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Abstract

Attack-Defense Trees (ADTs) are an important tool for visualizing security scenarios. The
trees give a clear overview of a situation and showcase possible actions to take for both
the proponent and the opponent. On the formal model of ADTs, Attack-Defense Terms
(ADTerms), various mathematical operations can be performed. In this research, we focus
on determining equivalence between two ADTerms and on determining satisfiability of an
ADT. We introduce an equivalence threshold using the Levenshtein Distance to overcome the
limitation of strict equivalence between two ADTerms. We also adopt the Depth-First Search
(DFS) algorithm and apply it to ADTs to determine satisfiability of an ADT more efficiently
than using the propositional semantics of ADTerms. We implement these operations in a
tool that we develop, named ADT Create. We perform experiments to test the functionality
of our methods, determine the optimal value of an equivalence threshold to overcome strict
equivalence and determine how much more efficient our method for determining satisfiability
is than using propositional semantics of ADTerms in determining satisfiability. We discuss the
results and conclude our research with possible further research ideas.
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1 Introduction

(Cyber)security is an important aspect of our society. More parts of our lives are being digitalized,
and besides the fact that this makes our lives more convenient, it also makes us more vulnerable
to cyber attacks, causing billions of dollars worth of damages [1]. In order to prevent and prepare
ourselves for these attacks, we can use threat modeling to visualize these threats. Using threat mod-
eling, we stop attacks by performing the correct counteractions, or even prevent attacks completely.

The threat modeling technique we focus on in this research is Attack-Defense Trees (ADTSs),
which have been introduced and formalized by Kordy et al. [2]. ADTs are a graphical representation
of attack-defense scenarios described in a tree-like structure. The trees consist of multiple nodes,
which can either have the attack or defense type. Together, these nodes represent a scenario, in
which the goal is to either attack or defend a system. This goal is then split up in unique and detailed
subgoals, which can be further split up in more subgoals. This way, an ADT gives a clear overview
of a situation and showcases the possible actions that can be taken. ADTs make security scenar-
ios easy to understand and prepares a user to stop or even fully prevent attacks against their system.

A formal representation of ADTs, called Attack-Defense Terms (ADTerms), is adopted from [2].
With this introduction of ADTerms, two models have been introduced to offer different capabilities
for analyzing and reasoning about security scenarios. The multiset model introduces multiset
semantics, which converts an ADTerm to a multiset representation. In this thesis, we look at
multiset semantics for equivalence determination. The propositional model introduces propositional
semantics, which converts an ADTerm to a propositional formula. In this thesis, we look at proposi-
tional semantics for satisfiability determination. We focus on these two operations and improve them.

Equivalence determination between two ADTerms using multiset semantics is done by processing
the two ADTerms into two distinct multisets. In this process, the basic actions, which are the
leaf nodes, processed in the two ADTerms are compared to each other. The two leaf node labels
are only seen as equivalent, if they are exactly equal. This is a very strict approach, since the
slightest differences between two labels lead to inequivalence between the two ADTerms, even if
they describe the same scenario. This strictness therefore forms a limitation. This limitation can be
overcome by allowing a certain amount of differences between two labels.

Satisfiability determination of an ADTerm using propositional semantics is done by convert-
ing an ADTerm into a propositional formula. This formula is then fully processed to determine if it
is satisfiable. This process can become complex when the ADTerm grows in size, since satisfiability
needs to be determined of every basic action and associated function symbol (intermediate nodes
in an ADT). This process can be made more efficient by using ADTs, instead of ADTerms. Using
ADTs, we can prune parts of the ADT that are not needed to determine satisfiability.

The improvements of these two operations are implemented in a tool that we develop, named ADT
Create, together with all necessary features to upload, download, create and customize ADTSs, and
to generate ADTerms based on ADTs. This enables users worldwide to use an OS-independent tool
to create and customize ADTs and use the improved operations for their own threat modeling.



1.1 Research objectives

In this thesis, we aim to obtain two research objectives. We go over these objectives, and state how
we approach them.

Our first research objective (RO1) is: Finding an optimal value for an equivalence threshold
using the Levenshtein Distance to overcome strict equivalence between two ADTerms.

We approach this objective by adopting the method to compare two ADTerms to each other
from [2]. We then introduce an equivalence threshold, using the Levenshtein Distance, to create a
margin, in which an amount of characters between labels is allowed to be different. We perform
experiments to validate our methods of generating an ADTerm based on an ADT and of com-
parison between two ADTerms using an equivalence threshold using the Levenshtein Distance.
Finally, we perform an experiment with a dataset of ADTSs, to determine the optimal value for the
equivalence threshold. This optimal value is the value that allows the most amount of ADTerms
of ADTs to be seen as equivalent, whilst still maintaining the integrity of the comparison, and
therefore is the value that reduces the strictness of the equivalence most with the best possible result.

Our second research objective (ROZ2) is: Determine satisfiability of an ADT more effi-
ciently than using the propositional semantics of an ADTerm.

We approach this objective by adopting the theory behind the satisfiability determination of
an ADTerm using propositional semantics. We use this theory as the foundation to create a method
for determining satisfiability of ADTs. For this method, we adopt the Depth-First Search (DFS)
algorithm from [3] to traverse an ADT and explore the possibilities of pruning parts of an ADT
that are not needed to determine satisfiability. We perform experiments to validate our method
and compare it to the process of determining satisfiability using the propositional semantics of an
ADTerm to determine its efficiency.

1.2 Main contributions

The main contributions of this thesis are to introduce an equivalence threshold using the Levenshtein
Distance and determine the optimal value for this margin to overcome the limitation of strict
equivalence between two ADTerms. We also introduce a more efficient approach to determine
satisfiability of an ADT using DFS, which is more efficient than using the propositional semantics of
an ADTerm to determine satisfiability. We implement these optimized validated methods, together
with the process of uploading, downloading, creating and customizing ADTSs, in a tool that we
develop, named ADT Create.



1.3 Thesis overview

The current chapter is the introduction of this thesis. Chapter 2 gives a detailed background
of all topics that are discussed. This includes the generation of ADTerms based on ADTSs, the
comparison between two ADTerms using the multiset model and the determination of satisfiability
of an ADTerm using the propositional model. For full understanding of the background, examples
of all topics have been provided in Appendix A. Chapter 3 describes the related work that has
been done prior to this thesis on the discussed background. In Chapter 4, we explain our proposed
approach. This includes our proposed methods, the experiment designs we use for the experiments
to test their functionality and efficiency to validate them, and the validity of the experiment designs.
In Chapter 5, we go over the structure and implementation of our tool ADT Create. Chapter 6
goes over the results of the performed experiments. In Chapter 7, we discuss our research and
use the results of the experiments to address our research objectives. Using the information gath-
ered in our research, we then conclude this thesis and discuss potential further research in Chapter 8.

This bachelor thesis is supervised by Nathan Daniel Schiele and Dr. Olga Gadyatskaya and
is part of the Leiden Institute of Advance Computer Science (LIACS).



2 Background

This chapter contains a detailed explanation of the background that is used in our research. We
discuss the construction of ADTs, the generation of ADTerms, the comparison of ADTerms using
multiset semantics, and the determination of satisfiability of an ADTerm using propositional
semantics. Examples for all of these topics can be found in Appendix A.

2.1 Attack-Defense Trees

ADTSs were first introduced and formalized in [2]. They are a graphical model which describes the
actions an attacker or defender can take in order to achieve their goal of offending or defending a
system [1]. ADTs consist of nodes. These nodes can have one out of two types: attack or defense.
Attack nodes are generally displayed as red nodes and defense nodes as green nodes. A node N in
an ADT can have children nodes. In this case, node N is a parent of these nodes, which makes
it an intermediate node. Intermediate nodes form subgoals of the ADT. The children nodes of
node N can have one out two possible relationships together. We refer to these relationships as
the refinement between the children nodes. When a node N has the OR refinement, only one of
its children nodes must be achieved to complete the subgoal the parent node represents. When a
node N has the AND refinement, all of its children nodes must be achieved in order to complete
the subgoal the parent node represents. If node N does not have children nodes, it is a leaf node,
also referred to as a non-refined node. Leaf nodes are the basic actions that can be taken by an
attacker or defender. Depending on the refinement, when a basic action, or combination of basic
actions, is performed, the goal of the parent node can be achieved. When the goal of a parent node
is achieved, or a combination of goals of parent nodes, the parent node of these parent nodes can
be achieved. This continues, until we reach the final parent of the ADT, which does not have a
parent node itself. We refer to this as the root node, which represents the main goal of the ADT.

ADTs have the possibility to process attributes [1], such as the cost to take basic actions and reach
(sub)goals and the time that these basic actions and reaching these (sub)goals take. We do not
process attributes in our research.

Figure 1: ADT depicting an attack on a Bank Account. Modified version of the ADT made by
Kordy et al. in [2]. Made using the ADT WebApp [5].
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Figure 2: ADT depicting a defense for a Bank Account. Made using the ADT WebApp [5].

The descriptions of the ADTs in Figure 1 and in Figure 2 can be found in Appendix A.1 and
Appendix A.2 respectively.

2.1.1 Countermeasure Prevention

In order for an ADT to be as effective as possible, certain rules have been set into place. We refer
to these rules as countermeasure prevention. Countermeasure prevention states that nodes of a
certain type may have at most one child node that has the opposite type [1]. This means that an
attack node may have at most one defense child node, and a defense node may have at most one
attack child node. Because of this rule, nodes describe a unique scenario for which there may be at
most one counter. This counter may be broad, and form its own subADT describing this counter in
more detail. In an ADT, the connection between a parent node and a counter child node is given
with a dotted line, instead of a straight line.

2.2 ADTerms

We adopt a formal representation of ADTs, namely ADTerms, from [2]. ADTerms have certain
rules set in place for its notation. We refer to this notation as the AD-signature [2]|. This signature
consists of two sets. The first set represents the distinction between the two types attack and
defense. However, since the root node decides which of the two types is the main goal of the scenario,
we refer to the root type as the proponent and to the other type as the opponent. The second set
contains function symbols, which represent the possible relationships between parts of an ADTerm.

Formally, the AD-signature [2] is a pair ¥ = (S, F), where
e S ={p, o} is a set of the two types, representing the proponent and opponent, and

o F=BPUB°U{VP AP V° A° cP c°} is a set of function symbols. BP and B define the basic
actions that the proponent and opponent can take. {VP AP, V° A° cP c°} defines a set of
functions that describe the relationship, also referred to as refinement, between the children
nodes of proponent and opponent nodes.

Using this AD-signature, we can build up terms. These terms we call ADTerms, and represent ADTs.

In the following sections, we go over the different models for ADTerms and the generation of
ADTerms based on ADTs.



2.2.1 Models for ADTerms

Kordy et al. introduce and define two models for ADTerms in [2], namely the propositional model
and the multiset model, which they extended from Attack Trees (ATs). In this section, we go over
these models. In the following two sections, we refer back to these models and reason which model
we use for our research.

Propositional model The propositional model is based on propositional logic [6]. An ADTerm
is converted to a propositional formula by associating a propositional variable to each basic action.
An ADTerm is satisfiable when there is a combination of truth values of the basic actions, for which
the final computed value of the root node holds. Two ADTerms in the propositional model are
equivalent iff for every valuation v of the propositional variables in the two propositional formulae
¥ and 9’ holds that v(v) = v(¢’). The semantics induced by this model are called propositional
semantics. The formal definition of the propositional model can be found in [2].

Multiset model The multiset model is based on multisets. A multiset is an unordered collection
of elements in which an element can appear more than once [7]. In the context of ADTerms, the
elements are the basic actions. Bossuat and Kordy have made a distinction between two types of
duplicate nodes, namely cloned nodes and twin nodes, in [8]. For our research, we only acknowledge
twin nodes, which are duplicate nodes that are completely independent of each other. Multisets
are a suitable manner of storage for ADTerms, since basic actions are mandated by AND and OR
refinements, which are commutative. Therefore, the order of the basic actions does not matter,
which is one of the key features of multisets. An ADTerm is satisfiable when there is a selection of
elements that the proponent can achieve to achieve the subgoals that are necessary to achieve the
main goal. Attributes can also be evaluated in satisfiability determination using this model, since
multiple possible selections of elements and their attribute values can be compared to each other.
Two ADTerms in the multiset model are equivalent if the multiset of both ADTerms contain the
same elements, including twin nodes and in any order. The semantics induced by this model are
called multiset semantics. The formal definition of the multiset model can be found in [2].

