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Abstract

Depression is one of the most prevalent mental conditions which could impair people’s
productivity and lead to severe consequences. The diagnosis of this disease is complex as
it often relies on a physician’s subjective interview-based screening. The aim of our work
is to propose deep learning models for automatic depression detection by using different
data modalities, which could assist the diagnosis of depression. Current works on automatic
depression detection mostly are trained and tested on a single dataset, which might lack
robustness, flexibility and scalability. To alleviate this problem, we design a novel Graph
Neural Network-enhanced Transformer model named DePressionDetect Net (DPD Net) that
leverages textual, audio and visual features and can work under two different application
settings: the clinical setting and the social media setting. We also propose a model named
DePressionDetect-with-EEG Net (DPD-E Net) to incorporate Electroencephalography
(EEG) signals and speech data for depression detection. Experiments across four benchmark
datasets show that DPD Net and DPD-E Net can outperform the state-of-the-art models
on three datasets (i.e., E-DAIC dataset, Twitter depression dataset and MODMA dataset),
and achieve competitive performance on the fourth one (i.e., D-vlog dataset).
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Chapter 1

Introduction

Depression (also known as major depressive disorder) is a prevalent mental disorder with
serious impact on people’s personal life and the society. According to World Health Organi-
zation (WHO), there are approximately 280 million people in the world that suffer from
depression and it is ranked as the fourth leading cause of death among people aged 15-291.
Researchers predict it to be the second leading cause of burden of disease by 2030 [1].
The economic impact of depression was estimated at €92 billion annually in the European
Economic Area (EEA) [2]. Additionally, the COVID-19 pandemic caused a 27·6% increase
in cases of major depressive disorders globally [3].
The most common approach of depression screening is based on physician-administered
interview using questionnaires such as the Physical Health Questionnaire Depression Scale
(PHQ) [4]. This type of screening highly relies on a physicians’ subjective interpretation [5].
Also, some patients are reluctant to share their honest thoughts and talk about their
symptoms during the screening interviews as they are ashamed of the stigma attached to
depression.
Researchers have shown increasing interest in machine learning-based automatic depression
detection using behavioural cues such as facial activity, gesturing, head movements and
speech as studies have shown that they are strongly correlated with depression [4]. By
integrating different cues, information from single modalities can complement each other,
and the fused information has the potential of revealing underlining depression-related
patterns. Automatic depression detection remains a difficult task for researchers given the
following challenges. Firstly, public available multi-modal data of depressed individuals
in clinical settings is limited. Secondly, a thorough depression interview session is usually
long, so extracting useful context information from long sequences of audiovisual data
for depression detection can be challenging [6]. Furthermore, existing studies solve the
problem of multi-modal depression detection in one single setting, e.g., the clinical setting
or the social media setting, and mostly are validated on a single dataset, which might lack

1World Health Organization. https://www.who.int/en/news-room/fact-sheets/detail/depression
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robustness, flexibility and scalability.
Based on the work of Joshi et al. [7] named COGMEN, where the Transformer architecture
and Graph Neural Networks (GNNs) are leveraged for modeling global dependencies and
local dependencies respectively, we introduce a GNN-enhanced Transformer model named
DePressionDetect Net (DPD Net) with novel convolution modules for automatic depression
detection, which can be applied to the audio, speech and textual modality in different
settings and work across different datasets while addressing the challenges mentioned above.
Also, we design an extended version of the DPD Net called DePressionDetect with EEG Net
(DPD-E Net) to incorporate Electroencephalography (EEG) data for depression detection.
In this study, we investigate the problem of automatic depression detection in a multi-modal
setting. Given audio, visual cues, textual cues and EEG signals, our proposed model should
be able to predict the severity of depression in terms of Physical Health Questionnaire
Depression Scale (PHQ) scores or predict if the subject is experiencing depression. Our
main contributions are:

1. A novel GNN-enhanced Transformer model named DePressionDetect Net (DPD Net)
is proposed based on the work of [7], which is originally adopted for muti-modal
emotion recognition, we upgrade the model so it can be better adapted to muti-modal
depression detection using audio, visual and textual cues. To be more specific, we
change the structure of the previously proposed model and use it as a multi-modal
encoder module, and design a novel unimodal encoder module which consists of
conv-based sub-modules for encoding each single modality along with a detection
module.

2. An ensemble model named DePressionDetect with EEG Net (DPD-E Net) is proposed
for depression detection in EEG signal and speech data, which takes both the spatial
and temporal information of the EEG signal into consideration.

3. We perform feature engineering and evaluate our proposed models on four depression
datasets, which are under two different application settings: the clinical setting and
the social media setting. Comparisons to other baseline methods show that DPD
Net and DPD-E Net can outperform the state-of-the-art models on three datasets
(i.e., E-DAIC dataset, Twitter depression dataset and MODMA dataset), and achieve
competitive results on the rest one (i.e., D-vlog dataset).

4. Extensive experiments together with ablation studies are conducted to investigate
the impact of the representation methods, different modules of our proposed model
and the effect of the different modalities.

The remainder of this paper is organized as follows. Chapter 2 summarizes the related works.
Chapter 3 introduces fundamentals used in this work. Chapter 4 describes the details of the
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baseline methods. Chapter 5 presents the dataset, the procedure of data preprocessing and
feature extraction. Chapter 6 describes the details of our proposed models, DPD Net and
DPD-E Net. Experiments and the results are shown in Chapter 7. Chapter 8 concludes the
work of the thesis.
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Chapter 2

Related Work

This chapter gives an overview of the works on automatic depression detection which are
relevant for our study.

Depression Detection from Speech In current literature, many studies in the domain
of automatic depression detection from speech utilize Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) as the backbone of their proposed models.
Adrián et al. [8] design an ensemble model which consists of three stacked CNN base
learners to balance bias and variance to perform depression detection from speech on the
Distress Analysis Interview Corpus-Wizard of Oz database (DAIC-WOZ) [9]. This database
is considered as one of the benchmark databases in the domain of multi-modal depression
detection under the clinical setting, and its newly extended version called E-DAIC dataset [4]
that contains more subjects is used in our study. Zhao et al. [10] introduce a bidirectional
long short term memory (BiLSTM) model with a hierarchical attention mechanism to
differentiate depressed individuals from healthy controls using various frame-level audio
features. The application of Transformer-based model is presented in the work of [11]. Here
a model termed transformer-CNN-CNN (TCC) which integrates a parallel-CNN module
to capture local information with a 4-layer transformer to capture long term sequential
knowledge is proposed, and achieves state-of-the-art performance on the DAIC-WOZ
dataset.

Depression Detection from Visual Cues Even though head movements and gesturing
are also considered as discriminative cues for depression detection [4], most of the researches
focus on the utilization of facial activities. Zhou et al. [12] propose a model named
Multi-Region DepressNet to predict depression levels using sequential images of facial
regions cropped from interview videos. Each single DepressNet module is based on a
pre-trained ResNet50 [13] network with modifications on the prediction block. By stacking
four DepressNet modules aimed for different facial regions, features learnt from each region
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are combined to make the final prediction. Wang et al. [14] proposed a BiLSTM-based
framework for classifying depressed and non-depressed individuals using facial landmarks.
They model this task as a multiple instance learning problem by considering each complete
video file of a patient during screening as a bag and each sliced video segment as an
instance [14]. Given that the dynamics of facial expression could play an essential role
in depression detection, Melo et al. [15] design a novel encoding approach that performs
temporal pooling on sequential video images. The raw images along with the encoded
images are input to two separate CNN-based regressors for prediction and scores are fused
by taking the average [15]. This model is able to produce state-of-the-art results on two
video-based depression datasets.

The use of visual related bio-signals is presented in the work of Casado et al. [16], where
they investigate the effectiveness of remote photoplethysmography signals directly extracted
from facial videos in depression detection. Using a random forest model, the proposed
method is evaluated on two public available datasets, and achieves similar results compared
to some deep learning approaches, such as the two-stream CNN regressor [15] mentioned
above.

