
Master Computer Science

Consistency Regularization for Test-time Prompt

Tuning

Name: Joël During
Student ID: s3558339

Date: 05/08/2024

Specialisation: Artificial Intelligence

1st supervisor: Prof.dr. M.S.K. Lew
2nd supervisor: Dr. E.M. Bakker

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Consistency Regularization for Test-time Prompt Tuning

Joël During (s3558339)

A thesis presented for the degree of
Master Computer Science

Specialisation in Artificial Intelligence
at Leiden University under supervision of

Prof.dr. M.S.K. Lew
and

Dr. E.M. Bakker

Research performed during an internship at
Netherlands Organisation for Applied Scientific Research (TNO)

Under supervision of
Sabina van Rooij, MSc

August 2024

1

ABSTRACT

Vision-Language Models (VLMs) have been intensely investigated recently. These multimodal models learn
vision-language relationships from large amounts of noisy image-text pairs. The large scale at which these
models are trained and their understanding of relationships between concepts in both the visual and textual
domains gives them promising zero-shot generalization capabilities on various visual downstream tasks. For
image classification, a VLM such as Contrastive Language-Image Pre-training (CLIP) can reach competitive
zero-shot performance on standard benchmarks when using suitable textual prompts. These prompts can be
found through manual prompt engineering or by prompt tuning through optimization methods. In the latter
case, labeled data of the target domain is required. To enable on-the-fly optimization of prompts at inference
time, Test-time Prompt Tuning (TPT) utilizes Test-Time Adaptation (TTA) techniques to optimize prompts
using only unlabeled data. We investigate the unsupervised learning methods behind TPT and find that they
can often be omitted without affecting performance. We hypothesize that these unsupervised learning methods
can produce unwanted results when the model produces different predictions for multiple augmentations of the
same image. To test our hypothesis, we propose two methods for aligning the predictions for all augmentations
of a single image. We show that our method, which uses consistency regularization to encourage consistent
predictions, outperforms standard TPT on seven out of ten fine-grained classification tasks. Furthermore, we
show that our method can learn from using more augmentations or more severe augmentation, while standard
TPT cannot.

2

CONTENTS

List of Figures 3

1 Introduction 4

2 Related work 7
2.1 Test-time adaptation . 7

2.1.1 Related techniques . 8
2.1.2 Variants . 8
2.1.3 Optimization methods . 9

2.2 Foundational models . 11
2.2.1 The introduction of scalable architectures . 11
2.2.2 Vision-language models . 11

2.3 Prompt tuning for vision-language models . 12
2.3.1 Few-shot prompt tuning . 12
2.3.2 Test-time prompt tuning . 12

3 Test-time prompt tuning for fine-grained classification 14
3.1 Fine-grained classification datasets . 14
3.2 Augmentation and confidence selection . 15
3.3 Experimental setup . 16

3.3.1 Baseline with augmentation and confidence selection . 16
3.3.2 TPT without confidence selection . 16
3.3.3 TPT without augmentation . 16

3.4 Experiment results . 17
3.5 Discussion . 17

4 Enforcing consistency in test-time prompt tuning 19
4.1 Misaligned predictions . 19
4.2 Consistency techniques . 20

4.2.1 Majority voting . 20
4.2.2 Kullback-Leibler divergence . 20

4.3 Experimental setup . 21
4.3.1 Majority voting . 21
4.3.2 Kullback-Leibler divergence . 21

4.4 Experiment results . 22
4.5 Discussion . 22

5 Augmentation methods for test-time prompt tuning 23
5.1 Augmentation methods . 23

5.1.1 Standard augmentation in TPT . 23
5.1.2 More severe augmentation with AugMix . 23

5.2 Experimental setup . 24
5.3 Experiment results . 24
5.4 Discussion . 25

6 Conclusions 27

Bibliography 29

3

LIST OF FIGURES

1.1 A simplified visualization of the training and inference of unimodal and multimodal models for
a vision task. Where unimodal models can not generalize the learned visual concepts to new
classes, multimodal models can. 4

2.1 Visualization of the problem of domain shift and possible solutions. (a) Classical machine
learning: the source and target data are assumed to be drawn from the same distribution. (b)
Domain shift: the source and target data come from different distributions. (c) Domain
adaptation: the labeled source data and unlabeled target data are used to adapt a trained
model to the target domain. (d) Test-time adaptation: only unlabeled target data is used to
adapt a trained model to the target domain. 7

2.2 Visualization of different variants of test-time adaptation. (a) Source-free domain adaptation
adapts a pretrained model using an unlabeled dataset of the target domain. (b) Test-time batch
adaptation only uses a batch of images or a single instance from the target domain. (c) Online
test-time adaptation continuously updates a model based on streaming data. 9

2.3 CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch
of (image, text) training examples. At test time, the learned text encoder synthesizes a zero-shot
linear classifier by embedding the names or descriptions of the target dataset’s classes. Image
and description taken from [1]. 12

2.4 Test-time Prompt Tuning (TPT) for image classification. Prompts are tuned on the fly with a
single test sample without additional training data or annotations. TPT optimizes the prompt
to encourage consistent predictions across augmented views by minimizing the marginal entropy.
We introduce confidence selection to filter out noisy augmentations. Image and description taken
from [2]. 13

3.1 Sample images of the fine-grained classification datasets used in the evaluation of test-time prompt
tuning. 15

4.1 Two disagreeing probability distributions are averaged into a single distribution. The obtained
average looks very different than both original distributions. Entropy minimization is applied to
the average. 19

5.1 Example of the standard augmentations used in TPT. 23
5.2 Example of the augmentations that can be applied with AugMix. 24
5.3 Comparison of standard TPT and TPT with majority voting or KL divergence for different num-

bers of augmented views and with or without AugMix. We report the average top-1 classification
accuracy over all fine-grained datasets. 25

4

CHAPTER

ONE

INTRODUCTION

Unimodal
model

LabradorLabradorLabrador

(a) Unimodal training.

Unimodal
model

Labrador

???

(b) Unimodal inference.

Multimodal
model

LabradorLabradorMy labrador Bailey
with sunglasses

(c) Multimodal training.

Multimodal
model

Labrador

Sunglasses

(d) Multimodal inference.

Figure 1.1: A simplified visualization of the training and inference of unimodal and multimodal models for a vision task. Where
unimodal models can not generalize the learned visual concepts to new classes, multimodal models can.

Ever since the popularization of Convolutional Neural Networks (CNNs) for image classification by AlexNet
[3], they have consistently outperformed other machine vision architectures on benchmarks like the ImageNet
image classification task [4]. Over the years, the complexity of these architectures has increased, with each
new model adding innovations such as inception modules [5], residual connections [6], and depthwise separable
convolutions [7]. Only recently, CNNs were outperformed by transformer architectures such as Vision Trans-
formers (ViTs) on the ImageNet benchmark [8]. Their parallel nature allows these transformer models to train
at a larger scale than CNNs. However, the high computational complexity of their attention mechanisms makes
inference more time-consuming than for CNNs. Despite their differences, all these architectures have one thing
in common: They train in a single modality.

Unimodal vision models only use a single modality, vision, for training. While the labels for each image are
textual, they are encoded using a one-hot embedding, resulting in a purely numerical label. This prevents the
model from exploiting textual information. For example, the ImageNet classes “white shark”, “tiger shark”,
and “hammerhead shark” are seen as unrelated by a unimodal model, even though their textual description
indicates they are very similar.

Another downside of unimodal models is that they can not generalize to classes they have not seen before.
Since they lack textual understanding, the learned concepts can not be generalized to a new class. For example,

CHAPTER 1. INTRODUCTION 5

a model that has learned the classes of “hammer” and “shark” will not be any better at categorizing the unseen
class of “hammerhead shark” than a model that is only trained to recognize flowers.

Multimodal models add one or more modalities to the training data. For example, a model trained in the
modalities of vision and text will train on an image and a textual description. These descriptions can be much
more varied than the single label used in unimodal models. For a visual comparison of the training of unimodal
and multimodal models, Figures 1.1a, and 1.1c show how a multimodal model is able to learn the concept of
sunglasses from the textual descriptions of the image whereas a unimodal model only associates the image with
the class label.

By learning concepts in two modalities, multimodal models can exploit textual relationships between classes
and generalize their learned visual concepts to previously unseen classes. For an example of this generalization
capability, which is not present in unimodal models, see Figures 1.1b and 1.1d.

This generalization capability of multimodal models is best seen when trained on large amounts of data.
Meanwhile, a unimodal model might only be trained on a single dataset, such as ImageNet, while a multimodal
model will train on many image-text pairs that are freely available on the Internet and do not need to be
annotated. The result is a visual model with high generalization capability. For example, a pre-trained multi-
modal model can achieve competitive performance on the ImageNet benchmark without training on ImageNet
specifically [1].

Multimodal vision models that incorporate textual understanding are known as Vision Language Models
(VLMs). Recent VLMs such as CLIP [1] and ALIGN [9] can be trained at a very large scale using millions
of noisy image-text pairs, which are widely available on the Internet. These pairs can be easily scraped from
websites containing images and captions, such as forums, social media, Wikipedia, and many others. This
wide data availability allows VLMs to train at a very large scale. ALIGN even shows that VLMs do not need
expensive data preprocessing when trained at a large enough scale [9].

These VLMs use a contrastive loss to learn a feature space that aligns text descriptions with their corre-
sponding images. This allows them to learn a broad range of visual and linguistic concepts and their relationship
to one another. These learned concepts across multiple modalities make VLMs promising foundation models
that can be applied to various downstream vision tasks, such as image classification, image captioning, and
visual question answering [1].

VLMs utilize a pre-trained text encoder, which allows them to generalize learned visual-textual relations
to related textual information, giving them a high capability for adapting to various downstream tasks in a
zero-shot manner. It also adds a new dimension to vision problems: prompting. For example, in the task of
image classification, the embedding of an image is compared to the embeddings of several text descriptions.
These descriptions consist of a textual prompt followed by the class label. A prompt might be “a photo of a

[CLASS]”, which is a general description of the image. For inference, the similarity of the image embedding to
the embeddings of all prompts is computed, giving a probability distribution over all the classes.

It has been shown that the zero-shot performance of CLIP highly varies depending on the used prompt [1]. It
is, therefore, common practice to engineer a prompt for a specific task, either manually or through optimization
[10, 11]. For example, a prompt engineered for a specific task might be “a photo of a [CLASS], a kind of

flower”. Prompt tuning allows VLMs to improve their generalization to new domains. However, it requires
either engineering by a human domain expert in the case of manual tuning or labeled data from the target
domain in the case of prompt optimization. Both are typically unavailable at inference time, which restricts
prompt tuning from making on-the-fly optimizations.

Test-Time Adaptation (TTA) can enable prompt tuning as a method of adapting to new domains at inference
time. TTA utilizes unsupervised learning techniques to learn from unlabeled data at test time [12]. Therefore,
TTA techniques can adapt to new domains at inference time without additional labeling efforts. One method
that uses TTA for prompt tuning of VLMs is Test-time Prompt Tuning (TPT) [2]. TPT uses augmentation,
confidence selection, and entropy minimization to learn from a single unlabeled input image. Whereas most
TTA methods optimize the parameters of a learned network [13, 14, 15], TPT only learns the parameters of a
textual prompt.

In this thesis, we take a closer look at the unsupervised learning mechanisms behind TPT. Our contribution
will be threefold:

1. We show through ablation that the unsupervised learning methods of TPT sometimes decrease the per-
formance of the method on a fine-grained classification task.

2. We propose two prediction alignment methods to alleviate this problem.

3. We show how our prediction alignment methods compare to standard TPT and how they respond to
additional augmentation.

We show that our method, which aligns predictions in TPT using consistency regularization, outperforms
standard TPT on most of the evaluated fine-grained classification datasets. It also outperforms the baseline
on datasets where standard TPT could not. We further show that our method can learn from additional
augmentation while the original implementation cannot.

