
Opleiding Informatica

Adapting the CoThought pipeline

for training a BabyLM on Dutch data

Thijs Groeneweg

Supervisor:
Gijs Wijnholds

Second reader:
Max van Duijn

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 28/06/2001

www.liacs.leidenuniv.nl


Abstract

This research explores how the CoThought pipeline, which is designed to train smaller language
models (BabyLMs) with limited data on English data, can be applied to Dutch language data.
Just like the original CoThought pipeline, we utilized large language models to create instances
of Natural Language Understanding tasks, which are then used to train BabyLMs. We explore
the use of this pipeline on Dutch data by translating the English BabyLM challenge dataset
into Dutch, experimenting with various prompting strategies for the LLM, and integrating
originally Dutch data into the training process. Instead of fully fine-tuning the model like
the original pipeline, adapters (a more parameter-efficient technique) are used on a BERT
model. To evaluate the adapters, we evaluated their performance on two NLU tasks: Natural
Language Inference and Sentiment Analysis. We found that the CoThought pipeline can
indeed be adapted for Dutch data, delivering results comparable to existing Dutch models,
particularly in Natural Language Inference. Furthermore, adjusting the prompting strategy
and incorporating native Dutch data did not significantly impact the performance of the
trained adapters.
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1 Introduction

In this section, we introduce the problem addressed in this thesis and provide all the necessary
background information.

1.1 Introduction and Contextual Overview

1.1.1 Large Language Models

According to Deng and Lui [DL18] the field of ’Natural Language Processing (NLP) investigates
the use of computers to process or understand human (i.e. natural) languages for the purpose of
performing useful tasks’. NLP aims to replicate and understand the cognitive processes involved
in human comprehension and generation of languages [DL18]. Some applications of NLP include
speech recognition, dialogue systems, machine translation and sentiment analysis [DL18]. One
way to perform NLP is through the use of Language Models (LM). Language models are ’models
that assign probabilities to sequences of words’ [JM21]. In other words, they aim to predict the
likelihood of words appearing together in a sentence. Recently, a form of language models, called
Large Language Models (LLMs), has gained popularity [MMN+24]. One reason for their advance
is that their size and performance have increased greatly in previous years [MMN+24]. A large
language model (LLM) is a Language Model (LM) that is especially good at language generation
and understanding [Ope19]. While using this definition, it is important to keep in mind the current
debates surrounding the term ”understanding” when applied to LLMs. For example, van Dijk
et al. wrote about ’The Need for Nuance in Current Debates and a Pragmatic Perspective on
Understanding’ [vDKSvD23].

1.1.2 The BabyLM Challenge

Although these models are good at language generation and understanding, they have some
drawbacks. For example, they need a lot of computational power to run properly [RWC+19],
consume large amounts of electricity [SGM19], and need a large amount of training data [WMC+23].
To address these drawbacks, the ”BabyLM challenge” [WCM+23] was introduced. This challenge
encourages community members to create a smaller language model (”a BabyLM”) on a limited
amount of data. The motivation for this challenge was that while huge efforts have been made to
optimize the pretraining of LMs at large scales in previous years [RSR+20] [BMR+20], almost no
progress has been made in pretraining smaller models at ’human-like scales’ [WMC+23]. Large-scale
models are trained on large amounts of data, which this challenge aims to reduce. The smaller
models trained in this challenge, called Baby Language Models (BabyLMs), are models that use
’Sample efficient pretraining on a developmentally plausible corpus’ [WCM+23]. In other words,
these models are trained on a more manageable dataset that reflects a baby’s early exposure to
language. Previous research on language acquisition has shown that humans acquire language for the
most part during the first stages of life (for an overview, see [Cla22] and [Tom03]). Major advances
in language comprehension and expression often occur during early childhood. Furthermore, Chang
and Bergen [CB22], and Nikolaus and Fourtassi [NF21] have shown that language modelling shows
similarities to children’s language acquisition. They found that both children and language models
use data to continuously update their knowledge of the outside world.
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1.1.3 The CoThought Pipeline

Due to the small size of the BabyLM challenge dataset, sentences often lack strong semantic ties
with each other, making it difficult for models to learn contextual representations[ZYM+23]. To
address this problem, a submission [ZYM+23] to this challenge by Warstadt et al. [WCM+23]
proposed a Cothought pipeline to prepare a BabyLM with smaller corpus data similar to humans,
’leveraging the LLM chain of thought feature and the child’s cognitive learning ability’ (for an
overview of ’the child’s cognitive learning ability’, see [Cla22]). In this way, the LLM and the child
are ”co-thinking” during the training process’. This pipeline leverages a LLM to create instances of
Natural Language Understanding (NLU) tasks, which are a subset of NLP tasks focused on reading
comprehension [Sem12]. These tasks are used to restructure the data set on which the BabyLM
is trained. To do this, they applied In-Context Learning (ICL), ’which means the model makes
predictions by learning from a natural language prompt describing the language task or learning
from (only a few) examples’ [ZYM+23]. For the successful application of ICL, they use a method of
prompting introduced by Wei et al. [WWS+23] called Chain-of-Thought prompting, in which a series
of intermediate reasoning steps are used to improve the reasoning capabilities of the language model.

1.2 Background and theory

1.2.1 Adapters vs Fine-tuning

Zhang et al. [ZYM+23] used a technique called fine-tuning on an existing ”RoBERTa” model, in
which the weights of a pre-trained model are trained on new data. This technique has been shown
to yield strong performance [HR18] [RNSS18]. However, a more (parameter) efficient technique has
emerged in which new modules are added between the layers of the model [HGJ+19]. After adding
these modules, only the weights of these modules are updated, while the rest of the layers remain
frozen [HGJ+19]. These modules are called adapters. ’Adapter-based tuning requires training two
orders of magnitude fewer parameters to fine-tuning, while attaining similar performance’ [RNSS18].
For our research, we will be using adapters using the python package provided by AdapterHub
[PSP+23].

