataset is often not sought when found results align with
“common knowledge”, which in actuality, is generally based on stereotypes and thus incorporates
the researcher’s bias. This becomes additionally problematic when deviant and counterintuitive
results are not focussed upon, as this is a form of cherry picking. Even with these potential issues
arising from gender analysis (and to a lesser extent gender prediction), Koolen and Cranenburgh
highlighted the importance of these NLP tasks, as in fact, female-male differences are existent
and worth researching when it comes to cultural production [KC17]. However, it is important to
be aware of these theoretical and practical issues when conducting research on authorial gender
differences.

Still, the ethical questions arising from automated gender prediction by ML should not be overlooked.
As Fosh-Villaronga et al. mentioned [Fos+21], the benefits of this kind of technology might mainly
benefit large corporations who seek to more specifically tailor marketing services and increase
their users’ attention span to increase their marketing profits. This would bypass direct benefit
for those whose data is used, while the development of such technologies do have the potential to
cause harm to the same group. Increasing explicit treatment differences between classified gender
categories opens up the window to discrimination by favoring a certain gender in certain cases
while disservicing others. Furthermore, discovering one has been misgendered may impact people’s
self-esteem, confidence, and authenticity (extra harming people who wish not to be classified as
either male or female). These feelings, together with the idea of how members of each gender act,
create the potential for this technology to shift from being descriptive to becoming prescriptive
[KC17]. However, this does not mean that predictive ML techniques that include gender should
be entirely ignored, as they conversely have equal potential to expose and consequently combat
existing socially harmful and unconscious biases.

Another often overlooked ethical concern specifically relates to the use of ML and Large Language
Models (LLMs): environmental and humanitarian impact. Using ML techniques and training LLMs
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creates significant environmental and humanitarian costs given our contemporary natural resource
management. The large energy demand and need for fresh water to cool, both computational
and data centers, results in a large impact on ecosystems and climate by resource depletion and
associated carbon emissions. Additionally, the mining of the raw materials required for the creation
of these computational and data centers is often done in developing countries, exactly the ones who
are already mostly affected by the natural changes caused by the impact on ecosystems and climate
[Cra21] [Wei+21]. These concerns might not be specific to gender classification, but concern the
use of ML and LLMs as a whole.

3 Background

To conduct our research, we made use of several techniques introduced by other papers which
might need further explanation. Below, we briefly discuss the integrated gradient interpretability
technique in Section 3.1 and the Rank Biased Overlap (RBO) ranking comparison technique in
Section 3.2.

3.1 Integrated gradients

To answer the part of our research question concerning what part of the language the BERT model
focuses on, we needed to analyze our model more thoroughly. For this, we initially considered the
analysis on the model’s attention matrices. This seemed intuitive as these values determine exactly
what we aim to analyze: the weight the model assigns to each input based on their importance for
the task to gain a more optimal output [Vig22], in our case, the predicted gender label. Ultimately,
however, we decided not to use this method because of its difficulty for interpretation; every atten-
tion head (twelve for BERTje) focuses on different relationships and parts of input, making it hard
to create a single accurate importance ranking for words per story. Secondly, we briefly considered
the use of Shapley values to learn more about the contribution of each token to the output value.
However, as these are more fit for a model that performs on extracted features instead of language
sequences [Mol22], this idea was omitted. Lastly, we considered the calculation of attribution scores
per token in a story by the use of integrated gradients, developed at Google by Sundararajan et al.
in 2017 [STY17]. This met our criteria for a metric that produces a clearly interpretable attribution
score per token, and is applicable to language sequences, easily implementable3, and robust.

Integrated gradients is an interpretability technique for classification Neural Network (NN) models
that attributes an importance score to all input values given a prediction. The method starts off
by first constructing a neutral baseline input that represents an input that lacks any meaningful
signal, in our case an input stream of [PAD] tokens (internally represented by numerical value 3 in
BERTje). This baseline is then linearly interpolated per token in a number of steps from baseline to
input, in our case from [PAD] token (i.e. numerical value 3) to the desired token (i.e. its numerical
encoding of the input token)4. At every step, the gradient of each input token is calculated with
relation to the model function. This gradient is a mathematical vector, where each of its elements
is the derivative of the model function with relation to the input token element. Applied to our

3Integrated gradient calculations are largely implemented by Captum, an interpretability package for PyTorch
(captum.ai/api/layer.html#layer-integrated-gradients).
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Figure 1: Visualization showing the expected model function output during the integrated gradients
technique, as steps from the baseline increase.

tokenized input, it effectively shows in which direction the value of each input token should move
to obtain an ascending model function output, with the magnitude of this vector being the rate
of value ascension. This means, the greater the (magnitude of a) gradient of a particular input
token, the greater its contribution to the output of the model function. At every single interpolation
step, the gradients for all tokens are calculated, effectively showing the tokens most contributing
to the output value at each interpolation step. For every token at a certain interpolation step,
its gradient’s magnitude is a measure of importance to the overall prediction output, while the
gradient’s direction is a measure in what direction it contributed (in our case, all values smaller
than zero contribute to a female prediction while all values larger than zero contribute to a male
prediction). Additionally, as visualized in Figure 1, the idea is that the most important tokens
of a timestep are less interesting at the beginning and ending interpolation steps as the most
contributing tokens at these timesteps contribute overall little to the desired output value (hence
we use interpolation, and not just solely the original input). In order to account for this, the most
attributing tokens at a timestep where the desired output value increases most strongly are more
heavily weighted than timesteps where very little difference in output value was observed. This
behavior is implicitly implemented by taking an integral of the tokens’ attribution scores over
all interpolated steps (hence the name integrated gradients), however, as these interpolated steps
cannot become infinitely small for an integral, instead an approximation using summation is used.
This results in the tokens that attribute most to the model’s output when the model’s output
actually changes the most, to gain the highest (absolute) scores.

3.2 RBO

To objectively compare ranked elements, many different measures can be used. Many of these
measures, however, are only applicable to conjoint rankings (i.e. lists that both contain the exact
same elements), like Spearman’s rho or Kendall’s tau, something which is incompatible with our
approach as some of our ranking methods produce nonconjoint rankings as they split male and
female rankings. Initially, we considered Fagin et al.’s [FKS02] extension to Spearman’s rho to
account for nonconjointness as it is one of the more intuitive measures. While simpler and most

4An often used simpler visual analogy for the neutral baseline input is one for image classification NNs, where it
would be a black image. Here linear interpolation would consist of steps of increasing saturation from black to the
originally saturated input image.
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Age Girls Boys
4 4 10
5 14 14
6 6 10
7 21 12
8 12 12
9 10 7
10 2 4
11 1 5
12 1 0

Total part. 71 74
Total stories 117 123

Table 1: Age and gender distribution of our dataset.

preferable on paper, this measure didn’t have a clearly defined output range which undermined
its interpretability. This led us to choose a different nonconjoint, and relatively novel, similarity
measure proposed in 2010 by Webber et al. [WMZ10]: Rank Biased Overlap (RBO).

The RBO measure is a nonconjoint top-weighted ranking similarity measure in the range [0, 1],
where 0.0 means complete disjointness and 1.0 means identical. Note that an in-between value
of, let us say 0.5, might not be as intuitive as one might think at first sight, since what it means
to be “50% similar” is rather ambiguous. The RBO measure takes into account both element
presence and order, where element absence is weighted most heavily and element order is weighted
according to the distance of the difference. Additionally, RBO is a top-weighted measure, meaning
that elements higher up in the ranking have more weight than elements further down. Exactly how
this weight is distributed is determined by parameter p, which is in range [0, 1]. Since p should
be determined depending on the size of the rankings, we discuss its exact values in their relevant
sections (Section 4.3.1 and Section 4.3.2).

4 Methodology

The dataset that we used to conduct our research is the ChiSCor dataset introduced by Van Dijk et
al. (2023) [Dij+23]. The full dataset consisted of 619 fantasy stories in Dutch, told by 442 children
at their elementary school who were given the chance to freely come up with a story they wanted
to tell. Parents were given the opportunity to voluntarily fill in an additional form with metadata
about their child(ren), including their gender. Not all parents filled in this voluntary metadata (for
two children the gender section was left blank and for 295 others no form was returned at all),
which resulted in only 240 stories by 145 unique children being fit for a large part of our research.
Their age and gender distribution can be found in Table 1.

We acknowledge data augmentation techniques could have been used to supply gender data for
those without by extracting information from the raw audio files the dataset provides. However,
we like to stress our decision not to use these as these techniques give rise to their own inherent
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problems. Foremost would be what technique to use. Techniques such as automatic classification
by pitch threshold [HWN12], classification by another AI system [SA22], or manual listening with
ad hoc classification all already incorporate their own inherent interpretation biases about gender,
eluding our set out purpose of mitigating it. Secondly is the accuracy these techniques provide.
While any technique is unlikely to reach an accuracy of 1.0 (however lacking means to verify
it), the augmented dataset is likely to cause a false perception of objectivity in our research and
possible future research using the augmented dataset. Therefore, all data should be treated as
having an accuracy of the portion of originally labeled stories, undermining the goal of the data
augmentation. If our goal was to solely predict a storyteller’s gender this would be less of a concern
as we could assume falsely augmented correctly learned data still as successful, however, our goal
is to analyze gender-specific parts of speech where wrong classifications likely only obscure any
possible consistencies in language use. Thirdly, this would give rise to an obvious ethical point of
contention, whether people who possibly wish not to be binarily classified should be classified in
such a way after all for training an AI model. All things considered, we chose not to use and release
an augmented ChiSCor dataset.

As a basis for an AI model that can accurately predict a storyteller’s gender, we decided to use
a popular pre-trained BERT model, developed at Google by Devlin et al. [Dev+19] given its
open-source nature, quality documentation, and outstanding performance regarding (con)textual
interpretation. More specifically, since our dataset concerned Dutch texts, we used the popular
Dutch BERT model “BERTje” (the most popular pre-trained Dutch BERT model as of writing,
based on a BERT base model), developed by the University of Groningen [Vri+19].

In this section, we discuss exactly how we conducted our research. More specifically, we go over the
steps performed to preprocess the dataset for finetuning the BERT model in Section 4.1. Next, in
Section 4.2, we discuss the process of how we finetuned our model and the training parameter to
optimize gender predicting performance after which we discuss how we tested this performance with
10-fold cross validation. Finally, in Section 4.3 we discuss our approach to analyzing our model’s
focus on our initial gender labeled test set as well as an extended gender labelless test set. For the
entire process, we used Python 3.7 and PyTorch 1.13.1. An overview of the supplementing code
files per section is given in Appendix A.

4.1 Data processing

The dataset consisted of two separate files: one containing the stories and one containing children’s
metadata received from the voluntarily returned forms. We used the Pandas package to import
both files stored locally in CSV format into dataframes. To merge later, we constructed a child id

attribute to the stories dataframe by extracting the first three digits from the id attribute (the id of
every story consisted of five digits: the first three represented the corresponding child id, the latter
two their relative story number). Subsequently, we renamed the id attribute from the metadata
dataframe to child id and merged both dataframes on the same attribute. Finally, we dropped
all entries which had an undefined value for the male attribute. This attribute was either 0 when
“female” or 1 when “male” was reported on the metadata form. This resulted in a dataframe of
240 entries where every entry consisted of a raw story (in story raw and story raw no newlines,
both attributes equal in content apart from the line separation per sentence in the first; we used
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id story lemmatized story raw no newlines child id male ...
10101 er zijn er eens een meisje ze

willen heel graag buiten spe-
len het mogen niet van haar
moeder ze gaan toch naar
buiten en toen zeggen haar
moeder waar gaan je naartoe
en het meisje zeggen ik gaan
naar buiten einde

er was er eens een meisje. ze
wou heel graag buiten spe-
len. het mocht niet van haar
moeder. ze ging toch naar
buiten en toen zei haar moeder
waar ga je naartoe? en het
meisje zei ik ga naar buiten.
einde

101 1

10301 er was een keer een eenhoorn
en die was helemaal alleen en
er zijn geen eenhoorn er zijn
geen eenhoorn en toen zien de
prinses dat er een eenhoorn die
een babyeenhoorn ze moeder
kwijt hebben en dat was het

er was een keer een eenhoorn en
die was helemaal alleen. en er
waren geen eenhoorns. er waren
geen eenhoorns. en toen zag
de prinses dat er een eenhoorn-
tje die een babyeenhoorntje ze
moeder kwijt had en dat was
het.

103 0

... ... ... ... ...

Table 2: Example of a dataframe after preparation with Pandas.

the latter), a lemmatized version of the same story, the gender of the author, and several other lin-
guistic and authorial features. An illustrative visualization of this final dataframe is given in Table 2.