The multiset model is proved to be finer than the propositional model in [2], since the propositional
model does not distinguish multiple occurrences of a basic action, whilst the multiset model does.
Therefore, when two ADTerms with twin nodes are being compared using the propositional model,
they may be seen as equivalent, due to this model not taking into account multiple occurrences of
a basic action, whilst it is not seen as equivalent using the multiset model. With our two research
objectives in mind, we look into the propositional model for determining satisfiability and the
multiset model for determining equivalence.

2.2.2 Generation of ADTerms

ADTerms are generated based on ADTs. We determine structures of ADTSs, defined by Kordy
et al. [2], by looking at the ADTs and determine relationships between nodes following the AD-
signature introduced in Section 2.2. This process is simplified by the introduction of a transformation
table, which can be seen in Table 1 and is adopted from [2]. This table shows the transformation
rules for all possible ADT structures to ADTerms. Using these eight transformation rules, any
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Table 1: Transformation table for transformation from ADTs to ADTerms [2].

ADT T can be transformed into ADTerms «(7"). What is important to note, is that in ADTerms,
only the labels of the basic actions are present. The labels of intermediate nodes do not matter,
since the computations and internal structure of ADTs do not depend on them. Therefore, they
are only represented by their associated function symbols which can be found in the AD-signature [2].

To generate ADTerms, we adopt the method by Kordy et al. [2]. We work bottom-up, and
start at the deepest level of abstraction of the ADT, where we determine the first basic actions. We
then keep working levels up and define the relationship between basic actions, intermediate nodes
and parts of the already generated ADTerms using the transformation table in Table 1, until we
reach the root node. The ADTerms is then fully generated.

An example of the generation of an ADTerm can be found in Appendix A.3.

2.3 Equivalence between ADTerms

In an ADT, the OR and AND refinement of a node determine the relationship between the children
nodes. These refinements are commutative, meaning that the order of the children nodes does not
affect the meaning of the ADT. We determine equivalence between two ADTerms using the multiset
model, since, when determining equivalence, we are interested in the finest level of detail, and
therefore want to be able to distinguish twin nodes. Twin nodes are further discussed in Section 2.2.1.
We say that two ADTs are equivalent if they represent the same multiset representation generated
using the multiset semantics.



To determine equivalence using multiset semantics, we convert two ADTerms to two multisets using
the multiset model by Kordy et al. [2]. We then compare these two multisets to each other. We
determine equivalence between these two multisets by checking whether the multisets contain the
same elements, including twin nodes, and in any order. An example of determining equivalence
using multiset semantics can be found in Appendix A.4. In order for these two multisets to be
equivalent, the labels of the basic actions must be equal to each other. This is a very strict approach.
Therefore, we look into creating an equivalence threshold using the Levenshtein Distance. The
threshold represents a percentage of the amount of characters of the longest label in the comparison
that is allowed to differ between the two strings.

Levenshtein Distance In order to create an equivalence threshold, we adopt the Levenshtein
Distance from [9]. The Levenshtein Distance determines the minimal amount of operations needed
to change one string into another. These operations are insertions, deletions and substitutions [10].
Using this method, we can determine how many operations two strings, in our case the labels of two
basic actions, are apart from each other, and allow an amount of characters to differ. An example
of using the Levenshtein Distance between two strings to determine the amount of operations that
is needed to change one string into the other, can be found in Appendix A.5.

2.4 Satisfiability of an ADTerm

In order to determine satisfiability, we discuss the model that is most relevant to our research. As
can be read in Section 2.2.1, there are important distinctions between the propositional model and
the multiset model. The multiset model adds the comparison of attributes in ADTs to determine
the best satisfiable path, instead of just a satisfiable path. However, since in our research, we are not
interested in processing attributes in the determination of satisfiability, as is stated in Section 2.2.1,
we choose to work with the propositional model. This model covers determining satisfiability of the
structure of an ADTerm, and therefore of an ADT, which is what we are interested in in our research.

Using the described notation from the propositional model [2], we can determine the propositional
semantics of an ADTerm, with which we can determine if the ADTerm is satisfiable. To ensure
the results of our research are consistent, we assume we can perform all basic actions (attack
and defense basic actions) that are present in the ADTs, and give them a value 1. This does
not bias the research, since we assume that all basic actions are satisfiable in both our method
and determining satisfiability using propositional semantics, which we compare to each other to
determine the efficiency of our method. Two examples of determining satisfiability of an ADTerm
using propositional semantics, one of which satisfiable and the other not satisfiable, where all basic
actions are assumed to be performable, can be found in Appendix A.6 and Appendix A.7 respectively.

Satisfiability in an ADT, where all basic actions are assumed satisfiable, means that there must be
at least one path made out of proponent nodes, that is not countered by opponent nodes. This
decides whether or not the proponent here is the overall winner of the ADT. However, if every
possible proponent path is countered by an opponent node, the opponent is the overall winner,
making the ADT not satisfiable [1].



3 Related Work

This chapter discusses the related work that has been done prior to this thesis. We discuss multiple
papers that have been written about similar topics and show their relevance to our research.
Specifically, we discuss the research done on ADTs, the tools that have been developed to create
and represent ADTs and the implementation of determination of equivalence and satisfiability in
other areas.

3.1 History of ADTs

ADTs form the core of our research. They are an extended version of Attack Trees (ATs), which
were introduced in 1999 by Schneier [1 1] and later formalized by Mauw and Oostdijk in 2006 [12]. In
2011, ADTs were formalized by Kordy et al. stating the foundations of ADTs by introducing defense
nodes in ATs and a formal representation of ADTs: ADTerms [2]. The generation of ADTerms,
the process of determining equivalence and satisfiability of ADTs and countermeasure prevention
are also introduced in this formalization of ADTs. It also introduces the propositional model and
multiset model for ADTs, which both also have been extended from ATs [13].

Shortly after in 2011, Kordy et al. proved that the introduction of defense nodes in ATs does not
increase the computational complexity of ADTs [14], showing the efficiency of ADTs. In 2012,
Kordy, et al. continued their research on ADTs and published a paper which guides a user in
formulating quantitative questions on ADTs and how to construct corresponding attribute domains
for them [1]. In this same year, Kordy et al. expanded upon the foundations of ADTs by giving
complete axiomatizations for the propositional and multiset semantics of ADTs [15].

3.2 Tools

To address our research objectives, a tool is developed that contains all functionalities needed.
Similar created tools include ADTool [16], which is a tool for creating and representing ADTs in a
visual appealing manner, based on the formal framework of ADTs [2]. It supports the conversion of
ADTs to ADTerms and allows the connection of attributes to the nodes. It is specifically created to
guide users in constructing correct trees, is available for free and open source. ADTool is based on
other tree-like modeling tools, such as SecurITree [17] and AttackTree+ [1&], which are similar tools
behind a paywall and are closed source. Other tools, such as SeaMonster, are open source and are
free, but do not have the same capabilities as ADTool [16, 19]. For example, SeaMonster is only able
to construct ATs and Misuse Cases, and not ADTs. However, ADTool cannot determine equivalence
between two ADTerms. Besides that, the tool is only available for the Windows operating system,
meaning it is not universally available. An app that is universally available, is the ADT WebApp [5].
It misses out on some functionalities that ADTool has, like the support for attributes and ADTerms,
but is available as a web application on any webbrowser and is currently still under development.
All figures of ADTs in this thesis are created using the ADT WebApp.



3.3 Equivalence

We are determining equivalence between two ADTerms, to see if they represent the same scenario,
even though basic actions might slightly differ in order. Research for equivalence between other
types of trees has been done as well. Zantema has researched the equivalence between decision
trees [20], which have a similar hierarchical structure as ADTs. Another example is fault trees [21],
for which equivalence between two fault trees can also be determined in a similar way due to a
similar hierarchical structure.

An important part of how we determine equivalence between similar scenarios includes deter-
mining if the labels of the basic actions of two ADTerms are the same or not. However, direct
comparison can determine inequivalence between two ADTerms, even if they describe the same
scenario. Therefore, we use methods to determine similarity between two basic actions. Effectively,
we are doing string comparisons here. String comparison is a thoroughly researched area. Other than
the Levenshtein Distance [10], which we use in this thesis, there are also other string comparison
methods. One of them is the Hamming Distance [22], which calculates the number of positions in
which the characters are different between two strings. A downside of this method is the need of two
strings with the exact same length, which is unlikely for the labels of two basic actions. Another set
of methods for string comparison is referred to as phonetic algorithms [23]. A phonetic algorithm
takes a word and transforms it into a phonetic code. This code indicates the pronunciation of the
word in a specific language, which is then matched with other words with similar pronunciations.
An example of a phonetic algorithm is Soundex [24], which is being researched for its use in SMS
text representation.

3.4 Satisfiability

The term satisfiability origins from the field of propositional logic [6]. In our case, the satisfiability
problem is applied to ADTs to determine whether the proponent can defeat the opponent in their
attack-defense scenario or not. However, it has been applied in other areas as well. Some of these
areas include, but are not limited to, combinational equivalence checking, automatic test-pattern
generation, model checking, planning and haplotype inference [25]. Even though the satisfiability
problem is a NP-complete decision problem [20], the algorithm is remarkably efficient in these areas.
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4 Proposed Approach

In this chapter, we introduce our proposed approach by going over our proposed methods and how
they together form the approach to our research objectives. We also go over the experiment designs
of our experiments to test the functionality and effectiveness of our methods and the validity of the
experiment designs.

4.1 Proposed Methods

This section contains the explanations of our proposed methods that we use to achieve our research
objectives. We discuss the algorithms for the generation of ADTerms, the comparison of ADTerms
and the determination of satisfiability using DFS on ADTs.

4.1.1 Method for Generation of ADTerms

The generation of an ADTerm is started from the root node and performed recursively. We start
with generating an empty string, and build up the ADTerm bottom-up. From the root node, we go
through the ADT using DFS. We start with generating parts of the ADTerm based on the basic
actions. Using these parts, we can build up parts of the ADTerm based on intermediate nodes,
since these parts of the ADTerm are dependent on the children nodes. We continue this process,
and merge the parts of an ADTerm together, up until the root node. To generate an ADTerm, we
use the transformation table which can be found in Table 1.

Algorithm 1 shows the algorithm for ADTerm generation of an ADT. The algorithm, together
with the helperfunctions, represent all the possible conversion possibilities of the base structures in
Table 1. We state which parts of the algorithm generate the ADTerm of which base structures in
Table 1. We do this by referring back to the cell numbers in the table. The algorithm combines the
generated parts of the ADTerm. It also generates the ADTerm of a leaf node (cell 1 and cell 2),
and generates the ADTerm of an intermediate node with a single child node that are both of the
same type (cell 3 and cell 4 for k == 1). ADTermSingleChildWithCounter (node N, result) in
Listing 1 generates the ADTerm of a node with a single child node, which is a counter child node
(cell 5 and cell 6). ADTermIntermediateWithCounter(node N, result) in Listing 2 generates
the ADTerm of an intermediate node, meaning it has other children nodes of the same type, with a
counter child node (cell 7 and cell 8). Lastly, ADTermIntermediate(node N, result) in Listing 3
generates the ADTerm of an intermediate node with more than one child node and no counter child
node (cell 3 and cell 4 for k > 1).