CHAPTER 1. INTRODUCTION 6

This thesis is organized as follows. First, chapter 2 will discuss the literature on test-time adaptation, vision-
language models, and prompt tuning. In chapter 3, we will perform an in-depth analysis of the unsupervised
learning mechanisms behind TPT and show through an ablation study how each component of TPT affects
the performance on fine-grained classification tasks. Then, chapter 4 introduces our two methods for aligning
predictions in TPT and shows how they compare to standard TPT. Chapter 5 investigates the impact of more
severe augmentation on standard TPT and our methods. Finally, chapter 6 discusses our results and proposes
directions for future work.

7

CHAPTER

TWO

RELATED WORK

This section explores previous research and developments relevant to the focus of this thesis. We identify key
findings, methodologies, and gaps that inform and contextualize our study by examining existing literature.
This section is organized into three main areas. First, we will introduce the concept of test-time adaptation
and give an overview of relevant methods and techniques. Second, we will explore the concept of foundational
models. Specifically, we will look at vision-language models which are used in this thesis. Finally, we will link
the first two sections by discussing how test-time adaptation can tune the prompts of vision-language models
at inference time.

2.1 Test-time adaptation

Model

Labeled
source
data

Unlabeled
target
data

Train Predict

(a) Classical machine learning.

Labeled
source data

Model

Train Predict

Unlabeled
target data

(b) Domain shift.

Labeled
source data

Model

Train

Unlabeled
target data

Adapted
model

Domain
adaptation

Predict

(c) Domain adaptation.

Pretrained
model

Unlabeled
target data

Adapted
model

Test-time
adaptation

Predict

(d) Test-time adaptation.

Figure 2.1: Visualization of the problem of domain shift and possible solutions. (a) Classical machine learning: the source
and target data are assumed to be drawn from the same distribution. (b) Domain shift: the source and target data come from
different distributions. (c) Domain adaptation: the labeled source data and unlabeled target data are used to adapt a trained
model to the target domain. (d) Test-time adaptation: only unlabeled target data is used to adapt a trained model to the
target domain.

Classical machine learning assumes that the training and test data are drawn independently and identically
from the same distribution (Figure 2.1a). In real-world applications, this assumption usually does not hold.
When the training data (source) differs from the test data (target) (Figure 2.1b), the problem of distribution shift
occurs [16]. Distribution shift is usually paired with severe drops in performance. For example, in segmenting

CHAPTER 2. RELATED WORK 8

medical images of brain tumors, a CNN was shown to perform significantly worse on images taken at another
institution than the one that produced its training data [17]. In the image classification task for autonomous
driving, models might generalize very poorly to data containing objects in unusual poses [18]. These examples
all show a performance degradation as a result of a distribution shift.

Domain adaptation (DA) aims to close the performance gap of a discriminative model between the source
domain it has trained on, and a new target domain [19]. Typically, DA methods will align some statistics of the
two different domains through sampling [20, 21] or feature transformations [22, 23]. Therefore, DA methods
need access to both the source data used for training and the target data (Figure 2.1c). Since source data sets
can be very large, applying DA during inference time in practical applications is often not feasible. In these
cases, test-time adaptation (TTA) can be used [12]. TTA is a source-free variant of DA that does not utilize
any data from the source domain (Figure 2.1d). In addition to enabling adaptation during inference time, TTA
addresses privacy and data storage concerns by not requiring source data.

This section will explain the difference between TTA and other test-time learning methods. We will then
describe variants of TTA techniques that can operate on large amounts of target data, smaller batches, or single
instances. After, we will present several popular TTA methods and categorize them based on the unsupervised
learning strategies that they use. For a more extensive survey covering this topic, see [12].

2.1.1 Related techniques

Test-time adaptation is not the only technique for improving performance at test time. In this subsection, we
will explain the differences and similarities between test-time adaptation, -training, and -augmentation.

Test-time training

Test-time training (TTT) adapts a model at test-time on an individual test sample. In this way, TTT is similar
to Test-Time Instance Adaptation (TTIA), which we will discuss in Section 2.1.2. However, the key difference
lies in the optimization method. Whereas TTA optimizes over the original classification task using a method
such as entropy minimization, TTT trains over an auxiliary self-supervised task. The auxiliary task needs to be
explicitly defined. Examples of auxiliary tasks are rotation prediction, where the model predicts the rotation
angle of an input image [24], inpainting, where the model tries to reconstruct missing or corrupted parts of an
image [25], and contrastive learning, where the model learns to distinguish between similar and dissimilar image
patches or augmented versions of the same image [26].

Test-time augmentation

Test-time augmentation, which is sometimes also referred to as TTA, is another method for improving model
performance during inference [27]. The key difference with test-time adaptation is that test-time augmentation
does not modify the learned model. Instead, it applies various data augmentations (such as flips, rotations,
or crops) to each test sample, generates predictions for these augmented versions, and then aggregates them
(often through averaging or voting) to produce a final output. Test-time augmentation essentially creates an
ensemble effect for each test sample, potentially improving prediction robustness and accuracy. The ability of
test-time augmentation to improve performance has been extensively shown by pioneering image classification
works such as AlexNet [3], Inception [5], and ResNet [6].

As this thesis will show, data augmentations can also improve the performance of TTA methods. However,
since the resulting methods modify the parameters of the learned model, they are not test-time augmentation
methods.

2.1.2 Variants

We can categorize various types of test-time adaptation based on the volume of target data they work with.
This section will outline TTA methods that work with complete datasets, individual batches, single instances,
and streaming data. To see a visual representation of the different TTA variants, refer to Figure 2.2.

Source-free domain adaptation

TTA methods operating on an entire target dataset can be seen as a source-free domain adaptation (SFDA)
variant. For a visualization of the SFDA approach to TTA, see Figure 2.2a. Unlike standard DA methods, TTA
methods can not use sampling or feature transformations to align the features of the target domain to those of
the source domain since the source domain is unknown. Instead, TTA methods rely on various unsupervised
learning approaches.

Since SFDA can adapt to a large amount of target data, it has the potential to perform significant adjust-
ments to the pretrained model. However, training on a large amount of data has a significant computational
cost. Since the entire target dataset will need to be collected before adaptation occurs, SFDA methods cannot
be applied during inference time.

CHAPTER 2. RELATED WORK 9

Pretrained
model

Adapted
model

Source-free
Domain

Adaptation

Dataset

(a) Source-Free Domain Adaptation (SFDA).

Pretrained
model

Adapted
model

Test-time
Batch

Adaptation

Batch/
Instance

(b) Test-time Batch Adaptation (TTBA).

Pretrained
model

Adapted
model

Online
Test-time

Adaptation

Streaming
Data

Continuous adaptation

(c) Online Test-time Adaptation (OTTA).

Figure 2.2: Visualization of different variants of test-time adaptation. (a) Source-free domain adaptation adapts a pretrained
model using an unlabeled dataset of the target domain. (b) Test-time batch adaptation only uses a batch of images or a single
instance from the target domain. (c) Online test-time adaptation continuously updates a model based on streaming data.

Test-time batch adaptation

In a practical setting, it is unlikely that the entire target domain will be available at test time. Instead, samples
will likely arrive one by one or in batches. Test-Time Batch Adaptation (TTBA) focuses on the latter, adapting
the model to one batch of samples at a time [12]. For a visualization of the TTBA approach to TTA, see
Figure 2.2b. TTBA is well-suited for on-the-fly optimizations at test time and for situations where each batch
of samples can come from a different distribution.

With a batch size of 1, TTBA is reduced to Test-Time Instance Adaptation (TTIA). TTIA can be used
for streaming data such as a video feed. However, it is important to note that TTIA will treat every frame as
coming from an independent distribution and, therefore, will not apply learned knowledge to new frames.

Online test-time adaptation

Whereas TTBA can be used for on-the-fly adaptations at test-time, it requires that data is grouped in batches
and will treat each batch as coming from a different distribution. This is not ideal for streaming data received
continuously and which may come from the same distribution. Online Test-Time Adaptation (OTTA) reuses
past knowledge, which allows for online learning [28]. OTTA methods continuously adapt a model to new input
and will use the adapted model as a starting point for the next input. While this allows the model to retain
knowledge learned at test time, it also leads to new challenges. For example, a model might forget a learned
pattern after having seen many inputs that lack this pattern. This is known as catastrophic forgetting [29, 30].

2.1.3 Optimization methods

Test-time adaptation can use various unsupervised optimization methods to improve performance during test
time. This section will discuss methods based on pseudo-labeling, entropy minimization, and consistency
regularization. We will name a few TTA techniques for each method that utilize it. For a more extensive
overview of TTA techniques for each optimization method, see [12].

CHAPTER 2. RELATED WORK 10

Pseudo-labeling

One approach at test time is to use the model trained on the source data to label all instances in the target
domain. Under domain shift, these pseudo-labels are likely inaccurate. Therefore, various methods exist to
improve the accuracy of the pseudo-labels or filter out inaccurate pseudo-labels. A self-supervised learning
approach can then be used, updating the network using supervised training methods and pseudo-labels. This
process can be repeated for an iterative self-supervised learning approach.

The pseudo-labeling strategy assumes that most pseudo-labels will be accurate if the domain shift is mild.
Therefore, training requires a large number of target samples. This means that the pseudo-labeling optimization
strategy is only feasible for SFDA, not TTBA, TTIA, or OTTA.

An example of a pseudo-labeling-based SFDA technique is Source HypOthesis Transfer (SHOT) [13], which
generates a prototype representation for each class by taking the centroid of all instances from the target
dataset labeled as belonging to that class and then obtains pseudo-labels using the nearest centroid classifica-
tion. Privacy-Preserving Domain Adaptation (PPDA) [31] proposes improving the class centroids using only
highly confident predictions. Similarly, Self-Supervised Noisy Label Learning (SSNLL) [32] performs K-means
clustering in the target domain and obtains pseudo-labels by averaging the predictions of samples in the same
cluster. Domain-Invariant Parameter Exploring (DIPE) [33] assigns pseudo-labels to each sample based on a
majority vote over the label of its nearest neighbors in the target domain.

In contrast to these methods, which assign pseudo-labels based on the distribution of samples in the tar-
get domain, some methods assign a pseudo-label by aggregating predictions of an ensemble. For example,
Augmented Self-Labeling (ASL) [34] uses an ensemble over different data augmentations and ST3D [35] over
predictions of previous training steps.

Several methods combine the above-mentioned labeling strategies to obtain their pseudo-labels [36, 37, 38].

Entropy minimization

Entropy minimization is a popular strategy for all forms of TTA. This method optimizes the model to obtain low
entropy and, therefore, high predictive confidence for samples in the target domain. For SFDA, Augmentation-
based Source-Free Adaptation (ASFA) [39] minimizes the α-Tsallis entropy. Other works, such as ASL [34],
minimize the more traditional Shannon entropy. SS-SFDA [40] chooses to prioritize minimizing the entropy in
confident samples over less confident samples.

Similarly to SFDA, many test-time batch adaptation approaches rely on entropy minimization. Notably,
Test Entropy Minimization (TENT) updates the model by minimizing the entropy of its predictions for each
batch. However, the authors observe that updating all model parameters on a few test samples can lead to
overfitting. Therefore, they borrow an idea from batch normalization calibration methods such as Representative
BatchNorm (RBA) [41]. Instead of updating all the network parameters, TENT only learns the parameters of
a linear transformation of the features at each batch normalization layer. The transformation parameters can
be maintained for an online approach (OTTA) or forgotten for an offline (TTBA) approach. By adapting very
few parameters of the original model (2 per batch normalization layer), TENT not only reduces overfitting but
also mitigates the problem of catastrophic forgetting when used in an online learning setting.

