
Opleiding Informatica

Developing an auto-tunable GEMM kernel that utilizes Tensor Cores

Tobias Hofstra

Supervisors:
Dr. B.J.C. van Werkhoven
Dr. K.F.D. Rietveld

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 24/8/2024

www.liacs.leidenuniv.nl

Abstract

With the rising popularity of deep learning, GEMM, the core computation in training AI
models, is becoming more and more important to optimize. To this end, NVIDIA has developed
tensor cores for usage in their GPUs, which significantly speed up GEMM computations. This
work aims to combine tensor cores with application level auto-tuning to develop a tunable
kernel that makes use of tensor cores, something which until now has not been realized. We
showcase that for a GEMM kernel that makes use of tensor cores, auto-tuning increases
performance by finding optimal configurations that would be hard to find by hand. However,
simply applying auto-tuning is not enough to beat state-of-the-art kernels for a problem as
explored as GEMM.

2

Contents

1 Introduction 1
1.1 Thesis overview . 1

2 Background and related work 3
2.1 GEMM . 3
2.2 Tensor cores . 4

2.2.1 CUTLASS . 4
2.2.2 CuTe . 5
2.2.3 WMMA API . 5

2.3 Auto-tuning . 6
2.3.1 KTdashboard . 6

2.4 Related work . 7

3 Methodology 8
3.1 Thread block tiles . 8
3.2 Warp tiles . 9
3.3 Main loop . 10

4 Auto-Tuning 13
4.1 Restrictions . 13
4.2 Experiment setup . 13
4.3 Results . 14

4.3.1 Memory access patterns . 18
4.3.2 Thread block tile dimensions . 18
4.3.3 Warp tile dimensions . 20
4.3.4 Shared memory . 23

5 Benchmarking 24
5.1 Other kernels . 24
5.2 Results . 24
5.3 Profiler results . 25

6 Conclusions and further research 28

References 32

1 Introduction

Graphical Processing Units (GPUs) have become essential in graphics processing, scientific com-
puting, and recently, deep learning applications. This is in large part due to the parallel structure
of GPUs, which allows them to exploit the parallel nature of the aforementioned problems, while
more traditional computing platforms like Central Processing Units (CPUs) struggle in this area.
The two leaders in the area of GPU development are NVIDIA and AMD, whose GPUs can be
programmed through the parallel programming platforms of CUDA and HIP respectively. In this
thesis, NVIDIA GPUs and CUDA will be the primary focus.
CUDA is used to describe the programming platform of NVIDIA GPUs as a whole, but for the
purposes of this thesis it can be thought of as a programming language that extends C++. An
application in CUDA consists of host code, which is performed by the CPU, and device code, which
is performed by the GPU. Another name for the device code of a GPU application is a kernel.
Kernels have proven difficult to optimize by hand due to the large set of optimization parameters
and the need to understand the underlying hardware [RRS+08, vWPS20]. This difficulty has
given rise to the automatic tuning of kernels, also called auto-tuning [LDT09], which easily allows
performance optimizations to be made on kernels [GL11, TNLD10]. Another benefit of auto-tuning
is portability: performance improvements can be found for any hardware platform.
Deep learning applications have led to NVIDIA implementing so-called tensor cores in their GPUs.
These tensor cores significantly speedup deep learning applications, and were first introduced with
the Volta GPU microarchitecture in 2017 [MCL+18]. Tensor cores can work with a variety of
data types, but due to relatively high classification accuracy in deep learning applications with
low precision integers [GAGN15], 16-bit numbers (also called half precision) see the most use in
tensor cores. Usually, 16-bit numbers are used inside the tensor cores, and 32-bit numbers outside
of the tensor cores, to achieve so-called mixed precision, which will be the precision considered
in this thesis. General Matrix Multiply (GEMM) is a core computation used in many GPU
applications [YSL+23, YWC20] and can likewise enjoy significant performance improvements from
tensor cores [NVI17].
Due to the importance of GEMM and the impact of tensor cores, there is a clear need for optimized
GEMM implementations that use tensor cores. NVIDIA has provided such GEMM kernels in the
cuBLAS [NVIa] and CUTLASS [NVIc] libraries, but these are not tuned to specific hardware
platforms, and thus better kernel configurations may exist than those used in these kernels. Likewise
auto-tunable GEMM kernels already exist, but none of them use tensor cores and therefore fall
behind in performance compared to GEMM kernels that do use tensor cores.

1.1 Thesis overview

This thesis aims to amend the aforementioned issue by developing an auto-tunable GEMM kernel
that utilizes tensor cores. The resulting kernel will then be auto-tuned and benchmarked against
existing GEMM kernels to measure its performance on the DAS-6 compute cluster [BEdL+16].
Section 2 contains the background information and the related work; Section 3 describes how
the kernel is designed; Section 4 goes into detail about the auto-tuning process and discusses the
results from auto-tuning; Section 5 contains the results and discussions of the benchmarking of
the different kernels; Section 6 describes conclusions from this work and further research. Notably,
Section 6 reveals a very unique optimal configuration for the A100 GPU. Moreover, the tunable

1

tensor core kernel outperforms tunable kernels that do not make use of tensor cores, but falls
behind in performance compared to state-of-the-art kernels that make use of tensor cores. This
bachelor thesis was written for the Computer Science Bachelor program at Leiden University and
supervised by Ben van Werkhoven and Kristian Rietveld at the Leiden Institute of Advanced
Computer Science (LIACS).

2

2 Background and related work

This section contains all the background information for this thesis, which includes:

1. The definition of GEMM and some basic GEMM optimizations.

2. Tensor cores, and the three main ways to program them: CUTLASS, CuTe, and the WMMA
API.

3. An overview of auto-tuning and existing auto-tuners.

4. Related work.

2.1 GEMM

GEMM is the following operation:

D = α · A ·B + β · C (1)

Where α and β are constant scalars, A is a matrix of dimensions M×K, B is a matrix of dimensions
K×N , and C and D are matrices of dimensions M ×N . The total GEMM problem dimensions are
then defined as M ×N ×K. In some computation use cases the matrix D equals C (accumulation).
This definition also allows for regular A ·B matrix multiplication by setting α to 1 and β to 0 or C
to an all-zero matrix.
Because the individual elements of the output matrix D are independent from each other, GEMM is
a prime candidate for usage in parallel execution paradigms, realized by GPUs. For this thesis, CUDA
will be considered. NVIDIA has provided a general overview of a hierarchically blocked structure
used in CUTLASS [KMDT, NVId], which forms a solid foundation for GEMM implementations.
The high-level hierarchy of a whole GEMM operation in CUTLASS can be seen in Figure 1. This
figure details the different levels of the algorithm and which part of the GPU is used at every level.
A naive triple loop matrix multiplication implementation can be found in code Listing 1. In this
naive implementation, every element of the output matrix is computed one-by-one. The problem
here is that the elements of matrices A and B get loaded multiple times. Due to the limited sizes of
on-chip caches, this often means the matrix elements will not be present in the cache when needed
again. The hierarchically blocked structure solves this problem by moving the inner-most loop to
the outer-most loop. This can be seen in Listing 2.