After dataframe preparation with Pandas, PyTorch was used to further process the data into a
DataLoader object for finetuning the pretrained BERT model. For this, we first imported the
accompanying tokenizer from the Dutch BERTje model and configured it to lowercase all input to
treat all words equally regardless of their capitalization. As BERT models work with uniformly
sized input, the tokenizer additionally truncated all stories of over 512 tokens and filled all stories
with fewer tokens by adding [PAD] tags. The last task of the tokenizer was to wrap the input
in [CLS] and [SEP] tags, and return an attention mask to let the BERT model know where the
[PAD] tags begin and the tokenized text input ends. After feeding all stories to the tokenizer, the
tokenized stories (including their accompanying attention mask and ground truth, i.e. not predicted,
gender label) were split in a train, validation, and test set (respectively 70%, 20%, and 10%). As
Sklearn’s built-in train test split method only split these entries in two, we sequentially called
this method twice to create our desired three-fold split. By argumentation, we ensured the sets
were shuffled and stratified on the dataset gender label (i.e. approximately 50% of all three datasets
is labeled male while the other 50% female). To solve the problem of a skewed test set proportion
(as taking 10% of the 100% dataset is different than 10% of an already 80% train set), we first
calculated the adjusted test set size before extracting the test set. Finally, the tokenized words,
attention mask, and ground truth labels were combined into a TensorDataset object per train,
validation, and test set. These three sets were subsequently each put into a DataLoader object
where they were divided into batches for later training-validation and test iterations. Determining
the batch size was done during hyperparameter tuning.
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4.2 Model performance

To make the pre-trained BERTje model fit for our gender prediction task, and get an accurate
answer on how successful a finetuned BERT can be, successful finetuning of the model’s parameters
and training hyperparameter is key, after which rigorous testing should be performed to test the
final model’s performance. The finetuning process of the model’s parameters entails the tweaking
of internal weights and biases to minimize the loss function on input of the train and validation set
(i.e. minimize the difference between predicted output and the ground truth), which we discuss in
Section 4.2.1. The tuning process of the training hyperparameters is not done automatically (by
the optimizer) on the dataset, but is instead done manually as these consider external parameters
outside of the model. We discuss this in Section 4.2.2. Lastly, we perform rigorous testing using
k-fold cross validation to test the performance of our model after model parameter and training
hyperparameter tuning, which we discuss in Section 4.2.3.

4.2.1 Model finetuning

The finetuning process of the model’s parameters started with importing the pre-trained model
itself. As our prediction output needed to be binary, we defined the model to have just a single
output label. We set a threshold to interpret any output value in [0.0, 0.5) as female (as it is closer
to its 0 value in the dataset), and any output value in [0.5, 1.0] as male (as it is closer to its 1
value in the dataset). After importing, the model was transferred to the (memory of the) GPU as
these are optimized for large parallel computations that take place in the matrix computations
inside NNs, in contrast to largely sequential CPUs. Next, we defined the Binary Cross-Entropy
(with logits loss) loss function, and the AdamW optimizer with hyperparameter settings we tune
later (discussed in Section 4.2.2).

After all data processing and model setup, the model’s parameters were ready to be finetuned. This
finetuning process consisted of multiple epochs, each epoch consisting of a training phase and a
validation phase. During the training phase, the model was set to training mode to enable necessary
features such as dropout, batch normalization, and gradient calculation. We then iterated over
all batches of the training set and performed for every batch a forward pass, backward pass, and
storage of metrics. During the forward pass, the model was fed with the entire batch of encodings
and their corresponding attention mask. The model then performed a preliminary prediction and
returned a sequence of the outputs (corresponding to each story of the batch) which was then
normalized by a sigmoid function. During the backward pass, the loss was calculated using the
earlier defined Binary Cross-Entropy loss function, the old gradients were reset, and new gradients
were computed. Finally, the parameters (all weights and biases) in the model were updated. When
storing the metrics of the model, the accuracy and loss of each batch were stored in a list. After
running all training batches, the average train accuracy and average training loss of the epoch were
calculated and stored in a list for visualization and analysis.

When training was finished, still within the same epoch, the model was set to evaluation mode to
disable necessary features such as dropout, batch normalization, and gradient calculations to create
a consistent environment for model inference. During validation, we checked the performance of the
model after the finetuning performed in the current epoch with a dataset unused for parameter
tuning. For this we iterated over all batches of the validation set and performed again a forward pass,
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equal to the one during training mode, where the model was fed with the entire batch of encodings
and corresponding attention mask, a preliminary prediction was made, which was then normalized
by a sigmoid function. In evaluation mode, no backward pass was executed as no parameters should
be updated. Again, after running all validation batches, the average validation accuracy and average
validation loss of the epoch were calculated and stored in a list for visualization, analysis, and model
selection. The program then continued with training the model again etc. Everything discussed
within this and previous paragraph resembles one epoch, something which is repeated nr epoch

of times (we discuss its value in Section 4.2.2 as this is a hyperparameter). After all epochs, the
model with the best performance on the validation set (lowest average loss over all batches) was
loaded from memory and considered as the final model. This last step was necessary as it could
occur that a model either diverged from a local minimum loss in search for an even better local (or
even global) minimum which it never found, or ended up finding a less ideal local minimum, both
resulting in the last model not being the best.

After iterating over all epochs, two graphs were plotted: one containing the average training and
validation loss, and one containing the average training and validation accuracy. After successful
finetuning, the training loss should go down with the validation loss less intensely following, while
the training accuracy is expected to go up with the validation accuracy similarly less intensely
following. These graphs helped us assess the quality of finetuning and the effect of the current
hyperparameters in addition to the test set results. They were obtained in the final stage of our
program for model finetuning, where we fed all test set entries to the model and reported the final
accuracy, average loss, precision, recall, and F1-score. Additionally, it showed the prediction (in
range [0,1]) of each individual test set entry, interpreted prediction (reporting any value in [0.0, 0.5)
as 0 and any value in [0.5, 1.0] as 1), and ground truth value of each test set entry. An example of
these graphs and test set output used for hyperparameter tuning can be seen in Appendix B.

4.2.2 Hyperparameter tuning

To find the training hyperparameters leading to the best finetuning results, we decided a complete
grid search was infeasible due to the limited computational resources and large search space. Instead,
we decided to split the hyperparameter search into two stages: in the first stage we considered
the model’s learning rate, weight decay, and dropout rate, in the second stage the number of
epochs, batch size, and effect of lemmatization (indeed, more a parameter of the dataset rather
than of the training environment, but by its potential to influence model performance, we discuss
it in this section). For measuring the performance impact on the model of these hyperparame-
ters, a variation of metrics could be chosen with none being perfect and all leading to different
outcomes. We decided to consider the F1-score metric –where higher is better– over accuracy,
average loss, precision, and recall as it is more robust and takes into account both false positives
and false negatives5. Nonetheless, we stated the accuracy everywhere for its superior interpretability.

The first hyperparameters we considered included: learning rate, weight decay, and dropout rate. For
this we performed ad hoc manual search due to the very large search space and limited computational

5Since females were internally represented as zeros and males as ones, this concretely meant the following. False
positives: stories male-predicted when in fact they were female-told. False negative: stories female-predicted when in
fact they were male-told.
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resources which made a more extensive computationally expensive grid search infeasible. In short,
we started our search with standard values obtained by consulting various online fora and articles,
observed their effect on the plots and metrics discussed (at the end of Section 4.2.1), and from
there made an educated guess on what hyperparameter could lead to an improvement. Examples of
this included suspicion of a too low dropout rate and weight decay when training and validation
graphs strongly diverged (a sign of overfitting), and suspecting a too low learning rate when train
and validation loss rarely changed. Concretely, we ran each configuration once, considered the
model’s analysis metrics, and made an educated guess on what hyperparameter to tweak. At a
point where we could not ad hoc improve performance further, we ran two additional runs of the
top five performing hyperparameters to obtain a more accurate performance measure of these
most promising configurations. As no seed was used during the process, the performance between
runs with equal configuration varied automatically, leading to reliable averages. Between every
configuration only a single hyperparameter would be changed to isolate the cause of performance
differences. We ran this stage twice independently, to find optima for both raw and lemmatized
inputs which we would use in our second stage of hyperparameter optimization, twice as both
optima might be reached by a different hyperparameter configuration. Other hyperparameters that
remained fixed during this first stage included the number of epochs, which we fixed at eight (as
most effects of hyperparameters seemed to appear already after three or four epochs), and batch size,
which we fixed at four (as batch sizes generally have limited influence on performance, and four was
the maximum, thus fastest, for the eleven gigabytes of VRAM available to us). The final performance
measure of these top five hyperparameter configurations was the average F1-score of the three runs.
Taking the average was preferred over taking the mean to consider all results instead of only a
single value, also, the concept of outliers is not a valid one since only three values were considered.
Finally, the two best performing hyperparameter configurations –one with raw input, one with
lemmatized input– were each selected for stage two of the hyperparameter tuning process. All inter-
mediary results of this first stage of the hyperparameter finding process can be found in Appendix C.

In the second stage, we investigated the effect of the number of epochs, batch size, and lemmatization.
As the search space of these variables was more confined, we did perform a grid search in this
second stage for a more exhaustive hyperparameter search. We considered lemmatization (yes, no),
number of epochs (15, 30), batch size (1, 2, 4), and ran each configuration three times. The danger
of overfitting by running too many epochs was mitigated by our design to reload the model of the
epoch with the best validation set performance, as discussed in Section 4.2.1. This reasoning led us
to decide to not further investigate epochs (8). No model was very stable with a great variation
between runs with equal hyperparameters, although some configurations clearly did perform better
than others. In the end, similar to stage one, we considered the hyperparameters belonging to the
models with the best average F1-score over three runs as the best ones. These were: lemmatization
(yes), number of epochs (30), and batch size (2). Combined with our findings in stage one, our final
hyperparameters were: learning rate: 0.000010, weight decay: 0.015, dropout rate: 0.25, number of
epochs: 30, batch size: 2, and lemmatization: yes6. All intermediary results of this second stage of
the hyperparameter tuning process can be found in Appendix D.

6Even though the tokenizer removed certain prefixes causing implicit lemmatization, the explicitly lemmatized
input was more extensive -– especially considering verb conjugations -– enabling the model to better learn associations
of verbs regardless of their conjugation and other words regardless of their affixes. This, in combination with the
limited size of our training-validation set, we suspect to be the source of the consistent marginal advantage we
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4.2.3 k-fold cross validation

During hyperparameter tuning, our goal of testing many configurations exceeded the goal of rigorous
testing. After deciding upon optimal training hyperparameters, we performed rigorous testing
to examine our model’s performance7. For this, we used k-fold cross validation, with k = 10; in
short, 10-fold cross validation. This let us test our model and the training hyperparameter on our
entire dataset, extra important given its small size, without data leakage. Additionally, to ensure
reproducibility, we introduced the use of a seed.

Before 10-fold cross validation could take place, some supplementary code was needed. After
performing tokenization, we configured a seed and set the GPU to deterministic mode to ensure
reproducibility. This seed was used for the Python hashing method, PyTorch’s random number
generator, and as an argument for the randomizer in the dataset splitting methods. Instead of
the earlier double call of the regular train test split method for splitting data between a train,
validation, and test set, we now used a single call of the StratifiedKFold class to split the data
in k folds, with k = 10. The stratified version of this method again assured an equal gender
distribution in every fold, with exactly twelve male-told and twelve female-told stories. Again, we
ensured all folds were randomly shuffled by argumentation. Unlike the regular splitting method no
encodings were returned, but instead the indices of all folds, which we used to fill lists with the
actual encodings. Subsequently, we picked a single fold as our test set8. The data in the remaining
nine folds was split in an actual training set and validation set by the regular train test split

method (respectively 80% and 20% of the remaining folds). At the end of the program, we added
code to save the current model to disk, something we used for saving all ten models. All other code
was left unchanged from how it was described earlier in Section 4.1 and Section 4.2.1.

4.3 Model focus

We decided to continue with the best performing 10-fold cross validation model for the remainder
of our research. This was based on the reasoning that the model of this iteration must have been
most successful in focusing on relevant tokens for gender differentiation, assuming it did not use
proxies, such as confounding contextual variables, or plain coincidence. To examine this model’s
focus we used the integrated gradients technique, as described in Section 3.1.

Practically, this model focus analysis started by loading all data as previously and loading our best
performing 10-fold cross validation model. Subsequently, we initialized the LayerIntegratedGradients
class from the Captum package with our model’s embeddings and output function. We fed the
attribute method of this class the original input values of the model, baseline input values (where
all tokens except the [CLS] and [SEP] tokens were replaced with the [PAD] token), and the number

measured over raw input.
7k-fold cross validation creates k different models created by k different training-validation sets, something which

we come back to later. However, it should be noted that all initial configurations of the same BERTje base model
(given the same seed), all hyperparameters, and the majority of the data are equal.