Depression Detection from Text As textual data is convenient to be collected and
normally could be accessible after proper de-identification, it is widely used in the domain
of automatic depression detection. Ansari et al. [17] develop a hybrid model to recognize
depressed users on social media platforms using the user-generated textual content. The
model consists of a logistic regression classifier that takes four types of lexicon as input,
and an attention-enhanced LSTM that takes word embeddings as input. Zhang et al. [18]
design a model that integrates a modified Robustly optimized BERT approach (RoBERTa)
model [19] with a BiLSTM model. Before feeding text data into the model, a random
oversampling technique is adopted to overcome the data imbalance issue. Evaluations on
two clinical datasets of different languages indicate the model’s potential. Based on a
finding that the Bidirectional Encoder Representations from Transformers (BERT) [20]
component brings most of the performance gain of a depression detection model called
Audio-Assisted BERT (Audibert) [21], Saskia et al. [22] investigate the effectiveness of a
BERT ensemble model comprised of a BERT base model along with its two varaints named
RoBERTa [19] and DistilBERT [23], using clinical textual contents. Experiments show that
the ensemble can improve depression detection performance compared to individual models
and introduce stability.

Multi-modal Depression Detection Since depression is a mental condition of complex
patterns, most of the studies utilize multi-modal information to fully exploit each modality’s
predictive power. To deal with the long-interview problem we mentioned in Chapter 1, Gong

5



et al. [24] propose a novel approach for multi-modal depression detection based on the topics
of the clinical interview recording. They extract the topic of each answer of the interview
questions and obtain the corresponding textual, visual and acoustic features of the answer.
Different features of the same topic are aggregated to construct new feature vectors so the
sequence length of each sample is decreased to the total number of topics [24]. Makiuchi et
al. [25] introduce three different CNN-LSTM unimodal models for encoding visual, textual
and audio cues. Then, the learnt features from each modality are concatenated for a linear
regressor that predicts the depression score.

Transformer-based models gained their popularity in multi-modal depression detection given
their high performance in the field of Natural Language Processing (NLP) and Computer
Vision (CV). Audibert [21] designed by Ermal et al. is a depression detection model that
takes two streams of input. A textual stream is sent to pre-trained BERT while an audio
stream is feed into pre-trained audio networks such as Wav2vec [26] and SincNet [27],
both of which are followed by a BiLSTM and their output are aggregated for depression
prediction. In [6], authors extract Mel-Frequency Cepstrum Coeffiecient (MFCCs) and Facial
Action Units (FAUs) from depression screening videos, and design a Transformer-based
model which leverages these two modality and performs multi-task learning by treating
classification as an auxiliary task of the main regression task.

Even though text, visual cues and audio cues are the most commonly used modalities for
depression detection, estimating depression from Electroencephalography (EEG) data has
become a promising research direction, as EEG signals of high temporal resolution can
well capture complex brain activities and turn out to be suitable for depression-related
research [28]. The Multi-modal Open Dataset for Mental-disorder Analysis (MODMA) is
introduced by [29] to boost research in depression detection using physiological data. The
dataset comprises both speech data and EEG data collected under clinical setting, but most
current studies only use one modality.

As the depression data under clinical settings is limited, depression datasets curated
by collecting social media contents are investigated by researchers to discover potential
depression-related patterns in daily life. The D-vlog Dataset [30] is an audio-visual depression
dataset collected from daily video blogs, and the Twitter Depression Dataset [31] is build
by extracting user posts which contain tweets accompanied with images.

Our work differs from all the previous works in terms of the method and the scope of
our research. By introducing a novel unimodal encoder module, a detection module, and
modifying the architecture of the network [7] as a multi-modal encoder module, our proposed
model is the first work to our knowledge that uses a GNNs-enhanced transformer in multi-
modal depression detection. Also, we use four aforementioned benchmark datasets including
the E-DAIC dataset [4], the D-vlog Dataset [30], the Twitter depression dataset [31] and
the MODMA dataset [29], which cover different settings for a comprehensive study in this
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domain, where the proposed models have the potential to be applied to real scenes. All the
datasets used in this work are described in detail in Chapter 5.
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Chapter 3

Fundamentals

This chapter gives descriptions for all the fundamentals that are related to our project.

Evaluation Metrics In general, our proposed models tackle two types of problems: the
classification problem and the regression problem. We leverage the following metrics to
evaluate the performance of the models.

For the E-DAIC dataset, we use the Concordance Correlation Coefficient (CCC) score to
evaluate the model’s regression performance. This metric is considered as the only criteria
for ranking participants’ methods of the depression detection challenge proposed by the
original E-DAIC dataset paper, and is the most widely used metric for depression detection
research on the E-DAIC dataset, as it is a metric which perfectly takes both precision
and accuracy into consideration in one formula and is robust to scale variance [4]. The
CCC score measures the correlation between the prediction and the ground truth using the
following equation:

CCCscore =
2Cpy

C2
p + C2

y + (p̄− ȳ)2
(1)

Note that a depression score ranges from 0 to 24. Here p̄ is the mean value of the predicted
depression scores and ȳ is the mean value of the true depression scores. Cp and Cy are the
variance of the predicted and the real depression scores, respectively. Cpy is the covariance
of the predicted and the real depression scores. The CCCscore ranges from -1 to 1, where 1
indicates the highest correlation between the predictions and the ground truths.

Also, we report Root Mean Square Error (RMSE) as an auxiliary metric, which is calculated
using Equation 2. Here N is the number of samples, pi and yi denote the predicted
depression score and the real depression score of sample i, respectively.
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RMSE =

√∑N
i=1(pi − yi)2

N
, (2)

For the classification tasks on the Twitter Depression dataset, D-vlog dataset and MODMA
dataset, we use precision, recall and F1-score as the metrics. Precision represents the
percentage of all the positive labels that are correctly assigned as positive by the model.
Let TP denote the number of true positives, and FP denote the number of false positives,
then precision is computed as follows:

precision =
TP

TP + FP
(3)

Recall is a metric to measure, for all the positive samples, what percentage of them are
actually found by the model, and is formulated as:

recall =
TP

TP + FN
(4)

The F1-score takes both the precision and recall into consideration using the following
equation:

F1 = 2× precision× recall

precision+ recall
(5)
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Chapter 4

Baselines

This chapter introduces the baseline methods that our proposed models are compared to.
Different baseline methods are selected for comparison on four aforementioned benchmark
datasets including the E-DAIC dataset [4], the Twitter depression dataset [31], the D-vlog
Dataset [30] and the MODMA dataset [29]. All of the baselines are transformer-based
models and produce the state-of-the-art results on each of the datasets, respectively.

Figure 4.1: The overall architecture of TensorFormer.

TensorFormer In the work of [32], the authors propose a tensor-based multimodal
Transformer called TensorFormer for depression detection using text, audio and videos,
which is the state-of-the-art method on the E-DAIC dataset. The general overview of the
model is shown in Figure 4.1. Here XT , XA, and XV denote the input text, audio features,
and visual features, respectively. TensorFormer starts with a pre-trained BERT model that
encodes texts, and two bidirectional long short term memory (BiLSTM) models to encode
the input audio and visual features. The obtained features from these three modalities are
then processed by the TensorFormer block, which performs global cross-modality interaction
through the attention tensor. The attention tensor is calculated by the Cartesian product
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of the features from three modalities, and is used for computing the weighted summary
of each modality which are able to retain complementary information from the involved
modalities [32]. Subsequently, new representations of each of the modalities, denoted
by X ′

T , X ′
A, and X ′

V , are forwarded to their corresponding feed forward modules with
residual connections, and the further encoded embeddings from each modalities are finally
concatenated to make the prediction denoted by Ŷ . By stacking 2 layers of the TensorFormer
blocks, their experiments have shown that TensorFormer not only achieves state-of-the-art
performance on multi-modal depression detection but also produces promising results on
multi-modal sentiment analysis.

Figure 4.2: The overall architecture of TM Transformer.

TM Transformer For the Twitter depression dataset, the Time-enriched Multimodal
Transformer proposed by [33] achieves state-of-the-art performance in detecting depression
from twitter users based on textual contents with images that are posted together with the
text. Figure 4.2 depicts the architecture. Firstly, pre-trained models including CLIP [34]
and EmoBERTa [35] are leveraged for encoding images and texts, denoted by XT and XV ,
respectively. Then, the features learnt from each modality along with two types of positional
embeddings are send to the cross-modality attention module that can capture informative
patterns through modalities’ interaction and the further encoded embeddings are passed
to a classic transformer encoder followed by a fully connected layer to make the final
prediction [33]. They propose three models based on the used positional embeddings and
the post sampling strategies: VanillaTransformer uses the classic learnt positional encodings
with sub-sequence sampling; SetTransformer leverages zero positional encoding with random
sampling of user posts; Time2VecTransformer uses time-enriched positional embeddings
with sub-sequence sampling. Their experiments show that Time2Vec Transformer is able to
outperform the other two models, which illustrates the effectiveness of time2vec positional
embeddings. In our work, we compare our DPD Net with all the three models.