Figure 1: CUTLASS GEMM hierarchy. Image from [NVIe]

3

Listing 1: Naive matrix multiplication

for (int i = 0 ; i < M; ++i)
for (int j = 0 ; j < N; ++j)

for (int k = 0 ; k < K; k++)
C[i] [j] += A[i] [k] ∗ B[k] [j] ;

Listing 2: Better matrix multiplication

for (int k = 0 ; k < K; k++)
for (int i = 0 ; i < M; ++i)

for (int j = 0 ; j < N; j++)
C[i] [j] += A[i] [k] ∗ B[k] [j] ;

In this structure, the outer-most loop selects the kth column of the A matrix and the kth row of
the B matrix. The product of these elements are then computed and accumulated in the C matrix.
Once an iteration in the outer-most loop is finished, the selected column of the A matrix and row
of the B matrix are not used again.
Since this optimization works best for small matrices, the C matrix is partitioned into tiles, which
are then distributed across thread blocks (thread block tiles). Within these tiles, the workload can
further be divided across groups of 32 threads, also called warps (warp tiles).

2.2 Tensor cores

In recent years the main application of GEMM has been in training of AI models. Fully connected
layers in feed-forward neural networks that use backpropagation can be directly computed with
matrix multiplication, and convolutional layers in convolutional neural networks can also be reduced
to a GEMM problem [KC06]. Because of this any optimizations targeting neural network training
performance will likely be centered around speeding up GEMM computation. To this end, many
companies started developing hardware platforms specifically for neural network workloads, such
as neural processing units (NPUs), field programmable gate arrays (FPGAs) and application-
specific integrated circuit (ASICs) like Google’s Tensor Processing Units [JYP+17], AMD’s matrix
cores [AMD20], and NVIDIA’s tensor cores [NVI17]. In this thesis, tensor cores will be considered.
Tensor cores can be used through the Warp Matrix Functions instructions in the PTX ISA [NVI24],
but NVIDIA has provided three programmer-friendly ways to work with tensor cores: the CUTLASS
library [NVIc], the CuTe library [NVIb], and the WMMA API [AY].

2.2.1 CUTLASS

CUTLASS stands for CUDA Templates for Linear Algebra Subroutines and is a state-of-the-
art library developed by NVIDIA for implementing high performance GEMM kernels. As the
name suggests, CUTLASS makes extensive use of C++ templates, allowing for some degree of
freedom when using a CUTLASS kernel, making it tunable to a degree. As mentioned earlier in
Section 2.1, CUTLASS implements the hierarchically blocked structure. For example, thread block
tile dimensions and warp tile dimensions can both be chosen at will. Furthermore, the matrices A,
B, and C and D can all be specified with different data types and layouts (whether the data is
stored row or column major). Critically relevant for this thesis, the user can also specify if tensor
cores should be used or not when using a CUTLASS kernel.

4

Matrix A Matrix B Accumulator Matrix Size
half half float 16x16x16
half half float 32x8x16
half half float 8x32x16

precision::tf32 precision::tf32 float 16x16x8
double double double 8x8x4

precision::u4 precision::u4 int 8x8x32
precision::b1 precision::b1 int 8x8x128

Table 1: Some of the supported data types and matrix sizes in WMMA.

CUTLASS can be used to construct GEMM kernels on five different levels, ordered from high to
low:

1. Device: on this level a whole CUTLASS kernel is called from inside a CUDA program, similarly
to calling kernels from cuBLAS or other libraries.

2. Kernel: on this level the main computation loops and data structuring/movement is managed.

3. Collective: here the main loops which perform the intensive multiplications are defined.

4. Tiled (MMA and Copy)/Atom: these two levels are the lowest levels and execute the high-
performance data copies and matrix multiply and accumulate (MMA) instructions. These
two levels are not defined in the main CUTLASS library, but in CuTe.

When using a CUTLASS kernel from the device level, the user does not have a lot of control in
how the computation will be performed with regards to tunable parameters. For example, usage of
hardware features such as shared memory is largely up to the CUTLASS implementation itself,
even though these features can impact performance and, in particular, energy efficiency [SVvWB22].
Furthermore, without an easy way to obtain optimal parameters, an auto-tunable GEMM kernel
can theoretically gain some advantages over CUTLASS.

2.2.2 CuTe

CuTe is a very new library within CUTLASS itself, introduced early in 2023 with CUTLASS 3.0.0.
CuTe provides templates for defining layouts of threads and data, which can then be used in a
GEMM using tensor cores. This design of abstractions allows the programmer to not worry too
much about the exact partitioning of threads and data, making it easier to implement specific
algorithms. Due to a lack of extensive documentation as of time of writing, CuTe will not be used in
this thesis, although it could prove useful for developing kernels that use tensor cores in the future.

2.2.3 WMMA API

TheWarp Matrix Multiply Accumulate (WMMA) API is built into CUDA through the nvcuda::wmma
namespace. Using this API, the programmer can perform matrix multiply and accumulation (MMA)
with tensor cores on fixed (sub)matrix sizes by letting every thread in a warp execute the WMMA
instructions.

5

First, the (sub)matrices have to be declared as so-called fragments with wmma::fragment<>. These
fragments can be fragments of the A (wmma::matrix_a) and B (wmma::matrix_b) matrices or
accumulators (wmma::accumulator) for holding parts of the C matrix and the intermediate result
of the matrix-multiply computation. These fragments can be declared with different shapes, data
types, and for A and B fragments whether the matrix is row or column major. Table 1 contains
some of the combinations of data types and matrix sizes WMMA supports. For example, the
declaration of a fragment of a column major A matrix with 8 × 32 × 16 shaped operations and
half-precision elements could look like:

wmma: : fragment<wmma: : matrix a , 8 , 32 , 16 , ha l f , wmma: : co l major>

A WMMA operation of shape 8× 32× 16 entails multiplying a 8× 16 submatrix of A by a 16× 32
submatrix of B, and accumulating the result in an 8× 32 submatrix of C.
After the fragments have been declared, they need to be initialized with wmma::fill_fragment or
loaded with data with wmma::load_matrix_sync. The data in these fragments is then stored in
registers. Here it is critical that all threads within a warp execute these functions with the same
arguments, otherwise this is undefined behavior. After the fragments contain the necessary data,
they can be multiplied with wmma::mma_sync.