8Practically, we chose to manually pick the test fold of an execution, instead of iterating over all folds automatically,
as this had two big advantages: testing was more modular making debugging easier, and this left the Python notebook
in which we wrote our code better readable, as otherwise, everything would need to be written in a single opaque
block of code.
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Figure 2: Example of output by Captum’s visualization package, visualizing all calculated attribution
scores of a sentence.

of interpolation steps which we set to 50 (as suggested by multiple online sources and within the
suggested range proposed by the original paper [STY17]). We omitted the tail padding of both the
original and baseline input as these tokens did not have influence on the output and this increased
calculation efficiency. The attribute method produced a matrix with dimensions [x, y, z]. Here
x reflected the number of model outputs, in our case always 1, y reflected the number of input
tokens, and z reflected the total number of hidden nodes, in our case using BERTje always 768
(as Captum additionally captures an attribution score per node). For our purposes, we discarded
dimension x, and summed all dimensions of z. We normalized these values in the range [−1, 1],
which left us with a single list of attribution scores of length y per story. Finally, and optionally, we
visualized the output of these obtained attribution scores with Captum’s visualization package. An
example of this visualized output can be seen in Figure 2.

4.3.1 Initial test set

Above, we described how the integrated gradients technique for our model focus analysis worked
with single input sequences, i.e. stories. This remained the basis of our analysis, but we extended
this by making it automatically run over multiple stories and capturing all attribution scores in
a Python dictionary9. In this dictionary each key was the numerical value of a token, while each
corresponding value was a list of attribution scores of each occurrence. We combined all values
of a single token to a single value in order to create a ranking of most important tokens the
model attended to. Similarly, we created a ranking of most important tokens in the text. We then
compared these rankings to analyze whether the model picked up on sensical word classes and
domains present in the text.

The two methods we used to analyze the most important words in the text are simple and
straightforward; we summarize them below:

• Count [Text] : With counting we simply counted all token occurrences per gender.

9Practically in code, our decision to consider seven different rankings –as we discuss below– made us introduce
several other dictionaries for efficient calculation, although these were theoretically not necessary. Additionally, we
saved the average attribution score of a story per token per story, the true total token count per ground truth gender,
and both text and attribution Term Frequency (TF) scores per token per story.
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• TF-IDF [Text] : For TF-IDF scoring we calculated the TF-IDF score for every word. The
TF-IDF score is a statistical measure that captures the importance of a word (in our case token)
within a document relative to a collection of documents (in our case stories). We grouped all
stories of the same gender together by which we made it a measure of how important a token
is within the collection of stories told by that gender: this formula is given in Equation 1. It
should be noted that by doing this the initial range of values of [0,1] is not valid anymore.

Creating a ranking of the most attended-to words by the model was less straightforward. For this,
we had to combine all attribution values of a single token. No single absolute correct way existed
for this, hence we considered five, all providing a different perspective on what the model mostly
focused on by processing multiple occurrences of the same token differently. We summarize them
below:

• General avg. [Attr.] : We took the general average attribution score per token. For this, we
accumulated all attribution scores per token and divided it by its total number of occurrences,
as shown in Equation 2. This method leaves all scores in range [-1, 1], but in no way takes
into account how often a term occurred, while an often occurring token with a low attribution
score could still have had a large impact in the overall final prediction10. This method creates
a single ranking where all tokens with a negative value steered the decision towards a female
prediction, while all tokens with a positive value steered towards a male prediction.

• Avg. summation [Attr.] : We took the summations of a token in a story, of which we took
the average over all stories, as shown in Equation 3. The idea is that the summation of an
attribution score of a token in a story gives the total score that particular term contributed in
the story for the final decision. This could potentially solve the previously stated problem of
not taking into account a term that occurred very often in a story and thus greatly contributed
towards the decision of either male or female. The downside is that this could give a term a
high final score if it occurred very often in a small number of stories. Whether this is desirable
depends on the choice of whether we want to consider very important tokens in a small number
of stories also as overall important. Here the final score is not in a particular range. Again, a
single ranking is created with negative values contributing towards a female prediction while
positive values contribute to a male prediction.

• Summation [Attr.] : We took a simple summation of the attribution scores of all token
occurrences, as shown in Equation 4. The idea is analogous to the previous method, only here
we did not punish for occurring in a low number of stories.

• Summation avg. [Attr.] : We took the summation of average attribution scores per story, as
shown in Equation 5. The idea is to consider per token at most a single attribution score per
story. This solves the potential problem simple accumulation might create when a token occurs
very often in a small number of stories. This does advantage tokens (with a high attribution
score) that occur infrequently in many stories of a gender over tokens occurring very frequently
in a few stories. Again, scores are not in a particular range and a single ranking is created.

• TF-IDF [Attr.] : We took an adjusted TF-IDF score per ground truth (i.e. not predicted)
gender, as shown in Equation 6. The idea is that the adjusted TF-IDF method for texts (which
determines how important a token is within the collection of stories told by that gender)
might work just as well for attribution scores instead of simple counts (to determine how
important a token is for the model within the collection of stories told by that gender). For
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this, we first calculate the TF-IDF scores of all tokens using their attribution scores instead
of occurrence counts (effectively substituting occurrences · 1 by occurrences · attribution).
Secondly, we sum all TF-IDF values of the same token told by the same gender. Similar to the
text TF-IDF score, this causes the output values to not be in a particular range anymore. We
believe this method could combine the advantages of all methods above, by considering both
tokens occurring in a large number of documents, as tokens that occur very frequently within
a story. An additional advantage is the similarity of this measure to the TF-IDF measure we
use for the text itself, minimizing the influence by the measure itself on the ranking, that way
leading to a more accurate comparison later. This is the only method for attribution score
ranking that works with two distinct lists per gender, all other methods use a single ranking
where a negative value shows a contribution to a female prediction, and a positive value to a
male prediction.

All methods above resulted in a large Python dictionary where every key is the numerical value
of a token, while each corresponding value is a single attribution score as a result of applying the
above methods. We then sorted this dictionary on value to obtain a ranking.

To objectively compare rankings we used the RBO metric as discussed in Section 3.2. We choose
parameter p as 0.991 as we calculated this to give a weight of 97.3% to the first 250 elements, a
weight of 99.1% to the first 350 elements, and a weight of 99.9% to the first 566 elements; ideal
considering our test set consists of 566 unique tokens.

4.3.2 Extended test set

Only considering this limited size initial test set with known ground truth genders (consisting of
only 24 stories) would have had two large advantages. Firstly, when examining the model’s focus
we would know its accuracy, giving us insight that the model is actually performing its task and
does not merely produce (near) random output. Secondly, we would be hinted towards tokens that
lead to wrong predictions. This is best explained by an example: if a certain male-told story was
predicted as female due to the large number of tokens that the model puts heavy female attribution
on, we can see these outliers in the male ranking. These outliers are only likely to be visible in
the ranking if the token was involved in multiple wrongful predictions as the ranking methods
described above combine multiple attribution scores per token.

While the advantages of having an annotated test set seemed clear and ideal, its limited size was
likely to give rise to a major disadvantage, concerning test performance statistics and particularly
model focus: it would likely not fully capture the model’s focus as our model was finetuned on a
way richer training set. Instead, it would likely either underrepresent the model’s focus (the model
might focus on things the test set did not capture) or overrepresent it (the test set largely contains
tokens with high attribution scores). While this challenge always exists for test sets, its extremely
limited size could lead to particularly big variations in perceived performance and focus by solely
changing a few elements.

10Terms do not necessarily have the same attribution score when occurring more than once in a single story,
however, our inspection did show their scores are often very similar.
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For each token t:
let N be its total number of occurrences over all stories
let n(i) be its total number of occurrences in story i
let S be the total number of stories (Sg of current gender)
let s be the number of stories containing the token
let ai be its attribution value of occurrence i
let ai,j be its attribution value of occurrence j in story i
let ai,j be its attribution value of occurrence j in story i

Then we combine all attribution scores of each occurrence of t into a single value V (f)
with f being the transformation method:

V (TF-IDF [Text]) =

Sg∑
k=1

TFi · IDF (1)

TFi =
n(i)

total number of tokens in story i

IDF = log10(
S

s
)

V (General avg. [Attr.]) =

∑N
k=1 ak
N

(2)

V (Avg. summation [Attr.]) =

∑S
k=1

∑n(k)
l=1 ak,l

s
=

∑N
k=1 ak
s

(3)

V (Summation [Attr.]) =
N∑
k=1

ak (4)

V (Summation avg. [Attr.]) =
S∑

k=1

∑n(k)
l=1 ak,l
n(k)

(5)

V (TF-IDF [Attr.]) =

Sg∑
k=1

TFi · IDF (6)

TFi =

∑n(i)
k=1|ai,k|

total of all absolute attribution scores in story i

IDF = log10(
S

s
)
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Girls Boys Unknown
Total stories 12 12 379

Table 3: Gender distribution of our extended test set. As metadata was missing, no age information
was available.

To shed an additional perspective on our model, and partly mitigate this disadvantage, we decided
to append additional data to our initial test set which our model did not train on: the stories
earlier discarded by their lack of gender metadata. Including these data had as goal to give us a
richer insight into the word types and domains the model focused on beyond the ones present in
the limited size initial test set. The gender distribution of this extended dataset can be found in
Table 3. Additionally, we changed the p parameter of the RBO metric to 0.998 to give a weight
of 67.3% to the first 250 elements, 76.5% to the first 350 elements, and 99.9% to the first 2477
elements to make it better fit for the 2477 unique tokens present in this extended dataset.

Rather ironically, the use of this extended test set caused an exact reversal of the advantages and
disadvantages we discussed. While this mitigated –not fully removed– the problem of likely not
fully capturing the model’s focus, two disadvantages were created. Firstly, this extended test set
took away the knowledge about the model’s accuracy, hence we potentially end up with a model
not being better than random guessing while unaware its interpreted focus is meaningless. Secondly,
the attribution ranking methods were configured to act as if the model has an accuracy of 1.0
by accumulating over the model’s predicted gender instead of the unknown ground truth gender.
This removed the possibility of hinting towards wrong predictions. Furthermore, we acknowledge
this lets other problems arise, such as an ethical one, whether people who possibly wish not to be
binarily classified should be classified in such a way after all.

Still, although this extended test set is similarly imperfect, we believed it could lead to additional
insights into our model’s focus.

5 Experiments & results

Above, we described how we conducted our research, in this section we describe the outcome of
this methodology. Just as the previous section, this section consists of two parts directly referring
to the two parts of our research question. We first discuss in Section 5.1 the performance of our
finetuned BERT for predicting a storyteller’s gender which we evaluated by means of 10-fold cross
validation. We then in Section 5.2 go on to examine what parts of speech this model most strongly
focused on to make this distinction, using the integrated gradients technique and the seven ranking
methods as described earlier.
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Test fold 0 1 2 3 4 5 6 7 8 9 Average

Performance
F1-score 0.38 0.76 0.53 0.70 0.35 0.52 0.44 0.79 0.50 0.58 0.56
accuracy 0.58 0.71 0.63 0.71 0.54 0.54 0.58 0.79 0.58 0.58 0.63

Table 4: Our finetuned model’s performance on the initial test set.

5.1 Model performance

After deciding the most optimal training hyperparameters, we performed 10-fold cross validation to
rigorously examine our model’s performance7, and used a seed to ensure reproducibility. The exact
details of this implementation were discussed in Section 4.2.3.

The selection of the seed was done using an online random number generator which resulted in the
seed of 42 being selected from the interval [0,100]. This led to significant underperformance in the
first three folds, by all metrics, compared to our final hyperparameter tuning measure. Therefore we
decided to pick the next seed generated by the generator: 9. This resulted in performance more in
line with our previous testing during hyperparameter tuning, hence we chose this seed to continue
our research. As 10-fold cross validation produced ten separate finetuned models that slightly differ
(one for each iteration), we equally obtained ten different performance scores, the results of which
can be seen in Table 4. Over all ten iterations, this resulted in a final average F1-score of 0.56 and
an average accuracy of 0.63. It should be noted that precision was consistently higher than the
recall value, hinting to an overall bias towards a female output (as female was a zero); this further
feeds the suspected weakness we describe in Section 7.

However, since our question was how successful a finetuned BERT model can be, we decided to
regard the top performing iteration (by F1-score). This was iteration seven, which reported an
F1-score of 0.79 and an accuracy of 0.79 11, significantly higher than the average. All intermediary
results of the 10-fold cross validation testing procedure can be found in Appendix E.