1.2.2 Training and Validation Loss

To know the progress of pretraining our models we use, amongst others, the training and validation
loss. They are examples of loss functions. A loss function, also known as a cost function or error
function, is a mathematical tool that assigns a real number to an event or the values of certain
variables. This number represents the ”cost” associated with that event or those values, offering
a measure of how well a model is performing or how much it deviates from the desired outcome
[HTF01].

To calculate the training and validation loss, a loss function is applied to the results of a model on
the training and validation set respectively. These loss values can than be used as an indication of
the performance of a model [TCERPCU23].
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1.2.3 Epochs

In training a machine learning model, the model is said to have completed one epoch when it has
passed through the training data once [Kal23]. Zhang et al. fine-tuned their model for 5 epochs.
However, as we started to see diminishing returns in validation loss around 2 epochs we have only
trained our adapters for that amount (see section 3.2 for further explanation).

1.2.4 Learning Rate

One way we can influence the speed of decreasing our loss functions is by changing the learning
rate. The learning rate determines the size of the steps taken at each stage of the optimization
process [Mur12]. The learning rate is crucial for guiding the algorithm towards minimizing the loss
function [Mur12]. For our research, we will use the standard learning rate of the Adapters library
[PSP+23] (which is 1e-4).

1.2.5 Evaluation Metrics

To test the performance of our models, we calculate some evaluation metrics. We calculate the
following metrics:

Accuracy
Accuracy measures the fraction of accurate predictions, for both true positives and true negatives,
of all the cases evaluated [Met78]. In other words, accuracy indicates the proportion of correct
predictions out of the total number of instances examined. According to Metz [Met78], it is defined
by:

Accuracy =
TP + TN

TP + TN+ FP + FN
(1)

Because this metric only calculates the number of correct predictions, it might not give an accurate
indication of a model’s performance when a dataset with imbalanced classes is used.

Precision
The precision calculates how many of the instances predicted to belong to a class actually belong
to that class. According to Taha and Hanbury [TH15], it is defined by:

Precision =
TP

TP + FP
(2)

Recall
’True Positive Rate (TPR), also called Sensitivity and Recall, measures the portion of positive
voxels in the ground truth that are also identified as positive by the segmentation being evaluated’
[TH15]. In other words, it tells us how many of the actual positive items were correctly identified
as positive by the test. According to Taha and Hanbury [TH15], it is defined by:

Recall =
TP

TP + FN
(3)
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F1 Score
F1-Measure is a trade-off between precision and recall. According to Taha and Hanbury [TH15],
F1-Measure is given by:

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(4)

Because this measure is a trade-off between precision and recall, it gives a realistic indication of a
model’s performance, even if data used has a class imbalance.

1.2.6 Prediction Head

After pretraining our adapters, we will further fine-tune them on a downstream task. For this,
we will add ”prediction heads” to our adapters for each task. The prediction head is the final
component in a Transformer Language Model (TLM). Its primary job is to generate the output
predictions. It does this, by calculating the likelihood of each possible output [KKYI23]. In other
words, it assigns a probability to each item in the model’s vocabulary, indicating how likely it is to
be the correct prediction.

1.2.7 NLU Tasks

We fine-tuned our adapters on two different NLU tasks (for the implementation see section 3.3).

Natural Language Inference (NLI)
First of all, we fine-tuned our adapters for NLI, ’where the goal is to determine, for a given premise
sentence whether it contradicts, entails, or is neutral with respect to a given hypothesis sentence’
[WM21]. In other words, the task involves assessing the relationship between two sentences to
classify the hypothesis as either being supported by the premise, in conflict with it, or neither.

Sentiment Analysis
Secondly, we fine-tuned our adapters for Sentiment Analysis. Sentiment analysis is the automated
process of extracting attitudes, opinions, views, and emotions from various sources such as text,
speech, tweets, and databases using Natural Language Processing (NLP) [AS16]. This process
involves categorizing the opinions expressed in the text into classes like ”positive”, ”negative”, or
”neutral” [AS16].

1.2.8 Different BERT Models

BERT
In our research, we added adapters to a BERT model. BERT is trained to understand the meaning
of words in a sentence by considering the surrounding words on both sides, rather than just
the words that come before or after [DCLT18]. It learns from text that has not been labeled
with specific categories or tags, using this context from all layers of the model to build a more
comprehensive understanding of the language [DCLT18]. This causes that after pretraining, BERT
can be fine-tuned to create top-performing models for many tasks, like question answering and
language inference, without needing major changes to the model’s structure[DCLT18].
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RoBERTa
The BERT model we used is different from the model used by Zhang et al. [ZYM+23]. They used a
RoBERTa model. However, this model is not available for use with adapters [PSP+23]. RoBERTa
builds upon the foundation laid by previous models like BERT, but it refines the training process
to achieve better performance across various language understanding tasks [LOG+19]. Because Liu
et al found that BERT was under-trained, they used extended training duration, larger batches of
data, and a bigger amount of training data for RoBERTa [LOG+19].

BERTJE
In the discussion (see section 4) we compare our adapters with BERTJE and multilingual BERT.
BERTJE is a Dutch variant of BERT. It utilizes the same transformer-based architecture and
parameters as BERT but is trained on a much larger and more diverse dataset consisting of 2.4
billion tokens [dVvCB+19]. This dataset includes a wide range of Dutch texts, where BERT only
used Dutch Wikipedia text [dVvCB+19].

Multilingual BERT
Multilingual BERT is a transformer-based model similar to BERT but unlike (the original English)
BERT it is trained on Wikipedia articles from 104 languages, using a shared vocabulary of word
pieces [PSG19].