2.3 Auto-tuning

Auto-tuning can be divided into two methodologies: code generation auto-tuning with compilers,
and application-level auto-tuning. Research into auto-tuning was first introduced to target CPU
applications, with GPU applications being considered only more recently. As such, examples of
auto-tuners given in this section may be both CPU and GPU auto-tuners.
The first methodology of auto-tuning is based on code generation. The user can specify some
high-level input, and the compiler will generate multiple code variants and select the best one.
Common optimizations and transformations made by the compiler include loop tiling/blocking, loop
unrolling, loop permutation, prefetching, software pipelining [BDG+18], data copy, iteration space
splitting [CCH07], and polyhedral transformations [HNS09, BHRS08]. Some examples of compiler-
directed auto-tuners are ATLAS [WD98], FFTW [FJ98], SPIRAL [PMJ+05], CHiLL [CCH07],
Orio [HNS09] and TVM [CMJ+18], which focuses on GEMM.
The second methodology of auto-tuning works on application level. Here, algorithms include tunable
parameters, which can take on different values to represent different code variants. It is then up
to the programmer to provide a list of values all the parameters can take on, and ensure the
implementation of the algorithm is generic enough so that it can function with as many different
configurations as possible. Examples include OpenTuner [AKV+14], CLTune [NC15], Kernel Tuning
Toolkit (KTT) [FPB17], Auto-Tuning Framework (ATF) [RSSG21], and, the auto-tuner used in
this thesis, Kernel Tuner [vW19].

2.3.1 KTdashboard

Using the tool KTdashboard, which is part of the Kernel Tuner ecosystem, the results of the
tuning process can be analyzed in greater detail. KTdashboard displays a scatter plot of all the
configurations and allows the user to select the x and y axes and colour the configurations by the
tunable parameters. The colours range from yellow (high value for specified parameter) to purple
(low value for specified parameter).

6

2.4 Related work

As illustrated in Section 2.2, GEMM is an incredibly important operation. As such, many of the
aforementioned auto-tuners in Section 2.3 include or work with GEMM kernels. However, none
of the GEMM kernels in the application-level auto-tuners make use of tensor cores, which deliver
significant performance improvements.
Yu et al. [YSL+23] introduce CUTLASS-tailor, a machine learning framework for predicting
CUTLASS kernel parameters to achieve the highest performance. Using supervised learning the
researchers demonstrate significant speedup compared to cuBLAS by choosing the right CUTLASS
parameters. Although auto-tuning was not used to achieve these results, the work nevertheless
demonstrates the importance of selecting the right tunable parameters.

7

3 Methodology

This section contains the full description of the tunable tensor core GEMM kernel, following the
hierarchally blocked structure described in Section 2.1. A brief overview of every tunable parameter
used in this new kernel can be found in Table 2. One important thing to note is that the kernel
itself assumes that the A matrix is not transposed and that the B matrix is transposed, while, for
the sake of simplicity, the explanation below assumes neither matrix is transposed.

Name Description Permitted values

WMMA M M dimension of the WMMA operation 8, 16, 32
WMMA N N dimension of the WMMA operation 8, 16, 32
TILE COLS Width of a thread block tile 2i for i ∈ {3, 4, 5, . . .}
TILE ROWS Height of a thread block tile 2i for i ∈ {3, 4, 5, . . .}

TILES PER CTA Number of thread block tiles computed per CTA 2i for i ∈ {0, 1, 2, . . .}
BLOCK INDEX Block indexing mode 0, 1, 2

SEQUENTIAL TILES Boolean for stride between tiles in the same CTA 0, 1
WMMA COLS Amount of WMMA operations per CTA, horizontally 2i for i ∈ {0, 1, 2, . . .}
WMMA ROWS Amount of WMMA operations per CTA, vertically 2i for i ∈ {0, 1, 2, . . .}
TILE SHMEM Boolean for storing tiles of C in shared memory 0, 1

FRAG A SHMEM Boolean for storing fragments of A in shared memory 0, 1
FRAG B SHMEM Boolean for storing fragments of B in shared memory 0, 1

Table 2: An overview of the tunable parameters

3.1 Thread block tiles

First, the D matrix gets divided into thread block tiles. These thread block tiles are of size
TILE_ROWS×TILE_COLS. Since the thread block tiles will later be divided into WMMA operations,
whose valid dimensions for mixed-precision operations consist of 8, 16, and 32, the dimensions of
the thread block tiles are powers of 2, with 8 being the minimum width and length. The tunable
parameters TILES_PER_CTA, BLOCK_INDEX, and SEQUENTIAL_TILES control how the thread block
tiles, once defined, get divided across the thread blocks, also called Cooperative Thread Arrays
(CTAs).
TILES_PER_CTA indicates the number of thread block tiles every CTA computes. In the case where
this parameter is larger than 1, the parameter SEQUENTIAL_TILES controls how the multiple tiles
are laid out. If SEQUENTIAL_TILES is set to 1, tiles belonging to the same CTA will be next to
each other, and the CTA will compute them from left-to-right. If SEQUENTIAL_TILES is set to 0,
there will be a stride in between tiles, see Figure 2. Furthermore, the parameter BLOCK_INDEX

affects the indexing of CTAs to tiles. The indexing mode affects how thread block tiles get mapped
to the CTAs. The indexing modes are cartesian, diagonal, and transpose, which are represented
through pre-processor defines by 0, 1, and 2, respectively. Figure 3 visually demonstrates how these
indexing modes function. The parameters TILES_PER_CTA, SEQUENTIAL_TILES and BLOCK_INDEX

can be used with each other to create a large variety of global memory access patterns.
After the thread block tile dimensions and indexing has been defined, the parameter TILE_SHMEM
indicates whether or not a tile from the C matrix is first loaded into shared memory. The advantage

8

0 2 4 6
8 10 12 14
1 3 5 7
9 11 13 15

(a) SEQUENTIAL TILES = 0

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

(b) SEQUENTIAL TILES = 1

Figure 2: The difference between SEQUENTIAL TILES values, where tiles of the same colour
belong to the same CTA and CTAs compute the numbered tiles from lowest to highest

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

(a) Cartesian indexing

0 4 8 12
13 1 5 9
10 14 2 6
7 11 15 3

(b) Diagonal indexing

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

(c) Transpose indexing

Figure 3: The different CTA to tile indexing modes, where tiles of the same colour belong to the same
CTA and CTAs compute the numbered tiles from lowest to highest, and SEQUENTIAL TILES is
set to 1

is that the whole CTA can uniformly copy elements from global memory to shared memory,
preventing random global memory accesses that the individual warps would cause. A downside
of using shared memory for the thread block tile is that a lot of shared memory is demanded per
CTA, since these tiles can grow large and consist of 4-byte floating-point numbers.