5.2 Model focus

We decided to consider the model of the best performing iteration for the remainder of our research
regarding model focus. For this, we assumed the model accomplished this by paying attention to
the most relevant parts of speech input for the gender differentiation, and not by proxies, such as
confounding contextual variables, or plain coincidence. This would make this model most successful
in its focus on relevant parts of speech input, making it similarly most promising to provide insights
into differences in language use between (binary) genders.

After we decided upon the specific model and noted its performance, we analyzed what parts of
language it focussed on, more specifically what word types and domains. For our current research, we
decided upon manual analysis ourselves, however, a more professional analysis might be something
for further research as we discuss in Section 7. We emphasize our best efforts for an as objective

11These performance scores are technically still averages as they are average scores over all test batches. Indeed,
the previously mentioned average score over all ten iterations of the 10-fold cross validation are technically averages
of averages.
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analysis as possible, however, like to stress the impossibility of completely precluding implicit
personal biases.

5.2.1 Initial test set

Upon feeding the model the data of our initial test set, the integrated gradients technique produced
a unique attribution value per token per story, which we combined in five different ways to produce
five different rankings regarding token importance, as discussed in Section 4.3.1. All provided a
different perspective on what the model mostly focused on by processing multiple occurrences
of the same token differently. Two separate rankings provided an objective analysis of the most
important words per gender in the texts.

The rankings to provide an objective analysis of the most important tokens in the texts were not
both equally insightful, as we discuss below:

• Count [Text] : We noticed that counting was less insightful than imagined. The top of the
ranking for both genders was largely dominated by small stopwords. However, removing certain
stopwords brings difficulties as well, as that would already incorporate our own biases into
the ranking of what words are insignificant. Lower in the ranking most words obtained the
same count, yielding a false perception of order; e.g. while the large list of all tokens that
occurred three times seems to be ordered, in reality no order exists between them. Considering
its drawbacks, we chose to not include this metric in our final discussion of our results.

• TF-IDF [Text] : Taking the TF-IDF score for tokens and aggregating identical tokens told
by the same gender, seemed to meet our theoretical assumption of being a measure of how
important a token is within the collection of stories told by that gender, with stopwords
occurring dispersed lower in the ranking. We used this measure later in our final discussion of
the results.

As we described previously, no single absolute correct way to combine the attribution scores of a
single token, leading us to explore five different ways, all having a different focus. However, not all
rankings resulting from these combination methods were equally insightful either, as we discuss
below:

• General avg. [Attr.] : A general average of all occurrences of a token seemed to show idealistic
characteristics with shorter stopwords occurring more in the middle of the ranking, while
content-rich words occurred higher to the male and female ends of the spectrum. Additionally,
the top male and female words were similar to the ones found in the text by TF-IDF [Text],
which is what we would expect for an accuracy of 0.79. For these reasons, we used this measure
later in our final discussion of the results.

• Avg. summation [Attr.] : The average after summing all attribution scores of a token per story
seemed promising. However, upon inspection many very infrequently occurring terms are
highly ranked as a result of the punishment of occurring in many stories. While it seemed
equally important to focus on very important tokens in a small number of stories, this ranking
method seemed to have overshot in this direction with other methods having a seemingly
better balance. Therefore, we chose to not consider this measure later in our final discussion
of the results.
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• Summation [Attr.] : Summation most closely resembles the Count [Text] method used to analyze
the texts, however not counting every token occurrence as 1, but effectively as attribution · 1.
While mathematically similar to the previous method, the ranking it produced is not at
all, showing the great effect normalizing by story occurrences has. After all, this method
experienced the same issues as its text counting counterpart, hence we chose to not consider it
later in our analysis.

• Summation avg. [Attr.] : Taking a summation of averages of a token per story yields an
interesting ranking. Both male and female ends of the spectrum contain a lot of stopwords,
but to a much lesser extent than previous methods with the same problem. Also surprisingly,
the word “en” [“and”] is considered the most expressive male token the model attends to
besides its greater use in female stories (see Count [Text]). This exposed the problem with this
method: a high value in this ranking could point to a token either occurring in many stories,
or having a consistent big attention value. The interleaving of these two properties seemed to
not result in a meaningful ranking, therefore we chose to not consider it later in our analysis.

• TF-IDF [Attr.] : Taking the accumulated adjusted TF-IDF score of a token per gender seemed
promising. Our initial intuition of obtaining a measure that determines how important a
token was for the model within the collection of stories told by that gender seemed to hold as
again most stopwords occur lower in the rankings, while content-rich words occurred higher.
Similarly, the ranking occurred similar, but not identical, to TF-IDF [Text], which is what we
expected as we used a similar ranking method and got a 0.79 accuracy. Given these promising
characteristics, we used this measure later in our final discussion of the results.

Each time, we considered the top 25 ranked tokens per gender. This top 25 of our three chosen
rankings is shown in Table 512. All seven rankings in full can be accessed via this paper’s Github
project as described in Appendix A.

Before shifting our analysis to word types and domain of the rankings, we first briefly examined the
similarities of the rankings by their RBO scores shown in Table 6. For both genders, the attention
of our model captured by the TF-IDF [Attr.] ranking seemed reasonably accurate, as it had a
reasonably high RBO similarity score with the one of the text itself. General avg. [Attr.] seemed to
underrepresent the focus of the model slightly, however, this could also solely be because it did not
share the same ranking method, making it more difficult to score high. Between the genders, the
total lack of overlap in the General avg. [Attr.] can be explained by its construction; the single list
the ranking created was simply split in positive and negative values to differentiate between male
and female contributing tokens. An additional pleasant observation was the small overlap across
genders in the TF-IDF rankings of the text, something our model relatively closely captured.

12Words “schommel” [“swing”] and “kikker” [“frog”] being number one and so much ahead of other words in the
TF-IDF [Attr.] seems peculiar given how uncommon and specific these words are. Their same position in the TF-IDF
[Text] ranking already gives away part of the cause. Indeed, if we inspect the dataset we see that, coincidentally, the
word “schommel” occurs seven times, in three separate stories all told by a girl. Similarly, upon inspection of the
word “kikker” we find ten occurrences in five different stories, solely told by boys. While just speculation, it could be
that a friend group of girls recently played on the swing, while a friend group of boys recently found a frog, all being
inspired by the event for their own story. This is an inherent negative side-effect of the limited size of our dataset.
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TF-IDF [Text] General avg. [Attr.] TF-IDF [Attr.]

Female

schommel [n] 0.17252641
haar [pp*] 0.11193507
hond [n] 0.08082993
trol [n] 0.07667840
hij [pp] 0.07652596
zus [n] 0.07050864
ze [pp] 0.06565141
lol [n] 0.06000918
familie [n] 0.05996503
meisje [n] 0.05810404
heks [n] 0.05750880
duwen [v] 0.05750880
##en 0.05652416
vriendin [n] 0.05637785
maar [adv] 0.05353466
tram [n] 0.05257948
##poli 0.05257948
zombie [n] 0.04900158
zeggen [v] 0.04880114
me [pp*] 0.04569205
hoofd [n] 0.04496589
bla 0.04452294
zoeken [v] 0.04447706
spelen [v] 0.04403981
kind [n] 0.04380292
...

jullie [pp*] -0.45895943
prins [n] -0.43907686
schommel [n] -0.29040323
varen [v] -0.25994311
zus [n] -0.25837650
nul -0.25330610
voetballer [n] -0.24954557
vriendin [n] -0.24778613
verdrietig [adj] -0.24409373
langzaam [adj] -0.23952562
baby [n] -0.23610034
bloemen [n] -0.22069535
familie [n] -0.19054869
meisje [n] -0.17731470
knuffel [n] -0.17083731
kind [n] -0.16916381
##dubbel -0.16749758
haar [pp*] -0.15348738
gat [n] -0.14340749
kapot [adj] -0.14172503
blij [adj] -0.14122851
##baar [adj] -0.14084593
##meer -0.13406875
ring [n] -0.13000345
keeper [n] -0.12930190
...

schommel [n] 0.30477525
amulet [n] 0.22947860
zus [n] 0.22058301
vriendin [n] 0.15582100
familie [n] 0.14495566
meisje [n] 0.14314929
haar [pp*] 0.14301567
##stad [n] 0.12179743
kind [n] 0.10664627
hij [pp] 0.10197551
zoeken [v] 0.09690897
hond [n] 0.09246026
bla 0.08985911
tram [n] 0.08535734
##rennen [v] 0.08350250
moeder [n] 0.08348058
##poli 0.07725118
scoren [v] 0.07581144
oom [n] 0.07303520
verdrietig [adj] 0.06380856
heel [adv**] 0.06299942
zombie [n] 0.06157971
speelgoed [n] 0.05891076
waren [v] 0.05747571
knuffel [n] 0.05344632
...

Male

kikker [n] 0.12547375
##kikker [n] 0.12547375
ik [pp] 0.11639864
mama [n] 0.11221433
baby [n] 0.09810739
hij [pp] 0.09218565
’ 0.07869603
n 0.07869603
kasteel [n] 0.07812516
zien [v] 0.07691244
m 0.07460601
vis [n] 0.07460601
rijden [v] 0.07038139
##d 0.05960283
lopen [v] 0.05918421
door [adv] 0.05693345
hem [pp] 0.05554098
met 0.05524499
groot [adj] 0.05178651
paard [n] 0.05115301
we [pp] 0.05049455
schieten [v] 0.04652397
lat [n] 0.04652397
goal [n] 0.04652397
keer [n] 0.04621203
...

##kikker [n] 0.61795437
amulet [n] 0.58384508
##stad [n] 0.52224512
stampen [v] 0.49833589
overheen [adv] 0.46434086
regenen [v] 0.44052370
snijden [v] 0.42574389
poort [n] 0.39166624
##dwalen [v] 0.37947539
solo [adv] 0.36453815
kikker [n] 0.35179389
uitnodigen [v] 0.31914275
eruitzie [v] 0.31500337
oom [n] 0.31316157
leeuw [n] 0.25420234
##snaam [n] 0.24936242
aflopen [v] 0.23136065
##ium 0.22099361
naartoe [adv] 0.21041547
nest [n] 0.20386962
gluren [v] 0.20291144
tovenaar [n] 0.20139026
##rennen [v] 0.20115982
verzinne [v] 0.20004006
##hok [n] 0.19073038
...

##kikker [n] 0.33101872
kikker [n] 0.18844492
baby [n] 0.15493072
stampen [v] 0.15046049
overheen [adv] 0.13623233
hij [pp] 0.13496164
jullie [pp*] 0.13465348
prins [n] 0.12497588
snijden [v] 0.12496459
poort [n] 0.11491043
regenen [v] 0.10355886
paard [n] 0.10102909
verzinne [v] 0.09394978
eruitzie [v] 0.09241841
aflopen [v] 0.08809208
kip [n] 0.08662294
solo [adv] 0.08569608
leeuw [n] 0.07959157
ik [pp] 0.07943343
hebben [v] 0.07705526
varen [v] 0.07629865
deur [n] 0.07290771
familie [n] 0.07142556
langzaam [adj] 0.06941924
duister [adj] 0.06812311
...

Table 5: Top 25 important words per gender in our initial test set by three most promising ranking
methods: TF-IDF [Text], General avg. [Attr.], and TF-IDF [Attr.]. The female ranking of General
avg. [Attr.] has negative values as this method constructed a single ranking with negative values
pushing towards a female prediction. The middle column of every cell is the word type of that
token, either: n (noun), v (verb), adj (adjective), adv (adverb), pp (personal pronoun), or left empty
if neither of these collection of five. When a certain word could be of multiple types, the highest
occurrence on the online Dutch Van Dale13 dictionary was chosen (except for ** given the context
of the word in the stories). A pp* denotes a personal pronoun which could act as a possessive
pronoun according to context.
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Female - Male
TF-IDF [Text] - TF-IDF [Text] 0.18242868
TF-IDF [Attr.] - TF-IDF [Attr.] 0.14744305
General avg. [Attr.] - General avg. [Attr.] 0.0

Female - Female
TF-IDF [Attr.] - TF-IDF [Text] 0.62934444
TF-IDF [Attr.] - General avg. [Attr.] 0.34542255
General avg. [Attr.] - TF-IDF [Text] 0.28372110

Male - Male
TF-IDF [Attr.] - TF-IDF [Text] 0.59165600
TF-IDF [Attr.] - General avg. [Attr.] 0.47066350
General avg. [Attr.] - TF-IDF [Text] 0.24156133

Table 6: RBO scores between the three most promising ranking methods in our initial test set:
TF-IDF [Text], General avg. [Attr.], and TF-IDF [Attr.] (entire ranking). For General avg. [Attr.]
all positive values were considered male, all negative values female. Parameter p = 0.991.