1.3 Problem Statement

Zhang et al. [ZYM+23] have not explored the application of the CoThought pipeline to a Dutch
dataset, which highlights a research gap. To address this, we aim to construct a Dutch dataset
by translating the original English dataset from the BabyLM Challenge [WMC+23] using Google
Translate via the python package ”deep translater”1. This raises the question of the impact of
using translated data versus originally Dutch data. Furthermore, there is potential to optimize
the pipeline’s performance for Dutch data. To this end, we investigate the effects of modifying the
prompting strategy for Dutch data.

When measuring the impact of the various changes we make to the CoThought pipeline, we will need
to train multiple models. This process can be quite time-consuming. In a study by Bastian Bunzec
et al. [BZ23] that was carried out as a response to the BabyLM challenge, it was observed that
training the BabyLM took considerable time. They wrote ’Due to the small number of parameters,
training times varied between 3–4 hours for the smallest models to 20h for the largest models.’.
The largest model they used was trained on the strict-small dataset from the BabyLM challenge
[WCM+23] for 10 epochs, this dataset contains 10 million words. However, Zhang et al. [ZYM+23]
trained on the 100 million words dataset from the BabyLM challenge for five epochs. Because of
this, they had to use more computing power. Therefore, it is crucial to tackle this computational
challenge and investigate potential optimization methods such as using adapters.

1Available at: https://pypi.org/project/deep-translator/
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1.4 Thesis Overview

This thesis was produced as a bachelor thesis by Thijs Groeneweg for LIACS, under supervision by
Gijs Whijnholds and with as second reader Max van Duijn. This chapter contains the introduction
of this thesis, key definitions and background information on related works. Section 1.3 describes
the problem this thesis aims to solve. chapter 1.5 introduces the research questions. Chapter 2
describes the methods we used for adapting the CoThought pipeline to Dutch data. Chapter 3
describes the results of our research and some interpretations of those results. Chapter 4 discusses
the implication of our results and the answers to our research questions. chapter 5 provides our
final thoughts and a future outlook.

1.5 Research Question

Based on the previous research and limitations discussed above, we propose the following research
question and sub-questions:

• Can we adapt the CoThought pipeline for training a BabyLM on Dutch data?

– What is the impact of changing the prompting strategy used in the Cothought pipeline
for training adapters on Dutch data?

– What is the impact of including originally Dutch data in the pretraining data when
using the Cothought pipeline for training adapters on Dutch data?

2 Methodology

In this research, we will produce adapters for a BERT model on a Dutch dataset using the
CoThought pipeline as proposed by Zhang et al.[ZYM+23]. Zhang et al. [ZYM+23] used various
prompts on GPT 3.5 turbo2 to pre-process the 100M dataset from the BabyLM challenge. After
this, they fine-tuned a RoBERTa base model [LOG+19] on the pre-processed data. Eventually, they
compared their model against the RoBERTa base model using the tools provided by the BabyLM
challenge [WMC+23]. To produce a BabyLM for Dutch, we need to change various parts of this
process. After making these changes, we produce multiple BabyLMs and benchmark them against
a baseline.

First of all, we need to produce a Dutch dataset, as the original dataset is in English. Secondly, due
to resource limitation we need to use a different LLM. For this we will use Gemini 1.0 pro via the
Vertex AI API3. We chose this model for its availability and high accuracy when initially testing our
prompts. We also have limited resources for training the BabyLM, this becomes especially important
because we need to train multiple models. To address this issue, we will be training adapters instead
of pretraining and fine-tuning the whole model. For this we will be using AdapterHub [PSP+23] for
its easy and flexible implementation. Because AdapterHub [PSP+23] currently does not support

2https://platform.openai.com/docs/models/
3Accessible from: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/

gemini-pro
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RoBERTa models, we will be using a BERT model to train adapters. Lastly, the benchmarks
provided by the BabyLM challenge are designed for English models. To address this, we will be
using some datasets from the DUMB benchmark [dVWN23] instead. The various changes we made
to the CoThought pipeline are described in more detail below.

2.1 Including Originally Dutch Data in Pretraining Data

To generate the Dutch dataset, we start by translating the 100M dataset from the BabyLM challenge
[WMC+23] using Google Translate via the Python package ”deep translator”4. This translated
dataset is then transformed using the methods described in section 2.2 with prompt 6, resulting in
our first dataset. This dataset will be used to train Model A1, serving as a comparison for Models
B and C (see Table 1).
Next, to assess the impact of incorporating originally Dutch data into our translated dataset, we
replace the children’s stories data with ChiSCor, a corpus of freely-told fantasy stories by Dutch
children, compiled by van Dijk et al. [vDvDVS23]. This dataset will be used to train Model C (see
Table 1). To create a comparable baseline, we will also produce a dataset from the BabyLM data by
reducing the children’s stories dataset to match the number of generated NLU tasks in the ChiSCor
dataset. This will be achieved by removing the final tasks that exceed the number in the ChiSCor
dataset from a randomly shuffled version of the dataset used to train Model A1.
Finally, we will follow the steps described in section 2.3 to train and evaluate adapters on the
various datasets we produced.

2.2 Changing the Prompting Strategy Used

Within the original Cothought pipeline by Zhang et al. [ZYM+23], a Large Language Model (LLM)
is prompted to produce an NLU task for every five lines of data extracted from the BabyLM
challenge dataset [WMC+23]. During this step, Zhang et al. [ZYM+23] used GPT 3.5-turbo5. As
an alternative, we will use Gemini-pro via the Vertex AI API on Google Cloud6, as this model
has shown above average accuracy when testing our prompts and is easily available. As shown by
Wang et al. [WCD+24], different combinations of models and languages perform well on different
prompting strategies. As such, we will try to optimize the prompting strategy used by Zhang et al.
[ZYM+23] for use on Gemini-pro in Dutch.