STST For the D-vlog dataset, we use the spatio-temporal squeezed transformer (STST)
shown in Figure 4.3 as the baseline, which adopts cross-attention mechanism to extract
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spatio-temporal features for depression detection [36]. After normalizing and transforming
the audio and video data into the same shape, two layers of STST blocks are applied to
the pre-processed features to learn spatio-temporal patterns from each modality using a
novel cross-attention method. The STST block works by passing the obtained values (V)
to an additional convolutional-based block, comprising three 1D convolutional layers and
a ReLU activation, to model spatial information, and the adjusted values (V) are used
along with the obtained query (Q) and keys (K) to perform the cross-attention that models
interactions among different modalities [36]. Finally, the updated audio features and visual
features are concatenated and forwarded to a multi-layer perceptron (MLP) to make the
prediction.

Figure 4.3: The overall architecture of spatio-temporal squeezed transformer (STST).

ES Vision Transformer We use the state-of-the-art vision transformer-based model
proposed by [37] as the baseline method for the Multi-modal Open Dataset for Mental-
disorder Analysis (MODMA) dataset. As can be seen from Figure 4.4, this model is comprised
of three main modules including a CNN-LSTM module for encoding the raw EEG signal
denoted by XE1, a vision transformer module to learn features from EEG spectrogram
denoted by XE2, and another vision transformer module for extracting features from speech
spectrogram denoted by XA. The learnt features from each module are fused to predict the
depression labels through a classifying module consisting of two fully connected layers and
a ReLU activation.
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Figure 4.4: The overall architecture of ES Vision Transformer.
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Chapter 5

Datasets

For this study, we use four different datasets in the multi-modal depression detection domain
to validate our proposed methods. The first dataset we use is the E-DAIC Database [4],
which is a depression dataset of multi-modal data collected from clinical interviews. As
multi-modal depression-related data in the clinical setting is rarely publicly available, we use
the Twitter Depression Dataset [31] and the D-vlog Dataset [30] which are collected
from social media to further evaluate our method and explore the domain of multi-modal
depression detection. Speech, visual, and textual modalities are involved in these three
datasets. The MODMA Dataset [29], a Chinese multi-modal depression dataset which
contains audio data and EEG signals is used to investigate DPD-E Net’s effectiveness.
Detailed descriptions of each dataset, the procedure of data pre-processing and feature
extraction are presented in this chapter.

5.1 E-DAIC Database

Dataset Description

Extended DAIC Database (E-DAIC) [4] is a multi-modal depression dataset of clinical
interview recordings in which all interviews are conducted by a virtual avatar who asks
general questions such as personal information, or questions related to the Physical Health
Questionnaire Depression Scale (PHQ) [5]. Audio, video and the transcript of each partici-
pant’s interview are recorded in the dataset along with their final PHQ scores. The range of
the PHQ score is 0 to 24 and higher scores indicate more severe depression [4]. Table 5.1
gives an example of an interview transcript from a participant with the highest PHQ score.

The dataset consists of 275 samples of interview sessions with 40.5 hours recordings in total,
and is split into a training set, validation set and test set. Some statistics are presented in
Table 5.2. The average duration of an interview session is about 16 minutes on average,
which poses challenge for our prediction task as the estimation needs to be made from the
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Sample Questions Sample Answers

0 Where are you from originally? Los Angeles California.

1 Who is someone that has been a positive influence in your life? My teachers.

2 Tell me more about that. Spiritual teachers that I find a lot of guidance from.

3 What are some things that make you really mad? The situation with my life right now.

4 Can you tell me more about that?
I can’t find a job. I applied from anywhere and everywhere,

from entry-level to management, anywhere in between.

5 How easy is it for you to get a good night sleep? It isn’t easy.

6 Does it happen quite often? Yes. It happens very often.

7 When was the last time that happened? Last night I couldn’t sleep.

8 Why?
Just thinking about my situation. Car payment was due yesterday.

I just don’t know if I have what it takes to continue to do.

... ... ...

Table 5.1: An interview transcript example of a depressed participant.

whole recording of the interview while the duration of a prediction sample (i.e., an audio or
video segment used for prediction) is so much shorter (seconds-long) for other multi-modal
tasks such as emotion recognition [24]. Also, the number of samples is limited, but E-DAIC
is the only public available depression dataset with data of three modality (audio, video,
text) and is considered as the benchmark dataset in this domain [4].

Samples Duration (hrs) Avg Duration (mins)

Training 163 40.5 16.0

Development 56 14.8 15.8

Test 56 14.9 15.9

All 275 70.2 15.9

Table 5.2: Statistics of the training, development and test set in E-DAIC Dataset.

Data Pre-processing

The original E-DAIC dataset contains raw audio data with a sampling rate of 16000 Hz
and a resolution of 16 bits, the transcript of the audio is given in csv format along with the
corresponding timeframe of each utterance. Raw video files are not released due to privacy
concerns, while Facial Action Units (FAUs), gaze and pose positions of the participants
extracted from interview videos are provided. We pre-process the dataset in the following
steps.

1. Starting with the transcripts, we remove all the questions by pattern matching, as
we find that all questions follow certain formats at the utterance beginning, such as
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’can/have/do/did/are you’, ’what are/is/do/would/got’, or contain certain phrases
such as ’last time’, ’tell me’. By deleting the question part, we alleviate the long
sequence problem without undermining the effective information that should be
retained in the data, which is illustrated by the experimental results in Section 7.2.3.

2. There are errors of the given timeframes of the transcripts, such as the starting time
of certain utterance being earlier than the end time of its previous utterance. We
track these errors and fix them by manually checking the raw audio files.

3. After obtaining the new transcripts, we slice the audio file into segments of utterances
using the given timeframes and keep their corresponding visual descriptors. The
provided visual descriptors are discussed in more detail in Section 5.5.

5.2 Twitter Depression Dataset

Dataset Description

With the surge of social media, people often share their daily lives and opinions using
platforms such as Twitter in a tweet accompanied with a related image or a video. This
opens up a new direction for automatic depression detection, as a user’s profile can be
represented by their posted tweets and could possibly indicate their mental state. With
additional visual cues from the posted images, richer information for depression estimation
becomes available.

User Text Text + Images

Depressed 1,402 232,895 22,195

Non - Depressed 1,402 879,025 64,359

All 2,804 1,111,920 86,554

Table 5.3: Statistics of the Twitter Depression Dataset.

The Twitter Depression Dataset [31] is build upon another dataset which only contains
textual modality. Authors curate the new dataset by extracting extra tweets accompanied
with images using user IDs obtained from the text-based dataset [31]. This dataset is the
most widely used multi-modal depression detection dataset in the social media setting. In
total, it includes 2804 user samples with approximately 110M tweets. Users are identified
as depressed individuals or healthy controls, and the distribution of these two classes is
balanced, which can be seen from Table 5.3. Both of the classes have hundreds of thousands
of tweets but only around 7 to 10 percent of the tweets are followed by images. Also, the
non-depressed class has on average more tweets collected per user.
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We present an example of a depressed user in Figure 5.1. It is worth noting that in this
case, the textual information is enhanced by the corresponding images. Especially, for the
first tweet, the textual content ’What am I doing?’ is a plain self-question which seems
to not indicate any depression tendency. But with its corresponding image, some hidden
mental condition information might be revealed.

Figure 5.1: An example of a depressed user in the Twitter Depression Dataset.

Data Pre-processing

Each tweet sample in the Twitter Depression Dataset is presented as key-value pairs
such as posted time, tweet ID, text and user interactions. Images are named using their
corresponding tweet IDs. As the scope of this study is multi-modal depression detection and
we would like to explore the performance of our model on the text and visual modalities,
we only keep those tweets which were posted with images as our experiment data. We
pre-process the data as follows:

1. Only relevant data fields are kept, including post time, tweet ID and text. There are
errors of the image files as some of them are zero-byte. We remove these empty
images and their tweets, and sort each user’s tweets in time ascending order.

2. Tweet textual content normally contains various types of noise so we clean each tweet
by removing links, emojis, user mentions and special characters. The hashtag symbols
are deleted but the content followed by are kept, as it is quite common for social
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media users to use hashtags to summarize their posts. Then, we convert all tweets to
lowercase, and remove all the empty tweets generated after text cleaning.