For male-told stories, the model most strongly focussed on (action) verbs and nouns. There was
significantly less attention on the remaining three distinguished categories, even though they were
largely present in the most distinctive tokens in the text. Solely considering the average attribution
score of the tokens, even no adjective, or personal pronoun made the top 25, while the TF-IDF
ranking of attribution scores was slightly more diverse. Adventure and fantasy seemed to be the
most apparent attended-to domains; domains also present in the TF-IDF ranking of the text, albeit
to a lesser extent. Examples of these domains overlap, but included: “kikker” [“frog”], “snijden”
[“to cut”], “dwalen” [“to roam”], “leeuw” [“lion”], “tovenaar” [“wizard”], “amulet” [“amulet”],
and “prins” [“prince”]. The top 25 of the TF-IDF [Text] ranking contained these word types and
domains as well, but was significantly more diverse.

For female-told stories, the model had a similarly strong focus on nouns, but also significantly
focused on personal pronouns and adjectives. In both model rankings, a clear absence of (action)
verbs existed, in stark contrast to the top 25 male-told stories. Here, again fantasy was a present
domain, as well as personal relations and feelings; domains that clearly lacked in the male top 25
rankings. Contrarily, adventure was a missing domain clearly present high in the male ranking.
Lastly, more explicitly female characters were highly ranked than male characters, something which
is not present nor reversely present in male-told stories. These word types and domains seemed
accurate as words high in the TF-IDF [Text] ranking captured them as well. Clear examples of
fantasy included: “prins” [“prince”], “zombie” [“zombie”], and “amulet” [“amulet”]. Clear examples
of relations included: “jullie” [“you” [pl] or “your”[pl]], “zus” [“sister”], “familie” [“family”], and
“moeder” [“mother”]. Clear examples of feelings included: “verdrietig” [“sad”] and “blij” [“happy”].
Clearly high ranking female characters included: “zus” [“sister”], “vriendin” [“vriendin”], “meisje”
[“girl”], and “haar” [“her”].

For both genders we observed a strong focus on their own world of experience, both in our model
focus as well as the TF-IDF ranking of the text. This could potentially be related back to Piaget’s
stages of development theory which states that children up to age seven (a large portion of our
dataset, as can be seen in Table 1) have an inherently egocentric point of view [Mcl24]. However,
it should be mentioned that the setup and environment in which the data were collected could
have significantly contributed to this. Female examples included: “meisje” [“girl”], “zus” [“sister”],
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“haar” [“her”], “kind” [“child”], and “hond” [“dog”]. Similarly, male examples included: “ik” [“I”],
“mama” [“mom”], “hem” [“him”], and “regenen” [“to rain”]. Moreover, these observed words, and
their difference between male and female gender, fit overall nicely in the above-mentioned word
types and domains.

5.2.2 Extended test set

A large chance existed that our model learned certain features from the training set that were not
included in the initial test set, and thus not visible, or that some features were in fact overrepre-
sented, in the twelve female and twelve male stories our limited size test set contained. Therefore,
we ran our model again, but this time with the extended test set as described in Section 4.3.2. Just
as in the previous section, we analyze in this section what our model focused on using the three
most insightful ranking methods. The results of all seven rankings in full can be accessed via this
paper’s Github project as described in Appendix A.

Instead of a top 25, we chose to examine the top 50 for our extended test set, given its larger
vocabulary and inability to observe certain aspects by solely taking into account the first 25 elements.
This top 50 of our three chosen rankings per gender is shown in Table 7. To make comparisons
with our initial test set easier, we decided to grayout the last 25 elements.

Again, we first briefly examine the similarities of the rankings by their RBO scores shown in Table 8,
before shifting our analysis to word types and domain of the rankings. Compared to our initial
test set, we observed a much larger similarity between male(-predicted) and female(-predicted)
stories. This made sense as the chance of having tokens only appear in stories of a single gender
significantly decreased. Similarly, we observed a significant increase in the similarity of the TF-IDF
[Attr.] ranking and the TF-IDF [Text] ranking in both female(-predicted) and male(-predicted)
stories. This showed that, indeed, our initial test set was too limited to show a representative view
of our model’s attention. Meanwhile, the similarity of the General avg. [Attr.] ranking decreased for
both TF-IDF rankings. We find it unlikely for this to actually directly hint at an underperformance
of our model compared to what we first expected, as this is likely due to the increase in ranking
size (due to the increase in unique tokens) and the increase in ranking differences introduced by
using a different ranking method. Furthermore, it should be noted again that both ways (General
avg. [Attr.] and TF-IDF [Attr.]) seemed to be good ways of reviewing model focus in their own
regard, merely projecting a different perspective as described in Section 4.3.1.

For male-predicted stories (again, we cannot be certain they were actually told by male identifying
individuals), we observed the model to focus on the same word types as in the initial test set: a strong
focus on verbs and nouns, however, it should be noted that verbs accounted for a much smaller
share than previously. Adjectives and adverbs this time had a slight presence, however, a clear
absence of personal pronouns remained. The most prominent attended-to domains still included
adventure and fantasy. In the top of the General avg. [Attr.] ranking, technology related tokens were
now noticeable, however, absent in the TF-IDF [Attr.] ranking, again, possibly explainable by the
aforementioned explanation. Interestingly, attended-to word types and domains both significantly di-
verged from the ones present in the TF-IDF [Text] ranking where in fact many more stopwords were
present. Clear examples of adventure and fantasy included: “bruut” [“brute”], “berove” [“to rob”],
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TF-IDF [Text] General avg. [Attr.] TF-IDF [Attr.]

Female

ze [pp] 1.68224686
ik [pp] 1.58729745
prinses [n] 1.28401886
mijn ** 1.07525772
we [pp] 1.02253068
hij [pp] 0.96899896
dan [adv] 0.88507214
ridder [n] 0.87520160
zeggen [v] 0.85991282
toen [adv] 0.85664769
de 0.83401364
hond [n] 0.80124379
naar ** 0.79146410
haar [pp*] 0.77342037
heel [adv**] 0.75553502
hebben [v] 0.71104281
jarig [adj] 0.70186560
het 0.69697643
mama [n] 0.69547068
einde [n] 0.68944985
dat 0.67651878
die 0.66877743
is [v] 0.66226125
maar [adv] 0.65832899
gaan [v] 0.64361193
in [adv] 0.63964251
##en 0.63493847
was [v**] 0.63460220
paard [n] 0.61579098
zijn [pp**] 0.61576752
bos [n] 0.60808336
draak [n] 0.60713495
meisje [n] 0.60471843
er [adv] 0.60298903
op [adv] 0.60055250
nog [adv] 0.59827023
wolf [n] 0.59475544
ook [adv] 0.59350625
van 0.57521335
kauwgom [n] 0.57469051
met 0.57463695
##a 0.57087165
niet ** 0.56940392
willen [v] 0.56461819
eten [v] 0.56186590
huis [n] 0.55732480
komen [v] 0.54475205
eens ** 0.54439902
moeder [n] 0.54361878
je [pp] 0.54292842
...

meisjes [n] -0.67096633
tweeling [n] -0.49824447
stellen [v] -0.39640318
prinses [n] -0.39158631
vanmiddag [adv] -0.34612846
turn [v] -0.32432915
jurk [n] -0.29155831
astronaut [n] -0.28949348
schommel [n] -0.27844376
dierentuin [n] -0.27523189
juffrouw [n] -0.27462770
atletiek [n] -0.25530997
stap [n] -0.25468876
splitsing [n] -0.25077564
hondje [n] -0.24850380
repareren [v] -0.23813254
bloemen [n] -0.22069535
zus [n] -0.21041863
meisje [n] -0.20871836
vrienden [n] -0.20711009
##groep [n] -0.20651282
musical [n] -0.20188073
diploma [n] -0.20147535
poppen [n] -0.19394922
pizza [n] -0.18901573
vriendin [n] -0.18541298
sprookje [n] -0.18517846
fout [n] -0.18307599
achtbaan [n] -0.18138246
##hoek [n] -0.17746313
verdrinken [v] -0.17487174
moeder [n] -0.17122078
klas [n] -0.16864280
digi -0.16846426
##dubbel -0.16749758
grootmoeder [n] -0.16668293
nul -0.16538969
onhandig [adj] -0.16402403
onbekend [adj] -0.16364890
verdrietig [adj] -0.16193848
prins [n] -0.16186837
bruiloft [n] -0.16011644
thee [n] -0.15927821
familie [n] -0.15918455
set [n] -0.15895059
jonkvrouw [n] -0.15538579
speelgoed [n] -0.15028885
##bank [n] -0.14926012
##pri -0.14905454
##hulp [n] -0.14889461
...

prinses [n] 5.75576584
meisje [n] 2.14687458
moeder [n] 1.74123065
heel [adv**] 1.48277946
mama [n] 1.35519511
ze [pp] 1.35515830
vulkaan [n] 1.34874363
hij [pp] 1.29266991
haar [pp*] 1.25369247
hond [n] 1.23672607
ridder [n] 1.17749621
zus [n] 1.16282063
er [adv**] 1.15463296
was [v] 0.99584999
draak [n] 0.99038232
mijn ** 0.98988052
ik [pp] 0.97771690
is [v] 0.93998505
prins [n] 0.93649408
kind [n] 0.93248410
kabouter [n] 0.93235645
we [pp] 0.86954044
de 0.84298439
juffrouw [n] 0.82704904
schommel [n] 0.78793377
vriendin [n] 0.78728524
het 0.77977045
jarig [adj] 0.77300068
hebben [v] 0.76453765
einde [n] 0.74046264
school [n] 0.73386183
jurk [n] 0.71978732
wolf [n] 0.70831873
zijn [pp**] 0.70736853
eten [v] 0.70153005
eens ** 0.70122666
waren [v] 0.69940897
zeggen [v] 0.67677687
rijk [adj] 0.67131798
kauwgom [n] 0.66574609
paard [n] 0.65556225
dat 0.65526951
broer [n] 0.64588767
heb [v] 0.64359101
juf [n] 0.62919646
toen [adv] 0.60692068
kopen [v] 0.59348711
voetballen [v] 0.59311579
dan [adv] 0.56913928
verhaal [n] 0.56465383
...

Male

hij [pp] 1.40450057
ik [pp] 0.83593589
toen [adv] 0.56323167
ze [pp] 0.53839865
dus [adv] 0.53120433
die 0.46315253
zien [v] 0.46199757
dat 0.44099834
hebben [v] 0.43322095
maar [adv] 0.42487051
dan [adv] 0.42310351
##e 0.42279641
komen [v] 0.41128121
op [adv] 0.38950614
in [adv] 0.38872840
hem [pp] 0.38664172
je [pp] 0.38525553
de 0.38524072
zeggen [v] 0.37217190
niet ** 0.36959968
was [v**] 0.36720728
##n 0.36672626
eten [v] 0.36011801
met 0.35696469
naar ** 0.34503452
daar [adv] 0.34176200
lopen [v] 0.33635978
te ** 0.33280782
van 0.33195116
politie [n] 0.32590942
ook [adv] 0.32496779
willen [v] 0.32407733
nog [adv] 0.32397185
heel [adv**] 0.31823361
doen [v] 0.31775714
kunnen [v] 0.31744745
we [pp] 0.31490466
het 0.30805489
zijn [pp**] 0.30792521
##en 0.30692235
weer [n] 0.30681950
vallen [v] 0.30565307
ridder [n] 0.30524729
bij ** 0.29889699
al [adv] 0.29713716
wat ** 0.29684045
aan [adv] 0.29673562
vliegen [v] 0.29468225
draak [n] 0.29037451
peper [n] 0.28947834
...

bruut [adj] 0.76319720
gezelligheid [n] 0.74947593
glibberig [adj] 0.72409643
##blaadje [n] 0.66991679
##kikker [n] 0.61795437
amulet [n] 0.58384508
berove [v] 0.55846868
##robot [n] 0.54814092
schurk [n] 0.54327435
##stad [n] 0.52224512
##mak 0.51765296
begroeten [v] 0.50811120
##nslotte 0.44239352
##druk [n] 0.44003354
##sporen 0.41303809
##hill 0.41222235
waarmee [adv] 0.40018622
linkerzij [n] 0.39921658
##motor [n] 0.39921434
vervloekt [v] 0.38696767
##geduwd [v] 0.37165958
bas 0.36672019
vijand [n] 0.36552738
solo 0.36453815
##ater 0.35698606
##barsten 0.35692185
sappig [adj] 0.35352390
##mink 0.35228781
kikker [n] 0.35179389
begroe [v] 0.34976071
donder [n] 0.34419624
zwaard [n] 0.33969121
opendoe [v] 0.33846304
miljard 0.32674219
verrader [n] 0.32575691
politieauto [n] 0.32128891
eruitzie [v] 0.31500337
oom [n] 0.31316157
snijden [v] 0.31288006
##iem 0.30789082
waarvoor [adv 0.30371015
overheen [adv] 0.30230482
uitgeven [v] 0.30042289
broek [n] 0.29864445
schoppen [v] 0.29569662
profvoetballer [n] 0.29404883
recept [n] 0.29141720
bevriezen [v] 0.28974125
##saus [n] 0.28912242
fort [n] 0.28867568
...