The notation of the resulting ADTerm might look slightly different from the notation by Ko-
rdy et al. in [2], due to the limitations of support for subscript and superscript characters in Bash
with a focus on clean and readable code. This difference of notation does not negatively impact the
representation of the ADTerm. The algorithm has a computational complexity of O(n), in which
n is the total amount of nodes in the ADT. We use this method to generate ADTerms based on
ADTs in order to compare these ADTerms to determine equivalence.
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Algorithm 1: Generation of ADTerm of a given ADT, based on the theory by Kordy et al. [2]
Input: Node N
Output: ADTerm of node N in string format
Initialize result = "7
foreach child C of node N do
# Go through ADT recursively
Generate ADTerm of child C
if first child C' of node N then
L result += ADTerm of child C

else
L result += ", " + ADTerm of child C

if node N is a leaf node then
L result = label node N # Leaf node, ADTerm is label

else

# node N is not a leaf node

if node N has one child C then

if type child C' == type node N then

# No counter child node

result = '[" + result + ']’ # No function symbol necessary, indicate deeper
level of abstraction

else
# Has counter child node
result = ADTermSingleChildWithCounter (node N, result) # See Listing 1

else

# Node N has more than one child node

if node N has a counter child node then

L result = ADTermIntermediateWithCounter(node N, result) # See Listing 2

else
# Node N does not have a counter child node
result = ADTermIntermediate(node N, result) # See Listing 3

return result

def ADTermSingleChildWithCounter(node N, result):
if type node N == type root node ADT:

result = 'cp[' + label node N + ', ' + result + ']l' # Proponent, has counter child
else:
result = 'co[' + label node N + ', ' + result + 'l' # Opponent, has counter child

return result

Listing 1: Pseudocode for function for generating the ADTerm of an ADT node N with a single
child node, which is a counter child node.
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def ADTermIntermediateWithCounter(node N, result):
functionSymbol = "'
if type node N == type root node ADT:
if node N has OR refinement:
functionSymbol = 'cp[Vpl' # Proponent, OR refinement, has counter child
elif node N has AND refinement:
functionSymbol = 'cp[Apl' # Proponent, AND refinement, has counter child
else:
if node N has OR refinement:
functionSymbol = 'co[Vol[' # Opponent, OR refinement, has counter child
elif node N has AND refinement:
functionSymbol = 'co[Ao[' # Opponent, AND refinement, has counter child
# Split counter child node from other children nodes of node N
ADTermChildren = ADTerm of children of same type as node N from result
ADTermCounter = ADTerm of counter child node of node N from result
result = functionSymbol + ADTermChildren + '], ' + ADTermCounter + ']'
return result

Listing 2: Pseudocode for function for generating the ADTerm of a node N with multiple children
of the same type and a counter child node.

def ADTermIntermediate(node N, result):
if type node N == type root node ADT:
if node N has OR refinement:
result = 'Vp[' + result + ']' # Proponent, OR refinement
elif node N has AND refinement:
result = 'Apl' + result + ']' # Proponent, AND refinement
else:
if node N has OR refinement:
result = 'Vol[' + result + 'l' # Opponent, OR refinement
elif node N has AND refinement:
result = 'Aol' + result + 'l' # Opponent, AND refinement

Listing 3: Pseudocode for function for generating the ADTerm of a node N with multiple children
of the same type and no counter child node.

4.1.2 Method for Comparison between ADTerms

In the process of determining equivalence between two ADTerms, we do not use the multiset
semantics. The reason for this is the efficiency of our method. In our method, we can stop the
comparison process immediately when it is determined that two ADTerms are not equivalent. This
is not possible when using the multiset model, due to the fact that the entire multiset representation
of both ADTerms need to be generated, and need to be fully compared to determine equivalence
or inequivalence. This does mean that our method cannot determine exact equivalence between
two ADTerms, since we do not use the multiset semantics. Therefore, we state that our method
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can determine a restricted form of equivalence. This restricted form is suitable for the experiment
to optimize the equivalence threshold, which we perform on our method. In the next paragraphs,
we explain our modified approach and the implementation of the equivalence threshold in this
approach. This approach does use multisets, and allows us to distinguish twin nodes, which are
explained in Section 2.2.1.

A comparison happens in two methods, the top-down method and the bottom-up method. The
top-down method checks for every level of abstraction, if the same associated function symbols, basic
actions and multisets are present. The bottom-up method checks if the parent-child relationships
between the elements and their associated function symbols in the two ADTerms are the same. This
is necessary to determine, to know if an element falls in the scope of the same parent associated
function symbol in both ADTerms.

In Algorithm 2, you can see the pseudocode of the ADTerms comparison process to determine
equivalence. The input is two ADTerms ¢1 and 2 in string format, and the output is a boolean
value indicating equivalence and an int value representing the total Levenshtein Distance, if the
ADTerms are equivalent within the equivalence threshold. We first check if the ADTerms both
start with an associated function symbol or not. This would mean that the root node has more
than one child node. If this is the case, we check if these symbols are the same, and continue if this
is the case. Otherwise, the comparison is immediately stopped, and inequivalence is returned to
the user. We then start our recursive comparison, initiating with the top-down method, where we
extract the elements located a level deeper in the ADTerms, which represent the children nodes of
the root node. We give the parameter equivalence the value True; we assume equivalence, until it
is determined that these ADTerms are not equivalent. We process the elements of the ADTerms
in two distinct multisets to determine if they are equal, and if the Levenshtein Distance between
the leaf nodes are within the equivalence threshold, which happens in compareMultisets(t1,12)
in Listing 4. If this is true, we recursively go a level deeper into the ADTerms. We continue this
process, until we determined that every level of the two ADTerms contain the same elements. If at
any point, inequivalence is determined, the comparison is stopped, and inequivalence is returned to
the user. Then, the bottom-up method starts in the recursive comparison. In the deepest level of
the ADTerms (which are the leaf nodes), we connect the leaf nodes to their associated function
symbol a level higher. We do not have to check the connections between elements that are not
leaf nodes and associated function symbols, since this is part of the structure, which is already
determined to be equivalent in the top-down method. The connections are stored in pairs. These
pairs of both ADTerms are then being compared, and if they are equal, we continue the comparison
process. This process happens in parentChildCheck(¢1,¢2,¢'1,#'2) in Listing 5. If they are not
equal, we stop the comparison process, and inequivalence is returned to the user. This continues,
until we are back in the root node. Equivalence is then returned out of recursion, and together
with the total Levenshtein Distance that was needed in this comparison process, this is returned
to the user. The algorithm has a computational complexity of O(n x m), in which n is the total
amount of nodes of the first ADT processed into the first ADTerm, and m is the total amount of
nodes of the second ADT processed into the second ADTerm. We use this method to compare
two ADTerms in order to determine equivalence between them. The equivalence threshold is used
to make this comparison process less strict. We use this method to test for various values for the
equivalence threshold, in order to achieve RO1.
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Algorithm 2: Equivalence determination between two ADTerms (in string format) including
an equivalence threshold, using the top-down method and bottom-up method.

Input: ADTerm ¢1 and ADTerm ¢2, both in string format
Output: Boolean value indicating equivalence, int value representing total Levenshtein

Distance (if the two ADTerms are not equivalent, this value is 0)

Initialize totalLevenshteinDistance = 0

if t1 and t2 both start with a function symbol or leaf node then
# Initial check before recursive comparison
initialResult = compareMultisets(?1, t2) # See Listing 4
if initialResult determines inequivalence then

L return False, 0

else if t1 and t2 start with a leaf node, which is equivalent then
L totalLevenshteinDistance += Levenshtein Distance between the two leaf nodes

8 equivalence = True # Assume equivalence, determine inequivalence in the process
start the recursive comparison < Recursive calls start here, t'1 and ¢'2 become ¢1 and ¢2
start top-down method

10
11
12

13

14

15
16
17
18

19
20

21

22
23
24
25
26
27
28

29

30

31
32

e
S

if equivalence then

t'1, t'2 = Extract elements from associated function symbols of 1 and ¢2, discard
current level elements # Go a level deeper in the ADTerms

if 1 and t'2 are both empty strings then

# Empty strings means top-down method is completed

Leave level of recursion, with True , totalLevenshteinDistance, t’1, t’2

@)

ompareMSResult = compareMultisets(t'l, t'2) # See Listing 4
f compareMSResult determines inequivalence on this level of abstraction then
if not in the most outer level of the ADTerm yet then

L Leave level of recursion, with False, 0, t’1, t’2

=0

else
L End recursive comparison with equivalence, totalLevenshteinDistance

totalLevenshteinDistance += Levenshtein Distance calculated in compareMSResult

quivalence, totalLevenshteinDistance, t”1, t”2 = Recursive comparison with t'1, t’2
tart bottom-up method

if equivalence then
parentChildResult = parentChildCheck(#'1, t'2, t"1, t"2) # See Listing 5
if parent-child relationships are not the same in the two ADTerms then
equivalence = False
L totalLevenshteinDistance = 0

if not in the most outer level of the ADTerm yet then
L Leave level of recursion, with equivalence, totalLevenshteinDistance, t'1, ¢'2

else
L End recursive comparison with equivalence, totalLevenshteinDistance

33 return equivalence, totalLevenshteinDistance
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def compareMultisets(tl,t2):
# ADTerm in string format, convert to multiset
MStl, M St2 = Convert elements from current level of abstraction in
string format ADTerms to multisets containing these elements
partLevenshteinDistance = 0
for each element in MStl:
if element is a leaf node:
# Determine if two leaf nodes are within equivalence threshold
if element also in MSt2 (within equivalence threshold):
partLevenshteinDistance += Levenshtein Distance between these two
leaf nodes
Replace equivalent leaf node in M St2 with element from M Stl
# To allow for multiset comparison, elements must be equal, so
# temporartily change one of the two elements to the other. MStl
# and MSt2 are discarded after this comparison is finished, and
# therefore this change does not have any influence on the the
# rest of the comparison process.
if MStl and MSt2 contain the same elements:
return True, partLevenshteinDistance
else:
return False, O

Listing 4: Pseudocode for function for determining equivalence between two multisets (leaf nodes

within equivalence threshold), containing the elements of a level of abstraction of an ADT (top-down
method).

def parentChildCheck(t1,t2, t'1,t'2):

Convert t1,12, t'1,#2 into multisets

Pairs P1 = Connect leaf nodes from multiset #'1 to associated function symbols

from multiset ¢l

Pairs P2 = Connect leaf nodes from multiset t'2 to associated function symbols

from multiset ¢2

if P1 and P2 contain the same pairs (leaf nodes within equivalence threshold):
return True

else:
return False

Listing 5: Pseudocode for function for checking the parent-child relationships between the leaf
nodes (within equivalence threhsold) and their associated function symbols (bottom-up method).
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Algorithm 3: Determining Satisfiability using Recursive DFS applied on ADTs.

Input: Node N
Output: Boolean value indicating whether node N is satisfiable
1 if node N has > 1 child then
if node N has OR refinement then
foreach child C' of node N do
Determine satisfiability of child C
if type node N == type child C and child C is satisfiable then
# Satisfiable child C found
foreach child C' of node N do
if type node N != type child C' then
Determine satisfiability of child C'
if child C 1is satisfiable then
10 L return False # Satisfiable counter child C is found, so

(31 S NV R

© o N O

node N is not satisfiable

11 return True # Satisfiable child C found, no satisfiable counter
child found, so node N is satisfiable

Ise if type node N != type child C' and child C' is not satisfiable then

12 e

13 return True # Not satisfiable counter child C found, node N is
| satisfiable

14 | return False # No satisfiable child C found, node NN is not satisfiable

15 else if node N has AND refinement then

16 foreach child C' of node N do

17 Determine satisfiability of child C

18 if type node N != type child C and child C' is satisfiable or

19 type node N == type child C' and child C is not satisfiable then

20 return False # Satisfiable counter child or not satisfiable child

found, so node N is not satisfiable
21 return True # A1l children are satisfiable, except for a possible counter

child, so node N is satisfiable

22 else if node N has 1 child C' then

23 Determine satisfiability of child C'

24 if type node N == type child C and child C' is satisfiable or

25 type node N = type child C and child C' is not satisfiable then

26 return True # Child C is satisfiable, or counter child C is not
L satisfiable, so node N is satisfiable

27 return False # Child C is not satisfiable, or counter child C is
satisfiable, so node N is not satisfiable

28 else if node N is a leaf node then
29 L return True # Assume leaf nodes are satisfiable
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4.1.3 Method for Satisfiability

By determining satisfiability of an ADT, we know whether the proponent reaches their goal, or if
the opponent has enough counters in place to stop the proponent from reaching their goal. More
information about the background behind satisfiability using the propositional semantics can be
found in Section 2.4. The goal of our modified method is to be able to determine satisfiability
more efficiently. We reach this goal by demonstrating we can determine satisfiability using fewer
nodes than when using the propositional semantics of an ADTerm. In our modified method, we
determine satisfiability of an ADT, instead of of its formal representation, an ADTerm. Using the
DFS algorithm, we can prune parts of an ADT during the process. Satisfiability for ADTs with an
offensive goal is determined in the same way as for ADTs with a defensive goal.