First, we will test how the original prompting strategy used by Zhang et al. [ZYM+23] performs
when translated into Dutch. They used the following prompt:

4Available at: https://pypi.org/project/deep-translator/
5https://platform.openai.com/docs/models/
6https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemini-pro
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Prompt 1: original prompt

Use the given sentences to create an example paragraph of an NLU task and its corresponding
labels. The 5 sentences are: {input}.

Make a plan then write and determine. Your output should be of the following format:

Plan:
Your plan here.

Paragraph:
Your paragraph here.

Task:
[Only the NLU task name here, without additional information.]

Labels:
[Only the labels here, without additional information.]

At {input} they included five sentences from the BabyLM challenge dataset [WCM+23]. We used
the following translated version of this prompt:

Prompt 2: original prompt translated to Dutch

Gebruik de gegeven zinnen om een voorbeeldparagraaf te maken van een NLU taak en de
bijbehorende labels. De 5 zinnen zijn: {input}.

Jouw uitvoer moet het volgende formaat hebben:

Plan:
Jouw plan hier.

Paragraaf:
Jouw alinea hier.

Taak:
[Alleen de NLU taaknaam hier, zonder extra informatie.]

Labels:
[Alleen de labels hier, zonder extra informatie.]

When using this prompt, we noticed the LLM had difficulties in adhering to the format given. To
improve compliance to this format, we changed the position of the sentences from the dataset so
the prompt had a more logical order. After doing this, the LLM made tasks which followed the
given format more closely (see prompt 3 in A.1).
When using the prompt with the changed order, we noticed that the model only made tasks for the
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example tasks defined in the prompt (sentiment analysis and entity extraction). Because of this, we
changed the prompt to include the specific NLU tasks the LLM can choose from (see prompt 4 in
A.1). When using this prompt in our initial testing the model chose from the tasks we defined.
To generate relevant tasks, we include the NLU tasks we want to be generated in our prompt. For
this, we input the NLU tasks used by the DUMB benchmark [dVWN23] in our prompt. These are
the following: Part-Of-Speech Tagging, Named Entity Recognition, Word Sense Disambiguation,
Pronoun Disambiguation, Causal Reasoning, Natural Language Inference, Sentiment Analysis,
Abusive Language Detection and Question Answering. When we include these in prompt 4 (see
prompt 4 in A.1), we get the following prompt:

Prompt 6: Include NLU tasks from the DUMB benchmark

Gebruik de gegeven invoerzinnen om een voorbeeldparagraaf te genereren voor een specifieke
NLU-taak en de bijbehorende labels te identificeren.

Jouw uitvoer moet het volgende formaat hebben:

Plan:
Beschrijf in een paar zinnen hoe je de taak zult aanpakken.

Paragraaf:
Genereer een voorbeeldparagraaf op basis van de gegeven invoerzinnen.

Taak:
Specificeer de NLU-taak, kies uit: Part-Of-Speech Tagging, Named Entity Recognition,
Word Sense Disambiguation, Pronoun Disambiguation, Causal Reasoning, Natural Language
Inference, Sentiment Analysis, Abusive Language Detection of Question Answering. Geef
alleen de taaknaam.

Labels:
Geef de alleen labels voor de gegenereerde paragraaf aan (bijv. positief/negatief sentiment,
entiteitstypen).

De 5 te gebruiken invoerzinnen zijn: {input}

Zhang et al. [ZYM+23] used a separate prompt to ask the LLM for a coherency score. Then, the
responses to the first prompt are filtered, so that we only use the responses where the coherency
score is higher than seven. We translated the prompt used by Zhang et al. [ZYM+23] for use for
the same purpose. After translating this prompt, we got the following:

Prompt 5: Filter by coherency score

Analyseer de volgende paragraaf, en eindig met op de laatste lijn: ”Daarom is de coherenti-
escore s”, waar s een integer van 1 tot 10 is. {input}

At {input} we included the responses to the first prompt. We will not be changing this prompt,
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as it performed well when we tested it on some samples from the dataset. We will use regular
expression to get the coherency score from the response.

To test how these prompts perform, we will generate two different datasets on which we will train
the adapters. One of these will be generated using prompt 2, and one will be generated using
prompt 6. These datasets are used to train model A2 and A3 respectively (see Table 1). The dataset
used to train model A2 will be created by randomly selecting groups of 5 lines from the BabyLM
challenge until we have selected 1/8th of the dataset, which are then processed using our prompts.
The dataset used to train model A3 will be generated by randomly sampling 1/8th of the tasks
generated for training model A1 in section 2.1. As performance is similar across the datasets used
for Models A1, B and C (see section 3.1), we chose our baseline dataset. After generating these
datasets, we will train and evaluate the adapters according to the methods described in section 2.3.
In the Table below (Table 1) the different datasets and adapters are summarised.

Adapter Data used to train the model Prompt
Model A1 translated BabyLM datasets [WMC+23] prompt 6
Model A2 1/8th translated BabyLM datasets [WMC+23] prompt 6
Model A3 1/8th translated BabyLM datasets [WMC+23] prompt 2
Model B BabyLM datasets [WMC+23] children’s stories resized prompt 6

to match the size of the ChiSCor dataset [vDvDVS23]
Model C BabyLM datasets [WMC+23], children’s stories replaced prompt 6

with the ChiSCor [vDvDVS23] dataset

Table 1: Explanation of the different adapters produced

2.3 Training and Evaluating the Adapters

In this section, we describe the process of training adapters, adding prediction heads, selecting
evaluation metrics, and describing datasets for each NLU task.

2.3.1 Training Method

To train the BabyLMs, we start by adding adapters to a BERT model [DCLT18], which will then be
pre-trained on the datasets outlined in the previous sections (see Table 1). Subsequently, prediction
heads are added for each NLU task, enabling further fine-tuning of the adapters. While Zhang et
al. [ZYM+23] used the BabyLM-challange evaluation pipeline [WCM+23] for evaluation of their
model, we will need to adapt our evaluation strategy due to training on a Dutch dataset. For each
NLU task, we will use a different dataset to fine-tune the adapter with the prediction head.