3.2 Warp tiles

Once the thread block tiles are fully defined, the work has to be divided across all the warps that
make up the CTA. Every warp will be responsible for a warp tile, which consists of 1 or more WMMA
operations. The parameters WMMA_M and WMMA_N are tunable in order to generate every mixed-
precision WMMA operation, see Table 1. Since the K dimensions is always 16 in these WMMA
operations, WMMA_K is not tunable. The amount of WMMA operations in a warp tile is determined
by the parameters WMMA_COLS and WMMA_ROWS. Namely, a warp tile is a WMMA_ROWS×WMMA_COLS
2-dimensional array of WMMA operations, as illustrated in Figure 4.
Next, the warps will load their respective warp tile of the C matrix into wmma::accumulator type
wmma::fragments and multiply them by (β/α), effectively storing the result of (β/α) ·C in registers.
In order to save on register budget, these fragments holding the thread block tiles will also be used
to hold the intermediate result of the matrix multiplication and accumulation. The result at the
end will be multiplied by α. This will still produce a mathematically correct result, since:

α · A ·B + β · C = α · (A ·B + (β/α) · C) (2)

9

Figure 4: A 128x128 thread block tile, with 16x16x16 WMMA operations and WMMA COLS = 4,
WMMA ROWS = 2, where each colour is a separate warp tile

This will result in a slight loss of precision, but this can be disregarded due to the general margin
of error accepted in mixed-precision computations.
The wmma::fragments for A and B are declared as arrays of lengths WMMA_ROWS and WMMA_COLS,
respectively.

3.3 Main loop

Once the elements of C have been loaded into the registers, the main loop can begin. A pseudocode
algorithm of the main loop can be found in Algorithm 1. In the main loop, the warps will fully
compute the matrix product of the warp tile they are responsible for. This is done by iterating over
the K dimension that both the A and B matrices have in common. This iteration is done in steps of
WMMA_K (16), equal to the K dimension of the WMMA operation. At every iteration step, a double
for loop performs the matrix multiplication and accumulation by loading fragments of A and B into
registers and calling wmma::mma_sync. The A matrix fragment is of shape WMMA_K × TILE_ROWS

and the B matrix fragment is of shape TILE_COLS× WMMA_K.
The outer for loop iterates over the WMMA_ROWS of the warp tile and at every iteration loads the
fragment needed for that row of WMMA operations into registers. These fragments correspond
to the green column in Figure 5 and are from the A matrix. The inner for loop iterates over the
WMMA_COLS and loads the fragments needed for the columns of the WMMA operations, which
correspond to the blue row in Figure 5 and come from the B matrix. In the inner loop the fragments
only need to be loaded in the first iteration of the outer loop; when the outer loop iterates over the
next row of the warp tile, all the fragments from the B matrix are still present in the registers.
Once the inner loop has loaded in the fragment from B, it gets multiplied with the fragment from A
that was loaded in by the outer loop and accumulated with the result in the accumulator fragment.
In the kernel, loading the fragments into registers can be done using shared memory. This is
configurable by the parameters FRAG_A_SHMEM and FRAG_B_SHMEM, which indicate if shared memory
is used to load fragments from A and B, respectively. Usage of shared memory here indicates that
instead of letting the warps load directly from global memory in the 2 inner for loops, the CTA will
load all the required fragments into shared memory at the beginning of a main loop iteration, and

10

Algorithm 1 Main loop for computing matrix multiplication and accumulation

Declare WMMA fragments a, b, acc
for k = 0, 16, 32, . . . , K do

for i = 0, 1, 2, . . . ,WMMA ROWS do
Load fragment from matrix A in a[i]
for j = 0, 1, 2, . . . ,WMMA COLS do

if i = 0 then
Load fragment from matrix B in b[j]

end if
acc[i][j]← acc[i][j] + a[i]× b[j]

end for
end for

end for

Figure 5: One iteration of the main loop, where the thread block tile is in orange, and the green
column and blue row are fragments of the A and B matrices, respectively. In the next iteration, the
green column would move right by 16 elements, and the blue row would move down by 16 elements.

11

Iteration 0 1 2 3 4 . . . n− 1 n
Stage 1 M C M C M

. . .
C I

Stage 2 I M C M C M C

Figure 6: Iterations in a 2 stage pipeline loop, where I = Idle, M = copying Memory, C = Compute

then let the warps load from shared memory. This way there will be fewer global memory accesses
in total, since multiple warps can load the same fragment from shared memory.
The main loop then uses a 2-stage pipeline featuring overlapping global-to-shared memory copy
and compute using the Cooperative Groups CUDA extension. An overview of the pipeline can be
found in Figure 6. For this pipeline, the shared memory buffer has to be doubled in size. The first
stage will work with fragments stored in the first half of the shared memory buffer, and the second
stage will work with the second half.
In the first iteration, just before the main loop begins, global-to-shared memory copies for stage
1 will be requested using memcpy_async(), and stored in the first half of the shared memory
buffer. This function uses hardware acceleration to directly copy from global memory to shared
memory, instead of transferring data through registers, which is the case in regular memory copies.
Furthermore, this function is non-blocking, which means that the calling threads can continue
executing instructions while the data is being copied.
After the first memory copies have been requested, the kernel enters the main loop and requests the
memory copies for the next stage. In other words, memcpy_async() gets called again, requesting
the fragments for the next iteration of the main loop, storing it in the second half of the shared
memory buffer. After these copies have been requested, the threads will call wait_prior<X>().
This function blocks calling threads until the previously requested memory copies are finished, but
allows for the last X requests to not have finished. In the first iteration this means that the threads
will wait until the memory copies requested before the main loop have finished. The warps can
then start computing the MMA product of the current stage, while memory copies for the next
stage are still in progress. When the warps then finish computing the MMA product of the first
iteration of the main loop, they can, in the next iteration, quickly request memory copies and then
wait only a short while before they can start computing the next MMA product.
Because memory copies are only requested for the next stage in the main loop, the last MMA
product has to be computed outside of the main loop. Once this is done, all that remains is the
epilogue, which in this case is simply multiplying the result by α and storing that result in the D
matrix.

12

4 Auto-Tuning

The tunable tensor core kernel will be tuned with Kernel Tuner [vW19]. Multiple GEMM problem
dimensions will be considered, as well as multiple GPUs. This section details the search space
restrictions and discusses the results of the auto-tuning by examining the performance distribution
of all configurations and the impact of individual parameters.

4.1 Restrictions

In order to ensure that the generated configurations are correct, a number of restrictions have to
be imposed on the search space:

• The only valid combinations of WMMA_M and WMMA_N are 8× 32, 16× 16, and 32× 8, and these
have to be given as a restriction.

• The warp tile dimensions should not be larger than the thread block tile dimensions, so,
WMMA_N · WMMA_COLS has to be less or equal than TILE_COLS (and conversely for WMMA_M,
WMMA_ROWS and TILE_ROWS).

• Since the diagonal and transpose thread block indexing modes are only applicable to square
tiles, TILE_COLS has to equal TILE_ROWS whenever the thread block indexing mode is not
cartesian.

• Whenever TILES_PER_CTA is equal to 1, both SEQUENTIAL_TILES options will result in the
same kernel, so arbitrarily choose to only generate configurations with SEQUENTIAL_TILES = 1.

• Due to the way memcpy_async() works, it is not desirable to have a group of threads request
multiple memory copies in a loop (memcpy_async() cannot perform a strided copy). Therefore,
ensure that the number of threads in a CTA is equal to or greater than TILE_COLS and
TILE_ROWS, so that 1 thread will at most copy a full 16 element wide row/column of a
fragment.