In Algorithm 3, you can see the pseudocode of the algorithm that is used to determine satis-
fiability. The input is a node N, and the output a boolean value indicating whether this node N is
satisfiable. In lines 2-14, the process of determining satisfiability on a node with OR refinement
is described. This node only needs one satisfiable path down the ADT in order to be satisfiable.
Using DF'S, we can check every child node, and when we find a satisfiable child node, and there
is no satisfiable counter child node, we can prune the rest of the children nodes. In lines 15-21,
the process of determining satisfiability on a node with AND refinement is described. This node
needs all children nodes to be satisfiable, and a possible counter child node to be not satisfiable.
If one child node is found to be not satisfiable, or a satisfiable counter child node is found, then
we can prune the rest of the children nodes. These two possibilities to prune children nodes in an
ADT can lead to large parts of ADTs that do not need to be considered, leading to a more efficient
process than using an ADTerm of an ADT that needs to be fully processed in order to determine
satisfiability. In our method, we assume all leaf nodes are satisfiable, due to the reasons provided
in Section 2.4. The algorithm has a computational complexity of O(n), in which n is the total
amount of nodes in the ADT. We use this method to determine satisfiability on ADTs, using DFS
to explore the possibilities of pruning parts of the ADT. This method is used to compare against
determining satisfiability using propositional semantics, to achieve RO2.

4.2 Experiment Designs

In this section, we discuss the design of our experiments to test the discussed methods in Section 4.1
for a reasonable amount of test cases. These tests are trivial, we expect them to succeed for the
given base structures. We also discuss the design of our experiments to find the optimal value of an
equivalence threshold and to test the efficiency of our method for determining satisfiability of an
ADT in comparison to determining satisfiability using the propositional model, which is explained
in Section 2.2.1.
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4.2.1 Functional Experiments for Proposed Methods

We test the functionality of the generation of an ADTerm (Algorithm 1), the comparison of two
ADTerms (Algorithm 2) and the determination of satisfiability (Algorithm 3), using a similar
approach, namely by validating that the algorithms behave as supposed to for the given base
structures in Table 1. We do this by creating examples that individually describe the given base
structures. These examples can be found in the figures underneath. Examples with the defense type
as proponent are processed in the same way as the examples we use with the attack type as proponent.

Goa) Goa)

QAttack #) @Attack #2 @Attack #3 @Attack #1) (Attack #2  Attack #3

Figure 3: ADT Example with OR refinement
and no counter child node. Made using the
ADT WebApp [7].

Goa)

Figure 5: ADT Example with a single direct
counter child node. Made using the ADT We-

bApp [5].

Figure 4: ADT Example with AND refinement
and no counter child node. Made using the
ADT WebApp [5].

(Attack #7 (QAttack #2 (@Attack #3 |If)éfense

Figure 6: ADT Example with OR refinement
and a direct counter child node. Made using
the ADT WebApp [7].

@iack #) @iack#? Aitack#d [Defense

Figure 7: ADT Example with AND refinement and a direct counter child node. Made using the
ADT WebApp [7].

We perform the experiments for determining functionality of ADTerms generation and satisfiability
determination and compare them to the mathematical processes that are described in Chapter 2.
This way, we show if the results of our methods give the same (relevant parts of the) results of the
mathematical processes, demonstrating that our methods are valid for these base cases. These tests
are trivial. We expect them to succeed to show that our methods work reasonably to perform our
other two experiments that help us get to our research objectives, one helping to cover RO1 and
one covering RO2. These two experiments are explained in the following two sections.
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The experiment for determining functionality of the comparison of ADTerms is done by com-
paring the ADTSs in the figures above to themselves. By showing that comparing an ADTerm to
itself yields a result of equivalence, we validate our algorithm, since the algorithm stops immediately
when inequivalence is determined. Therefore, the full process of the algorithm can only be shown
by comparing two equivalent ADTerms, which can be done by comparing an ADTerm to itself.
Since this algorithm is not based on the multiset model, we cannot prove equivalence between two
ADTerms. In our method, the structure of both ADTs, based on which the ADTerms are generated,
must have a similar structure in order to be seen as equivalence; intermediate nodes are allowed to
be in a different order, but all have to be present. In the multiset model, there are certain cases
where the structure can deviate from each other. Therefore, this trivial experiment demonstrates
that our method can determine a restricted form of equivalence, which is reasonable enough to
perform our other experiment on that helps us get to our research objective RO1.

4.2.2 Equivalence Threshold Experiment

Determining equivalence between two ADTerms means that the labels of all the basic actions
should be directly equal in both ADTerms. This can be very inefficient, since two labels can have a
small difference, but still have an equal meaning. In order to have a small margin of error that is
accepted as equivalent between two labels, we have adopted the Levenshtein Distance in Section 2.3.
We show the implementation in Algorithm 2 in Section 4.1.2. In this experiment, we determine the
optimal equivalence threshold using the Levenshtein Distance that should be allowed between the
labels of two basic actions in order to yield the most correctly determined equivalent ADTerms
and the least incorrectly determined non-equivalent ADTerms. We have created a dataset con-
taining 24 ADTSs trying to describe the same scenario. The scenario that the ADTs try to describe is:

You want to break into a safe. There are two ways you can do this. The first way is to gain
access via the door. In order to do this, you would need to steal an access card and make sure the
security is on lunch. However, the security has 2FA installed on the safe door as a safety mea-
sure. The second way is to gain access via the ventilation. This can be done by finding a vent opening.

Steal Access Card  Security on Lunch)  Eind Vent Opening)

-
-
2

Figure 8: ADT that describes the given scenario most accurately. It is the control proof for the
experiment to test the effectiveness of the Levenshtein Distance in determining equivalence between
two ADTerms. Made using the ADT WebApp [7].

The ADT that describes the scenario most accurately is shown in Figure 8. We use this ADT to
compare to all other ADTs; it is our control proof. ADTs 2-4 describe the scenario, each with
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one character difference in a label of a leaf node. ADT 2 changes the shortest label "2FA" by one
character, ADT 3 changes the longest label "Steal Access Card" by one character and ADT 4
changes both by one character. This way, we process the effect of the Levenshtein Distance on
shorter labels (three characters) and longer labels (seventeen characters). ADTs 5-7 are the same
as ADTs 2-4, but with two character differences per label. From ADT 8 on, we focus ourselves
on one specific control node, namely "Steal Access Card". ADTs 8-18 will describe the scenario,
but every next ADT will have one more character different in this label compared to this label
in the control proof, starting with three characters different in ADT 8 and ending with thirteen
characters different in ADT 18. Finally, ADTs 19-24 describe the scenario incorrectly, and therefore
should not be seen as correct. The incorrect labels take the place of label "2FA" for ADTs 19-21
(three characters different, six characters different, twelve characters different respectively), and
label "Steal Access Card" for ADTs 22-24 (nine characters different, twelve characters different,
sixteen characters different respectively). An important note here is that character differences may
mean a character insertion, a character deletion or a character substitution. During the design of
the ADTSs, balance between these three different types of characters is kept in mind. We test with
101 margins for the equivalence threshold. These margins lay in [0, 1], iterating every 0.01. This
experiment is performed with three leaf node labels with seventeen characters, and one leaf node
label with three characters. Therefore, there are no big fluctuations.

4.2.3 Satisfiability Experiment

This experiment is done to determine the efficiency of our method, explained in Section 4.1.3 in
comparison to determining satisfiability of an ADTerm using the propositional model, explained in
Section 2.4. We do this by performing Algorithm 3 on a dataset we have received with 38 unique
ADTs. We then compare the amount of nodes that satisfiability needs to be determined on in our
method to the amount of nodes that satisfiability needs to be determined on in using propositional
semantics of an ADTerm.

4.3 Validity of Experiment Designs

We approach our functional experiments to test our methods by using inductive reasoning. We use
the examples of the base structures for this. Since these base structures are the building blocks of
ADTs, we can therefore say that by demonstrating the functionality of our algorithms on these
base structures, we validate our methods.

For the experiment to test the equivalence threshold using the Levenshtein Distance, we use
inductive reasoning as well. We use a dataset of 24 ADTs that have different amount of character
differences and different types of differences in the leaf node labels (basic actions), some of which
describing the scenario correctly, and others which do not describe the scenario correctly. One of
the ADTs is the control proof, which is the ADT that describes the scenario the most accurate.
We compare all ADTSs to this control proof to determine whether the equivalence threshold allows
this ADT to be seen as equivalent to the control proof. We process these results into a graph. A
similar experiment with the Levenshtein Distance is done by Hicham et al. [27], where a typing
test of Arabic documents is performed for a set of users. The Levenshtein Distance is compared
to an adjusted method developed by Hicham et al. in determining errors in the typing tests and
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the position of these errors in a word. The dataset, also referred to as training corpus, is created
by four expert users. These results are then explained and processed into tables. This is similar
to our experiment. We use a dataset of ADTs, of which in the comparison process words will be
compared to each other using the Levenshtein Distance. Instead of comparing the Levenshtein
Distance to another method and seeing how many errors are detected, we set different thresholds
in which errors are accepted, compare these different thresholds to each other and determine how
many positive and negative results these thresholds result in, in order to select the optimal threshold.

Lastly, we also approach the experiment to determine the efficiency of our method to deter-
mine satisfiability on ADTs by using inductive reasoning. We use a dataset we received with 38
unique ADTs of approximately the same size to determine the efficiency of our method. We compare
the amount of nodes that our method needs to determine satisfiability on to the amount of nodes
that the propositional semantics of an ADTerm needs to determine satisfiability on. The ADTs
have been created without any forms of restrictions (required amount of (leaf) nodes, refinements,
types, countermeasures, minimal or maximal amount of levels of abstraction), which ensures the
validity of the experiment.
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5 Implementation in ADT Create

This chapter contains the structure and explanation of the relevant operations of the ADT Create
package that implements the proposed approaches. ADT Create is a Python package that can
be used to construct and customize ADTs, download and upload them in the universal XML
structure, generate the ADTerms of an ADT, compare two ADTs using the ADTerms and determine
satisfiability of an ADT. We cover the structure of the tool and information about the published
package.

5.1 Structure of ADT Create

ADT Create is a package for the programming language Python, published on PyPi [28]. Tt is
therefore structured like a Python package. It has multiple modules that are interconnected and
function as a whole. The main module, which is the center point for all modules, is ADT.py. It
contains the basic structure of ADTs and all the references to the modules that are used.

The main class, ADT, represents a single node of an ADT. This is done because ADTs are variable in
size, and therefore need to easily be able to grow or shrink in size. Besides, we also need to traverse
through the tree without issues. With the main class representing a single node, a generalized
manner to traverse through the ADT and perform calculations is established, since the overall
structure of the class does not change when a node is added or removed. An object of ADT can
be made in Python by importing the ADT Create module and calling the constructor of class ADT
using the function initADT(...). The user then needs to provide a type, refinement and label to
the constructor. This new node will then be the root for a new ADT.

A user can manually construct and customize an ADT from scratch using the responsible functions
for this. They can also choose to import an XML file into ADT Create, and customize this ADT to
their liking. Afterwards, an ADT can be exported to an XML file and used in other tools, such as
ADTool [16] or the ADT WebApp [5].

The methods discussed in Section 4.1 are also implemented in ADT Create. A full overview of all
functions can be found in the ADT Create manual [29].

5.2 Python Package

The package ADT Create is published on PyPi [30], and publically available. In order to install
it, make sure you have installed Python version >= 3.7, and the pip package. The installation
requires you to open up a Terminal and type in the following command:

> pip install ADTCreate

This will install the package and its dependencies.

Now you can open up a Python file. You can import ADT Create by writing the following:

from ADTCreate import ADT

You have now successfully installed and imported ADT Create. The GitHub repository page can
be found in [31], which contains the source code of the package, along with the README, the
documentation and the changelog.
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6 Experimental Results

In this chapter, we show the results of the experiments to test the functionality and efficiency of
our methods. We determine the results of the functionality of the generation of ADTerms based
on a given ADT, then the results of the functionality of the comparison of two ADTerms and the
optimal value for an equivalence threshold using the Levenshtein Distance. Lastly, we determine
the functionality of the satisfiability determination for the given base structures and its efficiency.
Theory behind these topics can be found in Chapter 2, the used methods and the experiment
designs for our experiments in Chapter 4. Dog are cool.

6.1 Results of Generation of ADTerms Experiment

For determining the functionality of the generation of ADTerms using our method, we compare the
results of the generation process to the transformation process that is shown in Table 1. We refer
back to the cells in the transformation table for the steps that are taken.