hij [pp] 1.46242540
ridder [n] 1.06148327
draak [n] 0.99033221
zwaard [n] 0.78820071
bruut [adj] 0.66151861
##kikker [n] 0.62483532
hebben [v] 0.56397175
ik [pp] 0.56307039
aflopen [v] 0.56064174
toen [adv] 0.52578597
prins [n] 0.52147030
die 0.52093955
opeens [adv] 0.51645541
rijk [adj] 0.51264001
maar [adv] 0.45796420
##mak 0.44699220
eten [v] 0.43425279
amulet [n] 0.43316685
er [adv] 0.43070756
dus [adv] 0.42436265
willen [v] 0.40480747
mama [n] 0.40005198
denken [v] 0.39175106
eens ** 0.38628282
schat [n] 0.38369437
berove [v] 0.38031571
ezel [n] 0.37395896
heb [v] 0.36856348
heel [adv**] 0.36552238
kikker [n] 0.35571113
meneer [n] 0.34789544
zeggen [v] 0.34342076
schatkist [n] 0.33671387
verhaal [n] 0.33209791
jongen [n] 0.32290356
baby [n] 0.32005101
broek [n] 0.31943848
hem [pp] 0.31930422
duivel [n] 0.31922370
##hill 0.31843107
kopen [v] 0.31809874
ze [pp] 0.31642883
honderdduizend 0.31153629
was [v**] 0.31086306
ineens [adv] 0.30867264
vader [n] 0.30702861
dan [adv] 0.30503729
dat 0.30402397
lopen [v] 0.29805088
duiken [v] 0.29796523
...

Table 7: Top 50 important words per gender in our extended test set by three most promising
ranking methods: TF-IDF [Text], General avg. [Attr.], and TF-IDF [Attr.]. Ranks 26-50 are given
in gray. Note that the female ranking of General avg. [Attr.] has negative values as this method
constructed a single ranking with negative values hinting towards an average push towards a female
prediction. The middle column of every cell is the word type of that token, either: n (noun), v
(verb), adj (adjective), adv (adverb), pp (personal pronoun), or left empty if neither of these. When
a certain word could be of multiple types, the highest occurrence on the online Dutch Van Dale13

dictionary was chosen (except for ** given the context of the word in the stories). A pp* denotes a
personal pronoun which could act as a possessive pronoun according to context.
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Female - Male
TF-IDF [Text] - TF-IDF [Text] 0.59244143
TF-IDF [Attr.] - TF-IDF [Attr.] 0.45124364
General avg. [Attr.] - General avg. [Attr.] 0.0

Female - Female
TF-IDF [Attr.] - TF-IDF [Text] 0.73989223
TF-IDF [Attr.] - General avg. [Attr.] 0.26745244
General avg. [Attr.] - TF-IDF [Text] 0.21520131

Male - Male
TF-IDF [Attr.] - TF-IDF [Text] 0.66882254
TF-IDF [Attr.] - General avg. [Attr.] 0.32286696
General avg. [Attr.] - TF-IDF [Text] 0.16693228

Table 8: RBO scores between the three most promising ranking methods in our extended test set:
TF-IDF [Text], General avg. [Attr.], and TF-IDF [Attr.] (entire ranking). For General avg. [Attr.]
all positive values were considered male, all negative values female. Parameter p = 0.998.

“vervloekt” [“cursed”], “ridder” [“knight”], and “draak” [“dragon”]. Clear examples of technology re-
lated tokens included: “#robot” [“#robot”], “#motor” [“#motor”], and “politieauto” [“police car”].

A larger difference in word type and domain existed for female-predicted stories. Still, a strong
focus was present on nouns, some focus on personal pronouns, and explicitly close to no focus on
verbs. Unlike our initial test set, very little explicit focus on adjectives seemed to exist, all while the
TF-IDF [Text] ranking was significantly more diverse than before. Fantasy and personal relations
were again highly attended-to domains, equally present in the top-ranked TF-IDF tokens of the
text. Additionally, explicit female characters were again more represented in the top 25 and top
50 than male characters, something only existent to a much lesser extent in the TF-IDF [Text]
ranking. This attention to relational domains and female characters was strongly absent in the top
25 for male-predicted stories. Surprising was the total lack of tokens directly relating to feelings
in the top 25 and even the entire top 50, something which was uniquely present in our original
test set, but seemingly not representative for larger datasets. Examples of fantasy related tokens
included: “prinses” [“princess”], “ridder” [“knight”], “draak” [“dragon”], “prins” [“prince”], and
“kabouter” [“gnome”]. Examples of tokens in the relational domain included: “juffrouw” [“teacher”
[fem.]], “vrienden” [“friends”], “vriendin” [“girlfriend”], “moeder” [“mother”]. Examples of tokens
explicitly mentioning female characters, additionally to the ones mentioned in previous examples,
included: “mama” [“mom”], “grootmoeder” [“grandmother”], and “jonkvrouw” [female rank of
nobility, often used in fairy tales].

Again, for both genders we observed a strong focus on their own world of experience, similar to the
initial test set.

6 Discussion

Having considered our experiments and results above, we further analyze the outcomes of these
results in this section with the aim of finding an answer to our research question: “How successful
can a finetuned BERT model distinguish informal Dutch speech between boys and girls, what
parts of language does it focus on, and can this provide insight into differences between (binary)
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genders?”. We discuss an answer to the first part of this question in Section 6.1 where we zoom
in on the model’s performance (i.e. an answer to “How successful can a finetuned BERT model
distinguish informal Dutch speech between boys and girls [...] ?”). The second part of the question
is discussed in Section 6.2 where we zoom in on the model’s focus (i.e. an answer to “[...] What
parts of language does [the model] focus on [...]?”). Lastly, the last part of the question is answered
in Section 6.3 where we discuss its generalizability and if our findings can provide any further
insight into differences in language use between (binary) genders (i.e. an answer to “[...] Can this
provide insight into differences in language use between (binary) genders?”).

6.1 Model performance

Our model performed over the entire test set of 24 stories (12 male, 12 female) using 10-fold cross
validation on average with an F1-score of 0.56 and an accuracy of 0.63. This average F1-score and
accuracy is significantly better than random guessing, but is not outstandingly impressive either.
However, we have reason to believe this modest result might not be limited by the capabilities of
the model itself, but instead by the limited size dataset.

Comparable research with a similar goal to binarily identify author gender from text using ML
was conducted by Cheng et al. [CCS11]. They showed performance with accuracies of 76.75% and
82.23% for the two datasets they used using Support Vector Machines. Notable is that their datasets
respectively contained 810,000 and just over 500,000 samples. On the contrary, other research by
Khan et al. [Kha+23] showed even worse performance than us with an accuracy between 48% and
63% depending on the ML technique they used. Notable here is their use of only 1,000 data samples.
While other factors could be additionally at play, a possible explanation for this difference between
the two researches similar to ours would be one in line with general knowledge regarding ML:
dataset size plays a significant role in model performance. This contributes to our earlier suspicion
of dataset size being a limiting factor in performance. This would also explain the big performance
difference between the individual seeds and folds; with the limited size of the training set, the split
of the training-validation and test set can lead to a major (dis)advantage in actual and perceived
performance. A larger dataset could lead to a more consistent and robust training set, consequently
leading to a more robust model. We discuss this possible future improvement further in Section 7.

To answer the first part of the research question we like to conclude: our model performed on
average with an F1-score of 0.56 and an accuracy of 0.63, and a top performance of an F1-score of
0.79 and an accuracy of 0.79. While this is proof a finetuned BERT model can be this successful
with the aforementioned results on a test set, given prior research and the limited size of our dataset
we have reason to believe these numbers have the potential to be higher.

6.2 Model focus

The observations of our model’s focus are summarized in Table 9.

Using our initial test set we performed a manual analysis on the model’s focus regarding highly
ranked word types and domains. For male-told stories, we concluded that the model has a particu-
larly strong focus towards (action) verbs and nouns; an observation significantly less present in the
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Word types Domain
Male

Initial

– (Action) verbs
– Nouns

– Adventure
– Fantasy

Extended

– (Action) verbs (much less)

– Nouns
– Adjectives (much less)

– Adverbs (much less)

– Adventure
– Fantasy
– Technology

Female

Initial

– Nouns
– Personal pronouns
– Adjectives

– Fantasy
– Personal relations
– Feelings
– Explicit female characters

Extended

– Nouns
– Personal pronouns (much less)

– Fantasy
– Personal relations
– Explicit female characters

Table 9: Summarized observations of manual analysis on attended-to word types and domains using
the finetuned model’s attribution scores.

TF-IDF ranking of solely the text (without attribution weights). The same goes for the observed
domains: adventure and fantasy. After extending the test set with the remaining unlabeled stories,
our observations stayed similar, however slightly changed. This time mainly nouns were highly
ranked, with (action) verbs, adjectives, and adverbs to a lesser extent. Just as in the initial test
set, the domains of adventure and fantasy were most strongly attended to. However this time,
technology was a highly ranked domain not strongly attended to previously. The fantasy domain
being highly present in both is not surprising due to the nature of the dataset.

For female-told stories in the initial test set, we concluded that the model most strongly focused on
nouns, with an additional significant focus on personal pronouns and adjectives. Verbs were nearly
absent (in stark contrast to the male stories). The discussed domains that mostly ranked high were
fantasy, personal relations, and feelings. Generally, explicit female characters ranked significantly
higher than explicit male characters, something not present nor reversely present in male stories.
After the extension of the test set by unlabeled stories, we still observed near equal attention on
nouns and to a lesser extent on personal pronouns. This time, the attention on adjectives was
nearly absent. The highly ranked domains stayed equal to the ones found in our initial test set,
with the exception of feelings; surprisingly no tokens relating to feelings were present. Again, the
high ranking of the fantasy domain can be explained by the nature of the dataset, hence we do not
interpret this as a gender-specific domain.

Clearly observable in the extended test set (see Table 7) for both genders is that the General avg.
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[Attr.] ranking is much more expressive in showing the preference for nouns and verbs than the
TF-IDF [Attr.] ranking which contains more diverse word types and significantly more stopwords.
This difference in ranking shows that the model overall puts most attention to single nouns and
verbs, however, since most do not occur in many stories, more often occurring tokens like adverbs,
personal pronouns, and adjectives can still be found important specifically for the collection of
male predicted documents (as this is what the TF-IDF value shows) as they often occur in many
documents. While we cannot prove this specific focus helped the model to obtain better performance
we expect it to, as nouns and verbs can be seen as more content bearing than stopwords. An
additional observation that might be able to be explained by the same reasoning is the larger
variability on top of the TF-IDF [Attr.] ranking, while the tokens in place 26 till 50 are much more
monotonously nouns and verbs.

An interesting observation is even broader than plainly considering word types. In the initial test
set, most word types and domains had a similar presence both in the top of the attribution rankings
and the TF-IDF [Text] ranking (albeit often to a lesser extent in the text ranking). This is different
in the extended test set: the word types of the TF-IDF [Text] ranking are highly diverse, mostly
consisting of stopwords instead of content rich words. While this might be largely caused by our
choosing of this ranking method, it is interesting to observe that the attribution rankings contain
much more focus on nouns for both genders, affirming that our finetuned model indeed extra focuses
on what an average human might consider to be relevant and content rich words. Notable is that
all non-stopwords in the TF-IDF [Text] ranking of the extended test set follow the same trend as
the initial test set; the domains high in the attribution rankings are equally present in the TF-IDF
[Text] ranking, albeit to a lesser extend.

To answer the second part of the research question we like to conclude: our model largely considers
the presence of verbs, nouns, and adverbs in domains of adventure and technology as indicators of
a male-told story, while it considers the presence of nouns and personal pronouns in the domain
of personal relations as well as tokens relating to explicit female characters as indicators of a
female-told story. These word types and domains occurred similarly high in the TF-IDF ranking
(aggregated per gender) of the texts themselves, however, this contained much more variability and
diversity. This affirms our belief that our model truly more strongly focuses on these indicators.