Furthermore, in order to generate a search space that can be worked through in a reasonable
amount of time, only a select amount of values can be considered for each parameter. For WMMA_M
and WMMA_N, the value pairs of 8 × 32, 16 × 16, and 32 × 8 will be used. For the thread block
tile dimensions TILE_COLS and TILE_ROWS the values 32, 64, 128, and 256 will be considered. A
TILES_PER_CTA of 1, 2 and 4 will be used, and all the previously discussed block indexing modes
will be considered. With the exception of TILE_SHMEM, all boolean parameters will be considered
with 0 and 1. During testing, TILE_SHMEM reduced performance in every case, and therefore it will
not be used to find the optimal configuration. Lastly, WMMA_COLS and WMMA_ROWS can take on the
values of 1, 2, 4, 8, and 16.

4.2 Experiment setup

The experiments for this section and for Section 5 will be ran on the DAS-6 clusters. Namely, the
VU and ASTRON clusters will be used, with CUDA versions 12.3 and 12.2.1, respectively. Three
GPUs will be considered: the A4000, an Ampere architecture card with ”Third-Generation Tensor

13

GPU and
GEMM dimen-
sions

WM WN TC TR TPC BI ST WC WR TS FAS FBS

A4000,
4096x4096x4096

16 16 128 64 1 C 1 2 4 0 1 0

A4000,
1024x1024x1024

8 32 128 64 1 C 1 1 8 0 1 0

A4000,
512x1024x128

16 16 64 64 1 C 1 2 2 0 1 0

A100,
4096x4096x4096

16 16 128 128 4 D 0 8 2 0 0 1

A4000Ada,
4096x4096x4096

8 32 128 128 1 C 1 2 8 0 0 0

Table 3: Best performing configuration for each experiment

Cores” that is readily available on most of the DAS-6 clusters, the A100, a higher-end Ampere card
with similar architecture to the A4000 but with increased performance and more advanced memory,
and the A4000 Ada, an Ada Lovelace architecture card with ”Fourth-Generation Tensor Cores”.
Due to the availability of the A4000, it will be used with multiple GEMM problem sizes, while the
A100 and A4000 Ada will only be considered with a problem size of 4096× 4096× 4096. The A4000
and A100 will be used on the VU cluster and the A4000 Ada will be used on the ASTRON cluster.

4.3 Results

All the experiments and their respective best tuning configurations can be found in Table 3.
This table contains the following parameters: WMMA_M (WM), WMMA_N (WN), TILE_COLS (TC),
TILE_ROWS (TR), TILES_PER_CTA (TPC), BLOCK_INDEX (BI), SEQUENTIAL_TILES (ST), WMMA_COLS
(WC), WMMA_ROWS (WR), TILE_SHMEM (TS), FRAG_A_SHMEM (FAS), and FRAG_B_SHMEM (FBS).
Even though the optimal configurations for the experiments ran on the A4000 differ from each other,
the optimal values for the parameters themselves are more or less the same for each experiment.
This also means that KTdashboard results for the A4000 experiments look very similar. As a result,
KTdashboard results that are shown for a specific GEMM problem size on the A4000 are also
representative of the results for the other GEMM problem sizes on the A4000.
The first noticeable result, which is generally observed in auto-tuning, is that the optimal configu-
rations all differ from each other, despite the fact that the experiments are ran on similar GPU
architectures or even on the same GPU. This confirms the complex nature of tuning GPU kernels:
even changing the problem size results in a different optimal configuration. The challenge of tuning
GPU kernels is further illustrated by Figures 7 and 8 where it is visible that there are a handful of
configurations that perform significantly better than the rest. Without thoroughly exploring the
search space of tunable parameters, these would be difficult to find.

14

Figure 7: Histogram of the performance of all generated configurations on the A100, GEMM
problem size of 4096x4096x4096

Figure 8: Histogram of the performance of all generated configurations on the A4000, GEMM
problem size of 4096x4096x4096

15

(a) Results for the A4000, GEMM problem size of 4096x4096x4096

(b) Results for the A100, GEMM problem size of 4096x4096x4096

Figure 9: KTdashboard results, colouring for TILES PER CTA, where purple, blue, and yellow
represent 1, 2, and 4 tiles per CTA, respectively

16

(a) Results for the A4000, GEMM problem size of 512x1024x128

(b) Results for the A100, GEMM problem size of 4096x4096x4096

Figure 10: KTdashboard results, colouring for SEQUENTIAL TILES, where yellow represents
SEQUENTIAL TILES=1 and purple represents SEQUENTIAL TILES=0

17

(a) A4000, GEMM problem size of 4096x4096x4096 (b) A100, GEMM problem size of 4096x4096x4096

Figure 11: KTdashboard results with BLOCK INDEX as the x axis. From left to right: cartesian,
diagonal, transpose. Colouring for kernel execution time in milliseconds

4.3.1 Memory access patterns

Of the two histograms, the A100 displays a much greater difference between the average and optimal
configurations. In Table 3 the optimal configuration for the A100 also differs much more from the rest,
using multiple thread block tiles per CTA, non-sequential tiles, and diagonal block indexing. Since
these three parameters mainly affect the global memory access pattern, the difference in optimal
values is likely caused by the A100’s unique memory layout. The performance of TILES_PER_CTA
parameter values for the A4000 and for the A100 with a GEMM problem size of 4096× 4096× 4096
can be found in Figure 9. An interesting observation is that although the best configuration for the
A100 uses a TILES_PER_CTA of 4, all the other configurations just behind it in performance use 1
or 2 tiles per CTA, and that a TILES_PER_CTA of 4 performs worse overall for both GPUs.
A similar observation can be made with regards to SEQUENTIAL_TILES, in Figure 10. Despite the
two best configurations for the A100 using non-sequential tiles, a SEQUENTIAL_TILES of 1 performs
better overall. Conversely, for the A4000 with a GEMM problem size of 512× 1024× 128, all of the
best configurations use a SEQUENTIAL_TILES of 1.
The KTdashboard results for the BLOCK_INDEX are visible in Figure 11. Here it is clearly visible
that for the A4000, the diagonal block indexing performs very poorly, and that the cartesian and
transpose block indexing are similar in performance, with the cartesian block indexing performing
slightly better. For the A100, the opposite is true, and the diagonal block indexing performs better
than the cartesian and transpose block indexing.
This result reveals that the best tuning configuration for a given kernel is not necessarily a
combination of the best performing parameter values, but can instead be a combination of specific
parameter values that work well with each other.