First, we start with determining the ADTerm of a leaf node. There is no concrete example for this we
use, since this is the same for every possible leaf node. The ADTerm of a leaf node is the label of the
leaf node (cell 1 and cell 2), meaning that in the ADTerm of an ADT, all leaf node labels are present.

Looking at Figure 3, we are dealing with an ADT with an attack root node, with OR refine-
ment and no counter child node. Using DFS, we go through the ADT. We start off in the root
node and go to node "Attack #1", which is a leaf node. Therefore, the ADTerm of this node is
the label. The same goes for the nodes "Attack #2" and "Attack #3". Therefore, after going
through all the leaf nodes, our ADTerm at that point is: "Attack #1", "Attack #2", "Attack
#3". We go to the parent node, "Goal". This is an intermediate node, with only children nodes
of the same type. Besides that, it has OR refinement. The nodes are of the proponent type, since
"Goal" is the root node, and therefore determines the proponent and opponent type. Therefore,
our final ADTerm is: VP("Attack #1", "Attack #2", "Attack #3"). Following the mathematical
rules in the transformation table, which is shown in Table 1, we see that the ADTerm of an
ADT of the proponent type with OR refinement and only children nodes of the same type is
f((Th), ..., t(T})), in which f € {V?, AP} and k > 1 (cell 3). This results in our ADT transforming
in f(¢("Attack #1"),.("Attack #2"),(("Attack #3")), in which f describes OR refinement, and
therefore describes VP. Looking at ¢("Attack #1"),.("Attack #2"),.("Attack #3"), we determine
that these are leaf nodes, and therefore the labels of these nodes are the ADTerm of these nodes
(cell 1). This results in the same generated ADTerm. If in this scenario, all nodes were of the
opponent type, then instead of the VP, we would have gotten V° (cell 4).

Figure 4 shows a similar ADT, but instead of "Goal" having OR refinement, it has AND re-
finement. Using DFS, we go through the ADT. We pass the same leaf nodes and end up with the
same ADTerm "Attack #1", "Attack #2", "Attack #3" before we reach "Goal". However, since
"Goal" has AND refinement, the ADTerm of this node is AP("Attack #1", "Attack #2", "Attack
#3"). Following the mathematical rules in the transformation table, which is shown in Table 1, we see
that the ADTerm of an ADT of the proponent type with AND refinement and only children nodes of
the same type is f(¢(71), ..., t(T})), in which f € {VP, AP} and k > 1 (cell 3). This results in our ADT
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transforming in f(¢("Attack #1"),(("Attack #2"),("Attack #3")), in which f describes AND re-
finement, and therefore describes AP. Looking at ¢("Attack #1"),.("Attack #2"),(("Attack #3"),
we determine that these are leaf nodes, and therefore the labels of these nodes are the ADTerm of
these nodes (cell 1). This results in the same generated ADTerm. If in this scenario, all nodes were
of the opponent type, then instead of the AP, we would have gotten A° (cell 3).

The next example in Figure 5 shows our first ADT with a counter child node. It shows a node of
the attack type, which is the proponent, with a counter child node of the defense type. Refinement
is irrelevant, since we do not have to determine the relationship between multiple children nodes.
We start our generation process in the counter child node "Defense". Since this is a leaf node, the
label of the node is the ADTerm. We move on to the parent node "Goal", which is also a leaf node,
since the parent and the child nodes are not of the same type. Therefore, the ADTerm of this node
is also the label. We end up with the ADTerm "Goal", "Defense". However, since "Defense" is a
counter child node, we introduce the counter operator ¢ in front of this ADTerm. Our final ADTerm
therefore is ¢P("Goal", "Defense"). Comparing this to the mathematical rules in transformation
table in Table 1, we see that the transformation of this structure is cP(b, ¢(77)) (cell 5). b in our
example is leaf node "Goal" (cell 1) and T} is leaf node "Defense" (cell 2). This results in the
same generated ADTerm. If in this scenario, the type of the two nodes were turned around, then
instead of ¢P, we would have gotten c® (cell 6).

In Figure 6, we see an ADT similar to the ADT in Figure 3, only now with a direct counter
child node. We go through the ADT using DFS, and pass the same three leaf nodes. After this,
we reach the direct counter child node, which is also a leaf node. This means the ADTerm of this
direct counter child node is the label of the node. We store this direct counter child node separate
from the other children nodes of the same type and start with generating the ADTerm for the other
children nodes and the parent. We end up with the same ADTerm as in Figure 3: VP("Attack #1",
"Attack #2", "Attack #3"). After, we process the counter child node and its relationship to the
parent. In Figure 5, we have seen that a counter child node is being indicated with the counter
operator c. Therefore, the ADTerm of this ADT is cP(VP("Attack #1", "Attack #2", "Attack
#3"), "Defense"). We look in the transformation table in Table 1 and see that the transformation
of this structure is ¢®(f(¢(71), ..., t(T)),¢(T")), in which f € {VP, AP} and k > 1 (cell 7). Here,
"Attack #1", "Attack #2", "Attack #3" represent (¢(71),...,¢(T%)), with OR refinement operator
VP and "Defense" represents «(7”) with counter operator cP. This results in the same generated
ADTerm. If in this scenario, the types of all nodes were turned around, then instead of c¢? and VP,
we would have gotten ¢® and V° (cell 8).

Lastly, we look at the ADT in Figure 7, which is similar to the ADT in Figure 4. We take
the same approach as in Figure 6. We go through the ADT using DFS, and pass the same three leaf
nodes. After this, we reach the direct counter child node, which is also a leaf node. This means the
ADTerm of this direct counter child node is the label of the node. Firstly, we generate the ADTerm
of the children nodes of the same type as the parent node, together with their relationship. We end
up with ADTerm AP("Attack #1", "Attack #2", "Attack #3"). After this, we process the counter
child node and its relationship to the parent. For this, we use the counter operator c. Therefore,
the ADTerm of this ADT is cP(AP("Attack #1", "Attack #2", "Attack #3"), "Defense"). We
look in the transformation table in Table 1 and see that the transformation of this structure is
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cP(f((T1), ..., t(Ty)),e(T")), in which f € {AP, AP} and k > 1 (cell 7). Here, "Attack #1", "Attack
#2" "Attack #3" represent (.(71),...,t(T})), with AND refinement operator AP, and "Defense"
represents ((7”) with counter operator c¢P. This results in the same generated ADTerm. If in this
scenario, the types of all nodes were turned around, then instead of c? and AP, we would have
gotten ¢® and A° (cell 8).

Structure: Structure: . . .
Attack Proponent | Defense Proponent Generation process Correct ADTerm (I € {p,o0}) | Functionality method
@ b Always label b, Correct
Y where b € B!
f Go through all children nodes using DF'S, then VT, ., Th)), Correct
/ | \ determine relationship between children nodes where k > 1 ’
T, T, T, T,
/ Go through all children nodes using DFS, then ATy, TR)), Correct
/ \ determine relationship between children nodes where k£ > 1 '
T Ty o Ty
® b | | |
. . Determine type parent node and counter child node, ct(b, o (T1)), Correct
parent node always leaf node, so use this label where b € B! )
Ty Ty
f Go through all children nodes and counter child node using (VT -, T)), (T7), C "
// \ DFS, then determine relationship between children nodes where k£ > 1 sorrect
T T o T T
f Go through all children nodes and counter child node using ATy, .., T)), (T7)), Correct
DFS, then determine relationship between children nodes where k > 1 o
R T, T T

Table 2: Table that describes the functionality of our method in generating ADTerms. The table is
based on the transformation table which is shown in Table 1.

We have shown the functionality of the generation of ADTerms of the examples of the given base
structures. These base structures and the corresponding behaviour can be found in Table 2. This
means that we can identify these base structures in any ADT and generate the correct ADTerm.
We validate our method by generating the ADTerm of the ADT in Figure 1. For every structure
we determine, we refer back to the corresponding row in Table 2.

We go through the ADT using DFS. First off, we see leaf node "Card" (row 1). Following the
rules, we determine this is a leaf node. Therefore, the ADTerm of this node is "Card". Its par-
ent is "ATM", which is a node with AND refinement and children of the same type (row 3).
In order to determine the ADTerms of "ATM", we firstly need to know the ADTerm of "PIN"
as well. "PIN" is a node with OR refinement and children nodes of the same type (row 2).
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One of its children is "Find Note", which has one direct counter child leaf node "Memorize"
(row 4). Therefore, the ADTerm of this structure is c¢?("Find Note, "Memorize"). The other
child node of "PIN" is "Force", which is a leaf node. The ADTerm of "PIN" therefore is
VP(cP("Find Note, "Memorize"), "Force"). With this information, we can determine the ADTerm
of "ATM". This is AP("Card", VP(c?("Find Note, "Memorize"), "Force")). We then reach the root
node "Bank Account". To determine ADTerm of this node, we go through the second part of the
ADT using DFS. We first reach "Username", which is a leaf node (row 1). The ADTerm therefore
is the label. We then pass the node "Online", which is a node with AND refinement, and has two
children nodes of the same type and one counter child node (row 6). We first determine the ADTerm
of "Password", which is a node with OR refinement and children nodes of the same type (row 2).
Both children nodes "Phishing" and "Key Logger" are leaf nodes. The ADTerms of these nodes
are therefore the labels themselves. The ADTerm of "Password" is VP("Phishing", "Key Logger").
Lastly, we check the ADTerm of counter child node "2FA". We see that it has one counter child
node, "Malware" (row 4). This is also a leaf node and of the proponent type. The ADTerm of this
structure therefore is ¢®("2FA", "Malware"). Using this information, we can determine the ADTerm
of "Online": c?(AP("Username", VP("Phishing", "Key Logger"),c°("2FA", "Malware"))). Using
this, we can determine our final ADTerm ¢ in "Bank Account", namely:

t = VP (AP("Card", VP(cP("Find Note", "Memorize"),"Force")),c?(AP("Username",

VP ("Phishing", "Key Logger")),c’("2FA", "Malware")))

This is the expected ADTerm, validating our method, which we use in the next experiment to
achieve RO1.

6.2 Results of Comparison between ADTerms Experiment

After showing the behaviour of the generation of ADTerms, we look at the results of the functional
testing of the ADTerms comparison method. With this method, we can determine a restricted form
of equivalence. After this, we show the influence of the Levenshtein Distance on the comparison
of ADTerms. The theory of equivalence between two ADTerms using the multiset model can be
found in Section 2.3, and our method can be found in Section 4.1.2. We show the results of the
comparisons of the ADTerms to themselves. Because the ADTerms are compared to themselves, we
are able to show the complete comparison process, because when inequivalence is determined, the
comparison process is immediately stopped. Therefore, we can show that the comparison process
functions as supposed for the examples that represent the given base structures. Since we use
multisets in the comparison process in the top-down method, order of the elements in this method
does not matter, as long as all elements are present in both ADTerms.

It is important to know how leaf nodes are compared. The ADTerms generated based on leaf nodes
are the labels of these nodes. To compare ADTerms of leaf nodes to each other, we compare the
labels of these nodes to each other. In the multiset model, if the labels are exactly the same, The
ADTerms are equivalent. Otherwise, they are not equivalent. This method of comparing leaf nodes is
strict, causing similar, slightly different leaf node labels to be seen as not equivalent. In order to find
a more suitable approach for leaf nodes, we have adopted the Levenshtein Distance in Section 2.3
and implemented this in our method. We show the results of the influence of an equivalence
threshold using the Levenshtein Distance on the comparison of ADTerms in Section 6.2.1.
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Looking at the ADT in Figure 3, we are dealing with an ADT with OR refinement and only
children nodes of the same type. The ADTerm of this ADT is VP("Attack #1", "Attack #2",
"Attack #3"). Using the top-down method, for every level of abstraction, starting in the highest, we
compare the elements present to themselves. The highest level of this ADTerm, which contains VP,
compared to itself yields equivalence. We then go a level deeper, and have "Attack #1", "Attack
#2", "Attack #3", compared to itself also yields equivalence. We then use the bottom-up method,
in which we compare the relationship between the parent node and the children nodes. The labels
fall under the same operator VP when comparing the ADTerm to itself, showing this comparison
confirms that this ADTerm is equivalent to itself.

