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ABSTRACT

In the field of black-box optimization algorithms the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) is one of the most advanced optimization method. While mostly tested under
ideal conditions, CMA-ES has shown promising robustness against realistic cost function evaluation
which include noise. Previous works have proposed techniques to mitigate noise by population size
adaptation. In contrast, we propose the use of a re-evaluation scheme to better approximate the true
value. In particular, we study CMA-ES optimization under additive noise, and design an Adaptive
Re-evaluation scheme to guarantee a better solution by re-evaluating existing candidates. Our method
is based on maximizing a lower-bound of the expected improvement of the noiseless objective
value given information about the noise level, the Lipschtz constant, and the hyper-parameters of
CMA-ES. Furthermore, our AR-CMA-ES is capable of finding the analytical solution to the number
of re-evaluations at a very small computational cost. We experimentally investigate the performance
of the proposed re-evaluation method on a set of artificial test functions across various noise levels,
optimization budgets, and the dimension of the search space. Compared to existing approaches to
handle additive noise for CMA-ES, our method demonstrates significant advantages in terms of the
precision to the optimum and the percentage of independent runs achieving a certain precision.

1 Introduction

Optimization problems are central in various scientific and engineering fields. Typically, these problems are analyzed
under ideal conditions with the assumption of a noiseless environment. However, many real-world optimization problems
involve noise, which can alter the true objective function, making the optimisation space less reliable. Various sources,
such as measurement errors, environmental variability, or the inherent randomness of the system ([RKD17]) can cause
noise to appear in the objective function. Therefore, several noise models were proposed in the literature, but we can
broadly put them into two categories:

• Additive Noise ([R+21],[DL15]): This model assumes that the noise added to the objective function value
is independent of the function value itself. It can be expressed as f̃(x⃗) = f(x⃗) + σnN (0, 1), where σn is the
standard deviation of the noise.

• Multiplicative Noise ([UNS24]): In this model, the noise scales with the objective function value. It can be
expressed as f̃(x⃗) = f(x⃗)(1 + σnN (0, 1)) where σn is the standard deviation of the noise.

In the context of noisy optimisation, promising results show evolutionary algorithms (EAs), as their population-based
approach provides robustness against noise ([Arn02, HNGK08, RKD17]). The Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) is recognized as a robust algorithm for black-box optimization, excelling in noiseless scenarios
( [VAB+18]). This algorithm stands as the backbone of several noise-resilient methods that fall into one of three general
categories: population size adaptation, learning rate (step-size) adaptation or function re-evaluation for estimating the
true function.

Population size adaptation ([LZC+22],[HCPGM99],[NP98]) refers to dynamically modifying the population size
such that the noise impact can be more evenly distributed via EA. Larger populations provide more candidates,
which increases the likelihood that the selection mechanism will choose candidates whose fitnesses are near to the
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genuine value. This can result in a more accurate solution. Though successful, this approach requires more and more
computational resources. Learning rate adaptation ([NAO23]) refers to adjusting the learning rate or step size in
accordance with the noise level. Because they indicate a steady and progressive gain to the optimal value, ever-smaller
steps can lower the sensitivity to noise. The most common method for dealing with noise involves re-evaluating the
objective function ([AW93], [BM15], [HNGK08],[AW94]) for each candidate several times and averaging the results
to obtain a more precise estimate of the underlying function. It helps by smoothing out any fluctuations caused by noise,
providing a clearer direction for the searching process. This approach, while effective, is computationally expensive and
inefficient unless it is properly managed.

We examine the additive Gaussian noise model in this work. We propose an alternative strategy based on adaptive
sampling, where the optimal number of re-evaluations per point can be efficiently determined to minimize the impact of
noisy evaluations. The primary objective of this study is to enhance the performance of CMA-ES in noisy optimization
environments by introducing an Adaptive Re-evaluation method (AR-CMA-ES). We assessed AR-CMA-ES’s
performance using the benchmark functions at varying levels of additive Gaussian noise. According to experimental
findings, the AR-CMA-ES works better than the comparison techniques at various additive noise levels, obtaining
higher precision and a higher percentage of individual runs that meet a certain precision threshold.

Therefore, we list our contributions as follows:

• Change the Center of Mass Updating Rule: We propose a modification to the center of mass updating rule
in CMA-ES to better handle noisy evaluations.

• Optimize Re-evaluation Efficiency: Our adaptive method is designed to optimize the efficiency of function
re-evaluations, thereby enhancing the algorithm’s effectiveness in the presence of additive noise.

• Analytical Solution for the Number of Re-evaluations: We provide an analytical solution for determining the
number of re-evaluations needed for each candidate solution, which requires minimal additional computational
resources.

2 Background

2.1 Problem description

We consider minimizing a single-objective, black-box, and differentiable function L : Rd → R. In this work, we only
consider the additive Gaussian noise, as for the other types of noise similar analytical steps can be consider. We shall
denote as the noisy function value by:

L̃(x⃗) = L(x⃗) + σnN (0, 1) (1)

We assume the gradient of L is Lipschitz continuous, i.e., ∥∇L(x⃗)−∇L(x⃗′)∥ ≤ K ∥x⃗− x⃗′∥ for some K <∞ and
all x⃗, x⃗′ ∈ Rd.