4.3.2 Thread block tile dimensions

In every single configuration the thread block tile dimensions take on values of either 64 or 128, which
are very often used values for thread block tiles in GEMM algorithms. The KTdashboard results for
the thread block tile parameters for the A4000 with a GEMM problem size of 4096× 4096× 4096

18

(a) Colouring for TILE COLS

(b) Colouring for TILE ROWS

Figure 12: KTdashboard results for the A4000, GEMM problem size of 4096x4096x4096, colouring
for the thread block tile dimensions

19

Figure 13: KTdashboard results for the A4000, GEMM problem size of 1024x1024x1024, colouring
for WMMA dimensions. From left to right: 8x32, 16x16, 32x8

can be found in Figure 12. Here it can be observed that the optimum lies somewhere between
the blue colours, which represent values of 64 and 128. Overall, both the very large thread block
dimensions of 256 (in yellow) and the small thread block dimensions of 32 (in purple) perform
poorly.
The optimal configuration of the A4000 with a GEMM problem size of 512× 1024× 128 uses thread
block tile dimensions of 64× 64, the smallest of all the configurations. This is likely because the
GEMM problem size is also the smallest of all experiments, indicating that, for this problem size,
maximum occupancy can only be reached with smaller thread block tiles.

4.3.3 Warp tile dimensions

In Table 3, the optimal WMMA_M and WMMA_N parameter value pairs are either 16 and 16 or 8 and 32,
respectively. Figure 13 shows that for the A4000, with a GEMM problem size of 1024× 1024× 1024,
the performance of the 3 different WMMA operation are largely identical. This would indicate that
there is no inherent advantage in any of the WMMA operation shapes. After all, a warp tile with
WMMA shape 8× 32× 16, a WMMA_ROWS of 8, and a WMMA_COLS of 2, has the exact same size as a
warp tile with WMMA shape 32× 8× 16, a WMMA_ROWS of 2, and a WMMA_COLS of 8. Then, the only
difference between computing these two warp tiles is how the WMMA API performs memory loads
for the different WMMA shapes.
The KTdashboard results for the warp tile dimensions for the A4000 and A4000 Ada can be found
in Figures 14 and 15, respectively. Recalling Figure 13, the scatter plot can be divided in 3 sections

20

(a) Colouring for WMMA COLS

(b) Colouring for WMMA ROWS

Figure 14: KTdashboard results for the A4000, GEMM problem size of 4096x4096x4096, colouring
for the warp tile dimensions

21

(a) Colouring for WMMA COLS

(b) Colouring for WMMA ROWS

Figure 15: KTdashboard results for the A4000 Ada, GEMM problem size of 4096x4096x4096,
colouring for the warp tile dimensions

22

of WMMA shapes, due to the order in which the parameters get explored by Kernel Tuner. From
left to right, the WMMA dimensions are: 8× 32× 16, 16× 16× 16, and 32× 8× 16. For both GPUs,
it is visible that for the 32× 8× 16 shaped WMMA operation, a higher WMMA_COLS value performs
better, and vice-versa for 8× 32× 16 and WMMA_ROWS. This indicates a tendency for square shaped
warp tiles in optimal configurations.

4.3.4 Shared memory

Another interesting observation is the usage of shared memory. Because shared memory usage
reduces the number of global memory accesses, it theoretically improves performance. Therefore
it is surprising to see that the optimal configurations only use shared memory for matrix A or
matrix B, instead of for both matrices. This is not an issue with shared memory buffer size since
configurations that use shared memory for both matrices do get generated, they just perform worse.
Furthermore, the best configuration for the A4000 Ada does not use shared memory at all.

23

5 Benchmarking

Now that the optimal kernel configurations have been found for the tunable tensor core kernel, the
kernel will be compared against other kernels in this section. These kernels will fall into either of
two categories:

• The kernel uses tensor cores, but is not tunable.

• The kernel is tunable, but does not use tensor cores.

The experiment setup for this section is the same for Section 4, which is described in Section 4.2.

5.1 Other kernels

For this experiment, three other GEMM kernels will be considered and benchmarked against
the tunable tensor core kernel. The first kernel is an OpenCL implementation in the CLBlast
library [Nug18]. This kernel is tunable, but does not make use of tensor cores. For this experiment,
this kernel has been tuned for half-precision to be in accordance with the mixed-precision compu-
tation of the tunable tensor core kernel. Like the tunable tensor core kernel, the CLBlast kernel
will be tuned seperately for each experiment with Kernel Tuner. The second kernel that will be
considered is from the cuBLAS library [NVIa]. In particular, the cublasSgemmEx() function will
be considered to enable mixed-precision matrix multiplication. cuBLAS is not tunable by the user,
but does make use of tensor cores. The third kernel that will be considered will be a kernel from the
CUTLASS library [NVIc]. As mentioned in Section 2.2.1, CUTLASS makes use of tensor cores and
is partially tunable. Since the optimal parameters for a CUTLASS kernel are difficult to find, the
native parameters of the CUTLASS kernel will be used. In other words, no parameters other than
usage of tensor cores and the necessary definitions of the GEMM problem will be specified. Since
default parameters are not specified for newer architectures, the performance of the CUTLASS
kernel may be further impacted.
When using a profiler, it is observed that for this problem the cuBLAS function actually calls a
CUTLASS kernel. Regardless, in the discussion below cuBLAS and CUTLASS will be considered
as two seperate kernels.

5.2 Results

The results of the benchmarking process can be found in Figure 16. The tunable tensor core,
CUTLASS, and cuBLAS kernels were ran and measured 10.000 times in a separate CUDA program,
and then averaged to take the result. The CLBlast results come from the reported performance
of the best performing configuration by Kernel Tuner, and may therefore deviate a bit from the
measurements reported by CUDA.
The first observation to make is that cuBLAS easily outperforms every other kernel, including the
CUTLASS kernel. This is to be expected, since CUTLASS kernels are meant to be hand-tuned to
achieve maximum performance, and cuBLAS is meant to have the best performing out-of-the-box
GEMM kernels from NVIDIA. CLBlast performs the worst in every category, reinforcing that tensor
cores are critical to achieving high GEMM performance. CUTLASS is the 2nd best performer
for every experiment except for the A4000 with a GEMM problem size of 512 × 1024 × 128,

24

A4000-4096 A4000-1024 A4000-512 A100 A4000 Ada
0

50

100

150

200

T
F
L
O
P
/s

Tunable tensor core
CUTLASS
cuBLAS
CLBlast

Figure 16: Average performance in TFLOP/s of 10.000 runs for each kernel, for each experiment

Statistic Tunable tensor core cuBLAS
Compute throughput 50.97% 90.43%
Memory throughput 84.76% 58.82%
L1 cache throughput 86.35% 36.36%
L2 cache throughput 61.98% 58.82%

Pipe Tensor Cycles Active 50.97% 90.43%
Executed instructions 318.783.488 71.132.209

Table 4: Nsight Compute statistics for the tunable tensor core kernel and for the cuBLAS kernel

where the tunable tensor core kernel overtakes it. The tunable tensor core and CLBlast kernels
have an advantage for this problem because the auto-tuning enables them to adapt better to the
unusual GEMM dimensions, and because the other kernels are optimized for large matrices. The
performances of all kernels are a lot closer to each other for the A4000 with a GEMM problem
size of 512× 1024× 128 since the K dimension is so small, which causes the main loop to be a lot
shorter.