3. For all the images, we check them if they are RGB files, and transform them to RGB
if they have an additional alpha channel.

5.3 D-vlog Dataset

Dataset Description

Video-sharing platforms such as Youtube offer opportunities for depression detection in
daily lives as video blogs posted by users might imply their psychological state. The D-vlog
Dataset [30] is an audio-visual depression dataset consisting of daily video blogs from
Youtube. The selected videos have the subject speaking directly to the camera to make
sure each subject’s facial activities can be leveraged for depression estimation [30].

Train Validation Test

Depressed 375 57 123

Non - Depressed 272 45 89

All 647 102 212

Table 5.4: Statistics of the D-vlog Dataset.

The dataset contains 961 samples of 816 subjects, with each sample having an average
length of around 10 minutes. As can be seen from Table 5.4, the dataset is split into the
training set, validation set and test set with a ratio of approximately 7:1:2, and the number
of depressed individuals is slightly larger than that of the non-depressed.

Data Pre-processing

Videos are segmented into 1-second fragments. Their corresponding 25 low-level acoustic
descriptors and 68 facial landmarks are extracted and concatenated to form the audio
and visual descriptors. For ethical concerns, the dataset only provides these descriptors as
feature vectors instead of the raw videos and audios [30]. We check the length of the given
audio and visual features to see if they are synchronized. For those of unmatched lengths,
we simply pad the shorter features with zeroes.
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5.4 MODMA Dataset

Dataset Description

Recent studies often use EEG data for automatic depression detection in a unimodal way.
To make use of information from additional modalities, the Multi-modal Open Dataset for
Mental-disorder Analysis (MODMA) [29] is used in this project, which is the only available
open dataset which comprises both speech data and EEG data. The speech data are recorded
during the interviews in which each subject is asked 18 depression-related questions, and
only the audio of the answering part are kept. All the interviews are conducted in Chinese.
EEG signals are collected under resting-state for 5 minutes using a 128-channel HydroCel
Geodesic Sensor Net with a sampling frequency of 250Hz [29].

Speech EEG Gender (F/M)

Depressed 24 23 18/29

Non - Depressed 29 29 18/40

All 53 52 36/69

Table 5.5: Statistics of the MODMA Dataset.

In total, 53 subjects are included in the speech data and 52 participants’ EEG signals are
collected. According to Table 5.5, the dataset is quite sparse but balanced. Also, there are
more male subjects for the healthy control group and the depression group.

Data Pre-processing

After checking the unique subject IDs assigned to the participants, we find that not all
participants participate in both the interview test and the EEG test. Most of the works in
detection depression with EEG data use single EEG modality, which might not able to fully
uncover the depression-related patterns behind. As the goal of this project is to estimate
depression from multi-modal data, we only kept those participants who are involved in both
tests, which leads to a total of 33 subjects. Then, we perform data pre-processing through
the following steps:

1. For the EEG data, we use finite impulse response (FIR) filter of 0.5–50 Hz as this
is the frequency range where most of the depression-related signals are located [38].
Then, the processed EEG signals are re-referenced to the average electrode, which is
a common practice in EEG signal processing to remove background noise [39]. Lastly,
the processed EEG signals are segmented to 8-second epochs.
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2. For the speech data, the original audio data is provided after being segmented into
audio clips, where each audio clip represents a corresponding answer for the interview
question. Unlike the E-DAIC dataset which is also collected under clinical interviews,
transcripts of the interview are not provided in the MODMA dataset. We manually
transcribe the audio recordings into Chinese text to include the textual modality.

5.5 Feature Extraction

Audio Features

Low-level audio features including Mel-Frequency Cepstrum Coeffiecient (MFCCs) and
Extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) are extracted for the E-
DAIC and the MODMA dataset. MFCCs are popular features in speech-related applications
as it is using filter bank inspired by the human’s perception of the speech signal [40].
eGeMAPS is a feature set consisting of frequency/energy related parameters, spectral
parameters and their functionals [41]. The reason for using these features is that, the
original E-DAIC dataset also provides other baseline deep-learnt features. However, after
some preliminary experiments with both the low-level features and deep-learnt features, we
find that using low-level features can lead to better performance with DPD Net. We extract
40 MFCCs using Librosa1 and 88 eGeMAPS features using Opensmile2 for each utterance
(answer), which are then concatenated into a 128-dimensional audio feature. All the 88
parameters are given and explained in the original eGeMAPS paper [41]. For the D-vlog
dataset, the provided low-level acoustic descriptors including loudness, MFCCs, spectral
flux, etc., which constitute 25-dimensional vectors, are used as audio features.

Visual Features

For the E-DAIC dataset, we use 18 provided Facial Action Units (FAUs) which are quantified
by intensity as visual features. They describe the activities of certain facial muscles such as
the raise of upper lid (AU5) and wrinkle nose (AU9), which can be seen from Figure 5.2. We
also use the Gaze position and pose position as visual features, which present the direction
of gaze and the position and orientation of the head respectively [4]. The combination of
these three types of visual descriptors leads to a 49-dimensional visual feature. For the
D-vlog dataset, 68 facial landmarks which presents the locations of face features in the
form of x and y coordinates, are used as visual features.
For the Twitter depression dataset, instead of learning image representations from scratch,
we leverage the pre-trained CLIP [34] model as our visual feature extractor. CLIP proposed

1https://librosa.org
2https://www.audeering.com/research/opensmile
3https://github.com/TadasBaltrusaitis/OpenFace/wiki/Action-Units
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Figure 5.2: Example of FAUs that encode facial activities.3

by OpenAI is a multi-modal model which is trained on 400M image-text pairs crawled
from internet by predicting if the textual content is aligned with an image [34]. Hugging
Face toolkit [42] is used for extracting features from raw tweet images. Firstly, we use
’AutoProcessor’ to convert images to the correct input format, then 768-dimensional visual
features are obtained from Hugging Face pre-trained models ’clip-vit-base-patch16’.

Textual Features

We adopt a pre-trained language models MpNET [43] for encoding the texts. By experiment-
ing with pre-training settings such as batch size, masking method and the choice of input,
MpNET is proposed as an upgraded version of BERT [20] using the best settings found
in their experiments [43]. To encode the English text from E-DAIC dataset and Twitter
depression dataset, we use the Hugging Face pre-trained model ’all-mpnet-base-v2’. As
for the Chinese text in MODMA dataset, the multilingual-model ’paraphrase-multilingual-
mpnet-base-v2’ is utilized. These two models are selected as text encoders based on our
preliminary experiments.

EEG Features

In this work, 3-stream EEG data are used for estimating depression, which consist of two
types of EEG features: temporal features presented by a combination of different linear and
non-linear features, and spatial features presented by Brain Functional Networks (BFNs).

From the 128 available electrodes, we select 16 main electrodes (channels) in Figure 5.3,
which are highlighted in blue. Because they are the most representative electrodes of EEG
signal and have been proven to be effective in depression detection [44]. For each time step
(i.e., 8-second epoch), we extract features such as activity, mobility, complexity, permutation
entropy, spectral entropy, etc., which serve as input for the temporal EEG stream. In total,
29 linear and non-linear features listed in Table 5.6 are extracted for each channel and are
finally flattened to 464-dimensional features (i.e., 29 * 16) as the input of temporal stream
classifier.