2.3.2 Evaluation Method

These datasets will also serve as the basis for evaluating the trained adapters and prediction heads,
with specific evaluation methods tailored to each dataset. The datasets used are inspired by the
DUMB benchmark [dVWN23]. We have limited the amount of tasks used for testing the models
due to time limitations. Also, we have chosen two of the smaller datasets used by the DUMB
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benchmark [dVWN23] because of resource limitations.

To asses the performance of the adapters, we calculate the following metrics: Accuracy, F1-score,
Precision and Recall, alongside tracking training and validation losses. We have set the frequency of
metric calculations based on the size of the datasets to ensure meaningful analysis without excessive
computational burden. For instance, we calculate evaluation metrics for each epoch for smaller
datasets, but for each 500 steps for larger datasets. In practise, this means that we calculated the
evaluation metrics at each epoch when fine-tuning and at each 500 steps when pretraining. When
we are done training, we will compare the checkpoints of the model by using the F1-score, because
it provides a balanced measure of precision and recall, making it suitable for evaluating models on
imbalanced datasets where the classes are not equally represented. Below, we will delve into the
specific methods employed for each of the NLU tasks.

2.3.3 NLU Tasks

Natural Language Inference (NLI)
For NLI, we will use the SICK-NL dataset by Wijnholds et al. [WM21] to fine-tune the adapter.
This dataset is already split in train, test and validation splits which we will use for their respective
purposes. For fine-tuning on NLI we added a classification head.

Sentiment Analysis
For sentiment analysis we will use the DBRD v3.0 dataset by van der Burgh and Verberne [vdBV19].
This data set is divided into a test and train dataset, of which the training set is substantially
larger. We will further split of 10 percent of the training dataset to be used as a validation set to
prevent over-fitting. For fine-tuning on Sentiment Analysis we added a classification head.

3 Experiments and Results

3.1 Producing the dataset

First of all, we produced two datasets with instances of NLU tasks generated from the dataset of
the BabyLM challenge [WMC+23], one generated from the whole dataset and one from 1/8th of the
dataset. Furthermore, we produced a dataset with generated NLU tasks generated partly from the
dataset of the BabyLM challenge [WMC+23] and partly from the ChisCor dataset [vDvDVS23].
The Dutch dataset constructed using the dataset from the BabyLM challenge consists of a total
of 48454 generated NLU tasks after filtering by coherency score. This dataset consists of a total
of 51979674 characters. In the table below (Table 2), you can see the proportion of NLU tasks
generated for each of the datasets from the BabyLM challenge [WMC+23]:
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Dataset Proportion (%)
CHILDES 8.0
BNC 8.9
Children’s Book Test 2.5
Children’s Stories Text Corpus 8.9
Standardized Project Gutenberg Corpus 2.7
OpenSubtitles 49
QCRI Educational Domain Corpus 9.8
Wikipedia 2.4
Simple Wikipedia 6.6
Switchboard Dialog Act Corpus 1.6

Table 2: Proportion per Dataset of the BabyLM challenge

After removing the generated children’s stories tasks that exceed the amount of tasks in the ChisCor
dataset [vDvDVS23], we get a dataset containing 44543 NLU tasks that consists of 47646030
characters. In the Table below (Table 3), you can see the proportion of NLU tasks generated for
each of the datasets from the BabyLM challenge [WMC+23].

Dataset Proportion (%)
CHILDES 8.8
BNC 9.7
Children’s Book Test 2.7
Children’s Stories Text Corpus 0.92
Standardized Project Gutenberg Corpus 3.0
OpenSubtitles 53
QCRI Educational Domain Corpus 11
Wikipedia 2.6
Simple Wikipedia 7.2
Switchboard Dialog Act Corpus 1.7

Table 3: Proportion per Dataset of the BabyLM challenge

After replacing the children’s stories dataset from the BabyLM challenge [WMC+23] with the
ChisCor dataset [vDvDVS23] and running the prompts on this dataset, we get a dataset containing
44545 NLU tasks that consists of 47614064 characters. In the Table below (Table 4), you can see the
proportion of NLU tasks generated for each of the datasets from the BabyLM challenge [WMC+23]
and ChisCor [vDvDVS23].
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Dataset Proportion (%)
CHILDES 8.8
BNC 9.7
Children’s Book Test 2.7
ChisCor 0.92
Standardized Project Gutenberg Corpus 3.0
OpenSubtitles 53
QCRI Educational Domain Corpus 11
Wikipedia 2.6
Simple Wikipedia 7.2
Switchboard Dialog Act Corpus 1.7

Table 4: Proportion per Dataset of the BabyLM challenge and ChiSCor [vDvDVS23]

In Table 4 we see that the proportion of the dataset we replace by ChisCor [vDvDVS23] is less
then one percent of the dataset, which could affect our results.

Besides these three datasets, we have produced two datasets for testing how our changed prompt
(prompt 6) performs against the original prompt translated to Dutch (prompt 2). These datasets
are produced using of the translated dataset from the BabyLM challenge [WMC+23]. The dataset
generated using prompt 2 contains 8086 instances of NLU tasks and consists of 6507898 characters.
The dataset generated by randomly sampling the tasks generated using prompt 6 contains 6057
instances of NLU tasks and consists of 6489994 characters.
These two datasets contain similar amounts of characters, but vastly different amounts of instances
of NLU tasks. This means that the individual instances of NLU tasks generated using prompt 6 are
longer, but more of these tasks achieve a lower coherency score. A potential reason behind this
phenomenon could be the LLM’s tendency to produce multiple tasks when prompted with prompt
6, given the variety of tasks provided for selection. In contrast, prompt 2 typically results in the
LLM generating a single task. Consequently, when multiple tasks are generated for each set of five
sentences, it leads to longer text fragments. However, the inclusion of multiple tasks within these
fragments may lead to a lower coherency score, which in turn produces less instances of NLU tasks.