5.3 Profiler results

Using NVIDIA Nsight Compute, a profiler for CUDA programs, many statistics about the kernel
execution can be gathered in order to analyze the kernel performance in depth. Table 4 contains
statistics obtained with Nsight Compute for the tunable tensor core kernel and for the cuBLAS
kernel, on the A4000 with a GEMM problem size of 4096 × 4096 × 4096. Here, throughput is

25

0 25 50 75 100

FMA
ALU

Tensor

Pipe utilization (% of active cycles)

Figure 17: Pipeline utilization for the tunable tensor core kernel

0 25 50 75 100

FMA
ALU

Tensor

Pipe utilization (% of active cycles)

Figure 18: Pipeline utilization for cuBLAS

defined as the percent of the peak sustained rate achieved during all elapsed cycles of the kernel
execution. Usually, compute throughput is the most important statistic, and is desired to be as
high as possible.
The first observation to make is that the cuBLAS kernel shows a very high compute throughput
and a lower memory throughput. The tunable tensor core kernel shows the opposite, with a high
memory throughput but a lower compute throughput. The tunable tensor core also has a much
higher L1 cache throughput. This indicates that the tunable tensor core kernel spends too many
cycles executing memory instructions, and too little cycles in compute instructions. The ”pipe
tensor cycles active” statistic is equal to the compute throughput, meaning that the peak compute
performance happens whenever the tensor cores are active. Therefore, compute throughput can be
increased by ensuring that the kernel spends the most amount of time possible using tensor cores
to perform MMA operations.
Figures 17 and 18 illustrate the pipeline utilization of the different hardware units on the streaming
multiprocessors. Once again, the cuBLAS kernel makes much greater use of the tensor cores than
the tunable tensor core kernel. This indicates that cuBLAS has a much more optimized main loop,
where data copies and computes are better overlapped, and that cuBLAS has a better memory
access pattern, having to wait less for memory loads to finish. The 10 most executed instructions for
the tunable tensor core kernel can be found in Figure 19 and for the cuBLAS kernel in Figure 20.
For the tunable tensor core kernel, the most executed instruction is integer-multiply-and-add
(IMAD), which is executed by the FMA. This is why the tunable tensor core kernel has a greater
utilization of the FMA than the cuBLAS kernel. Matrix-multiply-and-accumulate (HMMA) is the
cuBLAS kernel’s most and tunable tensor core kernel’s second most executed instruction, and is
the instruction that gets executed by the tensor cores. For both kernels, the number of HMMA
instructions is the same. Most of the IMAD instructions for the tunable tensor core kernel are used
to calculate memory addresses. Since the difference in the number of executed instructions is not
proportional to the difference in performance, the large number of IMAD instructions is likely not
the main reason that the tunable tensor core kernel performs poorly, but probably still causes a
performance bottleneck.

26

0 1 2 3 4 5 6 7 8

·107

LDSM

BRA

SHF

LDG

LEA

ISETP

IADD3

LOP3

HMMA

IMAD

Number of executed instructions

Figure 19: The 10 most executed instructions and their respective instruction count for the tunable
tensor core kernel

0 0.5 1 1.5 2 2.5 3 3.5 4

·107

R2P

SEL

ISETP

IMAD

UMOV

LDGSTS

IADD3

UIADD3

LDSM

HMMA

Number of executed instructions

Figure 20: The 10 most executed instructions and their respective instruction count for the cuBLAS
kernel

27

6 Conclusions and further research

Overall, even though the tunable tensor core kernel outperforms CLBlast, a tunable GEMM kernel
that does not use tensor cores, the tunable tensor core kernel performs quite poorly compared to
existing kernels that do make use of tensor cores. Still, the tunable tensor core kernel can be used
in auto-tuning research, serving as an alternative to or possibly replacing the much older CLBlast
kernel. Furthermore, it is shown that auto tuning does help in developing a GEMM kernel that uses
tensor cores, with a handful of configurations per experiment being greatly ahead in performance
compared to the rest. By hand, these optimal configurations would be hard to find. In conclusion,
auto-tuning can help a lot with developing GEMM kernels, but only auto-tuning is not enough to
develop kernels that match performance of state-of-the-art GEMM kernels.
In the future, a tunable tensor core kernel may be developed that aims to fix the performance
problems identified in Section 5.3. Some of these problems can possibly be resolved by implementing
more optimizations that CUTLASS uses, such as ”warp-scoped matrix fragments”, an optimization
similar to the overlapping memory copy and compute, but instead targeting registers. Another
tunable tensor core kernel can be developed with other methods of accessing tensor cores, such as
using CuTe, or by directly targeting PTX instructions. It could also incorporate hardware features
of newer GPUs, such as Tensor Memory Accelerators in the new Hopper architecture. More features
can also be made tunable, such as choosing whether or not to take the transpose of the A or B
matrices, the number of stages in the pipeline of the main loop, and integer data types.
Lastly, developing an energy efficient GEMM kernel is especially interesting. Since GEMM forms
the backbone of many neural networks, it becomes very important to consider the energy usage
of developing deep learning applications, and possibly shifting the focus of GEMM kernels from
FLOPS performance to energy efficiency, since these two performance metrics usually do not
overlap [SVvWB22].

28

References

[AKV+14] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey
Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An extensible
framework for program autotuning. In 2014 23rd International Conference on Parallel
Architecture and Compilation Techniques (PACT), pages 303–315, 2014.

[AMD20] AMD. Amd cdna architecture. https://www.amd.com/content/dam/amd/en/

documents/instinct-business-docs/white-papers/amd-cdna-white-paper.

pdf, 2020. Accessed: 28-6-2024.

[AY] Jeremy Appleyard and Scott Yokim. Programming tensor cores in cuda 9. https:

//developer.nvidia.com/blog/programming-tensor-cores-cuda-9/.

[BDG+18] Prasanna Balaprakash, Jack Dongarra, Todd Gamblin, Mary Hall, Jeffrey K.
Hollingsworth, Boyana Norris, and Richard Vuduc. Autotuning in high-performance
computing applications. Proceedings of the IEEE, 106(11):2068–2083, 2018.

[BEdL+16] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein, Frank
Seinstra, Cees Snoek, and Harry Wijshoff. A medium-scale distributed system for
computer science research: Infrastructure for the long term. Computer, 49(5):54–63,
2016.

[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. In Proceedings of the 29th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
page 101–113. Association for Computing Machinery, 2008.

[CCH07] Chun Chen, Jacqueline Chame, and Mary W. Hall. Chill : A framework for composing
high-level loop transformations. 2007.

[CMJ+18] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. Tvm: An automated end-to-end optimizing compiler for deep
learning, 2018.

[FJ98] M. Frigo and S.G. Johnson. Fftw: an adaptive software architecture for the fft. In
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP ’98 (Cat. No.98CH36181), volume 3, pages 1381–1384
vol.3, 1998.

[FPB17] Jǐŕı Filipovič, Filip Petrovič, and Siegfried Benkner. Autotuning of opencl kernels
with global optimizations. In Proceedings of the 1st Workshop on AutotuniNg and
ADaptivity AppRoaches for Energy Efficient HPC Systems. Association for Computing
Machinery, 2017.