Many TTA works build on the simple approach of TENT. Namely, Marginal Entropy Minimization with
One test point (MEMO) [15] extends TENT to optimize the network over multiple random augmentations of
the target batch. Test-Time Adaptation with Shape moments for image segmentation (TTAS) [42] adds a class-
weighted entropy objective and Variational Model Perturbation (VMP) [43] adapts TENT to a probabilistic
method by perturbating the model parameters with variational Bayesian inference.

Consistency regularization

Another strategy for TTA is consistency training, which aims to enforce consistent predictions under data or
model variations. For SFDA, Robust Self Training (RuST) [44] optimizes over multiple permutations at the
input, feature, and model levels. Feature Alignment by Uncertainty and Self-Training (FAUST) [45] takes a
different approach, minimizing the epistemic model uncertainty estimated using Monte Carlo dropout [46].

Test-Time Adaptation through Perturbation Robustness (TTA-PR) [47] extends the entropy minimization
approach of TENT by adding a consistency regularization term in the loss. For consistency regularization,
they use the average KL divergence over all probability distributions with respect to the average probability
distribution. Since the model trains over multiple augmentations of the original image, it utilizes the knowledge
that all samples belong to the same class. The loss penalizes differences between probability distributions,
therefore encouraging the model to give consistent predictions over augmentations of the same image. This
consistency loss was first introduced for use with AugMix [48].

CHAPTER 2. RELATED WORK 11

2.2 Foundational models

Foundation models are those trained on large-scale datasets (generally using self-supervision) covering many
different domains [49]. The knowledge of these models can be transferred to downstream tasks using a task-
specific dataset (transfer learning) [50], a few examples (few-shot learning) [51], or even without any examples
(zero-shot learning) [52].

2.2.1 The introduction of scalable architectures

To achieve the generalization necessary for successful transfer learning across many domains, foundation models
require training on very large datasets. However, most traditional deep learning architectures struggle when
training on a large scale. For example, simple multi-layer perceptrons (MLPs) are very dense with many
parameters. This makes it infeasible to train an MLP of sufficient width and depth to learn patterns in large
datasets covering many domains.

Convolutional neural networks

Convolutional neural networks (CNNs) are less dense than their MLP counterparts because the convolutions
share common parameters (filters) [53]. However, very large CNNs can suffer problems with vanishing or explod-
ing gradients, leading to unstable training. These problems are mostly mitigated by modern CNN architectures
featuring batch normalization [54], residual connections [6], and compound scaling [55]. Nevertheless, CNNs rely
on their local receptive fields and pooling operations to capture spatial information hierarchically. This limits
their generalization ability to local regions of the input, making them unfit for learning long-range dependencies
in the data.

Recurrent neural networks

Recurrent neural networks (RNNs) are an architecture tailored to sequential data processing [56]. They maintain
an internal memory to capture temporal dependencies in the data. While theoretically, their recurrent nature
allows RNNs to capture long-range dependencies, in reality, the vanishing gradients problem may limit this
ability. Training RNNs involves the iterative processing of sequential data over multiple time steps, involving
matrix operations and backpropagation through time. These operations become increasingly demanding with
longer sequences, larger batch sizes, and deeper architectures, leading to higher computational costs and longer
training times. This computation complexity and the memory requirements for storing the hidden states over
multiple timesteps make training RNNs at a very large scale infeasible.

The attention mechanism was introduced to mitigate the problem of long-range dependencies for RNNs
[57]. Attention allows models to focus on specific parts of the input sequence when generating each part of the
output sequence, which addresses the limitations of traditional sequence-to-sequence models. This mechanism
dynamically assigns weights to different input tokens, enabling the model to prioritize more relevant information.

Transformers

Whereas RNNs with attention mechanisms are better at detecting long-range dependencies, they still suffer from
the same computational complexity as RNNs, which makes it challenging to train them at a very large scale.
The key innovation allowing for truly scalable training was the introduction of the transformer architecture
[58]. This novel approach replaced recurrent neural networks with an architecture based entirely on attention
mechanisms, allowing for more efficient parallel processing of input sequences. By eliminating the need for
sequential processing, transformers can leverage modern GPU hardware for faster training and inference, making
them highly scalable for large datasets and complex tasks. This scalability, combined with their ability to learn
contextual relationships in data, has led to the development of increasingly powerful language models and their
application across a wide range of domains, including machine translation [58], text generation [59, 60], and
even computer vision [8].

2.2.2 Vision-language models

Vision-language models (VLMs) have recently been intensely investigated [61]. These new foundational models
utilize both language and vision architectures to learn from the large number of noisy image-text pairs widely
available on the internet. VLMs such as Contrastive Language-Image Pre-training (CLIP) [1] show that given
large enough datasets, this weak supervision can provide zero-shot generalization capabilities. A Large-scale
ImaGe and Noisy-text embedding (ALIGN) [9] shows that VLMs can even learn from very noisy data without
expensive filtering or preprocessing as long as the datasets are sufficiently large.

CLIP is trained on a large dataset of image-text pairs using a contrastive learning approach [1]. CLIP
processes batches of image-text pairs during training, encoding images and texts separately through pre-trained
encoders. It then computes the cosine similarity between all possible image-text combinations, aiming to

CHAPTER 2. RELATED WORK 12

maximize the similarity for matching pairs while minimizing it for non-matching pairs. This process creates a
shared embedding space where semantically related images and texts are mapped close together. This training
procedure can be seen in Figure 2.3 (1). For prediction, CLIP can perform zero-shot classification by encoding
a given image and a set of candidate text descriptions (usually a prompt followed by the class label) into this
shared embedding space (Figure 2.3 (2)). It then computes the similarity between the image embedding and
each text embedding, selecting the class with the highest similarity as the predicted label (Figure 2.3 (3)).

I1·T2 I1·T3 …

I2·T1 I2·T3 …

I3·T1 I3·T2 …

⋮ ⋮ ⋮

I1·T1

I2·T2

I3·T3

(1) Contrastive pre-training

Image
Encoder

Text
EncoderPepper	the

aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

Pepper	the
aussie	pup

T1 T2 T3 …

I1

I2

I3

⋮

(2) Create dataset classifier from label text

plane

car

dog

⋮

bird

A	photo	of
a	{object}.

⋮

Text
Encoder

T1 T2 T3 TN

…

(3) Use for zero-shot prediction

Image
Encoder

I1 I1·T2 I1·TNI1·T1

…

…

A	photo	of
	a	dog.

TN

IN·T1 IN·T2 IN·T3

I1·TN

I2·TN

I3·TN

⋮

…IN

…

⋮ ⋱

IN·TN

I1·T3

Figure 2.3: CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text)
training examples. At test time, the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or
descriptions of the target dataset’s classes. Image and description taken from [1].

2.3 Prompt tuning for vision-language models

VLMs such as CLIP [1] and ALIGN [9] perform classification by comparing the embedding of the image to the
embeddings of several textual prompts. An example of such a prompt is: “a photo of a [CLASS]”, where
[CLASS] is replaced by a class label. By contextualizing the class label into a description of the image, prompt-
ing allows VLMs to be easily transferred to downstream tasks such as classification and context-dependent
visual reasoning [2]. The prompt used for any downstream task may significantly impact the model’s zero-shot
performance. For example, the authors of Context Optimization (CoOp) [10] show that small changes such as
adding an article before a noun, changing the sentence structure, or adding a single word describing the target
domain can significantly impact the model performance.

Naturally, it can be quite effective to manually change the prompt to find one which gives sufficient per-
formance [62]. This manual tuning process optimizes the hard prompts, which is the textual prompt before
embedding it with the text encoder. Optimizing the hard prompt is known as prompt engineering. Prompt
engineering requires human involvement from a domain expert and is, therefore, extremely time-consuming.
Since the hard prompts are discrete, they are difficult to optimize with automated techniques. One solution is
to optimize the soft prompts, which are the embeddings of the prompts after passing through the text encoder.
Since these are continuous, they can be optimized with standard optimization methods. This process is known
as prompt tuning. This section will look at methods for few-shot prompt tuning and test-time prompt tuning.

2.3.1 Few-shot prompt tuning

CoOp [10] uses a few annotated samples from the target domain to tune the soft prompt. This method op-
timizes a context vector that serves as a task-specific prompt, allowing the model to adapt to various visual
recognition tasks with minimal data. The authors show that with as few as one or two samples, CoOp can out-
perform manually engineered prompts. Conditional Context Optimization (CoCoOp) [11] extends this concept
by making the prompt conditional on the input image, enabling more flexible and context-aware adaptations.
Both methods have shown promising results in few-shot learning scenarios and out-of-domain generalization
tasks, outperforming traditional fine-tuning approaches in many cases. These techniques leverage the strong
pre-trained representations of CLIP while allowing for efficient adaptation to specific tasks, making them par-
ticularly useful in scenarios with limited labeled data.

2.3.2 Test-time prompt tuning

As we saw in Section 2.1, Test-Time Adaptation (TTA) techniques can optimize a model at test-time based on
unlabeled data from a new target domain. TTA methods can also be used to optimize the soft prompts of a
VLM at test time for a new domain without labeled data. This method is known as Test-time Prompt Tuning

CHAPTER 2. RELATED WORK 13

(TPT) [2], a test-time instance adaptation method that uses an entropy minimization strategy to optimize the
prompt over a single target image. TPT consists of a few essential components: augmentation, confidence
selection, entropy minimization, and a learnable prompt. In this section, we will describe these components.
See Figure 2.4 for a visualization of TPT.

min
𝐩

𝐇(𝑝෤𝐩)

𝑝𝐩(𝑦|A1(X))

𝑝𝐩(𝑦|A2(X))

prompt p

…
𝑝𝐩(𝑦|AN(X)) 𝑝෤𝐩(𝑦|X)

A1

text
encoder

image
encoder

…

augmented views confidence selection

A2

AN

average

Learnable Parameters

Back Propagation

rejectaccept

a single test image

Dog

Cat

Bird

class

…

Figure 2.4: Test-time Prompt Tuning (TPT) for image classification. Prompts are tuned on the fly with a single test sample
without additional training data or annotations. TPT optimizes the prompt to encourage consistent predictions across augmented
views by minimizing the marginal entropy. We introduce confidence selection to filter out noisy augmentations. Image and
description taken from [2].

Augmentation

TPT works on a single test sample, augmented using standard crop and flip operations into many views. It
then uses a CLIP [1] model to encode these views and the text prompts describing the classes. The similarity
between the augmented image and text embeddings is then computed, resulting in a probability distribution for
each augmented view, containing the probabilities of the image belonging to each class, according to the CLIP
model.

Confidence selection

The probability distributions with the highest entropy are filtered out, leaving only the more confident distri-
butions. The rationale is that the augmentations introduce noise, possibly leading to uncertain predictions. For
example, in Figure 2.4, the image’s subject is a dog. However, if an augmented view crops the image so that
the subject is no longer in it, this can lead to a prediction with low confidence and, therefore, high entropy.

Entropy minimization

The confident probability distributions are averaged to obtain a single distribution. Like TENT [14], TPT uses
entropy minimization to optimize the model performance. It is important to note that this method encourages
the network to be more confident in the predictions that we have selected, even if those predictions are wrong.
Unlike TENT, TPT uses data augmentation to optimize multiple views of the same image. This approach is
similar to that of MEMO [15].

Learnable prompt

Another difference between TPT and TENT/MEMO is the optimized parameters. TENT learns two parameters
per batch normalization layer that serve as a linear transformation. On the other hand, TPT does not update
any parameters of the CLIP model. Instead, it optimizes a soft prompt for use with the CLIP model, similar
to the approach of CoOp [10]. The parameters of this learnable prompt are visualized in green in Figure 2.4.
However, where CoOp uses few-shot learning to optimize the prompt using a few labeled samples from the
target domain, TPT only uses a single unlabeled sample.