3.2 Pretraining the Adapters

The datasets of the previous section (section 2.1) are used to train five adapters. A summary of the
different datasets produced along with the adapters produced on them can be seen in Table 1.
In the graphs below, the training and validation loss calculated during pretraining of these adapters
can be seen.
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Figure 1: Training and validation loss for pretraining model A1 (left) and A2 (right)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

Epoch

L
os
s

Training Loss
Validation Loss

Figure 2: Training and validation loss for pre-
training model A3
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Figure 3: Learning rate for model A3

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

Epoch

L
os
s

Training Loss
Validation Loss

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

Epoch

L
os
s

Training Loss
Validation Loss

Figure 4: Training and validation loss for Model B (left) and C (right)
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If we look at the graphs for the validation loss during pretraining (3.2, 2 and 4), it becomes clear
that further pretraining of the model would give diminishing returns, as the graph flattens out.
Furthermore, when looking at the graphs we can see decreasing loss values for both the training
and validation sets, with comparable performance between the two. This suggests that the model is
effectively learning from the data without over-fitting. The validation loss for all the models ends
up similar, at below 1.20. However, for model A3 (see Figure 2), we see that there are some spikes
in the loss values. These spikes come coupled with spikes in learning rate, as seen in Figure 3. There
are two main reasons as to why this might happen. Firstly, the initialization of model parameters
might be poor. Inappropriate initialization of parameters, either too small or too large, can lead to
challenges such as vanishing gradients or over-amplification of certain dimensions, which in turn can
contribute to spikes in the loss function during training [Sko20]. Secondly, using a learning rate that
is too high could lead to overshooting [BL17], which could also be causing spikes in the loss function.

For fine-tuning, we have chosen to use the model checkpoints that achieved the lowest validation
loss. These can be seen in the table below (Table 5).

Adapter Validation loss When
Model A1 1.1368 2 epochs
Model A2 1.1698 2 epochs
Model A3 1.2358 just before 2 epochs/ 9500 steps
Model B 1.1600 just before 2 epochs/ 9500 steps
Model C 1.1526 just before 2 epochs/ 9500 steps

Table 5: Lowest validation loss achieved by the models

3.3 Finetuning the Pretrained Adapters

After pretraining the adapters, they are all fine-tuned on two downstream tasks: Natural Language
Inference and Sentiment analysis.

3.3.1 Natural Language Inference

During fine-tuning, we selected the best model checkpoints for further testing mainly based on the
F1 score on the validation set. The metrics calculated during fine-tuning for NLI can be seen below.
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Figure 5: Comparison of Validation Loss and F1 Score for models A1, B, and C.
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Figure 6: Training and Validation Loss, F1 Score when training model A2 (left) and model A3
(right) on NLI

For NLI, this method of selecting models solely based on F1 score can not be applied without
a major downside. The models seem to reach a point where further training beyond this point
increases the risk of over-fitting without significant gains in the F1 score, as demonstrated by their
increasing validation loss (see Figure 5 and 6). This forms a problem for our selection procedure
because the F1 score did increase slightly. As such, we will choose the checkpoints we use for further
testing based on the F1 score and the validation loss. In the table below (Table 3.3.1), you can see
the model checkpoints we have selected for testing on the test set. In the first column the F1 score
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on the validation set is displayed, followed by the checkpoint at which the models achieved said
validation score.
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Model A1 80.40 % 10 epochs 77.09 % 77.31 %
Model A2 80.01 % 10 epochs 81.35 % 81.38 %
Model A3 79.95 % 12 epochs 81.61 % 81.59 %
Model B 80.67 % 7 epochs 77.70 % 77.84 %
Model C 80.36 % 12 epochs 77.05 % 77.18 %

Table 6: Comparison of Evaluation Metrics for all trained adapters on NLI

For model A1, we chose to use the checkpoint at 10 epochs. After this point, we see a large increase
in validation loss with no significant increase in F1 score. For model A2, A3, B and C we chose the
checkpoint at 10, 12, 7 and 12 epochs respectively, using the same line of reasoning.

After fine-tuning the models and selecting the models that perform best on the validation set,
we test these models on the test set. The results for this can be seen in the last two columns of
Table 3.3.1. In this Table (Table 3.3.1) we can see models A2 and A3 perform best, with almost no
difference in accuracy and F1 score between them. The other models perform similar to each other.
Also, the accuracy and F1 score for all models is similar, despite the dataset not having a balanced
class distribution.
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3.3.2 Sentiment Analysis

In the graphs below, you can see the metrics calculated during finetuning of the models for Sentiment
Analysis.
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Figure 7: Comparison of Validation Loss and F1 Score for Models A1, B, and C when training on
sentiment analysis
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Figure 8: Training and Validation Loss and F1 score when training model A2 (left) and A3 (right)
on Sentiment analysis

In contrast to when we were fine-tuning on NLI, we continue to experience an increasing F1-score
coupled with a decreasing validation loss during almost the entire fine-tuning process (see Figure
7 and 3.3.2). Because of this, we select the models with the best F1 score on the validation set
(without looking at the validation loss as we did for NLI) for further testing on the test set. In the
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first two columns of the table below (Table 3.3.2) the selected model checkpoints along with their
F1 score on the validation set are displayed:
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Model A1 80.93 % 5 epochs 77.09 % 77.31 %
Model A2 79.92 % 5 epochs 80.26 % 80.22 %
Model A3 80.83 % just before 5 epochs/ 10500 steps 81.25 % 81.25 %
Model B 79.82 % 5 epochs 77.70 % 77.84 %
Model C 79.52 % just before 5 epochs/ 10500 steps 77.05 % 77.18 %

Table 7: Comparison of Evaluation Metrics for all trained adapters on Sentiment Analysis

After fine-tuning the models and selecting the models that perform best on the validation set, we
test these models on the test set. The results for this can be seen in the last two columns of Table
3.3.2. Here we see the same models performing well as for NLI (see Table 3.3.1). In this case, model
A3 performs the best, followed by model A2. Lastly, model B performed slightly better than model
A1 and C. Just like with NLI, the accuracy and F1 score for all models are similar. However, unlike
the dataset we used for NLI, this dataset has a balanced class distribution.