Brain Functional Networks (BFNs) is a type of network that are constructed based on the
the correlations among EEG channels. They describe the brain functional connectivity and
have been widely used for brain disorder diagnosis [28]. We construct BFNs by considering
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Figure 5.3: 128-channel EEG electrode positions and segmentation of brain regions: left
frontal (LF), right frontal(RF), left temporal (LT), right temporal (RT), left
central (LC), right central (RC), left parietal occipital (LPO) and right parietal
occipital (RPO).

channels as nodes and using their Pearson Correlation Coefficient (PCC) to define the edges
of the networks. For channels x and y, the PCC is calculated as follows:

r =

∑
(x− x)(y − y)√∑

(x− x)2
∑

(y − y)2
(6)

where x is the mean of the x signal and y is the mean of the y signal. The PCC value
ranges between -1 and 1, with 0 meaning no correlation between these two signals. We take
the absolute value, and set the threshold as 0.6 to define an edge. For the global spatial
stream, we use the before-mentioned 16 main electrodes.
Brain regions can be divided into 8 sub-regions shown in Figure 5.3. We choose right
temporal (RT), left central (LC) as the main sub-regions for exploring the local spatial
information as it is found that channels belonging to these two sub-regions exhibit the
most discriminative features between depressed and non-depressed subjects [45]. Then, all
electrodes within each of the two sub-regions are leveraged to construct two separate BFNs
as input to the local spatial streams.
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Feature Name Feature Name

Kurtosis Activity

Maximum of the Second Order Difference Mobility

Mean of the Second Order Difference Complexity

Maximum of the First Order Difference Mean FFT Amplitude

Mean of the First Order Difference Median FFT Amplitude

Coeffiecient of Variation Min FFT Amplitude

Skewness Max FFT Amplitude

Wavelet Approximate Mean Mean FFT Amplitude for Alpha Band

Wavelet Approximate Standard Deviation Mean FFT Amplitude for Beta Band

Wavelet Detailed Mean Mean FFT Amplitude for Delta Band

Wavelet Detailed Standard Deviation Mean FFT Amplitude for Theta Band

Wavelet Approximate Energy Singular Value Decomposition Entropy

Wavelet Detailed Energy Spectral Entropy

Wavelet Approximate Entropy Permutation Entropy

Wavelet Detailed Entropy

Table 5.6: 29 linear and non-linear EEG features.
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Chapter 6

Methodology

In this chapter, we present our two proposed models DPD Net and DPD-E Net together
with their implementation details.

6.1 DPD Net

In this section, we introduce our novel model DePressionDetect Net (DPD Net) in detail.
Figure 6.1 presents the overall structure of the DPD Net, which consists of three main
components: a unimodal encoder module, a multi-modal encoder module and a detection
module.

6.1.1 Model Overview

Given the text input denoted as XT , audio descriptors as XA and visual descriptors as XV ,
DPD Net starts with encoding each single modality. The proposed unimodal encoder module
consists of a pre-trained MpNET model [43] for encoding the text into a 768-dimensional
feature vector, and two novel convolution-based submodules that encode the audio and
visual descriptors into 256-dimensional feature vectors, respectively.

After processing the input of each modality by their corresponding encoders, the features
obtained from each modality are concatenated as a fused feature and fed into the multi-
modal encoder module, which is based on the COGMEN model [7] originally proposed for
multi-modal emotion recognition. To the best of our knowledge, there is no work in the
domain of multi-modal depression detection that uses GNNs along with transformers, so
our proposed model can be considered as a new attempt in this domain. The architecture
of [7] is presented in Appendix A.

The Multi-modal encoder module begins with a transformer submodule including a trans-
former encoder and a linear layer, to produce a 100-dimensional multi-modal embedding.
Based on this multi-modal representation, two types of homogeneous graphs are formed
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using past and future information, and are sent into a GNN submodule for further encoding.
After this stage, another 100-dimensional representation is obtained and further concate-
nated with the embedding from the transformer submodule, and is sent to the detection
module that we designed for making the final prediction. This is the general framework of
the DPD Net, each of the submodules is described in the following sections.

Figure 6.1: The overall architecture of the proposed DePressionDetect Net (DPD Net).

6.1.2 Unimodal Encoder Module

The unimodal encoder module is designed for learning representations for each single
modality before the fusion of the modalities. MpNET [43] is adopted for encoding the
textual content, as discussed in Section 5.5, and two conv-based submodules are proposed
for encoding the audio and visual modality.

Audio Conv-based Submodule

As mentioned in the feature extraction Section 5.5, each audio segment is represented as a
128-dimensional feature vector containing MFCCs and eGeMAPs. For each interview session
of a patient, we have N answers, which are audio segments for each interview questions.
For a vlog of a subject, we have sequential audio segments of 1-second with N time steps.
So the input to this audio encoding submodule is a vector with shape (N, 128) for the
E-DAIC dataset and the MODMA dataset. Since the provided audio descriptors of the
D-vlog dataset are 25-dimensional vectors, the input shape in this case is (N, 25).
To encode this audio information, we design a conv-based submodule for audio modality
shown in Figure 6.2a. It starts with a 1D convlutional layer with 256 filters with kernel size
3 and stride 1, followed by a batch normalization, a rectified linear unit (ReLU) activation
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(a) Audio modality

(b) Visual modality

Figure 6.2: The conv-based submodule for audio and visual modality.

and a dropout layer. The convolutional layer is designed for capturing local patterns of the
input data by leveraging convlutional filters. In case of a 1D convlutional layer, each filter
of certain kernel size slides over the input data in one axis with certain stride, and performs
linear operations to produce feature maps in which essential patterns of the input data are
encoded. In our preliminary experiments, we try to stack these layers (layers within the
dash line cell in Figure 6.2a) with different kernel sizes and different number of filters, or
using dilatation, but this simple structure gave the best performance. Then, the output of
the dropout layer is fed into a 2-layer LSTM to capture longer dependencies of the audio
modality.

Visual Conv-based Submodule

For the visual encoder, we adopt another conv-based submodule inspired by the work of [46].
Note that the video features from the E-DAIC dataset are 49-dimensional, the posted images
of the Twitter depression dataset are encoded as 768-dimensional vectors by pre-trained
vision models, and the provided visual descriptors of the D-vlog dataset are 136-dimensional.
Let N denotes the sequence length, so each input sample to this submodule is a vector
with shape (N, 49) for the E-DAIC dataset, (N, 768) for the Twitter depression dataset
and (N, 136) for the D-vlog dataset.

As can be seen from Figure 6.2b, samples are firstly normalized by layer normalization
and are encoded by a 1D convlutional layer with 256 filters of kernel size 1 and stride 1.
Then, a Gated Linear Unit (GLU) activation is used followed by another 1D convolutional
layer with 128 filters of kernel size 3, stride 1 and number of groups 128. Then, a batch
normalization and a ReLU activation is used followed by a 1D convlutional layer with 128
filters of kernel size 1, stride 1. Finally, a dropout layer is used and a 4-layer LSTM is
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adopted to compliment the convlutional layers so both local information and longer-term
relations can be obtained for the visual modality.

6.1.3 Multi-modal Encoder Module

After obtaining the representations of each modality from the unimodal encoder module,
learnt representations are fused by concatenation. For the E-DAIC dataset, textual, audio
and visual embeddings are fused into a 1280-dimensional vector for each answer, and for the
Twitter depression dataset, textual and visual embeddings are fused into a 1024-dimensional
vector for each tweet. Audio and visual features of the D-vlog dataset are constructed as
a 512-dimensional vector for each vlog. Then, these multi-modal representations are fed
into the multi-modal encoder module to further explore the local and global dependencies,
which starts with a transformer submodule encoding the input into attention values as
a new representation, followed by a GNN submodule for learning potential new patterns
through graph information.

Transformer Submodule

Figure 6.3: The transformer submodule.

The transformer submodule is shown in Figure 6.3 which starts with the classic transformer
encoder (dash line cell) from the work of [47]. The fused multi-modal representation input
Xinput is sent to the multi-head attention layers after after being added to the positional
encoding used for encoding the position of each element of the input sequence. The Q,
K and V stands for Query, Key, and Value, respectively, obtained by performing linear
projections to the multi-modal representation input, which is used for constructing the
output embeddings. Let X of shape (T, dm) as the multi-modal representation input (after
addition with positional encoding) of sequence length T , the Q, K and V are computed
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using Equation 7.

Qh = XW h,Q

Kh = XW h,K

Vh = XW h,V

(7)

Here, W h,Q, W h,K and W h,V are trainable parameters, with W h,Q ∈ Rdm×dq , W h,K ∈
Rdm×dk , W h,V ∈ Rdm×dv , and dq = dk = dv = dm. Then, the output attention matrix of a
single head self attention is computed using Equation 8:

headh = softmax(
QhKh

T

√
dk

)Vh (8)

A multi-head attention with h heads is defined in Equation 9, which is simply done by
concatenating the attention value obtained from each head and performing another linear
operation with a trainable parameter W o ∈ Rdm×hdv and dq = dk = dv = dm/h:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
o (9)

Then X is added to the obtained multi-head attention value using a residual connection
and normalized by layer normalization, and passed to a two-layer feed-forward block with
another residual connection followed by another layer normalization. Finally, it is sent to a
fully connected layer for downscaling into a 100-dimensional vector.

In our implementation, the transformer encoder is designed to dynamically assign the
number of heads with a range from 7 to 15 heads depending on the dimension of X. The
N presented in Figure 6.3 is set to 4 means that we stack four transformer encoders.