14

CHAPTER

THREE

TEST-TIME PROMPT TUNING FOR FINE-GRAINED CLASSIFICATION

As we saw in Section 2.3.2, Test-time Prompt Tuning (TPT) [2] can be used to adapt a model to a new domain
at test time with only a single unlabeled sample from the new domain. In their paper, the authors demonstrate
the method’s ability to adapt to natural distribution shifts by evaluating four ImageNet [4] variation datasets,
as is done for CLIP [1]. The variation datasets are:

• ImageNet-V2 [63]: an independent test set of 1000 classes using data collected in the same way as the
original ImageNet a decade later.

• ImageNet-A [64]: a set of 1000 classes containing samples that were misclassified by a standard ResNet-
50 [6], and are therefore considered challenging.

• ImageNet-R [65]: a set of 1000 classes using artistic renditions of ImageNet classes, such as sketches,
cartoons, tattoos, and graffiti.

• ImageNet-Sketch [66]: a set of 1000 classes using grayscale sketches of ImageNet classes.

The authors of TPT demonstrate that on these datasets, TPT can outperform a zero-shot CLIP baseline, a
CLIP model with a hand-crafted ensemble of prompts, and even the few-shot methods CoOp [10] and CoCoOp
[11]. They also show that they can combine TPT and CoOp by starting from a soft prompt learned by CoOp on
a few samples from the original ImageNet dataset and then optimizing it using TPT. This approach leads to a
higher top-1 accuracy on both ImageNet and the ImageNet variation datasets than TPT and CoOp individually.

This impressive result shows that TPT can efficiently generalize to a broad classification dataset like Ima-
geNet. ImageNet is considered broad because it contains a wide variety of classes that are often distinct and
easily distinguishable from one another. For instance, ImageNet contains thousands of categories ranging from
animals to everyday objects. The primary challenge in such datasets is correctly identifying the broad category
to which an image belongs.

In this thesis, we investigate the ability of TPT to generalize to new domains. Therefore, we examine its
generalization to fine-grained classification datasets. In contrast to broad datasets, these fine-grained datasets
require distinguishing classes that are much more similar. For example, a fine-grained dataset might consist of
many different breeds of dogs or species of flowers. The subtle visual differences between these classes make
classification tasks more challenging than broad classifications, as they require the model to learn and identify
small variations between classes, such as slight variations in fur patterns or flower petal shapes.

This chapter will first discuss the fine-grained classification datasets used to evaluate TPT. Then, we will
discuss how the various components of TPT affect its performance on these fine-grained classification sets. This
leads us to introduce an ablation study of the various components of TPT to explore what role each part plays
in the final performance of the model. We will show the results of this experiment and discuss our findings.

3.1 Fine-grained classification datasets

In the paper, TPT is evaluated on ten fine-grained image classification datasets [2]. These 10 datasets are the
same ones used to evaluate CoOp [10] and a subset of the 27 datasets used to evaluate CLIP [1]. Each of
the datasets contains images from a large number of similar classes from a specific domain. The fine-grained
datasets are:

• Flower102 [67]: 102 classes of flowers common in the UK.

• DTD [68]: 47 classes of describable textures.

• OxfordPets [69]: 37 classes of breeds of cats and dogs.

CHAPTER 3. TEST-TIME PROMPT TUNING FOR FINE-GRAINED CLASSIFICATION 15

(a) Flower102 [67] (b) DTD [68] (c) Pets [69] (d) Cars [70] (e) UCF101 [71]

(f) Caltech101 [72] (g) Food101, [73] (h) SUN397 [74] (i) Aircraft [75] (j) EuroSAT [76]

Figure 3.1: Sample images of the fine-grained classification datasets used in the evaluation of test-time prompt tuning.

• OxfordCars [70]: 197 classes of car models.

• UCF101 [71]: 101 classes of human actions.

• Caltech101 [72]: 101 classes of objects.

• Food101 [73]: 101 classes of types of food.

• SUN397 [74]: 397 classes of scene recognition.

• Aircraft [75]: 100 classes of aircraft models.

• EuroSAT [76]: 10 classes of types of land cover on Sentinel-2 satellite images in Europe.

In the TPT paper, they show that TPT with a ViT-B/16 backbone outperforms a baseline of CLIP with
the standard prompt “a photo of a [CLASS]” on 9 out of 10 fine-grained datasets [2]. We reproduce this
experiment in Table 3.1. We show a similar result, with TPT outperforming the baseline on 8 out of 10 fine-
grained datasets. Our slightly different result can be due to the random noise in creating the data augmentations.

Table 3.1: Zero-shot generalization on fine-grained classification datasets. Comparison of zero-shot CLIP baseline with
TPT, showing results from the TPT paper [2] in comparison to our reproduction of these results. We report the top-1 classification
accuracy on each dataset.

Method Average
Flower102 DTD Pets Cars UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT

Baseline from [2] 67.44 44.27 88.25 65.48 65.13 93.35 83.65 62.59 23.67 42.01 63.58
TPT from [2] 68.98 47.75 87.79 66.87 68.04 94.16 84.67 65.5 24.78 42.44 65.10

Baseline (ours) 67.36 44.39 88.20 65.61 65.13 93.35 83.65 62.61 23.67 42.16 63.61
TPT (ours) 69.55 46.45 87.30 66.86 68.83 93.59 85.04 65.14 23.34 43.53 64.96

3.2 Augmentation and confidence selection

In section 2.3.2, we described the four main components of TPT: augmentation, confidence selection, entropy
minimization, and a learnable prompt. The main innovations of TPT are:

1. Applying entropy minimization to tune soft prompts of vision-language models.

2. Using augmentation and confidence selection to learn from a single image.

Whereas the first innovation is well motivated by literature such as TENT [14] and CoOp [10], the second is not
explicitly motivated in the paper. While the authors do show that TPT performs best on ImageNet variation
datasets when selecting the 10% most confident samples as opposed to more or less, they do not show this for
the fine-grained datasets or perform an ablation study showing that the augmentation and confidence selection
improves the performance of TPT.

CHAPTER 3. TEST-TIME PROMPT TUNING FOR FINE-GRAINED CLASSIFICATION 16

In this chapter, we set up an experiment to evaluate whether the augmentation and confidence selection
strategies are effective in TPT. We set out to test three hypotheses:

1. If augmentation and confidence selection are effective strategies to improve the performance of a zero-shot
classifier, then we can apply these methods to the CLIP baseline for a performance boost.

2. If confidence selection helps filter out noisy augmentations, we expect TPT to perform worse without
confidence selection.

3. If data augmentation helps learn from a single image, we expect TPT to perform worse without augmen-
tation.

The following sections will describe the experiments used to evaluate these hypotheses, show their results, and
discuss the outcome.

3.3 Experimental setup

For this experiment, we used the original code for TPT1. We use a pre-trained CLIP-ViT-B/16 with the
standard prompt “a photo of a [CLASS]” for the baseline. For TPT, we use the same CLIP model, start
with the standard prompt, and optimize the corresponding four tokens (one for each word) in the text input
embedding space. For every image, we create 63 augmentations using flipping and cropping. We evaluate on
the 63 augmentations and the original image, resulting in 64 different views of a single image. The top 10%
most confident samples are selected by taking the 6 with the lowest self-entropy. We minimize the marginal
entropy over these confident samples for 1 step by using the AdamW optimizer [77] and a learning rate of 0.005,
as in the TPT paper.

For evaluation, we use the test set of each fine-grained classification dataset. For every image in the test set,
TPT performs one optimization step and then performs inference on this image using standard CLIP with the
optimized prompt. We report the average top-1 accuracy score over the test set of each dataset. Since there are
many datasets, we also compute the average top-1 accuracy over all datasets. In this average, the performance
on each dataset is counted equally, regardless of the dataset size.

3.3.1 Baseline with augmentation and confidence selection

To test our first hypothesis, we create an implementation of the baseline CLIP model which uses augmentation
and confidence selection to make a prediction. Given a single image, this implementation will use augmentation
to obtain 64 views like TPT. Then, it will use the same confidence selection to obtain the 6 most confident
probability distributions. These 6 distributions are averaged to obtain a single distribution. Instead of using
this distribution to minimize the entropy, as in TPT, it is used immediately to make a prediction for the original
image.

3.3.2 TPT without confidence selection

To test our second hypothesis, we create an implementation of TPT without confidence selection. Whereas TPT
selects the 10% samples with the lowest self-entropy, we will use all samples to obtain an average probability
distribution. Therefore, this implementation will effectively train on 10 times more data than the original TPT
implementation. Since an increase in data quantity is usually associated with an increase in performance, we
compensate for this by creating an additional implementation of TPT without confidence selection, which only
creates 6 augmentations. This implementation, therefore, trains on the same number of augmentations as the
original TPT method.

3.3.3 TPT without augmentation

To test our third hypothesis, we create an implementation of TPT without augmentation. Given a single image,
this implementation uses CLIP to obtain a probability distribution for this image. Then, entropy minimization
is used directly on this distribution. Since there is only one view of the original image, confidence selection is
not used. By eliminating augmentation and using only entropy minimization, we effectively reduce TPT to a
form of TENT [14]. However, whereas TENT optimizes parameters in the model’s batch normalization layers,
this implementation optimizes a soft prompt used for CLIP.

1Available from https://azshue.github.io/TPT/

https://azshue.github.io/TPT/

CHAPTER 3. TEST-TIME PROMPT TUNING FOR FINE-GRAINED CLASSIFICATION 17

3.4 Experiment results

The first experiment’s results can be seen in Table 3.2. Note that the baseline without augmentation and
confidence selection is the standard zero-shot CLIP baseline, as in Table 3.1. We can see that the baseline CLIP
model with added augmentation and confidence selection performs better on some datasets than the standard
baseline and worse on others. On average, this implementation performs slightly worse than the standard
baseline.

Table 3.2: Zero-shot generalization on fine-grained classification datasets. Showing the impact of adding augmentation
and confidence selection to the baseline. We report the top-1 classification accuracy on each dataset.

Method
Augmentation &

Average
confidence selection Flower102 DTD Pets Cars UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT

Baseline × 67.36 44.39 88.20 65.61 65.13 93.35 83.65 62.61 23.67 42.16 63.61
Baseline ✓ 67.19 45.69 86.75 67.75 67.62 93.23 83.99 64.21 24.81 34.48 63.57

The results of the second experiment can be seen in Table 3.3. Note that the TPT with confidence selection
and batch size 64 is the standard TPT method. We can see that the TPT variant without confidence selection
performs better than standard TPT on 7 out of 10 fine-grained datasets. It performs slightly better on average
and achieves the best average top-1 accuracy in this experiment.

Table 3.3: Zero-shot generalization on fine-grained classification datasets. Showing the impact of removing confidence
selection from TPT. We report the top-1 classification accuracy on each dataset.

Method
Confidence Batch

Average
Selection size Flower102 DTD Pets Cars UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT

Baseline × 1 67.36 44.39 88.20 65.61 65.13 93.35 83.65 62.61 23.67 42.16 63.61

TPT ✓ 64 69.55 46.45 87.30 66.86 68.83 93.59 85.04 65.14 23.34 43.53 64.96
× 64 70.60 45.80 88.33 67.41 68.28 93.75 85.23 65.26 23.70 41.53 64.99
× 6 70.40 46.28 88.14 66.25 68.36 93.71 84.60 64.80 23.85 42.04 64.84

The use of more data could explain this increase in performance. We see that the implementation of TPT
without confidence selection and a batch size of 6 performs worse on most datasets than both other implemen-
tations. Its average top-1 accuracy is also the lowest in this experiment. Interestingly, it does outperform the
original TPT implementation on 4 out of 10 datasets.

Table 3.4: Zero-shot generalization on fine-grained classification datasets. Showing the impact of removing augmentation
from TPT. We report the top-1 classification accuracy on each dataset.