4 Discussion

In the previous section (section 3), we found that generally model A2 and A3 performed best on
Sentiment Analysis and NLI. However, all models achieve an F1 score of between 77% and 82%.
Furthermore, when training the models on NLI, the models seem to reach a point where further
training beyond this point increases the risk of over-fitting without significant gains in the F1 score.
Interestingly, this does not happen when training on sentiment analysis.

In this section, we will be analyzing the impact of our results for answering the different research
questions. To answer our main research question, we will start by answering our sub-questions.

4.1 Answering the Research Questions

Our first sub-question was:

What is the impact of changing the prompting strategy used in the Cothought pipeline
for training adapters on Dutch data?

To answer this question, we need to compare model A2 and A3 (see Table 1). For both Sentiment
Analysis (see Table 3.3.1) and NLI (see Figure 5) model A3 performed slightly better. The differences
are not big however. As model A3 is the model with the original prompt translated to Dutch, we
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can conclude that the impact of changing the prompting strategy used in the Cothought pipeline
for training adapters on Dutch data is insignificant.

Our second sub-question was:

What is the impact of including originally Dutch data in the pretraining data when using the
Cothought pipeline for training adapters on Dutch data?

To answer this question, we need to compare models B and C (see Table 1). For both Sentiment
Analysis (see Table 3.3.1) and NLI (see Figure 5) the models performed similarly. Model B performed
better for both tasks, but only by less than one percentage point. Model B is the model trained on
the dataset that does not include originally Dutch data. As such, we can conclude that the impact of
including originally Dutch data in the pretraining data when using the Cothought pipeline for train-
ing adapters on Dutch data is insignificant. However, like discussed in section 2.1, the proportion of
the dataset we replace by ChisCor [vDvDVS23] is less then one percent of the dataset. This could
mean, that changing this part of the dataset only has a small effect on the pretraining of the adapters.

Lastly, our main research question was:

Can we adapt the CoThought pipeline for training a BabyLM on Dutch data?

We were able to adapt the CoThought pipeline for training a BabyLM on Dutch data. For training
the BabyLM we have used adapters, instead of pretraining and fine-tuning the whole model. In the
table below (Table 8), we compare the performance of our best adapters with the performance of
the fine-tuned models based on the same dataset.

Task Model Accuracy (%)

NLI
BERTJE [WM21] 83.94

Adapters on BERT (Ours) 81.61

Sentiment Analysis
BERTJE [dVvCB+19] 93.00

Multilingual BERT [dVvCB+19] 89.10
Adapters on BERT (Ours) 81.25

Table 8: Comparison of Accuracy between adapters and fine-tuning

For both tasks, our model is model A3 (see Table 1). The results for BERTJE on NLI are from
the paper associated with the SICK-NL dataset by Wijnholds and Moortgat [WM21]. The results
for both Multilingual BERT and BERTJE on Sentiment Analysis are from the paper in which
de Vries et al. produced BERTJE [dVvCB+19]. For NLI, our model performed fairly close to the
implementation by Wijnholds and Moortgat [WM21], falling behind by only about two percentage
points. For sentiment analysis, the difference between our implementation and the implementation
by de Vries et al. [dVvCB+19] is larger, falling behind by about 8 and 12 percentage points
for Multilingual BERT and BERTJE respectively. Besides our implementation of the Cothought
pipeline, these results can be affected by the difference in models used and how long the models are
trained for. As such, the differences in this comparison can not be attributed solely to changes we
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made to the CoThought pipeline.

Next, we will compare our implementation to the original implementation of the Cothought pipeline
by Zhang et al. [ZYM+23]. They used the GLUE benchmark by Wang et al. [WSM+19] amongst
others to benchmark their model. This benchmark also contains some NLI tasks, but no Sentiment
Analysis tasks. As such, we will only be comparing our model with theirs for NLI. However, since
the benchmarks used by Zhang et al. [ZYM+23] are based on different data sets than ours, the
comparison lacks some robustness. The NLI tasks from the GLUE benchmark by Wang et al.
[WSM+19] are based on two different datasets:

MNLI
This task is based on Multi-Genre Natural Language Inference (MNLI) Corpus. The MNLI Corpus
is a crowd-sourced dataset of sentence pairs annotated for textual entailment. The premises of this
dataset are sourced from diverse genres such as transcribed speech, fiction, and government reports
[WSM+19].

QNLI
For this task they used the Stanford Question Answering Dataset (SQuAD). They adapted SQUAD
into a Question-answering NLI (QNLI) format. QNLI involves determining if a context sentence
contains the answer to a question. For this, original question-paragraph pairs from Wikipedia
are converted into sentence pairs, filtering out pairs with low lexical overlap. This transformation
changes the task to sentence pair classification, removing the requirement to select exact answers
and the assumption that answers are always present [WSM+19].

Below you can see the accuracy of the model by Zhang et al. [ZYM+23] compared with our best
adapters (again model A3) for NLI.