GNN Submodule

Since the transformer submodule is responsible for modeling global dependencies of the
multi-modal representation, a GNN Submodule which is composed of a Relational Graph
Convolutional Network (RGCN) [48] and a Graph Transformer [49] is added in charge of
modeling local dependencies.

Firstly, we model the output feature vectors obtained from the transformer submodule as a
directed graph G = (V , E , R) so it can be leveraged in the GNN submodule. Each feature
vector is considered as a node vi ∈ V, with its labeled edges (vi, r, vj) ∈ E and an edge
type r ∈ R. Two types of edge relations are constructed by taking the past and future 6
utterances or time steps into consideration. Then, nodes along with graphs are sent to the
RGCN. The idea behind RGCN is to update the center node feature by taking its neighbor
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information into consideration in the form of aggregation as the following Equation 10:

z′i =
∑
r∈R

∑
j∈N r

i

1

|N r
i |
Wrzj +W0zi (10)

Here zi ∈ Rd′m denotes the node feature obtained from the previous transformer submodule,
Wr and W0 are trainable parameters, N r

i is the set of neighbors of node i with relation r.
Then, the updated node features z′i is sent to a graph transformer, which adopts the multi-
head attention of the classic transformer that we explained in the transformer submodule.
To update the node feature z′i, the difference is in Equation 7 where X for computing Q is
z′i, and X for computing K and V is the neighbor node of z′i. The updated node features
are then fed into a batch normalization layer followed by Leaky ReLU activation.

6.1.4 Detection Module

The detection module shown in Figure 6.1 contains a LSTM followed by a fully-connected
output layer, which takes as input the obtained multi-modal representations from the
multi-modal encoder module to estimate the Ŷ , that is the depression scores or labels.

6.2 DPD-E Net

In this section, we introduce the DePressionDetect with EEG Net (DPD-E Net) in detail.
Figure 6.4 presents the overall structure of the DPD-E Net, which comprises four individual
networks, each making their own predictions, and the results are integrated to yield a final
prediction.

6.2.1 Model Overview

DPD-E Net is an extended version of the DPD-E Net which is designed to handle EEG,
speech and text modalities. In Figure 6.4, XE1, XE2 and XE3 denote three streams of
EEG input while XA and XT represent the input data from audio and text. XE1, XE2 are
sent to a GAT-based encoder for further encoding, the obtained new embeddings are then
passed to the classifier to produce the probability of the subject belonging to the depressed
class. XE3 is sent to a conv-based encoder followed by another classifier. For XA and XT ,
they are processed by the same architecture of DPD-Net using the audio-text modality to
produce the depression probabilities. Finally, predictions from each modality YE1, YE2, YE3

and YAT are fused to generate the decision Ŷ , with a weighting ratio of 2:2:2:4, respectively.
The reason for designing DPD-E Net as an ensemble model using late score fusion is that
in the MODMA dataset, EEG data is not collected simultaneously during interviews so the
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Figure 6.4: The proposed DPD-E Net’s overall architecture.

audio data and EEG data are not synchronized, which makes it infeasible to early fusing
these modalities as employed in DPD Net.

6.2.2 EEG Modality

Our DPD-E Net leverages EEG data in a 3-stream fashion. The first stream XE1 is a local
spatial stream represented by Brain Functional Networks (BFNs) constructed using brain
sub-regions right temporal (RT) and left central (LC) while the second stream XE2 is a
global spatial stream using BFNs constructed from the 16 main electrodes. XE3 is the third
stream which represents temporal features extracted from EEG signal. The detailed process
of constructing Brain Functional Networks (BFNs) and extracting temporal EEG features
are presented in Section 5.5.

For EEG data of each subject, channels are considered as nodes and channels’ correlation
are used for determining edges. Let C denote the number of channels (electrodes) of the
brain sub-regions or the number of selected main electrodes, node features of shape (C, 29)

along with edge matrix are the input XE1 or XE2 to the base classifier shown in Figure 6.5.
BFNs are firstly passed to the Graph Attention Network (GAT) [50] which updates the
node features by aggregating information from first-order neighborhood nodes with different
attention coefficients using the following equations:

eij = aT [Whi ∥ Whj], j ∈ Ni (11)
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Figure 6.5: The EEG-based base classifier of the proposed DPD-E Net for the local spatial
stream XE1 and the global spatial stream XE2.

αij =
exp(LeakyReLU(eij))∑

k∈Ni
exp(LeakyReLU(eik))

(12)

h′
i =

K

||
k=1

σ(
∑
j∈Ni

αk
ijW

khj) (13)

Let i be the current node, and j be a node in the set of first-order neighbors Ni. hi

denotes the current node features, and hj is its first-order neighbor node features. W is a
learnable parameter which performs linear transformation to both hi and hj, and || is the
concatenation operation. a is another learnable parameter to map the concatenated vector
to real number space. The obtained eij are then normalized using Equation 12. The final
updated node features h′

i are computed using Equation 13 by concatenating each newly
obtained node features from k heads. Then, the updated node features h′

i are sent to a
fully connected layer followed by a ReLU activation. Finally, DPD Net’s detection module
consisting of a LSTM and a fully connected layer is used to predict the probability of the
subject having depression. In our implementation, 2-head GAT is used for both XE1 and
XE2. During GAT-based encoding, XE1 which consists of two types of BFNs constructed
from electrodes of two brain sub-regions, are encoded separately by the GAT. Then, the
adjusted node features of each sub-region are stacked for the subsequent classification
layers.

For the temporal features stream XE3, we leverage DPD Net in unimodal way for the
classification, but the GNN Submodule is removed since DPD Net employs RGCN in a
manner that defines relations by looking back at past utterances and examining future
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utterances through windows [7], and this approach is not suitable for EEG data. Specifically,
temporal features are passed to the Conv-based Submodule designed for audio modality and
are further encoded by the Transformer Submodule, and are finally passed to the Detection
Module to produce the predicted class.

6.2.3 Speech-Text Modality

For audio cues and textual information, we leverage these two modalities in multimodal way
by reusing the proposed DPD Net which can be seen from Figure 6.4. Audio and textual
cues are firstly encoded by separate unimodal encoders, and then fused into multi-modal
embeddings that are further encoded by the multi-modal encoder for the final prediction
using the detection module.
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Chapter 7

Experiment

We conduct extensive experiments to evaluate DPD Net and DPD-E Net. Firstly, we conduct
experiments to explore multiple features and the fusion of different obtained features. Also,
the best models are compared to several baseline methods. Ablation studies are presented
to investigate the contribution of the respective modalities and proposed modules.

7.1 Experimental Setup

We conduct experiments on four distinct multi-modal depression datasets. The well-
established E-DAIC dataset is used for evaluating the depression detection performance of
DPD Net in the clinical setting; the Twitter depression dataset and the D-vlog dataset are
used to further evaluate DPD Net’s effectiveness in the social media setting; the MODMA
dataset is used for validating DPD-E Net’s prediction ability.

Experimental Design

To evaluate and validate our proposed models in a more comprehensive manner, we design
four experiments: pre-trained models experiments, modality experiments, comparison to
state-of-the-art models and ablation studies of our proposed models. Firstly, we experiment
with features obtained from multiple pre-trained models, as the quality of the initial features
obtained from these pre-trained models plays an essential role in the depression detection
task. In this setting, at least two modalities are used for each dataset, since the main scope
of this research is to study multi-modal depression detection. Then, using the best models
obtained from the previous experiments, we experiment combinations of each modality to
investigate the impact of different modalities on the models’ performance, and to verify
that different modalities can complement each other in our proposed model. Next, the
performance of the proposed models are compared with the state-of-the-art methods. Finally,
ablation experiments are conducted to confirm the effectiveness of the modules of DPD
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Net and the base classifiers of DPD-E Net.

Implementation Details

The DPD Net framework is implemented with PyTorch. For the E-DAIC dataset, we use
Adam optimizer with cosine annealing with warm restarts scheduler during training. Each
model is trained with 1000 epochs using a learning rate of 0.0001, a batch size of 32
and a dropout rate of 0.2. According to the E-DAIC dataset paper, the loss function is
designed by leveraging the CCC score, which is simply computed as 1− CCCscore. For the
Twitter depression dataset, Adam optimizer and exponentialLR scheduler are used along
with negative log likelihood loss. Each model is trained with 30 epochs using a learning
rate of 0.00001, a batch size of 32, a dropout rate of 0.2. For the D-vlog dataset, we use
the same settings as we used for the Twitter depression dataset except that each model is
trained with 60 epochs. For the MODMA dataset, Adam optimizer and reduceLR scheduler
are used during a 20-epochs training with a learning rate of 0.0001, a batch size of 4 and a
dropout rate of 0.2.