Method Augmentation Average
Flower102 DTD Pets Cars UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT

Baseline × 67.36 44.39 88.20 65.61 65.13 93.35 83.65 62.61 23.67 42.16 63.61

TPT ✓ 69.55 46.45 87.30 66.86 68.83 93.59 85.04 65.14 23.34 43.53 64.96
× 69.02 45.15 88.23 65.08 67.30 93.39 83.95 63.63 22.14 47.10 64.50

The results of the third experiment can be seen in Table 3.4. The implementation without any augmentation
performs worse than standard TPT on 8 out of 10 fine-grained datasets. On average, it performs worse than
both TPT and the baseline. Interestingly, this implementation achieves the best performance on EuroSAT,
improving several percentage points over both the baseline and TPT.

3.5 Discussion

In this chapter, we examine the performance of TPT on fine-grained classification datasets. In Section 3.2, we
presented three hypotheses to test whether the augmentation and confidence selection strategy is effective in
TPT. For the first, we make a baseline CLIP classifier that uses augmentation, confidence selection, and the
average probability distribution over confident samples to make a prediction. If augmentation and confidence
selection are effective strategies to improve the performance of a zero-shot classifier, we expect this modified
baseline model to perform better than the standard baseline. However, our experiment showed that it performs
slightly worse on the classification datasets. While the difference is small, it is clear that adding augmentation
and confidence selection to the baseline does not improve performance as we expected.

For the second hypothesis, we created a TPT implementation that does not use confidence selection but
rather averages the probability distributions of all augmented views. Interestingly, this implementation per-
formed slightly better than standard TPT on the fine-grained datasets. When we compensate for the extra data
used by this implementation with a batch size of 6, the performance decreases to below that of both the baseline
and standard TPT. TPT seems to perform worse without confidence selection, as we expected. However, the
variant without confidence selection and with a compensated batch size does outperform standard TPT on 4

CHAPTER 3. TEST-TIME PROMPT TUNING FOR FINE-GRAINED CLASSIFICATION 18

out of 10 datasets. Therefore, we can not draw clear conclusions on whether confidence selection in TPT is
effective or not.

The effectiveness of the confidence selection could be dependent on the application. For example, one
possibility is that for an application where the objects span a large part of the input image, we do not expect
cropping to add a lot of noise to the classification task. In these applications, confidence selection should,
therefore, be less effective. However, when we look at the results for DTD and EuroSAT (both tasks where the
item to be classified spans the entire image), we see that this hypothesis does not hold. TPT with confidence
selection performs better than the variant without confidence selection for both datasets.

Conversely, we would expect confidence selection to be effective for datasets where the classification depends
on small details in the image since it can filter out augmentations where those small details are cropped out.
For datasets with small details, we can look at Cars and Aircraft. In these datasets, a small detail, such as a
vehicle logo, a differing number of windows, or a different wing shape, can be crucial to correctly classifying
the image. However, when we look at TPT’s performance, we see that on both datasets, the variants without
confidence selection perform better.

Thus, while we expect confidence selection to be effective on tasks with small distinguishing features and
less effective on tasks with large distinguishing features, we do not see this in practice. One explanation could
be that the network makes overconfident predictions, even when incorrect. This is known as the problem of
overconfidence, and it has been shown to impact modern image classifiers specifically [78]. Recent work has
shown that overconfidence also occurs in multi-modal models such as CLIP [79]. In our case, the network’s
overconfidence could explain why confidence selection does not always perform as expected since incorrect
predictions with high confidence can add a lot of noise to the training procedure. If this is the case, confidence
calibration could help to alleviate this problem [78].

For the third hypothesis, we created a TPT implementation that does not use any augmentation or confidence
selection. This implementation performs entropy minimization directly on the probability distribution obtained
by passing the original image through the CLIP model. We expect that this implementation will perform worse
than TPT with augmentation. Indeed, we have seen that this is the case. However, it performs better than the
baseline and performs better than standard TPT on 2 out of 10 datasets. This result once again shows that
the current method of augmentation, confidence selection, and entropy minimization is quite sensitive to the
application, performing best on most datasets but not on all of them.

19

CHAPTER

FOUR

ENFORCING CONSISTENCY IN TEST-TIME PROMPT TUNING

In chapter 3, we saw that the current test-time prompt tuning method of augmentation, confidence selection, and
entropy minimization does not consistently achieve the expected results. We hypothesized that over-confident
model predictions could explain this. In this chapter, we will look at another possible explanation for the
unstable performance of the TPT method: misaligned predictions. Specifically, we will explain what happens
when the model tries to minimize the entropy over several differing predictions.

To alleviate this problem, we propose two methods for enforcing consistent predictions. The first will focus
on a majority voting scheme to optimize the model using only predictions of the majority class. The second
will introduce a consistency regularization term in the loss function to encourage the model to predict the same
class for all augmentations of the same image.

This chapter will first describe the problem of misaligned predictions. Then, we will introduce our two
methods for ensuring consistency in TPT. We will describe an experimental setup for comparing the prediction
alignment methods to standard TPT, show the experiment’s results, and discuss our findings.

4.1 Misaligned predictions

In section 2.3.2, we described the process of augmentation, confidence selection, and entropy minimization
followed by TPT. A crucial step is averaging the selected probability distributions to obtain a single distribution.
Entropy minimization is used to encourage the model to be more confident about the predictions in which it
was confident and less confident about the predictions in which it was not. However, what happens when the
selected distributions are not in agreement with the predicted class? In this case, averaging their probability
distributions could lead to unwanted results.

Average

Entropy
minimization

Figure 4.1: Two disagreeing probability distributions are averaged into a single distribution. The obtained average looks very
different than both original distributions. Entropy minimization is applied to the average.

As a simple example, take the case where two probability distributions are in disagreement with each other.
This example is illustrated in Figure 4.1. The first distribution is most confident in the fifth class, whereas
the second distribution is most confident in the second class. If we average these distributions, we see that the
resulting distribution looks very different. Not only does it have a higher entropy, but class four now has the
highest confidence. If entropy minimization is applied, the model will be encouraged to become more confident
in class 4 and less confident in the others, as this minimizes the entropy. This example illustrates how the

CHAPTER 4. ENFORCING CONSISTENCY IN TEST-TIME PROMPT TUNING 20

optimization performed on an average distribution might not reflect the original distributions’ prediction if they
disagree.

The important question is, therefore, does this phenomenon occur in test-time prompt tuning? We ran a
simple test: TPT was run as normal, the six most confident augmentations were selected out of 64, and we
counted all the times when these were not in agreement. As a result, we saw that over all the fine-grained
classification datasets used in this thesis, the confident samples disagreed in 33.70% of cases. See Table 4.1
for the exact percentage of disagreements per dataset. Not surprisingly, the disagreement was generally higher
for datasets in which TPT achieved a lower accuracy and vice versa. We do not see a clear link between the
disagreement and the number of classes in the dataset.

Table 4.1: Percentage of times that the distributions selected by TPT were in disagreement with one another for each fine-grained
dataset.

Dataset Flower102 DTD Pets Cars UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT

Disagreement 30.17% 41.25% 14.61% 42.56% 34.42% 8.92% 20.13% 35.33% 80.20% 59.58%
TPT performance 69.55 46.45 87.30 66.86 68.83 93.59 85.04 65.14 23.34 43.53
Number of classes 102 47 37 197 101 101 101 397 100 10

We have seen that misaligned predictions could potentially be disruptive to the learning process of TPT.
We have also seen that the predictions for all confident samples are often in disagreement when inferencing
on fine-grained classification datasets. In the next section, we will introduce two techniques for aligning TPT
predictions to test whether this impacts its performance.

4.2 Consistency techniques

This section will introduce two techniques for enforcing prediction consistency in TPT. The first will focus on
ensuring the selected probability distributions are consistent with one another and, therefore, only alter the
confidence selection phase. The second technique will instead alter the loss function to encourage consistent
predictions across different augmentations of the same image.

4.2.1 Majority voting

For the first technique, we will align the selected predictions by altering the confidence selection to only select
samples with identical predicted classes. We, therefore, need a method to decide which class is most likely to be
the correct class based on the augmentations of the original image and their associated probability distributions.
We choose to implement a majority voting scheme. We use hard voting. For each augmentation, we compute
the predicted class as the arg max over its probability distribution. Then, we count which class is predicted
most often.

Thus, given k views of the original image x1, . . . , xk and the associated probability distributions px1 , . . . , pxk
,

the majority class can be determined as follows:

Cmajority = arg max
c

k∑
i=1

1
(

arg max
c′

pxi
(c′) = c

)
(4.1)

where 1(·) is the indicator function that equals 1 if the condition inside is true and 0 otherwise.
Confidence selection is then applied as in standard TPT, with the added restriction that only samples

predicted to belong to the majority class can be selected. With this technique, it will not be possible for
selected samples to be in disagreement with one another.

4.2.2 Kullback-Leibler divergence

For the second technique, we will not alter the confidence selection. Instead, we will encourage the model to
produce similar probability distributions for different augmentations of the same image. We will do this using
the concept of consistency regularization [80, 81]. The idea behind consistency regularization is to ensure that
the model’s predictions remain stable under small perturbations of the input data.

We obtain several augmented views of the original image in TPT and predict their classes. TPT uses
unlabeled data, so we do not know the ground-truth class. However, we can use the underlying knowledge that
the class for all augmented views is the same since they all come from the same augmented image. We can
thus use consistency regularization over all augmented views to ensure the predicted probability distributions
are similar.

We need a distance measure to enforce similar probability distributions from one predicted probability
distribution to the next. We can use the Kullback-Leibler (KL) divergence [82]. For two distributions p and q

CHAPTER 4. ENFORCING CONSISTENCY IN TEST-TIME PROMPT TUNING 21

of size k, the KL-divergence can be defined as follows:

DKL(p||q) =
∑
k

pk log(
pk
qk

) (4.2)

The divergence is higher for dissimilar distributions and lower for similar distributions.
For TPT, we can create a KL loss, which penalizes dissimilarity between the probability distributions of

all augmented views of the original image. For k views of the original image x1, . . . , xk and the associated
probability distributions px1

, . . . , pxk
, the KL loss can be computed as follows:

LKL(px1
, . . . , pxk

) =
1

k

∑
k

DKL(pxk
||p̄) (4.3)

Where p̄ is the average distribution:

p̄ =
1

k

∑
k

pxk
(4.4)

This loss function was first proposed in TTA-PR [47]. They show that the addition of a KL loss can improve
the performance of TENT [14] on a corrupted version of a broad classification dataset: CIFAR-100-C [83].

This KL loss can be used as the only loss function in TPT, but it can also be added to the existing entropy
minimization loss Lent, possibly with a scaling parameter α to control the importance of the KL term:

L(px1
, . . . , pxk

) = Lent(CS(px1
, . . . , pxk

)) + αLKL(px1
, . . . , pxk

) (4.5)

Where CS(px1 , . . . , pxk
) represents the confidence selection. An important distinction is that the entropy loss

is computed only over the selected augmented views, while the KL loss is computed over all augmented views.
Whereas the majority voting technique guarantees that selected samples in TPT will never be in disagreement

with one another, the KL-divergence technique does not. While it does encourage the model to make consistent
predictions, it is not guaranteed that the predictions will be consistent.

4.3 Experimental setup

We set up an experiment to compare the two proposed methods for aligning predictions with each other, standard
TPT and the CLIP baseline. We use a pre-trained CLIP-ViT-B/16 with the standard prompt “a photo of

a [CLASS]” for the baseline. For TPT, we use the same CLIP model, start with the standard prompt, and
optimize the corresponding four tokens (one for each word) in the text input embedding space. For every image,
we create 63 augmentations using flipping and cropping. We evaluate on the 63 augmentations and the original
image, resulting in 64 different views of a single image. The top 10% most confident samples are selected by
taking the 6 with the lowest self-entropy. We minimize the marginal entropy over these confident samples for 1
step by using the AdamW optimizer [77] and a learning rate of 0.005, as in the TPT paper.

For evaluation, we use the test set of each fine-grained classification dataset. For every image in the test set,
TPT performs one optimization step and then performs inference on this image using standard CLIP with the
optimized prompt. We report the average top-1 accuracy score over the test set of each dataset. Since there are
many datasets, we also compute the average top-1 accuracy over all datasets. In this average, the performance
on each dataset is counted equally, regardless of the dataset size.