6.3 Generalizability

In our experimentation, we proved that a BERT model can be successfully finetuned –with relatively
high accuracy– to predict a storyteller’s gender. Therefore, the clearly differentiating word types
and domains the model focused on seem promising gender-specific features, assuming it accom-
plished this by paying attention to relevant parts of speech for gender and not by proxies, such as
confounding contextual variables, or plain coincidence. Whether this method successfully provides
any insight into truly existing language differences between (binary) genders can be determined by
consulting relevant research and comparing findings. As our research context is unique in focusing
on natural Dutch children’s speech, a direct comparison is not possible hence we must make our
comparison based on more general research. We acknowledge this is a significant limitation as
gender behavior is highly culture and context dependent [BP19] [KC17].
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Mulac and Lundell [ML86] analyzed oral descriptions of landscapes for linguistic variables between
genders. They found that indeed objectively coded language features can be used to accurately
differentiate a storyteller’s gender. Similar to us, they found the extended use of personal pronouns
an indicator for female language use. However, contrary to us, they found (intensive) adverbs to be
indicative for female language use, something which we contributed to males. All their other female
features were ones we did not consider classifying, nor were the ones for male features (such as the
use of impersonals and elliptical sentences). Bischoping [Bis93] did specific research into gender
differences of conversation topics in freely recorded conversations by undergraduate students. While
it must be stated that the topic categories they investigated seemed to have their pre-existing
biases incorporated into them (“people & relationships”, “work & money”, “leisure activity”,
“appearances”, and “issues” which encaptured serious current events and politics), they had over-
whelmingly clear observations in these categories. They found a consistent preference for females to
discuss people, relationships, and appearances, while males preferred topics about work, money,
leisure, and serious current events and politics. These topics are in line with the findings of our model.

Newman et al. [New+08] performed one of the most rigorous studies to-date comparing over 14,000
text files including transcribed conversations. In speech, they found a similar difference in (personal)
pronoun use with higher recordings in female authors, however, their higher recording of adverbs for
female participants is an aspect absent in our research. Additionally, they found a focus in female
language discussing other people, thoughts, and emotions, something which could fall in our domain
of personal relations and feelings, although these domains were not explicitly used in this research.
Furthermore, they found (motion) verbs to be more popular under male authors, similar to our
research. Our male prominent domains of adventure and technology were not specifically mentioned,
and therefore hard to affirm. However, speech relating to sports, external processes, and objects were
more prominently found in male speech, categories one might place within adventure and technology.

These general pre-existing researches, along with others ( [Coo+85] [Haa79]), seem promising and
in line with the results of our BERT model. However, while these seem to prove the potential
of our approach, it would be unfair not to mention a critical side note to this. As Koolen and
Cranenburgh [KC17] mention, results in gender related research are easily overgeneralized due to
interpretation using existing gender stereotypes, and many researchers are not always aware of
possible confounding variables related to gender. Similarly, Leaper [Lea14] argues for the usually
negligible or small magnitude of differences when contextual variables are taken into account.
Even more extreme is the research of Brouwer et. al [BGH79]. They criticize that the greater
part of research on differences in language use by gender is conducted with data collected in
unreliable ways, and without attention to confounding variables. In their own research they did not
find any statistically significant results between language used by male and female participants.
However, they did find a statistically significant difference in language use depending on sex of the
addressee, something they point out as a potentially confounding variable rarely taken into considera-
tion in prior research, again reinforcing their prior claim of lack of attention to confounding variables.

Ultimately, we are positive about the generalizability of our approach as our results are in line with
earlier research that found differences between male and female language use. This gives strong
reason to believe that one can indeed successfully finetune a BERT model to predict a storyteller’s
gender with relatively high accuracy and then examine what parts of language it focuses on as a
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way to gain insight into differences in language use between the (binary) genders, affirming our
research question. However, we do acknowledge the possibility of unaccounted confounding and
contextual variables that influenced the data collection between genders as part of a wider criticism
in research on gender differences.

7 Future work

During the trajectory of our research, we came across certain limitations and shortcomings which
should be addressed. The most notable potential points of improvement and opportunities for
future research are discussed below.

Improved model selection In hindsight and upon closer evaluation of our research, we must
acknowledge a slight flaw in our model selection method. During hyperparameter selection, we
consistently evaluated the model’s performance upon its test set F1-score after which we chose
the hyperparameters corresponding to our best performing model to be the most optimal. After
hyperparameter selection, we went on to more rigorously test models with these hyperparameters
using 10-fold cross validation where we decided upon considering the model corresponding to the
best performing iteration –according to the test set’s F1-score– for our further model focus analysis.
Unconsciously this led us to implicitly use the test set for model optimization and selection leading
to a form of data leakage. In further research, extra attention to this common mistake [KN23] of
neglectance should be given.

Consult linguist professionals We believe the consultation of professional linguists could reap
great benefits for the analysis on the rankings of the model. As we are no professional linguists
ourselves, we did our best to extract conclusive and complete insights, however, given our mere
modest linguistic expertise, we are aware we might have overlooked insightful nuances obvious to
linguistic professionals. This might lead to a more sound answer to the second part of our research
question (the parts of language our model focuses on) which in turn can lead to a better explanation
of what the differences in (binary) gender language use are.

More robust hyperparameter tuning One way to obtain better model performance is to
tune the training hyperparameters; we divided this process into two parts. In the first part, we
performed manual ad hoc search as the potentially optimal hyperparameter values spanned a very
large search space, the search space of the second part was smaller, which opened the opportunity
to perform a more extensive grid search. By either allocating more time or resources for this process,
a more robust grid search method for all hyperparameters could potentially yield more optimal
hyperparameters for our model. Alternatively, newly emerging hyperparameter finding techniques
such as Bayesian Search might be worth investigating given their promising results with limited
computational costs, with some even able to search continuous search spaces eliminating the need
for discrete deltas that could lead to overshooting an optimum [Sol23].

Larger (labeled) dataset The rather limited average model performance and large variability
in performance between iterations with 10-fold cross validation hints at a large variability between
folds and choice of seed. This attributes to our suspicion of the dataset size being a limiting factor.
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This reasoning can be justified by the fact that a more limited dataset significantly increases the
(dis)advantage of choosing a particular fold as test fold (and the others for training-validation) as the
interfold differences are likely to be larger. A larger test is likely to reduce these interfold differences
both in content and, consequently, model performance. Additionally to gaining more consistent
model performance measures, a larger dataset would evidently equally increase model performance
and robustness by capturing a more complete picture of language differences. Apparent is the
importance of the presence of gender labels in this dataset to eliminate the disadvantages introduced
by our labelless extended set which could solely be used for testing, discussed in Section 4.3.2.
As an additional note, we like to stress the importance of confounding and contextual variables
in such an enlarged labeled dataset as discussed in Section 6.3. While it is impossible to include
a comprehensive set of (possible confounding and contextual) variables, and like to remark the
inclusion of many in the ChiSCor dataset, possible additional ones such as those mentioned in
previous papers like time of day and gender of addressee might be worth considering.

Influence of age differences Unconscious biased conclusions can be introduced when not
accounting for certain confounding and contextual variables, as pointed out by Koolen and Cranen-
burgh [KC17]. In our research, we assume to have finetuned a model predicting a storyteller’s gender
with relatively high accuracy, however, we should beware of other variables that highly influence
language use which the model might have focused on. One of such variables is the storyteller’s age.
Upon examining the age and gender distribution of our initial dataset (see Figure 1), we observe a
skew in age with participating boys being generally younger than participating girls: the average
age of participating girls is 7.01 years, the average age of participating boys is 6.86 years. This
could lead our model to, in fact, not predict a storyteller’s gender but rather age as a proxy for
gender. While we have to admit this average age difference of only 2 months likely has limited
influence, this question remains one for potential further research.

Double label use Our model’s task was one of binary classification; something which is theoreti-
cally doable by a single output label and introduction of a threshold value. As the labels in the
original dataset were zeros and ones for female-told and male-told stories respectively, we decided
upon choosing this threshold at 0.5 with interpreting all outputs below as female and above as male.
However, as could be seen from the visualization of the integrated gradients technique in Figure 1,
this exposes a problem most clearly revealed when providing a sequence of [PAD] tokens to the
model: the output is always near 0.0 (with the exact value dependent on sequence length). In other
words, by designing the model the way we did, using only a single label and setting a threshold after
which output is interpreted as male, we created a model that effectively determines its output by
the sufficient presence of male-related tokens, otherwise female is predicted. This observation falls
in line with the observation in our experiments where consistently precision > recall (meaning
the model indeed more often falsely predicted zeros [female] than ones [male], see Appendices C,
D, and E). Using two labels instead might mitigate this issue and lead to a more robust model,
where every label represents the probability of being told by that gender. This, however, remains a
question for further research.
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8 Conclusion

In this paper, we proposed the idea of analyzing differences in language use between (binary)
genders in a novel way using AI. We decided not to analyze the text data itself directly, but instead
finetune a BERT model to predict a storyteller’s gender, after which we examined what this model
focused on. The reasoning was that if an AI model can determine a storyteller’s gender with
sufficient accuracy, it must focus on significant parts of language more than insignificant ones to
accomplish this accuracy. Examining this model focus led to specific word types and domains that
differed per gender, effectively providing insight into differences in language use between (binary)
genders.

For this research, we used the ChiSCor dataset, consisting of informal fantasy stories freely told by
children at their elementary school. As not all stories of the dataset contained information about
the storyteller’s gender, 240 stories by 145 unique children remained fit to train and initially test
our model.

We started by focusing on the first part of our research question: “How successful can a finetuned
BERT model distinguish informal Dutch speech between boys and girls[. . . ]?”. For this, we re-
peatedly finetuned the Dutch BERTje model’s parameters on the acquired dataset and further
investigated optimal training hyperparameters. After deciding upon this configuration, we used
10-fold cross validation to more rigorously test the performance of this configuration while avoiding
data leakage. We made use of stratified folds in order to get a representable result each itera-
tion. Running the 10-fold cross validation gave us the average performance results of an average
F1-score of 0.56 and an average accuracy of 0.63. While the model’s average performance scores
were significantly better than random guessing, they were not outstandingly impressive either.
However, since we asked how successful a finetuned BERT model can be, we also considered the
top performing iteration with an F1-score of 0.79 and an accuracy of 0.79. This large performance
variation was likely caused by the limited size dataset as this creates relatively large variations
per fold which can lead to major (dis)advantages regarding train and test sets. We decided upon
continuing the remainder of our research with this best performing model (all k folds of k-fold
cross validation produce a slightly different model); it was the most successful in making the
desired gender prediction of the storyteller in the test set (assuming it accomplished this by paying
attention to relevant parts of its speech input for gender and not by proxies, such as confounding
contextual variables, or plain coincidence).

For the second part of our research question, “[...] What parts of language does [the model] focus
on [...]?”, we made use of the integrated gradients technique which created a unique attribution
score per token occurrence. Since we wanted a single value per token to create a ranking for further
analysis, we constructed five different ways of combining all attribution scores of a single token
of which we found two insightful ones. We then manually analyzed and compared these rankings,
focusing on highly ranked word types and domains per gender. Only considering the limited size
initial test set with known ground truth genders (consisting of only 24 stories) had the two large
advantages of knowing the model’s accuracy and hinting towards tokens that the model attributed
to the wrong gender, however, gave rise to the problem of likely not fully capturing the model’s focus.
Therefore, we introduced an extended test set that included the earlier discarded stories without
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gender data, which had its own inherent problems, but in combination did provide additional
insights into our model’s focus. Manual visual analysis on the top 25 and top 50 most important
tokens for the initial test set and extended test set respectively led to some clear observations.
Differences between ranking methods exposed some insights into the model’s focus that were
present for both genders. Firstly, in the extended test set, we observed that nouns and verbs
were consistently ranked much higher by our model by average attribution score compared to the
adjusted TF-IDF score by attribution. This showed that on a per token level, the model put the
most attribution weight on these word types, however, since most of these only occurred in few
stories, more often occurring tokens were still found more important in the collection of a certain
gender (being the definition of the TF-IDF [Attr.] ranking). The fact that slightly lower ranked
tokens in the TF-IDF [Attr.] similarly were mostly nouns and verbs reaffirms this belief; the nouns
and verbs were individually the most attributed tokens, however, they simply did not occur enough
to be found most important. Secondly, in the initial test set, we observed a great similarity between
both attribution rankings and the TF-IDF [Text] ranking regarding both word types and domains.
Contrarily, in the extended test set, we observed the attribution rankings to contain many more
nouns and verbs than the more diverse TF-IDF [Text] ranking which was significantly richer in
word types and contained more stopwords. While we could not prove this specific focus of nouns
and verbs over other word types and stopwords helped the model to obtain better performance,
we expected it to, as nouns and verbs could be seen as more content bearing than stopwords.
Differences between the genders were furthermore clearly present. For male stories, we observed
the model to extra focus on tokens that were verbs and nouns in the domains of adventure and
technology. Differences between test sets included a stronger focus on verbs in the initial test set
than the extended test set, while the slight focus on adjectives and the domain of technology present
in the extended test set was absent in the initial one. For female stories, we observed the model to
extra focus on tokens that were nouns and personal pronouns in the domain of personal relations as
well as extra focus on explicit female characters. Here, differences between test sets included a fo-
cus on adjectives and the domain of feelings in the initial test set, both absent in the extended test set.