Task Accuracy

MNLI [ZYM+23] 73.73
MNLI-mm [ZYM+23] 74.76
QNLI [ZYM+23] 76.86

NLI (ours) 81.61

Table 9: Comparison of Accuracy between our adapters and the model by Zhang et al. [ZYM+23]

Here, we achieve a higher accuracy score. This could be due to the fact that our implementation of
the CoThought pipeline performs better, because we used a different dataset, but also because we
used adapters. Like discussed in section 1.2.1, previous research has shown that using adapters
instead of fine-tuning has a small impact on model performance. Using different datasets can
influence results in varying ways. For example, having an imbalanced fine-tuning dataset can
negatively influence model performance [KKP05].
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4.2 Limitations of Current Experiments

Our research has some limitations. First of all, we could only run our experiments once due to time
and computational limitations, which means that our results might be affected by an (un)lucky
initialization of weights. One possible occurrence of this is model A3 (see figure 2), which we
discussed in section 3.2.
Secondly, due to time limitations, we could only fine-tune and test the adapters on two NLU tasks.
Further testing would allow us to give a more accurate representation of the performance of our
adapters. The adapters might perform worse or better on some specific NLU tasks.
Furthermore, when replacing part of the translated data by originally Dutch data, we replaced only
one dataset from the BabyLM challenge which was 0.92 % of the total dataset (see Table 4). In
the end, we did not see any large differences between the adapters trained on the dataset with the
originally Dutch data and without. It could be the case that using originally Dutch data has no
effect on the produced adapters, or the part of the dataset we replaced was too small to notice any
significant difference.
Also, because we have only trained adapters instead of pretraining and fine-tuning the whole model
we cannot compare our models with fine-tuned models using the same methods, which could give
further insights of the performance impact of using adapters for our methods. However, previous
research has shown minimal performance impact when using adapters instead of fine-tuning the
whole model [PSP+23].
Lastly, because we did not use the same datasets for testing as Zhang et al. [ZYM+23], we could
not directly compare the performance of our adapters.

5 Conclusions

In conclusion, this research successfully adapted the CoThought pipeline for training a BabyLM on
Dutch data. Our results showed that the impact of changing the prompting strategy used in the
CoThought pipeline for training adapters on Dutch data was insignificant, as was the impact of
including originally Dutch data in the pretraining data. While the adapters achieved promising
results for both Sentiment Analysis and NLI, they performed comparatively better on NLI. However,
due to the limited scope of our experiments, there is room to further assess the pipeline’s potential
for Dutch language processing.

5.1 Further Experiments and Future Work

First of all, we have compiled some suggestions for future work based on the limitation discussed in
section 4.2:

• Run the experiments multiple times, to be sure of the results.

• Test our methods on more NLU tasks, to get better insight in the performance of our models.

• Further test the impact of using originally Dutch data could be further studied by pretraining
adapters on only originally Dutch data versus using translated data, either for each separate
NLU task or for the whole dataset.
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• Test how using adapters affects the performance of the models trained using our methods.

Furthermore, here are some additional research directions based on our methods:

• Apply our methods across various languages to evaluate their impact on the results.

• Compare the effectiveness of different large language models when using our methods.

• Investigate the effects of modifying various hyper-parameters during training.

• Investigation into the application of adapters across various models to be able to better
compare with other studies and to observe performance disparities among these models.
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A Additional Figures

A.1 Prompts

Prompt 3: Changed order

Gebruik de gegeven invoerzinnen om een voorbeeldparagraaf te genereren voor een specifieke
NLU-taak en de bijbehorende labels te identificeren.

Jouw uitvoer moet het volgende formaat hebben:

Plan:
Beschrijf in een paar zinnen hoe je de taak zult aanpakken.

Paragraaf:
Genereer een voorbeeldparagraaf op basis van de gegeven invoerzinnen.

Taak:
Specificeer de NLU-taak (bijv. sentimentanalyse, entiteitsextractie). Geef alleen de taaknaam.

Labels:
Geef de alleen labels voor de gegenereerde paragraaf aan (bijv. positief/negatief sentiment,
entiteitstypen).

De 5 te gebruiken invoerzinnen zijn: {input}
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Prompt 4: Specific NLU tasks

Gebruik de gegeven invoerzinnen om een voorbeeldparagraaf te genereren voor een specifieke
NLU-taak en de bijbehorende labels te identificeren.

Jouw uitvoer moet het volgende formaat hebben:

Plan:
Beschrijf in een paar zinnen hoe je de taak zult aanpakken.

Paragraaf:
Genereer een voorbeeldparagraaf op basis van de gegeven invoerzinnen.

Taak:
Specificeer de NLU-taak, kies uit: sentimentanalyse, natural language intference of
entiteitsextractie. Geef alleen de taaknaam.

Labels:
Geef de alleen labels voor de gegenereerde paragraaf aan (bijv. positief/negatief sentiment,
entiteitstypen).

De 5 te gebruiken invoerzinnen zijn: {input}

B Supplementary Materials

B.1 Code

The code used in this research can be found at:
https://github.com/ThijsGroeneweg/Adapting-the-CoThought-pipeline-for-training-a-BabyLM-on-Dutch-data.
In this Github repository we also included some documentation on how to use our code. The code
in this Github repository consist of python files which are used for the creation of the dataset and
generating the NLU tasks, and Jupiter Notebook files which are used for pretraining and finetuning
the adapters.

B.2 Datasets

The datasets we generated can be found at:
https://drive.google.com/drive/folders/1EW2bgdH0OVriijsXU6JOG3fZUcjmHjbs?usp=sharing.
For calculating the proportions of each dataset you can find the code in the Github repository
mentioned above (section B.1). Each dataset is included as a combined excel file, and seperate files
for each part of the BabyLM challenge dataset [WMC+23]. The folders are labeled with the models
trained on the dataset as seen in Table 1.
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B.3 Adapters

The adapters we trained during this research can be found at:
https://drive.google.com/drive/folders/1Xa83i4y4Ut6d6NBV4W-TlLBNyx1GZZnk?usp=sharing.
This includes the pre-trained adapters, the fine-tuned adapters, and the various metrics calculated
during training. The folders are labeled with the model names as seen in Table 1.
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