4.3.1 Majority voting

Our majority voting implementation adds an additional step to the confidence selection. After obtaining the
probability distribution from every augmented view, it computes the predicted class for each view with an
argmax over the associated distribution. It then computes the majority class as described in equation 4.1. In
the confidence selection, the distributions are filtered to only contain those with their predicted class equal to
the majority class. From these, the most confident samples are selected.

The same number of samples are selected as without majority voting. Thus, when selecting the top 10%
of confident samples, this means 10% of the augmented views, not 10% of the samples predicted to belong to
the majority class. In the rare case where the samples predicted as the majority class are less than 10% of the
augmented views, only those will be selected. Thus, in this case, less samples will be used.

4.3.2 Kullback-Leibler divergence

For our KL divergence method, we implement the KL loss as given in equation 4.3. To evaluate the impact of a
KL divergence loss on TPT, we test two implementations. The first implementation will only use the KL loss to
update the prompt in TPT. Thus, no entropy minimization is used. The second implementation will combine
the two losses as in equation 4.5. Based on preliminary testing, we use α = 0.1, giving more importance to the
entropy minimization term than the KL term. This value could be optimized with more extensive parameter
tuning.

CHAPTER 4. ENFORCING CONSISTENCY IN TEST-TIME PROMPT TUNING 22

4.4 Experiment results

The result of the experiment can be seen in Table 4.2. Firstly, we can see that the majority voting technique
performs worse overall than standard TPT without any alignment of the predictions. Interestingly, it does
outperform standard TPT on four out of ten fine-grained datasets. On the DTD and Caltech101 datasets, it
also outperforms the other alignment methods.

Table 4.2: Zero-shot generalization on fine-grained classification datasets. Comparison of TPT with different methods
for enforcing consistency between predictions. We report the top-1 classification accuracy on each dataset.

Method
Alignment

Average
method Flower102 DTD Pets Cars UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT

Baseline None 67.36 44.39 88.20 65.61 65.13 93.35 83.65 62.61 23.67 42.16 63.61

TPT None 69.55 46.45 87.30 66.86 68.83 93.59 85.04 65.14 23.34 43.53 64.96
Majority voting 69.31 46.51 87.90 66.91 68.17 93.83 84.84 65.07 23.31 39.46 64.53

KL only 66.63 44.50 85.66 66.16 66.30 92.25 83.34 63.68 22.53 37.53 62.86
Entropy + KL 69.68 46.28 87.16 67.02 68.90 93.45 85.06 65.22 23.72 43.57 65.01

Secondly, we can see that when we only use the KL loss to train TPT, its performance degrades significantly.
In fact, with only the KL loss, TPT performs worse overall than the zero-shot CLIP baseline. The performance
of this method is worse on all datasets than standard TPT.

Thirdly, we see that our method, which combines an entropy minimization and KL divergence loss, achieves
the best overall performance in this experiment. This method achieves the best performance of all the above-
mentioned methods on seven out of ten fine-grained image classification datasets. The average performance
over all datasets is slightly higher than that of standard TPT.

4.5 Discussion

In this chapter, we showed that the TPT performance could be potentially unstable due to misaligned pre-
dictions. We introduced two methods for aligning the predictions: majority voting and KL divergence. We
compared these methods to each other with an experiment, standard TPT, and a zero-shot CLIP baseline.

Our results showed that the majority voting technique neither provides more stable performance across
datasets nor achieves better performance on average. This can mean one of two things. Firstly, it could mean
that the misalignment of predicted classes does not hinder the learning ability of TPT. In that case, filtering
out samples with misaligned predictions means that samples with lower confidence will be selected. This could
explain why majority filtering degrades the performance of TPT.

Secondly, our result could mean that merely filtering out any non-majority-class samples is not enough to
stabilize the performance of TPT. While it does guarantee that all selected samples predict the same class,
that class could be wrong. Thus, while majority voting does align the predictions, it eliminates prediction
diversity, which could degrade performance when a wrong class is selected as the majority class. In that case, a
method that encourages similar predictions without restricting the selection of confident samples (such as KL
divergence) could perform better.

When we use TPT with only KL divergence as its loss, we see that the performance is severely degraded.
In fact, the performance of this method is worse than standard TPT on every fine-grained dataset. This shows
that the KL loss alone is not sufficient to learn a better prompt from a single image. This could be because the
model abuses the prompt parameters to achieve consistent predictions. For example, when optimizing a prompt
using consistency regularization on multiple augmentations of a single image, the prompt could be manipulated
to hint at a single class without accounting for the visual information in the image. This would mean the model
would make consistent predictions which are likely to be wrong.

When we combine KL divergence with TPT’s standard entropy minimization, we can see an increase in
performance. This method outperforms standard TPT on seven out of ten fine-grained datasets. It is important
to note that the differences in performance are small, and this method does not increase performance on all
datasets. However, from our results, we can say that this method does show promise in improving upon TPT.
We hypothesize that the increase in performance is because the KL divergence loss reduces the problem of
misaligned predictions. However, we can not say this for certain.

Since TPT does not utilize any ground-truth labels, it is a form of unsupervised learning. Other unsupervised
learning methods have been shown to benefit from the use of KL divergence. For example, it is commonly used
in Variational Autoencoders (VAEs) [84] to regularize the latent space. KL divergence can also be used to train
Generative Adversarial Networks (GANs) [85, 86].

The combination of entropy minimization and KL divergence is also common. For example, in reinforcement
learning, Soft-Actor Critic (SAC) [87] uses both entropy minimization and KL divergence to balance exploration
and exploitation. Entropy minimization and KL divergence can also be used in the training of Bayesian Networks
(BNs) [88].

23

CHAPTER

FIVE

AUGMENTATION METHODS FOR TEST-TIME PROMPT TUNING

So far in this thesis, we have examined the behavior of Test-time Prompt Tuning (TPT) in chapter 3 and
proposed two solutions to the problem of misaligned predictions in chapter 4. One crucial aspect of TPT, data
augmentation, has remained constant. In this chapter, we will look at the augmentation in more detail. Our
first goal will be to examine standard TPT behavior under different degrees of augmentation. Secondly, we will
do the same for TPT with our proposed alignment methods. On the one hand, we will want to see how little
augmentation these methods need to learn and, on the other hand, whether more severe augmentations can
increase their performance.

We will start by describing the augmentation method used in TPT. Then, we will introduce a more severe
form of augmentation. We will describe an experiment to test the impact of more severe augmentation on
standard TPT and TPT with the alignment methods. Lastly, we will describe the results of this experiment
and discuss our findings.

5.1 Augmentation methods

Standard TPT uses cropping and flipping as augmentation methods. However, for more severe augmentation,
we can use AugMix [48]. This section will describe both methods and their differences.

5.1.1 Standard augmentation in TPT

(a) Original (b) Random crop (c) Flip

Figure 5.1: Example of the standard augmentations used in TPT.

For the standard augmentation used in TPT, the original image is augmented 63 times using a random crop
and a random flip. For the crop, a random area of the image is chosen, which must be at least 8% of the area
of the entire image. The aspect ratio may differ up to 25% from the original image. The random crop is then
resized to the resolution of the original image using bilinear interpolation. Lastly, the image is randomly flipped
horizontally with a probability of 50%.

5.1.2 More severe augmentation with AugMix

For a more severe augmentation of the original image, we can use AugMix [48]. AugMix was introduced as an
augmentation technique to improve image classifiers’ robustness and uncertainty estimates. It consists of nine

CHAPTER 5. AUGMENTATION METHODS FOR TEST-TIME PROMPT TUNING 24

(a) Original (b) Autocontrast (c) Equalize (d) Posterize (e) Rotate

(f) Shear x (g) Shear y (h) Solarize (i) Translate x (j) Translate y

Figure 5.2: Example of the augmentations that can be applied with AugMix.

different augmentations: autocontrast, equalize, posterize, rotate, shear x, shear y, solarize, translate x, and
translate y, which are combined and mixed. The individual augmentations can be seen in Figure 5.2.

Augmix takes the original image and creates three augmented variants. A random number (between one and
three inclusive) of augmentations from Figure 5.2 is applied to each augmented variant. These three variants are
combined into a single augmentation using weights sampled from a Dirichlet distribution. Finally, the combined
augmentation and the original image are mixed through a random convex combination sampled from a Beta
distribution.

5.2 Experimental setup

We set up an experiment to evaluate the impact of standard augmentation and more severe augmentation with
AugMix on the performance of standard TPT and TPT with the two alignment methods. For the method of
KL divergence, we use the combination of entropy minimization and KL divergence because it performed much
better than KL divergence alone. To better understand the impact of augmentations, we also test the impact
of using less or more augmented views of the original image. We will use 8, 16, 32, 64, and 128 for the number
of augmented views.

We use a pre-trained CLIP-ViT-B/16 with the standard prompt “a photo of a [CLASS]” for the baseline.
We use the same CLIP model for TPT, starting with the standard prompt and optimizing the corresponding
four tokens (one for each word) in the text input embedding space. The augmentations are created using
either standard flipping and cropping or flipping and cropping in addition to AugMix. We evaluate on the
augmentations and the original image. For example, we will train on the original image and seven augmentations
when using eight augmented views. The top 10% most confident samples are selected by taking the ones with
the lowest self-entropy. For example, for 64 augmented views, the six most confident samples are selected. We
minimize the marginal entropy over these confident samples for 1 step using the AdamW optimizer [77] and a
learning rate of 0.005, as in the TPT paper.

For evaluation, we use the test set of each fine-grained classification dataset. For every image in the test set,
TPT performs one optimization step and then performs inference on this image using standard CLIP with the
optimized prompt. We report the average top-1 accuracy score over the test set of each dataset. Since there are
many datasets, we also compute the average top-1 accuracy over all datasets. In this average, the performance
on each dataset is counted equally, regardless of the dataset size.

5.3 Experiment results

The result of the experiment can be seen in Table 5.1. Note that TPT with standard augmentation and 64
augmented views is the standard TPT variant. Since this table contains a considerable amount of data, we have
visualized the average performance over all fine-grained datasets in Figure 5.3.

In the figure, we can see that for standard TPT, the performance increases as the number of augmentation
increases. However, more augmented views above 64 do not seem to improve the performance. When we look
at TPT with AugMix, we see that the same holds. When we compare it to TPT with standard augmentation

CHAPTER 5. AUGMENTATION METHODS FOR TEST-TIME PROMPT TUNING 25

Figure 5.3: Comparison of standard TPT and TPT with majority voting or KL divergence for different numbers of augmented
views and with or without AugMix. We report the average top-1 classification accuracy over all fine-grained datasets.

we see that the addition of AugMix does not notably increase performance. In fact, the performance seems to
have slightly decreased for all augmented views except 8 and 32.

For TPT with majority voting, the results look quite different. With very few augmented views, it performs
better than standard TPT. However, this technique does not gain much performance when adding more aug-
mented views. For more than 16 views, this technique performs worse than standard TPT. Adding AugMix
to the majority voting technique severely degrades performance, regardless of the number of augmented views
used.

TPT with an added KL divergence term in the loss performs much more similarly to standard TPT com-
pared to majority voting. For most numbers of augmented views, it achieves slightly higher performance.
Notably, where standard TPT does not manage to improve its performance when using more than 64 aug-
mented views, TPT with KL divergence achieves a slight improvement. We see that adding AugMix increases
TPT’s performance with KL divergence for almost all augmented views.

5.4 Discussion

In this chapter, we investigated the impact of data augmentation on TPT. Specifically, we set out to examine
whether our proposed alignment methods from chapter 4 respond differently to more severe augmentation than
standard TPT. We examined how the performance is affected by using a different number of augmented views
and by adding more severe augmentations using AugMix.