We compared all our findings to relevant research on differences in language use between (binary)
genders to examine whether our method successfully provided any insight into truly existing language
differences. As no other research known to us was performed on natural Dutch children’s speech,
we diverted to more general research, which is a limitation as gender behavior is highly culture and
context dependent. Still, the results our approach produced gave reason to be positive about the
generalizability as, in fact, they were in line with earlier conducted research. This gives strong reason
to believe one can indeed successfully finetune a BERT model to predict a storyteller’s gender with
relatively high accuracy and then examine what parts of language it focuses on as a way to gain
insight into differences in language use between the (binary) genders, affirming our research question.

It should be noted that our research was still imperfect and open for future improvements and
research. The most notable points of further research we recognized were: improved model selection,
consulting linguist professionals, performing more robust hyperparameter tuning, using a larger
(labeled) dataset with sufficient attention to confounding contextual variables, investigating the
influence of age differences between genders on our research, and using double labels for the model
output.

33



In summary, to answer our research question “How successful can a finetuned BERT model
distinguish informal Dutch speech between boys and girls, what parts of language does it focus
on, and can this provide insight into differences in language use between (binary) genders?”. The
finetuned BERT model we constructed in this paper performed with an average F1-score of 0.56
and an average accuracy of 0.63, however, recorded a top performance of an F1-score of 0.79 and
an accuracy of 0.79. Given our own research and relevant prior research, we have reason to believe
that the dataset size was a limiting factor and these numbers have the potential to be higher. To
examine the model’s focus we could extend the test set by reincluding earlier discarded stories
without gender data. For male stories, the model extra strongly focussed on tokens representing
verbs, nouns, and adverbs in the domains of adventure and technology. For female stories, the
model extra strongly focussed on tokens representing nouns, personal pronouns, and adjectives
in the domains of personal relations, feelings, and explicit female characters. Similar pre-existing
relevant research into differences in language use between (binary) genders show results in line
with our findings. This gives strong reason to believe that one can indeed successfully finetune a
BERT model to predict a storyteller’s gender with relatively high accuracy and then examine what
parts of language it focuses on as a way to gain insight into differences in language use between the
(binary) genders, affirming our research question.
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Appendices

A Relation paper sections & code files

Section in paper Codefile in Github
Data processing (Section 4.1)
Model finetuning (Section 4.2.1)
Hyperparameter tuning (Section 4.2.2)

101, 102

K-fold cross validation (Section 4.2.3) 103
Model focus (Section 4.3) 104
Initial test set (Section 4.3.1) 105
Extended test set (Section 4.3.2) 106

Table 10: Overview of discussed topics in the Methodology with their relating Github files.

Codefiles can be accessed via this paper’s Github project, accessible at: github.com/sanderhonig/scriptie

38

https://github.com/sanderhonig/scriptie


B Example of graph and test set output during hyperpa-

rameter tuning

(a) Two plotted graphs: upper containing the aver-
age training and validation loss, lower containing the
average training and validation accuracy. Each data
point represents one epoch. (b) Test set performance output.

Figure 3: Example of graph and test set output during hyperparameter tuning to assess the quality
of finetuning and effect of the current hyperparameters14.

14Taken from second stage of hyperparameter tuning, settings: lemmatization (no), number of epochs (30), and
batch size (2).
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C Results of first stage of hyperparameter tuning

Lem. Learn. rate W. decay Dropout Accuracy* Loss* Precision* Recall* F1-score* Avg. f1-score
no 0.000010 0.01 0.35 0.5000 0.7024 0.0000 0.0000 0.0000
no 0.000010 0.01 0.25 0.5000 ?15 0.0000 0.0000 0.0000
no 0.000020 0.01 0.25 0.6667 0.6740 0.7000 0.5833 0.6364
no 0.000015 0.01 0.25 0.5000 0.6926 0.0000 0.0000 0.0000
no 0.000025 0.01 0.25 0.7083 0.6426 0.7273 0.6667 0.6957

no 0.000025 0.006 0.25
0.7083 0.6741 0.6471 0.9167 0.7586

0.34180.5417 0.6776 0.6667 0.1667 0.2667
0.5000 0.6942 0.0000 0.0000 0.0000

no 0.000025 0.01 0.20 0.5417 0.6605 1.0000 0.0833 0.1538
no 0.000025 0.01 0.30 0.5000 0.6919 0.0000 0.0000 0.0000

no 0.000025 0.01 0.15
0.7083 0.7087 0.6316 1.0000 0.7742

0.25810.5000 0.6909 0.0000 0.0000 0.0000
0.5000 0.6956 0.0000 0.0000 0.0000

no 0.000030 0.01 0.15
0.5833 0.7160 0.5714 0.6667 0.6154

0.61570.7083 0.6465 0.8571 0.5000 0.6316
0.5000 0.7677 0.5000 0.7500 0.6000

no 0.000030 0.01 0.22 0.4583 0.7638 0.4706 0.6667 0.5517
no 0.000030 0.01 0.25 0.5000 0.7012 0.0000 0.0000 0.0000

no 0.000025 0.01 0.20
0.5000 0.7107 0.5000 0.3333 0.4000

0.17780.4583 0.6981 0.3333 0.0833 0.1333
0.3750 0.7157 0.0000 0.0000 0.0000

no 0.000025 0.009 0.25 0.5417 0.7156 0.5333 0.6667 0.5925
no 0.000025 0.02 0.20 0.5833 0.6998 0.6250 0.4167 0.5000

no 0.000025 0.015 0.15
0.7083 0.6510 0.6471 0.9167 0.7586

0.48380.6250 0.6576 0.8000 0.3333 0.4706
0.4167 0.7261 0.3333 0.1667 0.2222

Table 11: Intermediary test set results of ad hoc hyperparameter tuning process using the non-
lemmatized dataset. All ran using 8 epochs and a batch size of 4. *average over all batches of the
test set.

Lem. Learn. rate W. decay Dropout Accuracy* Loss* Precision* Recall* F1-score* Avg. f1-score
yes 0.000010 0.015 0.35 0.5000 0.6984 0.0000 0.0000 0.0000

yes 0.000010 0.015 0.25
0.7083 0.6465 0.8571 0.5000 0.6316

0.64570.6667 0.6306 0.8333 0.4167 0.5556
0.7500 0.6294 0.7500 0.7500 0.7500

yes 0.000020 0.015 0.25 0.5833 0.6833 0.6667 0.3333 0.4444
yes 0.000015 0.015 0.25 0.5833 0.6941 0.5714 0.6667 0.6154

yes 0.000025 0.015 0.25
0.6667 0.6712 0.6667 0.6667 0.6667

0.60130.6250 0.6531 0.8000 0.3333 0.4706
0.6250 0.7033 0.6000 0.7500 0.6667

yes 0.000025 0.006 0.25 0.5000 0.7063 0.5000 0.1667 0.2500

yes 0.000025 0.01 0.25
0.6667 0.6607 0.6667 0.6667 0.6667

0.52950.5417 0.7088 0.5455 0.5000 0.5217
0.6250 0.6492 1.0000 0.2500 0.4000

yes 0.000025 0.01 0.30 0.5417 0.6985 0.5455 0.5000 0.5217

yes 0.000010 0.015 0.20
0.4583 0.6992 0.3333 0.0833 0.1333

0.40590.5833 0.6685 0.6667 0.3333 0.4444
0.6250 0.7068 0.6154 0.6667 0.6400

yes 0.000015 0.02 0.20 0.5833 0.6568 0.7500 0.2500 0.3750

yes 0.000010 0.015 0.15
0.7883 0.6589 0.8571 0.5000 0.6316

0.42340.5417 0.6860 0.6000 0.2500 0.3529
0.5833 0.6681 1.0000 0.1667 0.2857

Table 12: Intermediary test set results of ad hoc hyperparameter tuning process using the lemmatized
dataset. All ran using 8 epochs and a batch size of 4. *average over all batches of the test set.

15Unrecorded due to manual error. This caused no major issue due to the presence of the other metrics.
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D Results of second stage of hyperparameter tuning

Lem. Nr. epochs Batch size Accuracy* Loss* Precision* Recall* F1-score* Avg. f1-score

no 30 4
0.5000 0.6940 0.0000 0.0000 0.0000

0.40580.5417 0.7207 0.5455 0.5000 0.5217
0.7083 0.6687 0.7273 0.6667 0.6957

no 30 2
0.6250 0.7146 0.5882 0.8333 0.6897

0.58180.6667 0.6396 0.8333 0.4167 0.5556
0.5000 0.7550 0.5000 0.5000 0.5000

no 30 1
0.5000 0.6916 0.0000 0.0000 0.0000

0.00000.5000 0.6911 0.0000 0.0000 0.0000
0.5000 0.6926 0.0000 0.0000 0.0000

no 15 4
0.5833 0.6922 0.5714 0.6667 0.6154

0.51840.6250 0.6774 0.5882 0.8333 0.6897
0.5000 0.7116 0.5000 0.1667 0.2500

no 15 2
0.5833 0.6864 0.6250 0.4167 0.5000

0.38100.5833 0.7317 0.5625 0.7500 0.6429
0.5000 0.6865 0.0000 0.0000 0.0000

no 15 1
0.7083 0.6349 0.7778 0.5000 0.6667

0.41830.7083 0.6088 1.0000 0.4167 0.5882
0.5000 0.6922 0.0000 0.0000 0.0000

yes 30 4
0.5417 0.6976 0.6000 0.2500 0.3529

0.49600.6250 0.6648 0.7143 0.4167 0.5263
0.6250 0.6837 0.6364 0.5833 0.6087

yes 30 2
0.7500 0.6074 0.8750 0.5833 0.7000

0.68540.8750 0.5794 0.8462 0.9167 0.8800
0.5417 0.7026 0.5556 0.4167 0.4762

yes 30 1
0.5417 0.7211 0.5556 0.4167 0.4762

0.47620.5833 0.6630 1.0000 0.1667 0.2857
0.7083 0.6348 0.7778 0.5833 0.6667

yes 15 4
0.5417 0.6995 0.5714 0.3333 0.4211

0.36260.5000 0.6962 0.5000 0.2500 0.3333
0.5000 0.7245 0.5000 0.2500 0.3333

yes 15 2
0.5833 0.6749 0.7500 0.2500 0.3750

0.43000.6250 0.6564 0.8000 0.3333 0.4706
0.5833 0.6869 0.6667 0.3333 0.4444

yes 15 1
0.5417 0.7447 0.5333 0.6667 0.5926

0.62270.6667 0.6640 0.5429 0.7500 0.6923
0.5833 0.6864 0.5833 0.5833 0.5833

Table 13: Intermediary test set results of grid search hyperparameter tuning process using the two
best models found in Appendix C. *average over all batches of the test set.
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E Results of k-fold cross validation

Seed Test fold Accuracy* Loss* Precision* Recall* F1-score* Avg. f1-score

42
0 0.5000 0.7349 0.5294 0.6923 0.6000
1 0.5833 0.6425 0.7143 0.3846 0.5000
2 0.5417 0.6873 0.6000 0.4615 0.5217

9

0 0.5833 0.6483 1.000 0.2308 0.3750

0.5551

1 0.7083 0.6453 0.6875 0.8462 0.7586
2 0.6250 0.6330 0.8333 0.3846 0.5263
3 0.7083 0.6479 0.7273 0.6667 0.6957
4 0.5417 0.6842 0.6000 0.2500 0.3529
5 0.5417 0.7274 0.5455 0.5000 0.5217
6 0.5833 0.6769 0.6667 0.3333 0.4444
7 0.7917 0.6120 0.8182 0.7500 0.7926
8 0.5833 0.6800 0.6250 0.4167 0.5000
9 0.5833 0.6831 0.5833 0.5833 0.5833

Table 14: Intermediary test set results of k-fold cross validation, with k = 10. *average over all
batches of the test set.
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