7.2 Experimental Results

7.2.1 Pre-trained Models Experiments: Results

The intuition behind the design of these experiments is from the work of [7], where we
observe that the textual modality is vital in boosting their model’s performance. As our
model is based on their work, we suppose that the potential of the textual modality should
be explored by experimenting with features obtained from multiple pre-trained language
models. Then, we extend this idea to experiment features obtained from different pre-trained
vision models to reuse useful patterns exhibited by these pre-trained models. Hence, in
general this experiment is designed to investigate what representation methods we should
utilize for encoding texts and images.

Modality CCC RMSE

DistilRoBERTa T + A .601 5.31

MpNET T + A .596 5.16

DistilRoBERTa T + A + V .617 5.51

MpNET T + A + V .682 4.79

Table 7.1: The results on E-DAIC testset using different pre-trained language models and
different modality combination.
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Experimental results for E-DAIC dataset are presented in Table 7.1. ’A’ stands for the audio
modality, ’T’ is the textual modality and ’V’ denotes the visual modality. In the case of
textual and audio fusion, DPD Net using features obtained from DistilRoBERTa is able
to produce slightly better results compared to the model using MpNET in terms of CCC
score. Note that the performance ranking solely relies on CCC score. However, when fusing
all the three modalities, the model using MpNET features considerably outperforms its
counterpart with the highest CCC score 0.682, and the RMSE is reduced to 4.79. Also, the
models using three modalities always achieve better results regardless of the representation
methods it leverages. Based on this experiment, we choose DPD Net using MpNET as the
best model for further experiments on E-DAIC dataset.
We experiment with multiple pre-trained vision models and language models on the Twitter
depression dataset. As shown in Table 7.2, the model using the combination of MpNET as
text encoder and CLIP as image encoder outperforms all the other models. The precision
obtained using MpNET and FLAVA is reported the same as MpNET-CLIP combination in
0.839 because this is the rounded value, but its real value is actually slightly lower than the
MpNET-CLIP model.
With the same visual encoder, models that utilize MpNET achieve better results than
models using DistilRoBERTain in terms of F1 score. F1 score is computed by taking both
the precision and recall into consideration, also here the experiment used suggests that in
general MpNET-based model is the best candidate for this twitter depression detection
task. Since the superiority of MpNET can also be observed in the experiments on E-DAIC
dataset, we could conclude that MpNET should be chosen over DistilRoBERT as the text
encoder of the DPD Net, so the network can work properly on both clinical setting and
social media setting. As for the visual encoders, models using CLIP are always be able
to produce better F1 score, and for the same reason stated above, we choose CLIP over
EfficientNet and FLAVA as the visual encoder to extract initial features from the images.

Text Modality Viusal Modality Precision Recall F1

DistilRoBERTa CLIP .815 .810 .812

DistilRoBERTa EfficientNet .796 .811 .802

DistilRoBERTa FLAVA .794 .829 .809

MpNET CLIP .839 .874 .855

MpNET EfficientNet .787 .836 .811

MpNET FLAVA .839 .794 .813

Table 7.2: The results on Twitter depression dataset using different pre-trained vision and
language models.
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7.2.2 Modality Experiments: Results

The scope of this study is multi-modal depression detection, and we conduct experiments in
order to understand the impact of each modality and their combinations on the performance
of our proposed models.
Table 7.3 presents the results on the E-DAIC dataset. We can see that for unimodal cases,
the model using textual modality outperforms the other two modalities by a significant
margin in terms of CCC score and RMSE, which is consistent with the finding that we
mentioned at the beginning of the previous paragraph that the textual modality plays an
essential role in detecting depression. The model using only the visual modality produces
better results compared to the model using only the audio modality. However, after fusing
two modalities, the combination of the audio modality with the textual modality gives a
better performance than the combination of the visual modality with the textual modality in
terms of CCC score. With three modalities, we achieve a CCC score of 0.682 and a RMSE
of 4.79 on the E-DAIC dataset, which is the best results obtained from this study on this
dataset.

Modality CCC RMSE

T .475 5.88

A .161 7.42

V .241 6.19

T + A .596 5.16

T + V .563 5.21

T + A + V .682 4.79

Table 7.3: The results on E-DAIC testset using unimodal and multi-modal models.

As for results on the Twitter depression dataset shown in Table 7.4, the models using only
the textual modality or the visual modality produce comparable results as the textual-based
model only slightly outperforms its counterpart in F1 score and recall while the visual-based
model is better in terms of precision. DPD Net using both modalities outperforms the
unimodal models in all three classification metrics, achieving a performance gain of around
13.5% in terms of F1 score and 23.7% in terms of recall.
From Table 7.5, we can see that on the D-vlog dataset, DPD Net using visual features and
audio features outperforms the models using only the audio or visual modality in F1 score,
precision and recall.
Table 7.6 lists the experimental results of DPD-E Net on the MODMA dataset. Here ’E1’
denotes the global stream using BFN features constructed from the 16 main electrodes,
’E2’ denotes the local stream using BFN features constructed from electrodes of prominent
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Modality Precision Recall F1

T .824 .742 .777

V .831 .721 .771

T + V .834 .918 .874

Table 7.4: The results on Twitter depression dataset using unimodal and multi-modal
models.

brain sub-regions right temporal (RT), left central (LC), and ’E3’ is the temporal stream
using EEG features obtained from raw signals. ’A’ is audio modality, and ’T’ is the textual
modality. The MODMA dataset has limited number of subjects and has no train/dev/test
split, so experiments on this dataset is conducted using 5-fold cross-validation. Note that
the F1 score, precision, and recall are reported as averages over the five folds. According to
the results, most of the single-modality models perform poorly in terms of all metrics except
for DPD-E Net using textual features. When combining 3-stream EEG features, DPD-E
Net achieves a F1 score of around 0.620 and recall of 0.767 but adding audio modality
slightly degrades results in these two metrics. With all the listed features, best results in F1
score, precision and recall on the MODMA dataset are produced by DPD-E Net.

Modality Precision Recall F1

V .681 .504 .579

A .748 .650 .696

A + V .759 .715 .736

Table 7.5: The results on D-vlog dataset using unimodal and multi-modal models.

Based on the experiment results of this section, it is clear that the fusion of different
modalities can bring performance gain on all the four datasets, indicating that both DPD
Net and DPD-E Net are able to integrating useful information from each modality.

7.2.3 Comparison to State-of-the-art Models: Results

After obtaining our best models for each dataset, we compare their performance them with
other baseline approaches. The results in Table 7.7 shows that DPD Net with textual and
audio modality can achieve around 20.8% higher CCC score compared to the state-of-the-art
performance reported by TensorFormer [32], and with three modality fused, the CCC score
of DPD Net shows considerable advantages, which is approximately 38.3% higher than the
TensorFormer. We rank the performance using CCC score as this metric is used as the only
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Modality Precision Recall F1

E1 .400 .333 .313

E2 .600 .300 .393

E3 .633 .599 .567

A .310 .467 .364

T .853 .833 .816

E1 + E2 + E3 .599 .767 .620

E1 + E2 + E3 + A .633 .600 .567

E1 + E2 + E3 + A + T .900 .900 .876

Table 7.6: The results on MODMA dataset using unimodal and multi-modal models. Here
the F1 score, precision, and recall are reported as averages over five folds.

criteria for the depression detection challenge of the E-DAIC dataset paper.

Models CCC RMSE

TensorFormer (T + A + V) .493 4.31

DPD Net (T + A) .596 5.16

DPD Net (T + A + V) .682 4.79

Table 7.7: Comparison to baseline methods on E-DAIC dataset.

The comparison on the Twitter depression dataset is presented in Table 7.8. Since this
dataset is released without train-development-test data split, we split the dataset with ratio
of 7:1:2 for train set, development set and test set, and re-implement three variants of the
baseline method mentioned in Chapter 4 using hyperparameters from the TM Transformer
paper. It is obvious that DPD Net outperforms all the other baseline results in terms of F1
score and recall, precision, with a F1 score of 0.874, precision of 0.834 and recall of 0.918.