We have seen that standard TPT benefits from more augmented views up to a certain point. However,
it does not benefit from more views above 64 or more severe augmentation with AugMix. This result could
mean that with severe augmentation, too much of the original information is lost, which prevents TPT from
learning. However, it could also mean that standard TPT does not fully exploit the information supplied by
the augmentations.

In chapter 4, we introduced our methods for aligning predictions using majority voting and KL divergence.
Our method with majority voting performs well when using eight augmented views but is outperformed by the
other method and standard TPT when using more augmented views or more severe augmentation.

We showed that the KL divergence method achieved slightly better results than standard TPT on the fine-
grained datasets. This chapter showed that this method can also better utilize the augmentations than standard
TPT. TPT with KL divergence sees increased performance for up to 128 augmented views. Most notably, this
is the only method that shows a performance increase when using more severe augmentations with AugMix.

Our method with an added KL divergence term in the loss demonstrates that there is more to be learned
from more severe augmentations. It seems that standard TPT is not able to utilize this extra information.
Previous work on data augmentation for image classification has shown that more complex models can take
advantage of more complex augmentations [89, 6]. However, for our task, both TPT methods rely on the
same CLIP network. KL divergence is also used as a consistency regularization method to ensure consistent
predictions over multiple versions of the same input [80, 81]. This could explain why our method takes better
advantage of augmentation than standard TPT.

When we compare the various TPT methods to the zero-shot baseline, we see that they only need eight
augmented views to perform on par with or outperform the baseline zero-shot CLIP method. With so few

CHAPTER 5. AUGMENTATION METHODS FOR TEST-TIME PROMPT TUNING 26

Table 5.1: Zero-shot generalization on fine-grained classification datasets. Comparison of different augmentation methods
for several variants of TPT. We report the top-1 classification accuracy on each dataset.

Method
Augmen- no. of

Average
tation views Flower102 DTD Pets Cars UCF101 Caltech101 Food101 SUN397 Aircraft EuroSAT

Baseline × 1 67.36 44.39 88.20 65.61 65.13 93.35 83.65 62.61 23.67 42.16 63.61

TPT Standard 8 67.44 44.33 88.23 65.56 65.08 93.27 83.66 62.63 23.73 42.07 63.60
Standard 16 68.13 45.57 86.37 66.56 68.12 93.43 84.61 64.51 22.38 44.47 64.41
Standard 32 69.06 45.80 87.14 66.43 68.62 93.59 85.01 64.91 23.07 43.54 64.72
Standard 64 69.55 46.45 87.30 66.86 68.83 93.59 85.04 65.14 23.34 43.53 64.96
Standard 128 69.31 46.10 87.16 66.86 68.97 93.67 85.03 65.17 23.70 43.38 64.94
AugMix 8 67.44 44.33 88.23 65.56 65.08 93.27 83.66 62.63 23.73 42.07 63.60
Augmix 16 67.68 45.51 86.59 65.73 67.20 93.75 84.13 64.69 22.29 43.56 64.11
AugMix 32 69.06 46.63 87.16 66.76 68.04 93.71 84.62 65.22 23.22 43.22 64.77
AugMix 64 68.90 47.40 87.35 66.42 67.75 94.12 84.69 65.45 23.76 42.96 64.88
AugMix 128 69.14 47.28 87.19 66.67 68.25 94.16 84.70 65.53 22.74 42.27 64.79

Majority voting Standard 8 69.02 46.28 87.33 66.01 67.83 93.63 84.57 64.69 23.52 40.54 64.34
Standard 16 69.14 45.98 87.68 66.63 68.15 93.67 84.70 64.95 23.16 40.22 64.43
Standard 32 69.43 45.86 87.87 66.53 67.94 93.59 84.66 65.12 23.97 39.78 64.47
Standard 64 69.31 46.51 87.90 66.91 68.17 93.83 84.84 65.07 23.31 39.46 64.53
Standard 128 69.22 46.10 87.95 66.89 68.07 93.75 84.78 65.17 23.94 39.52 64.54
Augmix 8 68.17 45.51 86.64 65.25 66.03 94.04 83.96 64.81 23.25 40.54 63.82
Augmix 16 68.66 46.22 87.16 65.97 66.75 93.79 84.12 64.80 23.55 39.91 64.09
Augmix 32 68.57 46.28 87.24 66.02 66.40 93.59 84.04 65.09 23.19 39.05 63.95
Augmix 64 68.98 46.16 87.11 66.38 65.95 93.75 84.08 65.30 23.28 38.38 63.94
Augmix 128 69.10 45.86 87.14 66.16 66.53 93.75 84.06 65.38 23.55 38.63 64.02

Entropy + KL Standard 8 67.54 44.38 88.30 65.55 65.17 93.57 83.66 62.83 23.80 42.20 63.70
Standard 16 68.13 45.57 86.37 66.56 68.12 93.43 84.61 64.51 22.38 44.47 64.41
Standard 32 69.06 45.92 87.16 66.48 68.60 93.63 85.04 64.98 23.10 43.58 64.76
Standard 64 69.68 46.28 87.16 67.02 68.90 93.45 85.06 65.22 23.72 43.57 65.01
Standard 128 69.58 46.22 87.00 67.39 68.97 93.59 85.07 65.32 23.58 43.66 65.05
Augmix 8 68.44 44.33 88.23 65.56 66.08 93.27 83.66 62.63 23.73 43.07 63.90
Augmix 16 68.68 45.51 86.59 65.73 68.20 93.75 84.13 64.69 22.29 44.56 64.41
Augmix 32 70.10 46.57 87.05 66.65 68.96 93.67 84.62 65.25 23.28 44.10 65.03
Augmix 64 69.78 47.58 87.19 66.35 68.70 94.04 84.61 65.50 23.58 43.65 65.10
Augmix 128 70.18 47.40 87.14 66.65 69.20 94.16 84.74 65.56 22.92 43.61 65.15

augmentations, only a single augmentation will be selected in the confidence selection. This result indicates,
therefore, that all of our TPT methods can learn from a single image. With so few augmented views, the
majority voting method performs better than the others. However, this method is outperformed by the other
methods when using more views. Since the cost of additional augmentation is small, this method will consistently
outperform the other two in a practical setting.

27

CHAPTER

SIX

CONCLUSIONS

This thesis took an in-depth look at Test-time Prompt Tuning (TPT), a method that uses Test-Time Adaptation
(TTA) for prompt tuning of Vision-Language Models (VLMs) at inference time. We started by investigating
TPT’s augmentation and confidence selection mechanism, specifically focusing on its performance on ten fine-
grained classification datasets. Our research revealed that the confidence selection used in TPT can be omitted
without compromising its performance, and in some cases, TPT can even achieve better performance without
the confidence selection. Depending on the application, the performance of TPT can even be higher without
the confidence selection. These findings lead us to conclude that the current TPT method’s performance is not
consistent and is heavily dependent on the specific classification task at hand.

We offer two explanations for this. First, the confidence selection might be affected by overconfident predic-
tions. TPT could benefit from confidence calibration on the underlying CLIP network if this is the case. We
leave the investigation of this hypothesis for future work.

The second explanation for the behavior of confidence selection in TPT is that it might be affected by
misaligned predictions. In short, when samples that predict different classes for their augmented images are
selected, the resulting averaged probability distribution might not reflect the network’s confidence in each of
the predicted classes. When entropy minimization is performed on this average distribution, unwanted results
could be achieved.

We proposed two methods to tackle the problem of misaligned predictions in TPT. Our first method elim-
inates the problem of misaligned predictions altogether by restricting the confidence selection to only select
samples with the same predicted class. It uses a majority voting scheme to determine what class to choose.
We found that this method does not improve the performance of TPT and might, in some cases, decrease it.
We hypothesize that this is because, by omitting non-majority-class predictions from the confidence selection,
samples with lower confidence are selected, which can degrade the performance. Future work could look at
other methods of using majority voting which also account for the confidences of each sample.

Our second technique for aligning TPT’s predictions uses consistency regularization to encourage consistent
predictions across all augmented views of the same image. Specifically, a KL divergence term is added to the
loss function of TPT. We show that this method slightly increases performance on most fine-grained datasets
over standard TPT.

To further examine the behavior of TPT with our suggested alignment method, we investigate the impact of
adding more or less augmented views of the original image and adding more severe augmentation with additional
augmentation operations.. We show that our method of TPT with KL divergence can achieve a performance
increase from using more augmented views and more severe augmentation with AuxMix, whereas standard TPT
cannot. Thus, when using more augmentation, our method is able to achieve a larger performance increase over
standard TPT than when using the standard augmentation.

We argue that our method alleviates some of the problems introduced by the confidence selection method
in TPT. This leads our method to be less sensitive to the classification task. Where TPT outperforms the
zero-shot CLIP baseline on all fine-grained datasets except Pets and Aircraft, our method can outperform the
baseline for these datasets when sufficient augmentation is added.

Whether our method performs better is uncertain because it reduces the misalignment problem or because
consistency regularization adds extra learning capability. We suggest that future work examines other consis-
tency regularization methods in TPT. The current method trains under variations in the data through augmen-
tations. Another approach would be to train for consistent predictions under model variations. For example,
FAUST [45] is a TTA method that performs consistency regularization in the form of epistemic uncertainty
estimated by MC dropout [46].

The model could also be jointly trained for consistency under data and model variations. One such example
is the mean teacher framework [90], which mixes data augmentations with minimizing the difference between
the student and teacher models.

CHAPTER 6. CONCLUSIONS 28

Future work could also look at more augmentation methods. Where the current method applies augmenta-
tions to the image input, augmentations could also be made to the textual prompt. Alternatively, augmentation
methods could be used that adapt to the input. For example, AugMax [91] learns an adversarial mixture of
augmentation operations. Similarly, RandAugment [92] learns a distortion magnitude that controls the severity
of the augmentation operations.

The main challenge for these adaptive methods would be to learn a good augmentation from a single input
image. For that, these methods could take inspiration from previous work utilizing test-time augmentation
[3, 5, 6].

29

BIBLIOGRAPHY

[1] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al., “Learning transferable visual models from natural language supervision,” in International
Conference on Machine Learning, pp. 8748–8763, PMLR, 2021.

[2] M. Shu, W. Nie, D.-A. Huang, Z. Yu, T. Goldstein, A. Anandkumar, and C. Xiao, “Test-time prompt
tuning for zero-shot generalization in vision-language models,” Advances in Neural Information Processing
Systems, vol. 35, pp. 14274–14289, 2022.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” Advances in Neural Information Processing Systems, vol. 25, 2012.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,” Interna-
tional Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1–9, 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

[7] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1251–1258, 2017.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, et al., “An image is worth 16x16 words: Transformers for image recognition at
scale,” in International Conference on Learning Representations, 2020.

[9] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, and T. Duerig,
“Scaling up visual and vision-language representation learning with noisy text supervision,” in International
Conference on Machine Learning, pp. 4904–4916, PMLR, 2021.

[10] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-language models,” International
Journal of Computer Vision, vol. 130, no. 9, pp. 2337–2348, 2022.

[11] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Conditional prompt learning for vision-language models,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16816–16825,
2022.

[12] J. Liang, R. He, and T. Tan, “A comprehensive survey on test-time adaptation under distribution shifts,”
International Journal of Computer Vision, pp. 1–34, 2024.

[13] J. Liang, D. Hu, Y. Wang, R. He, and J. Feng, “Source data-absent unsupervised domain adaptation
through hypothesis transfer and labeling transfer,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 11, pp. 8602–8617, 2021.

[14] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent: Fully test-time adaptation by entropy
minimization,” in International Conference on Learning Representations, 2020.

[15] M. Zhang, S. Levine, and C. Finn, “Memo: Test time robustness via adaptation and augmentation,”
Advances in Neural Information Processing Systems, vol. 35, pp. 38629–38642, 2022.

[16] O. Wiles, S. Gowal, F. Stimberg, S.-A. Rebuffi, I. Ktena, K. D. Dvijotham, and A. T. Cemgil, “A fine-
grained analysis on distribution shift,” in International Conference on Learning Representations, 2021.