The ADT in Figure 4 is similar to the previous example, but with AND refinement. The ADTerm
of this ADT is AP("Attack #1", "Attack #2", "Attack #3"). Using the top-down method, for
every level of abstraction, starting in the highest, we compare the elements present to themselves.
In the highest level of this ADTerm, this is AP, compared to itself yields equivalence. We then go
a level deeper, and have "Attack #1", "Attack #2", "Attack #3", compared to itself also yields
equivalence. We then use the bottom-up method, in which we compare the relationship between
the parent node and the children nodes. The labels fall the same operator AP when comparing the
ADTerm to itself, showing this comparison confirms that this ADTerm is equivalent to itself.

Figure 5 shows an ADT with one parent node and one counter child node. The ADTerm of this ADT
is cP("Goal", "Defense"). Using the top-down method, for every level of abstraction, starting in the
highest, we compare the elements present. In the highest level of abstraction, this is ¢P, compared
to itself yields equivalence. We then go a level deeper, and have "Goal", "Defense", compared
to itself also yields equivalence. We then use the bottom-up method, in which we compare the
relationship between the parent node and the child node. The labels fall under the same operator
c? in both ADTerms and in the right order, since the proponent node needs to come first here,
showing this comparison confirms that this ADTerm is equivalent to itself.

The ADT in Figure 6 is similar to the ADT in Figure 3, but this time with a counter child
node. The ADTerm of this ADT is cP(VP("Attack #1", "Attack #2", "Attack #3"), "Defense").
Our two comparison methods mostly stay the same. However, important to note is that the two op-
erators ¢ and VP are seen as one level in the top-down method, together with all the children nodes,
including the counter child node "Defense", to make sure that all children nodes fall under the
correct parent node in the top-down method. Comparing the two operators as one level, and the leaf
nodes as one level, to the same ADTerm yields equivalence. In the bottom-up method, we do split up
these two operators, to make sure the correct child node is determined to be the counter child node.
Determining the parent-child relationships when comparing to the same ADTerm yields equivalence.

Lastly, we look at the ADT in Figure 7. It is similar to the ADT in Figure 4, but this time with
a counter child node. The ADTerms of this ADT is cP(AP("Attack #1", "Attack #2", "Attack
#3"), "Defense"). We have already shown in Figure 4 that the comparison process of the ADTerm
with the intermediate AND node works correctly. In Figure 6, we have shown that the comparison
process when adding a counter child node to the ADT also works correctly. Therefore, we can be
sure that the two methods here are performed correctly. This means that the process of comparing
the ADTerm to itself is done successfully, and that the result yields equivalence.
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Structure:
Attack Proponent

Structure:
Defense Proponent

Comparison process (I € {p,o0})

Functionality method

The labels of both ADTerms should be equal (or within

@ equivalence threshold) Correct
The children nodes T, ..., T and parent node T in both ADTerms should
be equal (order of children nodes does not matter) and children nodes Correct
T T T T Ty, ... Ty, should fall within operator V! of parent node T (if k > 1)
The children nodes T, ..., T and parent node T" in both ADTerms should
be equal (order of children nodes does not matter) and children nodes Correct
T T T T Ty, ... Ty, should fall within operator A! of parent node T (if k > 1)
@ @ The parent node T and the child node T; in both ADTerms should Correct
be equal, the child node T} should fall within operator ¢! !
T Ty
‘ The children nodes T7, ..., T; and parent node T in both ADTerms should be equal (order of
children nodes does not matter), children nodes 71, ... 7" should fall within operators Correct
T, T T T T, T ¢t and V! of parent node T, and children nodes T3, ..., T} within operator V! (if k > 1)
‘ The children nodes T7, ..., T; and parent node T in both ADTerms should be equal (order of
children nodes does not matter), children nodes 71, ... 7" should fall within operators Correct
T, T T T T, T ¢t and Al of parent node T, and children nodes Ty, ..., T} within operator A! (if k& > 1)

Table 3: Table that describes behaviour of our method of comparing two ADTerms in order to
determine a restricted form of equivalence between two ADTerms and therefore two ADTs. The
table is based on the transformation table which is shown in Table 1.

Using the examples in this section, we demonstrate the functionality and efficiency of the compari-
son for the examples of the given base structures. These base structures and the corresponding
behaviour can be found in Table 3. To validate the given base structures can determine a restricted
form of equivalence in ADTs in which these base structures are combined, we show the comparison
process between three different ADTerms. We show the comparison process between ADTerm ¢,
and ADTerm t, first, and then compare ADTerm ¢; to ADTerm t3. First, we show the ADTerms we
use, then we determine whether ¢, and ¢, are equivalent and lastly whether ¢; and t3 are equivalent,
referring back to the corresponding rows in Table 3.

ADTerm t;:

tp = (VP(VP("Action #1" "Action #2), AP("Action #3", "Action #4")))
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ADTerm to:

to = (VP(VP("Action #1", "Action #2),VP("Action #3", "Action #4")))
ADTerm t5:

ts = (VP(AP("Action #3","Action #4),VP("Action #1" "Action #2")))

Firstly, we start with the top-down method in our comparison process for ¢t; and t,. The highest
level of abstraction in the ADTerm contains VP (row 2) for both t; and ¢2, meaning inequivalence
has not been determined here. We move on one level deeper and get [VP(row 2), AP(row 3)] for
ty and [VP(row 2), VP(row 2)] for ¢. These two multisets do not have the same entries, which is
against row 2 in Table 3. We stop the comparison process and conclude these two ADTerms are
not equivalent. This shows that a big part of the comparison is not done when inequivalence is
determined, making this process efficient.

We then compare t; to t3. We start with the top-down method. The highest level of abstrac-
tion in the ADTerms contain VP (row 2) for both ¢; and ¢3, meaning inequivalence has not been
determined here. We move a level deeper. Here, the ADTerm contains [VP(row 2), AP(row 3)| for ¢
and [AP(row 3), VP(row 2)] for t5. These two multisets have the same entries. We go a level deeper and
have the multisets ["Action #1"(row 1), "Action #2"(row 1),"Action #3"(row 1), "Action #4"
(row 1)] for ¢; and ["Action #3"(row 1),"Action #4"(row 1),"Action #1"(row 1), "Action #2"
(row 1)] for t3. These multisets also have the same entries. This is the deepest level of abstraction,
so we conclude our top-down method and move on to our bottom-up method. We start with the
elements in the deepest level. "Action #1" (row 1) and "Action #2" (row 1) in both ADTerms t;
and t3 belong to the operator VP. "Action #3" (row 1) and "Action #4" (row 1) in both ADTerms
t; and t3 belong to the operator AP. This means we have not determined inequivalence here. We
move on a level higher and determine that V? (row 2) and AP (row 3) in ¢; and AP (row 3) and VP
(row 2) in t3 fall in the scope of VP (row 2) in both ADTerms. We go a level higher and enter the
level of the root node, meaning the bottom-up method is also finished. Since both the top-down
and bottom-up method have finished successfully, we can conclude that, using Table 3, we have
determined that ¢; and 3 are equivalent. This validates our method, which we continue to use for
our next experiment, to achieve RO1.

6.2.1 Results of Equivalence Threshold Experiment

This experiment uses the method of comparing two ADTerms, which is explained in Section 4.1.2
and validated in Section 6.2, and tests a set of values for the equivalence threshold to determine the
optimal value. The results of this experiment are shown in Figure 9. The green lines represent the
amount of correct results, the red lines represent the amount of incorrect results. The results are
valid for an average of (3+ 17+ 174 17)/4 = 13.5 characters per label. For an equivalence threshold
of 0.0, all labels of the leaf nodes need to be exactly equal to the labels of the leaf nodes of the
ADT that we compare it with. This causes all our similar ADTs with any amount of character
differences to be incorrectly not equivalent. All the ADTs that should not be equivalent to our
control proof are correctly not equivalent. An equivalence threshold of 0.1 shows that 10% of the
longest label length during a direct comparison between two labels may be the maximal amount
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of characters that the two labels differ, in order to be seen as equivalent. This causes four ADTs
to be correctly seen as equivalent, instead of incorrectly not equivalent. This does not influence
the amount of ADTs that are correctly not equivalent. We see similar results for an equivalence
threshold of 0.2. Here, two additional ADTs are seen as correctly equivalent, instead of incorrectly
not equivalent. In between the equivalence threshold of 0.2 and 0.45, we see a big increase in
correctly equivalent ADTs. The equivalence threshold of 0.45 is big enough to see all our similar
ADTs as correctly equivalent, with only one of our incorrect scenarios being seen as incorrectly
equivalent. We can say that this is the best result, since we see that the amount of incorrectly
equivalent ADTs increases and therefore the amount of correctly not equivalent ADTs decreases
steadily between equivalence threshold of 0.45 and 1.0. This shows that an equivalence threshold
can become too big, and therefore counterproductive. We conclude that an equivalence threshold
around 0.45 is the optimal value in this experiment.

Equivalence using different values for an Equivalence Threshold

16

14

12 --

10 4

Amount of ADTs

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Values for Equivalence Threshold

Figure 9: Results of the experiment with 101 different equivalence thresholds. The margins for this
threshold lay in [0, 1], iterating every 0.01. The y-axis represents the amount of ADTs. The x-axis
shows the equivalence threshold. The four lines represent the amount of ADTs that are: correctly
equivalent (CE), correctly not equivalent (CNE), incorrectly equivalent (IE) and incorrectly not
equivalent (INE). We determine that an equivalence threshold around 0.45 is the optimal value.
The total amount of ADTs in this experiment is 24 and the total amount of comparisons is 23. The

amount of ADTs that every line represent added up is equal to the total amount of comparisons,
which is 23.

6.3 Results of Satisfiability Experiment

In order to determine the functionality of our method, explained in Section 4.1.3, we perform
experiments on the same examples representing the base structures as in the previous functionality
experiments. Important to note is that the satisfiability determination is performed in the same
way for both an attack proponent as a defense proponent. Therefore, all results also apply to
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ADTs in which the proponent is of the defense type. Besides that, we assume leaf nodes are always
satisfiable, which is further explained, together with the theory of determining satisfiability using
the propositional model, in Section 2.4.

First, we look at the ADT in Figure 3. Following the implementation of our method, we as-
sume a node with OR refinement is not satisfiable. We can then determine satisfiability by showing
there is a satisfiable attack path, and there is no direct satisfiable counter child node. We firstly
check satisfiability of leaf node "Attack #1". We determine this node is satisfiable, after which
we only check if one of the other children nodes is a direct satisfiable counter child node. Since
this is not the case, the check is concluded and to the user is returned that this ADT is satisfiable,
without determining satisfiability of the other leaf nodes.

For the ADT in Figure 4, this works slightly different. Here, we assume the node is satisfiable, since
it has AND refinement, and we check all children nodes to see if any of them are not satisfiable, or
if there is a direct satisfiable counter child node. Either scenario demonstrates that this ADT is
not satisfiable. We check the children nodes using DFS. Firstly, we determine that "Attack #1" is
satisfiable. We then determine "Attack #2" is also satisfiable. And lastly, we determine "Attack
#3" is also satisfiable. This means that none of the children nodes are not satisfiable or a direct
satisfiable counter child node. The check is concluded and to the user is returned that this ADT is
satisfiable.

After testing these two base structures for ADTs, the algorithm determines satisfiability of these
structures with a single direct satisfiable counter child node. Firstly, in the ADT in Figure 5, we see
a node with a direct counter child node. We assume this counter child node is satisfiable, since it is
a leaf node. If a direct counter child node is satisfiable, it makes the parent node not satisfiable,
since there is an active countermeasure present against it. Therefore, the check is concluded and to
the user is returned that this ADT is not satisfiable. We apply this structure on the two previously
determined base structures.

Firstly, in Figure 6, we see an ADT with a node with OR refinement and three children nodes of
the same type. Besides that, we also see a direct satisfiable counter child node. We take the same
approach as we did for the ADT in Figure 3; we try to find a satisfiable path down the tree to
prove satisfiability. We check the leaf node "Attack #1" and see it is satisfiable. After this, we do
not check any other leaf nodes for satisfiability, we only check whether there is a direct satisfiable
counter child node in place. We go through all other nodes, check the type, and find a direct counter
child node. We then determine the satisfiability of this node. Since this direct counter child node
"Defense" is a leaf node, it is assumed to be satisfiable, making us conclude that this ADT is not
satisfiable.