Models Precision Recall F1

Vanilla TM Transformer .828 .904 .864

Set TM Transformer .819 .827 .823

Time2vec TM Transformer .824 .856 .840

DPD Net .834 .918 .874

Table 7.8: Comparison to baseline methods on Twitter depression dataset.

According to Table 7.9, DPD Net outperforms its counterpart on the D-vlog dataset in

38



terms of precision but STST transformer [36] achieves higher F1 score and recall according
to their published results. The performance of the comparison experiment on these three
datasets has proven that DPD Net can achieve sound performance for depression detection
on both the clinical setting and the social media setting.
For a fair comparison on the MODMA dataset, we re-implement the baseline method ES
Vision Transformer [37] with hyperparameter tuning since the model using their reported
hyperparameter values performed poorly on our five folds. The F1 score, precision, and
recall are reported as averages over the five folds. As can be seen from Table 7.10, DPD-E
Net performs significantly better than the ES Vision Transformer in all the three metrics
with a F1 score of 0.876, precision and recall of around 0.900, which demonstrates the
potential of incorporating EEG signals with speech data for depression detection.

Models Precision Recall F1

STST Transformer .725 .776 .750

DPD Net .759 .715 .736

Table 7.9: Comparison to baseline methods on D-vlog dataset.

Models Precision Recall F1

ES Vision Transformer .566 .800 .651

DPD-E Net .900 .900 .876

Table 7.10: Comparison to baseline methods on MODMA dataset. Here the F1 score,
precision, and recall are reported as averages over five folds.

7.2.4 Ablation Study: Contribution of Modules Experiments

For DPD Net, we conduct an ablation study to investigate the contribution of each of the
sub-modules. Experiments are only conducted on the E-DAIC dataset as it is currently the
most used benchmark depression dataset.
Firstly, we explore the effect of the Conv-based Submodule which is the core component of
DPD Net’s unimodal encoder module. The Conv-based Submodule consists of CNN blocks
and LSTM, and to study their effectiveness, we remove each of them or omit both of them.
Table 7.11 presents the results after changing these blocks. It is obvious that only using
the Conv block or LSTM block, DPD Net performs to a certain extent with a CCC score
around to 0.4. However, after removing both the Conv block and LSTM block, the model
performs poorly with the CCC score dropping from 0.682 to 0.141, which suggests that the
proposed unimodal encoder module is able to significantly improve the efficiency of DPD
Net and its inclusion is important to the DPD Net’s performance.
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Conv-based Submodule

Conv Block LSTM CCC RMSE

- - .141 7.72

- ✓ .441 6.22

✓ - .453 5.91

✓ ✓ .682 4.79

Table 7.11: Ablation study on Conv-based Submodule of DPD Net on the E-DAIC dataset.

Next, we investigate the impact of the Transformer Submodule and GNN Submodule by
removing one of them separately or removing them both while keeping other components
of DPD Net unchanged. Results shown in Table 7.12 reveal that both the Transformer
Submodule and GNN Submodule play an essential role in multi-modal encoding as deleting
one of them leads to low CCC scores of 0.106 and 0.206, respectively. Also, it is worth
noting that using only one of submodules is almost equivalent to removing the whole
multi-modal encoder module, which means the information obtained from the Transformer
Submodule and GNN Submodule can complement each other to produce more informative
embeddings for depression detection.

Transformer Submodule GNN Submodule CCC RMSE

- - .160 7.59

- ✓ .106 7.61

✓ - .206 7.36

✓ ✓ .682 4.79

Table 7.12: Ablation study on Transformer Submodule and GNN Submodule of DPD Net
on the E-DAIC dataset.

As for the ensemble model DPD-E Net, we study the effects of the base classifiers on the
MODMA dataset. In Table 7.13, the last row presents the performance of the complete
DPD-E Net and the first four rows are the results of removing each of the base classifiers.
Note that again all the metrics are reported as averages over the five folds. The F1 score
after deleting the classifier based on local spatial stream drops from 0.876 to 0.748. Thus
including this base classifier could bring a performance gain of around 15%. The deletion of
the global spatial stream classifier or the EEG temporal features stream classifier leads to
an overall decreased in performance, with F1 scores decreasing around 7%. These results
suggest that EEG-based base classifiers improve DPD-E Net’s performance. Further, we
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find that DPD-E Net without the Speech-Text stream classifier gives the most significant
decline in performance, with a F1 score, precision, recall decreasing from 0.876 to 0.620,
from 0.900 to 0.767, from 0.900 to 0.599, respectively. This approximately 29% decline in
F1 score indicates that the Speech-Text stream classifier is the most important classifier,
which also confirms the finding that we mentioned above that the involvement of textual
features plays an essential role in detecting depression.

Classifiers Precision Recall F1

- Local spatial stream .850 .700 .748

- Global spatial stream .870 .833 .815

- EEG temporal features stream .920 .800 .817

- Speech-Text stream .599 .767 .620

DPD-E Net .900 .900 .876

Table 7.13: Ablation study on the base classifiers of DPD-E Net. Here the F1 score,
precision, and recall are reported as averages over five folds.
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Chapter 8

Conclusion

In this work, a GNN-enhanced Transformer model named DPD-Net is proposed to solve
the problem of automatic depression detection using multi-modal data. The key idea of
DPD-Net is to use the unimodal encoder module for encoding each single modality and then
use the multi-modal encoder module to further extract useful information from multi-modal
features using a transformer sub-module that captures long-term relations and a GNN
sub-module that retains local dependencies. This is the first attempt to our knowledge
to employ GNNs along with transformers for automatic depression detection. Also, unlike
previous works which mostly are tested on a single dataset, DPD Net can work across
different datasets under two different application settings, including the clinical setting and
the social media setting. Furthermore, its extended version DPD-E Net can be applied to
an additional EEG modality. We design two models so the proposed network can be suitable
for different real-world scenarios and might have the potential to be deployed in practical
use cases.
Our ablation studies demonstrate the advantages of the proposed sub-modules and base
classifiers, and the effectiveness of combining diverse data modalities for automatic depression
detection. Comparisons to other baseline methods show that DPD Net and DPD-E Net
can outperform the state-of-the-art models on three datasets: E-DAIC dataset, Twitter
depression dataset and MODMA dataset, and achieve competitive performance on the
D-vlog dataset.
Based on the modality experimental results, we observe that even though the involvement
of audio, visual and EEG modality can improve the prediction results, the performance
of both DPD Net and DPD-E Net highly rely on the the text modality. DPD Net only
produces comparable results but is not able to beat the baseline method in all metrics on
the D-vlog dataset, which is the only dataset in this work where the textual modality is not
included. In the future, we hope to combine textual data to improve the performance on
the D-vlog dataset and add more explainability to the proposed models.
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Appendix A

COGMEN Architecture

The multi-modal encoder module of DPD Net is based on the COGMEN model [7]. Here
we present the architecture of this model.

The architecture of the COGMEN.
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Appendix B

Data Pre-processing of the Baselines

Baseline methods pre-process the datasets in different ways. For the E-DAIC dataset which
provides official train/dev/test split, Tensorformer pre-process the data by only keeping
the first 100 words of each utterance and its corresponding audio-visual features [32].
For the D-vlog dataset which also provides official data splits, STST Transformer discard
the samples which have all-zero values [36]. As for the Twitter depression dataset and
the MODMA dataset which have no official divisions of the data, since we reproduced
TM Transformer and ES Vision Transformer, and conduct the experiments using our own
pre-processed datasets, the pre-process procedures of these two models are not presented
here.
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Appendix C

Reported Results of the Baselines

Note that in Section 7.2.3, for the comparison with Tensorformer on the E-DAIC dataset
and the comparison with STST Transofermer on the D-vlog dataset, we present their
reported results from the original papers. For the comparison with TM Transformer on
the Twitter depression dataset and the comparison with ES Vision Transofermer on the
MODMA dataset, we only present experimental results from our implementations of these
two baselines. Here, the results published in the original papers using their own data splits
are shown in the following tables.

Models Precision Recall F1

Vanilla TM Transformer .868 .905 .886

Set TM Transformer .921 .934 .927

Time2vec TM Transformer .931 .931 .931

The reported results of TM Transformer on the Twitter depression dataset.

Models Precision Recall F1

ES Vision Transformer .977 .973 .973

The reported results of ES Vision Transformer on the MODMA dataset.
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