[17] E. A. AlBadawy, A. Saha, and M. A. Mazurowski, “Deep learning for segmentation of brain tumors: Impact
of cross-institutional training and testing,” Medical physics, vol. 45, no. 3, pp. 1150–1158, 2018.

[18] M. A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.-S. Ku, and A. Nguyen, “Strike (with) a pose: Neural
networks are easily fooled by strange poses of familiar objects,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4845–4854, 2019.

[19] W. M. Kouw and M. Loog, “A review of domain adaptation without target labels,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 43, no. 3, pp. 766–785, 2019.

[20] Z. Lipton, Y.-X. Wang, and A. Smola, “Detecting and correcting for label shift with black box predictors,”
in International Conference on Machine Learning, pp. 3122–3130, PMLR, 2018.

BIBLIOGRAPHY 30

[21] K. Azizzadenesheli, A. Liu, F. Yang, and A. Anandkumar, “Regularized learning for domain adaptation
under label shifts,” in International Conference on Learning Representations, 2018.

[22] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised visual domain adaptation using
subspace alignment,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 2960–
2967, 2013.

[23] R. Flamary, N. Courty, D. Tuia, and A. Rakotomamonjy, “Optimal transport for domain adaptation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 1, no. 1-40, p. 2, 2016.

[24] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning by predicting image rota-
tions,” in International Conference on Learning Representations, 2018.

[25] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, “Context encoders: Feature learning
by inpainting,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 2536–2544, 2016.

[26] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning of visual
representations,” in International Conference on Machine Learning, pp. 1597–1607, PMLR, 2020.

[27] D. Shanmugam, D. Blalock, G. Balakrishnan, and J. Guttag, “Better aggregation in test-time augmenta-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1214–
1223, 2021.

[28] S. C. Hoi, D. Sahoo, J. Lu, and P. Zhao, “Online learning: A comprehensive survey,” Neurocomputing,
vol. 459, pp. 249–289, 2021.

[29] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The sequential
learning problem,” in Psychology of learning and motivation, vol. 24, pp. 109–165, Elsevier, 1989.

[30] Q. Wang, O. Fink, L. Van Gool, and D. Dai, “Continual test-time domain adaptation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7201–7211, 2022.

[31] Y. Kim, D. Cho, and S. Hong, “Towards privacy-preserving domain adaptation,” IEEE Signal Processing
Letters, vol. 27, pp. 1675–1679, 2020.

[32] W. Chen, L. Lin, S. Yang, D. Xie, S. Pu, and Y. Zhuang, “Self-supervised noisy label learning for source-
free unsupervised domain adaptation,” in 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 10185–10192, IEEE, 2022.

[33] F. Wang, Z. Han, Y. Gong, and Y. Yin, “Exploring domain-invariant parameters for source free domain
adaptation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 7151–7160, 2022.

[34] H. Yan, Y. Guo, and C. Yang, “Augmented self-labeling for source-free unsupervised domain adaptation,”
in NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications, 2021.

[35] J. Yang, S. Shi, Z. Wang, H. Li, and X. Qi, “St3d: Self-training for unsupervised domain adaptation
on 3d object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10368–10378, 2021.

[36] Z. Cao, Z. Li, X. Guo, and G. Wang, “Towards cross-environment human activity recognition based on
radar without source data,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 11843–11854,
2021.

[37] L. Xiong, M. Ye, D. Zhang, Y. Gan, and Y. Liu, “Source data-free domain adaptation for a faster r-cnn,”
Pattern Recognition, vol. 124, p. 108436, 2022.

[38] H.-W. Yeh, T. Westfechtel, J.-B. Huang, and T. Harada, “Boosting source-free domain adaptation via
confidence-based subsets feature alignment,” in 2022 26th International Conference on Pattern Recognition
(ICPR), pp. 2857–2863, IEEE, 2022.

[39] K. Xia, L. Deng, W. Duch, and D. Wu, “Privacy-preserving domain adaptation for motor imagery-based
brain-computer interfaces,” IEEE Transactions on Biomedical Engineering, vol. 69, no. 11, pp. 3365–3376,
2022.

[40] D. Kothandaraman, R. Chandra, and D. Manocha, “Ss-sfda: Self-supervised source-free domain adapta-
tion for road segmentation in hazardous environments,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 3049–3059, 2021.

[41] S.-H. Gao, Q. Han, D. Li, M.-M. Cheng, and P. Peng, “Representative batch normalization with feature
calibration,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8669–8679, 2021.

[42] M. Bateson, H. Lombaert, and I. Ben Ayed, “Test-time adaptation with shape moments for image segmen-
tation,” in International Conference on Medical Image Computing and Computer-Assisted Intervention,
pp. 736–745, Springer, 2022.

[43] M. Jing, X. Zhen, J. Li, and C. Snoek, “Variational model perturbation for source-free domain adaptation,”
Advances in Neural Information Processing Systems, vol. 35, pp. 17173–17187, 2022.

[44] X. Luo, W. Chen, C. Li, B. Zhou, and Y. Tan, “Multi-level consistency learning for source-free model
adaptation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 12419–12426, 2022.

[45] J. Lee and G. Lee, “Feature alignment by uncertainty and self-training for source-free unsupervised domain
adaptation,” Neural Networks, vol. 161, pp. 682–692, 2023.

BIBLIOGRAPHY 31

[46] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing model uncertainty in
deep learning,” in International Conference on Machine Learning, pp. 1050–1059, PMLR, 2016.

[47] F. Fleuret et al., “Test time adaptation through perturbation robustness,” in NeurIPS 2021 Workshop on
Distribution Shifts: Connecting Methods and Applications, 2021.

[48] D. Hendrycks, N. Mu, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lakshminarayanan, “Augmix: A simple
data processing method to improve robustness and uncertainty,” in International Conference on Learning
Representations, 2019.

[49] C. Zhou, Q. Li, C. Li, J. Yu, Y. Liu, G. Wang, K. Zhang, C. Ji, Q. Yan, L. He, et al., “A comprehensive
survey on pretrained foundation models: A history from bert to chatgpt,” arXiv preprint arXiv:2302.09419,
2023.

[50] S. Thrun, “Lifelong learning algorithms,” in Learning to learn, pp. 181–209, Springer, 1998.
[51] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594–611, 2006.
[52] C. H. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classification for zero-shot visual object

categorization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 453–
465, 2013.

[53] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[54] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” in International Conference on Machine Learning, pp. 448–456, pmlr, 2015.

[55] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” in Interna-
tional Conference on Machine Learning, pp. 6105–6114, PMLR, 2019.

[56] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with lstm,” Neural
computation, vol. 12, no. 10, pp. 2451–2471, 2000.

[57] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and
translate,” in International Conference on Learning Representations, 2015.

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” Advances in Neural Information Processing Systems, vol. 30, 2017.

[59] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for
language understanding,” in Proceedings of NAACL-HLT, pp. 4171–4186, 2019.

[60] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al., “Language models are few-shot learners,” Advances in Neural Information
Processing Systems, vol. 33, pp. 1877–1901, 2020.

[61] J. Zhang, J. Huang, S. Jin, and S. Lu, “Vision-language models for vision tasks: A survey,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2024.

[62] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al., “Chain-of-thought
prompting elicits reasoning in large language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 24824–24837, 2022.

[63] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do imagenet classifiers generalize to imagenet?,” in
International Conference on Machine Learning, pp. 5389–5400, PMLR, 2019.

[64] D. Hendrycks, K. Zhao, S. Basart, J. Steinhardt, and D. Song, “Natural adversarial examples,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15262–15271,
2021.

[65] D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu, S. Parajuli,
M. Guo, et al., “The many faces of robustness: A critical analysis of out-of-distribution generalization,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8340–8349, 2021.

[66] H. Wang, S. Ge, Z. Lipton, and E. P. Xing, “Learning robust global representations by penalizing local
predictive power,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[67] M.-E. Nilsback and A. Zisserman, “Automated flower classification over a large number of classes,” in 2008
Sixth Indian conference on computer vision, graphics & image processing, pp. 722–729, IEEE, 2008.

[68] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing textures in the wild,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3606–3613,
2014.

[69] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar, “Cats and dogs,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3498–3505, IEEE, 2012.

[70] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations for fine-grained categorization,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 554–561, 2013.

[71] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions classes from videos in
the wild,” arXiv preprint arXiv:1212.0402, 2012.

[72] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training examples:
An incremental bayesian approach tested on 101 object categories,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 178–178, IEEE, 2004.

BIBLIOGRAPHY 32

[73] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining discriminative components with random
forests,” in Computer vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12,
2014, proceedings, part VI 13, pp. 446–461, Springer, 2014.

[74] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database: Large-scale scene recogni-
tion from abbey to zoo,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3485–3492, IEEE, 2010.

[75] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-grained visual classification of aircraft,”
arXiv preprint arXiv:1306.5151, 2013.

[76] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep learning benchmark
for land use and land cover classification,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 12, no. 7, pp. 2217–2226, 2019.

[77] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in International Conference on
Learning Representations, 2017.

[78] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern neural networks,” in Inter-
national Conference on Machine Learning, pp. 1321–1330, PMLR, 2017.

[79] Y. Ge, J. Ren, A. Gallagher, Y. Wang, M.-H. Yang, H. Adam, L. Itti, B. Lakshminarayanan, and
J. Zhao, “Improving zero-shot generalization and robustness of multi-modal models,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11093–11101, 2023.

[80] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representations by maximizing mutual informa-
tion across views,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[81] M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Regularization with stochastic transformations and pertur-
bations for deep semi-supervised learning,” Advances in Neural Information Processing Systems, vol. 29,
2016.

[82] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical statistics,
vol. 22, no. 1, pp. 79–86, 1951.

[83] D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and
perturbations,” in International Conference on Learning Representations, 2018.

[84] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in International Conference on Learning
Representations, 2014.

[85] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,
“Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[86] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative neural samplers using variational
divergence minimization,” Advances in Neural Information Processing Systems, vol. 29, 2016.

[87] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep re-
inforcement learning with a stochastic actor,” in International Conference on Machine Learning, pp. 1861–
1870, PMLR, 2018.

[88] M. Scutari, “Entropy and the kullback–leibler divergence for bayesian networks: Computational complexity
and efficient implementation,” Algorithms, vol. 17, no. 1, p. 24, 2024.

[89] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep learning,” Journal
of big data, vol. 6, no. 1, pp. 1–48, 2019.

[90] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency tar-
gets improve semi-supervised deep learning results,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[91] H. Wang, C. Xiao, J. Kossaifi, Z. Yu, A. Anandkumar, and Z. Wang, “Augmax: Adversarial composition of
random augmentations for robust training,” Advances in Neural Information Processing Systems, vol. 34,
pp. 237–250, 2021.

[92] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated data augmentation
with a reduced search space,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 702–703, 2020.

	List of Figures
	Introduction
	Related work
	Test-time adaptation
	Related techniques
	Variants
	Optimization methods

	Foundational models
	The introduction of scalable architectures
	Vision-language models

	Prompt tuning for vision-language models
	Few-shot prompt tuning
	Test-time prompt tuning

	Test-time prompt tuning for fine-grained classification
	Fine-grained classification datasets
	Augmentation and confidence selection
	Experimental setup
	Baseline with augmentation and confidence selection
	TPT without confidence selection
	TPT without augmentation

	Experiment results
	Discussion

	Enforcing consistency in test-time prompt tuning
	Misaligned predictions
	Consistency techniques
	Majority voting
	Kullback-Leibler divergence

	Experimental setup
	Majority voting
	Kullback-Leibler divergence

	Experiment results
	Discussion

	Augmentation methods for test-time prompt tuning
	Augmentation methods
	Standard augmentation in TPT
	More severe augmentation with AugMix

	Experimental setup
	Experiment results
	Discussion

	Conclusions
	Bibliography