Lastly, in Figure 7, we have an ADT with a node with AND refinement, three children nodes of
the same type and one direct counter child node. Like in the ADT in Figure 4, we assume the
node is satisfiable and check all children nodes. We determine that "Attack #1", "Attack #2"
and "Attack #3" are satisfiable. But then, we find "Defense", a direct counter child node, which
is satisfiable. This results in us concluding that this ADT is not satisfiable.
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Structure: Structure:

Attack Proponent | Defense Proponent Behaviour method Satisfiable Functionality method
@ b Always assumes leaf nodes Always Correct
are satisfiable
!/ Checks until one satisfiable child If at least one of Io "
/ | \ node is found T, ..., T} is satisfiable orree
T T T T

f y , -
@\ Checks if every (,hll‘d node is satisfiable, 6Ty, ..., Ty all are satisfiable Correct
/ \ otherwise stops

T, T, T T,
@ b If counter child node is not satisfiable
then this node is satisfiable If T is not satisfiable Correct
T 7
f Checks until one satisfiable child node is found | If at least one of T1, ..., T}, is satisfiable, C "
// \ and if the counter child node is not satisfiable and T” is not satisfiable orree
T T T T
f Checks if every child node is satisfiable, and It T3, ..., Tj. all are satisfiable, C "
/7—\ the counter child node is not satisfiable and 7" is not satisfiable orree
T T T T

Table 4: Table that describes the functionality of our method in determining satisfiability in ADTs.
The table is based on the transformation table which is shown in Table 1.

Using the examples in this section, we demonstrate the functionality of determining satisfiability of
the examples of the given base structures of an ADT. These base structures and the corresponding
behaviour can be found in Table 4. We validate our method by taking the ADT in Figure 1
apart and determining satisfiability for it. For every structure we determine, we refer back to the
corresponding row in Table 4.

We go through the ADT using our method. First off, we see leaf node "Card" (row 1). Fol-
lowing the rules, we assume it is satisfiable. Its parent node is "ATM", which is a node with AND
refinement and children nodes of the same type (row 3). In order to determine satisfiability for
this node, we need to determine satisfiability for "PIN", which is a node with OR refinement and
children of the same type (row 2). Its first child is "Find Note", which has a single child node
of the opposite type, "Memorize" (row 4), which is a leaf node (row 1). This means that "Find
Note" is not satisfiable. However, the second child node of "PIN" is "Force", which is a leaf node
of the same type (row 1), and therefore is satisfiable. Since "PIN" has OR refinement, it is also
satisfiable, meaning both children of "ATM" are satisfiable. This means "ATM" is also satisfiable.
Therefore, "Bank Account", which is the parent node of "ATM" and has OR refinement (row 2), is
also satisfiable. The only thing left to do is to check for a direct counter child node that is satisfiable
of "Bank Account". This is not the case, meaning this ADT is satisfiable.
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Figure 10 shows the process of determining satisfiability of the ADT in Figure 1 using our
method. This shows that satisfiability in the second half of the ADT does not have to be determined
in order to know if the ADT is satisfiable. The only thing we need to check after determining
satisfiability of the first half of the ADT, is if the root node has a direct counter child node, which
is not the case here. This validates our method, which we continue to use in the next experiment
to achieve RO2.

®eyloggep (Maiware

Phishing

Figure 10: Process of determining satisfiability of the ADT in Figure 1 using our method. The gray
arrows show the order of nodes that our method goes through. The numbers in the badges next
to the nodes show the order of nodes of which satisfiability is determined. A green badge means
the node is satisfiable, and a red badge means the node is not satisfiable. The process shows that

satisfiability for the second half of ADT does not have to be determined in order to determine
whether the ADT is satisfiable.

6.3.1 Results Efficiency DFS Algorithm applied to ADTs

The results of our method of determining satisfiability of an ADT, explained in Section 4.1.3 and
validated in Section 6.3, compared to determining equivalence using the propositional semantics of
an ADTerm can be found in Figure 11. Our method has to determine satisfiability of 568 nodes in
total to determine satisfiability of the 38 ADTs. This is an average of 14.2 nodes per ADT. This is
possible due to the possibilities to prune parts of the ADTs in our method. Using propositional
semantics to determine satisfiability of all nodes of all ADTs, 1176 nodes are needed in total
determine satisfiability of the 38 ADTs. This is an average of 29.4 nodes per ADT. We therefore
determine that our method has to determine approximately 51.7% less nodes than when using the
propositional semantics of an ADTerm. This shows that our method is more efficient than using
propositional semantics.
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Figure 11: Results of the experiment to determine the efficiency of the DFS algorithm applied to
ADTs compared to the propositional semantics of an ADTerm. For this experiment, we received a
dataset with 38 unique ADTs. The y-axis represents the amount of nodes that satisfiability needs
to be determined over. The x-axis represents the two algorithms. We determine that the DFS
algorithm applied to an ADT (determines satisfiability of 568 nodes) is more efficient than the
propositional semantics of an ADTerm (determines satisfiability of 1176 nodes), since it needs to
determine satisfiability on approximately 51.7% less nodes.
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7 Discussion

In this chapter, we discuss what the results shown in Chapter 6 mean for our research objectives.
The proposed methods, experiment designs and validation of experiment designs are described in
Chapter 4. The theoretical background is provided in Chapter 2.

7.1 Determine Equivalence between Two ADTerms Using an Equiva-
lence Threshold

We have performed two experiments to determine the functionality of and validate our methods to
generate ADTerms based on ADTs in Section 6.1 and determine a restricted form of equivalence
between two ADTerms in Section 6.2. After validating our methods, we performed an experiment
to determine the optimal equivalence threshold using the Levenshtein Distance in Section 6.2.1.
The results shown in this experiment show the influence of different values for an equivalence
threshold in the process of determining equivalence between two ADTerms. With the gathered
results, we achieved RO1: Finding an optimal value for an equivalence threshold using
the Levenshtein Distance to overcome strict equivalence between two ADTerms. We
use the ADTerms generation process to generate ADTerms based on two ADTs, and compare these
two ADTerms using our top-down and bottom-up methods. We immediately stop the comparison
process once it is determined that the two ADTerms are not equivalent, which contributes to
the efficiency of the process. During the comparison, we use the equivalence threshold using the
Levenshtein Distance to allow for small differences between labels of leaf nodes. In our equivalence
threshold experiment, we determined that the optimal value for an equivalence threshold is around
0.45, to create a threshold in which slightly different leaf node labels, representing the same, in the
ADTerms are seen as equivalent. This way, similar leaf node labels in the two ADTerms, which
describe the same scenario, are still being seen as equivalent, whilst still marking two leaf node
labels that do not describe a similar scenario as inequivalent. This method helps us overcome the
limitation present in the initial implementation by Kordy et al. [2].

7.2 Efficiently Determine Satisfiability of an ADT

We have performed an experiment to determine the functionality of and validate our method to
determine satisfiability in Section 6.3 and an experiment to determine the efficiency of satisfiability
determination of our method in comparison to determining satisfiability of an ADTerm using the
propositional semantics in Section 6.3.1. With the gathered results, we achieved RO2: Determine
satisfiability of an ADT more efficiently than using the propositional semantics of an
ADTerm. We have demonstrated in our experiment which tests the functionality of our method,
that it is valid and have explained in which cases pruning of branches in an ADT is possible.
The results of the experiment testing the efficiency of our method, in comparison to using the
propositional semantics to determine satisfiability of an ADTerm, shows that our method has to
determine approximately 51.7% less nodes in order to determine satisfiability of an ADT. This
shows that our method can be more efficient in certain situations, when the assumptions we make
are valid.
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8 Conclusions and Further Research

In this thesis, we have explained the background of ADTs and the formal representation, ADTerms,
including the generation of ADTerms based on an ADT, the comparison between two ADTerms
to determine equivalence between them and the determination of satisfiability of ADTerms. We
optimized these operations according to our two research objectives. We also have developed the
universal tool ADT Create.

Starting off, we address RO1: Finding an optimal value for an equivalence threshold
using the Levenshtein Distance to overcome strict equivalence between two ADTerms.
We firstly have adopted the generation of ADTerms based on ADTs from [2] and used it for a
method to convert an ADT to an ADTerm. Next, we developed and validated a method to compare
two separate ADTerms with a top-down method and a bottom-up method. If the structure of the
ADT and the same leaf nodes are present in both ADTerms, and the child-parent relationships
between the leaf nodes and their associated function symbols are the same in both ADTerms, we
determine that these two ADTerms are equivalent in a restricted form. To overcome the limitation
of strict equivalence, an equivalence threshold using the Levenshtein Distance has been introduced,
that dynamically allows an amount of characters that may be different between two labels to still
be seen as equivalent. The optimal value of this threshold is determined to be around 0.45. Our
methods can be fully performed in ADT Create.

Next, we address RO2: Determine satisfiability of an ADT more efficiently than us-
ing the propositional semantics of an ADTerm. Kordy et al. have introduced a method to
determine satisfiability based on an ADTerm using the propositional semantics of the ADTerm [2].
In order to make this method more efficient, we developed and validated a method that is able
to determine satisfiability on an ADT using DFS. This method is able to determine satisfiability
based on an ADT, instead of on the propositional semantics of an ADTerm. We have shown that
using our method, in certain cases parts of the ADT can be pruned during the process, resulting in
our method needing approximately 51.7% less nodes to determine satisfiability compared to using
the propositional semantics of an ADTerm. Therefore, this shows that our method is more efficient.
We have implemented satisfiability determination in ADT Create.

For further research, other methods to determine equivalence between the labels of two leaf
nodes with an equivalence threshold can be researched. In the current implementation of deter-
mining equivalence, we use the Levenshtein Distance. However, this could be replaced by a neural
network to determine similarity between two labels to make the equivalence threshold more dynamic
and accurate. For satisfiability determination, it could be researched how to expand our method
with the processing of attributes in an ADT, to be able to find a more preferable proponent path
down the ADT, but still have the possibility to prune certain branches. ADT Create is a fully
developed tool that is available to install on PyPi. All discussed topics in this thesis are present in
this tool and are developed in a way that it can be expanded with new features. Further research
could look into implementing importation and exportation of ADTs using ADTLang [32], making
it possible to import and export ADTs in a more human-readable format. Another topic that can
be researched is the implementation of an API to connect ADT Create to other tools, for example
the ADT WebApp [5]. This would make ADT Create work even more seamlessly with other tools.

37



References

1]

[13]

[14]

[15]

IMF, “The Last Mile: Financial Vulnerabilities and Risks - Global Financial Sta-
bility = Report.”  https://www.imf.org/en/Publications/GFSR/Issues/2024/04/16/
global-financial-stability-report-april-20247cid=bl-com-SM2024-GFSREA2024001,
April 2024.

B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer, “Foundations of attack—defense trees,”
vol. 6561, pp. 80-95, September 2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Depth-first search. MIT Press,
2 ed., 1 2001.

B. Kordy, S. Mauw, and P. Schweitzer, “Quantitative questions on attack-defense trees,” 2012.
https://arxiv.org/pdf/1210.8092. pdf.

Leiden University, “ADT WebApp.” https://nschiele.github.io/ADT-Web-App/.

S. Hedman, “Propositional logic,” in A First Course in Logic, vol. 1, United Kingdom: Oxford
University Press, Incorporated, 2004.

J. Nieminen and J. Khim, “Multiset — Brilliant Math & Science Wiki.” https://brilliant.
org/wiki/multiset/.

A. Bossuat and B. Kordy, “Evil twins: Handling repetitions in attack—defense trees,” in
Graphical Models for Security (P. Liu, S. Mauw, and K. Stolen, eds.), (Cham), pp. 17-37,
Springer International Publishing, 2018.

V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,”
Soviet physics. Doklady, vol. 10, pp. 707-710, 1965.

R. Haldar and D. Mukhopadhyay, “Levenshtein distance technique in dictionary lookup
methods: An improved approach,” Computing Research Repository - CORR, January 2011.

B. Schneier, “Academic: Attack Trees - Schneier on Security.” https://www.schneier.com/
academic/archives/1999/12/attack_trees.html, 12 1999.

S. Mauw and M. Oostdijk, “Foundations of attack trees,” in Information Security and Cryp-
tology - ICISC 2005 (D. H. Won and S. Kim, eds.), (Berlin, Heidelberg), pp. 186-198, Springer
Berlin Heidelberg, 2006.

M. Rehék, E. Staab, V. Fusenig, M. Péchoucek, M. Grill, J. Stiborek, K. Bartos, and T. Engel,
Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems. January
2009.

B. Kordy, M. Pouly, and P. Schweitzer, “Computational aspects of attack—defense trees,”
vol. 7053, pp. 103-116, January 2011.