[GAGN15] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep
learning with limited numerical precision. In International conference on machine
learning, pages 1737–1746. PMLR, 2015.

29

https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna-white-paper.pdf
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/
https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

[GL11] Dominik Grewe and Anton Lokhmotov. Automatically generating and tuning gpu
code for sparse matrix-vector multiplication from a high-level representation. In
GPGPU-4: Proceedings of the Fourth Workshop on General Purpose Processing on
Graphics Processing Units, page 12, 03 2011.

[HNS09] Albert Hartono, Boyana Norris, and P. Sadayappan. Annotation-based empirical
performance tuning using orio. In 2009 IEEE International Symposium on Parallel &
Distributed Processing, pages 1–11, 2009.

[JYP+17] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu
Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana
Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray
Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps,
and Jonathan Ross. In-datacenter performance analysis of a tensor processing unit.
In 44th International Symposium on Computer Architecture (ISCA), 2017.

[KC06] Patrice Simard Kumar Chellapilla, Sidd Puri. High performance convolutional neural
networks for document processing. In Tenth International Workshop on Frontiers in
Handwriting Recognition, Université de Rennes 1, oct 2006.

[KMDT] Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. Cutlass:
Fast linear algebra in cuda c++. https://developer.nvidia.com/blog/

cutlass-linear-algebra-cuda/.

[LDT09] Yinan Li, Jack Dongarra, and Stanimire Tomov. A note on auto-tuning gemm for
gpus. In Proceedings of the 9th International Conference on Computational Science:
Part I, pages 884–892, 05 2009.

[MCL+18] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S.
Vetter. Nvidia tensor core programmability, performance & precision. In 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 522–531, 2018.

[NC15] Cedric Nugteren and Valeriu Codreanu. Cltune: A generic auto-tuner for opencl
kernels. 2015 IEEE 9th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip, pages 195–202, 2015.

[Nug18] Cedric Nugteren. Clblast: A tuned opencl blas library. In Proceedings of the Interna-
tional Workshop on OpenCL, IWOCL ’18. ACM, May 2018.

[NVIa] NVIDIA. cublas. https://developer.nvidia.com/cublas.

30

https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/cublas

[NVIb] NVIDIA. Cute. https://github.com/NVIDIA/cutlass/blob/main/media/docs/

cute/00_quickstart.md.

[NVIc] NVIDIA. Cutlass. https://github.com/NVIDIA/cutlass.

[NVId] NVIDIA. Cutlass: Cuda template library for dense linear algebra at all lev-
els and scales. https://on-demand.gputechconf.com/gtc/2018/presentation/

s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.

pdf.

[NVIe] NVIDIA. gemm-hierarchy-with-epilogue.png. https://github.com/NVIDIA/

cutlass/blob/main/media/images/gemm-hierarchy-with-epilogue.png.

[NVI17] NVIDIA. Nvidia tesla v100 gpu architecture. https://images.nvidia.com/content/
volta-architecture/pdf/volta-architecture-whitepaper.pdf, 2017. Accessed:
19-2-2024.

[NVI24] NVIDIA. Parallel Thread Execution ISA Version 8.5, 2024. https:

//docs.nvidia.com/cuda/parallel-thread-execution/index.html#

warp-level-matrix-multiply-accumulate-instructions.

[PMJ+05] M. Puschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W. Singer, Jianxin
Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W. Johnson, and N. Rizzolo.
Spiral: Code generation for dsp transforms. Proceedings of the IEEE, 93(2):232–275,
2005.

[RRS+08] Shane Ryoo, Christopher Rodrigues, Sam Stone, Sara Baghsorkhi, Sain-Zee Ueng, John
Stratton, and Wen-mei Hwu. Program optimization space pruning for a multithreaded
gpu. In Proceedings of the 2008 CGO - Sixth International Symposium on Code
Generation and Optimization, pages 195–204, 04 2008.

[RSSG21] Ari Rasch, Richard Schulze, Michel Steuwer, and Sergei Gorlatch. Efficient auto-tuning
of parallel programs with interdependent tuning parameters via auto-tuning framework
(atf). ACM Trans. Archit. Code Optim., 18(1), jan 2021.

[SVvWB22] Richard Schoonhoven, Bram Veenboer, Ben van Werkhoven, and Kees Joost Batenburg.
Going green: optimizing gpus for energy efficiency through model-steered auto-tuning,
2022. https://arxiv.org/abs/2211.07260.

[TNLD10] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear
algebra solvers for multicore with gpu accelerators. In Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages
1–8, 04 2010.

[vW19] Ben van Werkhoven. Kernel tuner: A search-optimizing gpu code auto-tuner. Future
Generation Computer Systems, 90:347–358, 2019.

[vWPS20] Ben van Werkhoven, Willem Jan Palenstijn, and Alessio Sclocco. Lessons learned in a
decade of research software engineering gpu applications. In International Conference
on Computational Science, ICCS 2020, pages 399–412, jan 2020.

31

https://github.com/NVIDIA/cutlass/blob/main/media/docs/cute/00_quickstart.md
https://github.com/NVIDIA/cutlass/blob/main/media/docs/cute/00_quickstart.md
https://github.com/NVIDIA/cutlass
https://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf
https://on-demand.gputechconf.com/gtc/2018/presentation/s8854-cutlass-software-primitives-for-dense-linear-algebra-at-all-levels-and-scales-within-cuda.pdf
https://github.com/NVIDIA/cutlass/blob/main/media/images/gemm-hierarchy-with-epilogue.png
https://github.com/NVIDIA/cutlass/blob/main/media/images/gemm-hierarchy-with-epilogue.png
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-multiply-accumulate-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-multiply-accumulate-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-multiply-accumulate-instructions

[WD98] R.C. Whaley and J.J. Dongarra. Automatically tuned linear algebra software. In SC
’98: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, pages 38–38,
1998.

[YSL+23] Yongseung Yu, Donghyun Son, Younghyun Lee, Sunghyun Park, Giha Ryu, Myeongjin
Cho, Jiwon Seo, and Yongjun Park. Tailoring cutlass gemm using supervised learning.
In 2023 IEEE 41st International Conference on Computer Design (ICCD), pages
465–474, 2023.

[YWC20] Da Yan, Wei Wang, and Xiaowen Chu. Demystifying tensor cores to optimize half-
precision matrix multiply. In 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 634–643, 2020.

32

	Introduction
	Thesis overview

	Background and related work
	GEMM
	Tensor cores
	CUTLASS
	CuTe
	WMMA API

	Auto-tuning
	KTdashboard

	Related work

	Methodology
	Thread block tiles
	Warp tiles
	Main loop

	Auto-Tuning
	Restrictions
	Experiment setup
	Results
	Memory access patterns
	Thread block tile dimensions
	Warp tile dimensions
	Shared memory

	Benchmarking
	Other kernels
	Results
	Profiler results

	Conclusions and further research
	References