B. Kordy, S. Mauw, S. Radomirovic, and P. Schweitzer, “Attack-defense trees,” Journal of
logic and computation, vol. 24, pp. 55-87, June 2012.

38


https://www.imf.org/en/Publications/GFSR/Issues/2024/04/16/global-financial-stability-report-april-2024?cid=bl-com-SM2024-GFSREA2024001
https://www.imf.org/en/Publications/GFSR/Issues/2024/04/16/global-financial-stability-report-april-2024?cid=bl-com-SM2024-GFSREA2024001
https://arxiv.org/pdf/1210.8092.pdf
https://nschiele.github.io/ADT-Web-App/
https://brilliant.org/wiki/multiset/
https://brilliant.org/wiki/multiset/
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html

[16]
[17]

[18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]

2]

[27]

P. Kordy, P. Schweitzer, and University of Luxembourg, The ADTool Manual. 2015.

“What is SecurlTree — Amenaza Technologies Limited.” https://www.amenaza.com/
securitree-what-is.php.

“Isograph AttackTree Software.” https://www.isograph.com/software/attacktree/.

Jamesetaylor, “SeaMonster - Security Modeling software.” https://sourceforge.net/
projects/seamonster/, November 2016.

H. Zantema, “Decision trees: Equivalence and propositional operations,” July 1998.

W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, Fault Tree handbook. December
1987.

B. Waggener, Pulse Code Modulation Techniques. Springer, 1995.

Y. Doval, M. Vilares, and J. Vilares, “On the performance of phonetic algorithms in microtext
normalization,” Fxpert systems with applications, vol. 113, pp. 213-222, December 2018.

D. Pinto, D. Vilarino, Y. Aleman, H. Gémez, N. Loya, and H. Jiménez-Salazar, The Soundezx
Phonetic Algorithm Revisited for SMS Text Representation. January 2012.

J. Marques-Silva, “Practical applications of boolean satisfiability,” in 2008 9th International
Workshop on Discrete Event Systems, pp. 74-80, 2008.

R. M. Karp, Reducibility among Combinatorial Problems. January 1972.

G. Hicham, Y. Abdallah, and B. Mostapha, “Introduction of the weight edition errors in the
Levenshtein distance,” International journal of advanced research in artificial intelligence,
vol. 1, 1 2012.

“PYPI - The Python Package Index.” https://pypi.org/.

J. Hebinck, “code_documentation.md.” https://github.com/MainJay/ADTPythonLibrary/
blob/main/code_documentation.md.

J. Hebinck, “ADTCreate.” https://pypi.org/project/ADTCreate/, July 2024.
J. Hebinck, “ADT Create.” https://github.com/MainJay/ADTPythonLibrary.

S. G. Meza Orellana, “ADTLang: A declarative language to describe attack defense trees.”
https://theses.liacs.nl/pdf/2022-2023-0rrelanaSGM.pdf, July 2023.

39


https://www.amenaza.com/securitree-what-is.php
https://www.amenaza.com/securitree-what-is.php
https://www.isograph.com/software/attacktree/
https://sourceforge.net/projects/seamonster/
https://sourceforge.net/projects/seamonster/
https://pypi.org/
https://github.com/MainJay/ADTPythonLibrary/blob/main/code_documentation.md
https://github.com/MainJay/ADTPythonLibrary/blob/main/code_documentation.md
https://pypi.org/project/ADTCreate/
https://github.com/MainJay/ADTPythonLibrary
https://theses.liacs.nl/pdf/2022-2023-OrrelanaSGM.pdf

A Examples Theory

A.1 Example ADT 1

Let our ADT be the tree shown in Figure 1. This tree shows an attack-defense scenario in which a
Bank Account is attacked. Because the root node has the type attack, the proponent is offensive.
The opponent therefore is the defender. The scenario describes that you can attack a Bank Account
by attacking an ATM. You need a Card and a PIN for this. You can get the PIN by finding it on a
note or forcing it out of someone. However, finding it on a note can be prevented by memorizing the
PIN instead. Attacking a Bank Account can also be done Online. For this, you need a Username
and Password. The Password can be gotten by Phishing or by a Key Logger. However, 2FA defends
an Online Bank Account. Though, by using Malware, this 2FA can be bypassed.

A.2 Example ADT 2

Let our ADT be the tree shown in Figure 2. This tree shows an attack-defense scenario in which a
Bank Account is defended. Because the root node has the type defense, the proponent is defensive.
The opponent therefore is the offender. The scenario describes that you can defend a Bank Account
by have defenses against Physical Attacks and Cyber Attacks. You can defend against Physical
Attacks by having Security and Educated Employees. However, these defenses are not effective if
the Security is on Lunch Break and an Employee is purposely doing something against the rules.
You can defend against Cyber Attacks by Encrypting Data and having a Strong Firewall. However,
if the Decryption Key is known, this Encrypted Data can easily be decrypted, and if a Weakness is
found in the Firewall, a Cyber Attack can still occur.

A.3 ADTerms Generation

Let the ADT T we used to generate ADTerm ¢ be the ADT from Figure 1. We are using transfor-
mation table shown in Table 1 to transform the ADT into an ADTerm.

We start at the lowest level of abstraction and note down the labels of the leaf nodes. In our case,
the start of our ADTerm would look like this:

"Memorize"

We go up one level and introduce the leaf nodes "Force", "Phishing", "Key Logger" and
"Malware". Besides that, we introduce intermediary nodes "Find Note". When we look at the
structure of "Find Note" with its child "Memorize", we see that this structure is a rule in our
transformation Table 1. Therefore, we transform this structure into c?("Find Note", "Memorize").
The ADTerm at this moment is:

c?("Find Note", "Memorize"), "Force", "Phishing", "Key Logger", "Malware"

We look at a level higher and introduce new leaf nodes "Card", "Username" and "2FA"  and
introduce new intermediary nodes "PIN" and "Password". Looking at "2FA" and its counter
child node "Malware" and transformation Table 1, this forms the structure c®°("2FA", "Malware")
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Looking at "PIN" 6 we see that this is the parent of "Find Note" and "Force". It has refine-
ment OR, which we represent with a V operator. Since this is not a leaf node, we do not note
down the label in the ADTerm. The only purpose intermediary nodes have is defining relation-
ships. Therefore, we connect the children of "PIN" as is instructed in transformation Table 1:
VP(cP("Find Note","Memorize"), "Force"). Our second intermediary node is "Password". We see
that this is the parent of the two leaf nodes "Phishing" and "Key Logger". Again, with an OR re-
finement, meaning we connect these together using a \VV operator. We get VP("Phishing", "Key Logger").
This results in the current ADTerm:

"Card", VP(cP("Find Note", "Memorize"),"Force"), "Username", VP("Phishing",
"Key Logger"),c®("2FA", "Malware")

Going up one level of abstraction, we introduce the two intermediary nodes "ATM" and "Online".
"ATM" is the parent of "Card" and "PIN", connecting these with an AND refinement. "Online"
is the parent of "Username", "Password" and "2FA". We first look at the nodes "Username" and
"Password", since they are children of the same type. They are connected by an AND refinement,
which is represented by a A operator. This results in AP("Username", VP("Phishing", "Key Logger")).
"2FA" is a counter child node, and if we look at the transformation Table 1, the structure of
a parent with (a) child(ren) node(s) of the same type and one counter child node looks like
cP(AP("Username", VP("Phishing", "Key Logger")),c°("2FA", "Malware")). The ADTerm looks
like this:

AP ("Card", VP(cP("Find Note", "Memorize"), "Force")),c’(AP("Username", VP("Phishing",

"Key Logger")),c’("2FA", "Malware"))

Finally, on our highest level of abstraction, we add our root node "Bank Account", which has an
OR refinement. Our final ADTerm ¢ looks like the following:

t = VP (AP("Card", VP(cP("Find Note", "Memorize"),"Force")),c?(AP("Username",
VP ("Phishing", "Key Logger")),c’("2FA", "Malware")))
With this ADTerm, we can perform more mathematical operations, like determining satisfiability

of an ADTerm and determining equivalence between two ADTerms.

A.4 ADTerms Comparison Using Multiset Semantics
Let ADTerm t; be defined by:

ty = (VP(VP("Action #1", "Action #2), AP("Action #3", "Action #4")))
and let ADTerm ¢, be defined by:

to = (VP(AP("Action #1", "Action #2),VP("Action #3", "Action #4")))
and let ADTerm ¢35 be defined by:

ts = (VP(AP("Action #4", "Action #3),VP("Action #1", "Action #2")))
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The multiset semantics of these ADTerms, based on the multiset model by Kordy et al. [2], are:
ty = {({"Action #1"},0), ({"Action #2"},0), ({"Action #3" "Action #4"} 0)}

and:
ty = {({"Action #1","Action #2"} (), ({"Action #3"},0), ({"Action #4"},0)}

and:
t3 = {({"Action #4","Action #3"} (), ({"Action #1"},0), ({"Action #2"},0)}

Comparing the multiset semantics of ¢; to to, we see that, taking into account twin nodes and not
taking into account order, these two multiset semantics are not equivalent. Therefore, ADTerms t;
and ty are not equivalent.

Comparing the multiset semantics of ¢; to t3, we see that, taking into account twin nodes and not
taking into account order, these two multiset semantics are equivalent. Therefore, ADTerms ¢; and
t3 are equivalent.

A.5 Levenshtein Distance

Let string 1 be "Find Note", string 2 be "Find Notes" and string 3 be "Finding Notes".

We firstly compare string 1 and string 2:
"Find Note"

"Find Notes"

We determine there is one insertion needed to change string 1 into string 2.

We then compare string 1 and string 3:
"Find Note"

"Finding Notes"

We determine there are four insertions needed to change string 1 into string 3.
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A.6 Satisfiability of an ADTerm using Propositional Semantics: Satisfi-
able
Given the following ADT from Figure 1, we can determine whether it is satisfiable or not. We have

an ADT with an attack root node. When we translate this ADT to an ADTerm, we end up with
ADTerms t¢:

t = VP (AP("Card", VP(cP("Find Note", "Memorize"), "Force")),cP(AP("Username",
VP ("Phishing", "Key Logger")),c’("2FA", "Malware")))

The process of building up this ADTerm can be found in Appendix A.3. To determine whether the
ADT this ADTerm represent is satisfiable, we firstly determine the propositional semantics of this
ADTerm:

t= (x“Card" A (('r“Find Note" A _'x"Memorize") V m"Force")) V (x"Username" A (l'“Phishing" V Tigey Logger")

A = (Zwgppn A " Toyatgarer))

We then give all basic actions the value 1, since we assume all basic actions are satisfiable. With
this information, we can determine satisfiability of this ADTerm:

sat((LA (A1) VI)VAA(LVI)A=(1IAAL)))
sat((IA((1A0) VL) VAA(LVI)A=(1IAD)))
sat((1A(0OV 1)V (IALTA=(0)))
sat((LA1)V(IATAL)

sat(1V1)

sat(l) =1

We end up with the value 1, meaning that this ADT is satisfiable and that therefore, the proponent
is the winner.

A.7 Satisfiability of an ADTerm using Propositional Semantics: Not
Satisfiable
Given the following ADT from Figure 2, we can determine whether it is satisfiable or not. We have

an ADT with a defense root node. When we translate this ADT to ADTerms, we end up with
ADTerms t:

t = AP (AP(cP("Security", "During Lunch Break"),cP("Educated Employees",
"Insider Threat")), AP(c’("Encrypted Data","Have Decryption Key"),

c?’("Strong Firewall","Find a Weakness")))

To determine whether the ADT these ADTerms represent is satisfiable, we firstly determine the
propositional semantics of this ADTerm:

t= ((x"Security" A _‘x"During Lunch Break") A (x"Educated Employees" A T XvInsider Threats")) A ((x"Encrypted Data"

A TLHave Decryption Key“) A (x"Strong Firewall" A TLvFind a Weakness"))
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We then give all basic actions the value 1, since we assume all basic actions are satisfiable. With
this information, we can determine satisfiability of this ADTerm:

sat((LA-1)A(IA-L)A((IA-L)A(LTA-D)))
sat(((LAO)A(LA0))A((LAO)A(1A0)))
sat((0A0) A (0AD))

OA )

0) =

sat

We end up with the value 0, meaning that this ADT is not satisfiable and that therefore, the
opponent is the winner.
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