The re-evaluation method estimates L(x⃗) via the sample mean and is often employed for noise mitigation. Based on the
Central Limit Theorem (C.L.T.), we have:

√
M(L(x⃗)− L̂(x⃗)) d−→ σnN (0, 1) (2)

where L̂(x⃗) = M−1
∑M

i=1 yi is computed by sampling M independent and identically distributed (i.i.d.) samples yi
drawn from L̃(x⃗).
It is important to determine the value of M properly: ideally, the task is to allocate a sufficiently large M to re-
evaluate each point in a set {x⃗i}i such that each pair of L̂(x⃗i) and L̂(x⃗j) can be separated with high probability, i.e.,
σn/
√
M ∈ o(|L(x⃗i)−L(x⃗j)|) which implies that noise’s standard deviation, reduced by a factor of

√
M , is smaller

than the difference between the true function values L(x⃗ i) and L(x⃗ i).

Considering {x⃗i}i is contained within a compact subset of Rd, we have the following two scenarios:

• when L exhibits a large Lipschitz constant locally, then we do not need to use a large value for M since
|L(x⃗i)− L(x⃗j)| is large;

• when the Lipschitz constant is small, the difference |L(x⃗i)− L(x⃗j)| is small; requiring a much larger M to
ensure that the noise does not obscure these differences.
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The determination of M is a non-trivial task since we generally have no knowledge of the local Lipschitz constant of
the black-box function, and the {x⃗i}i is typically generated randomly in optimization algorithms.

2.2 CMA-ES

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Han16] is a widely-applied variable-metric method
for continuous single-objective black-box problems. Briefly, CMA-ES’s search process maintains the so-called center
of mass m⃗ ∈ Rd to estimate the global minimum that is either sampled uniformly at random (u.a.r.) from the search
domain or provided by the user. Afterwards, in each iteration, CMA-ES samples independent and identically distributed
(i.i.d.) solutions {x⃗ i}λi=1 from a multivariate Gaussian N (0, σ2C):

x⃗ i = m⃗+ z⃗ i, z⃗ i ∼ σC1/2N (0, I), i ∈ [1..λ],

where σ is the step size that controls the length of search steps, serving the same role as the learning rate in stochastic
gradient descent methods. Both the step-size σ and the covariance matrix C are self-adapted in CMA-ES (see [Han16]
for details). After evaluating those solutions on the objective function L, CMA-ES ranks the mutations according to
their objective values (ties are broken randomly), i.e., L(x⃗ 1:λ) < L(x⃗ 2:λ) < . . . < L(x⃗λ:λ). Only the smallest µ < λ
are selected to update the center of mass:

m⃗← m⃗+

µ∑
i=1

wiz⃗
i:λ, wi = log λ− log i. (3)

where z⃗ i:λ represent the i-th mutation vector by value function. By default, CMA-ES uses monotonically decreasing
weights with respect to the ranking of solutions. Subsequently, the internal parameters σ and C are also updated based
on the selected µ solutions (see [Han16] for details).

2.2.1 3 Stage CMA-ES

A basic approach to managing noise in optimization involves fixing the number of re-evaluations (M ) per candidate
solution. However, this static method often shows limited performance due to its inability to adapt to varying noise
levels. To address these limitations, the Three-Stage CMA-ES ([CMMS20],[BM15]) introduces a planned schedule that
incrementally increases the number of function re-evaluations across three stages, enhancing robustness and efficiency.

In this method, function re-evaluations are proportionally allocated (10:3:1): 10 parts for the smallest M ,3 parts for the
middle M and 1 part for the highest M . For instance, with a budget of 1e7 function re-evaluations, M values might be
set to [100, 1000, 10000]. This results in approximately 7,150 evaluations for M=100, 2,145 for M=1,000, and 715 for
M=10000. Similarly, with a budget of 1e8 function re-evaluations could be 1000, 10000 and 100000, and for a budget
of 1e9 it could be set to 10000,10000 and 1000000.

However, this planned behaviour can be problematic. The increase in function re-evaluation may occur either too early,
leading to inefficient use of the allocated budget, or too late, potentially affecting the inner workings of CMA-ES, as
noise can significantly impact the adaptation of step size and covariance matrix.

2.2.2 Uncertainty handling CMA-ES

Uncertainty handling CMA-ES (UH-CMA-ES)[HNGK09] proposes a method to measure uncertainty by recomputing
the function value of some elements from the population and increasing the number of re-evaluations based on the
changes that appeared in the ranking scheme.

Therefore, UH-CMA-ES implies choosing a sub-population of size λre-es that is re-estimated. As the mutation vectors
are independently sampled, first λre-es can be chosen. Using the re-estimated values, two lists are composed as follows:

L1 =
(
(x⃗1, L̃1), ...., (x⃗λ, L̃λ), (x⃗1, L̃1), ...., (x⃗λ, L̃λ)

)
L2 =

(
(x⃗1, L̃1), ...., (x⃗λ, L̃λ), (x⃗1, L̃1

re-es), ...., (x⃗
λ, L̃λ

re-es)
)

where L̃i
re-es =

{
the re-estimated value, if i ≤ λre-es

L̃i, otherwise
. The method sorts the two lists and computes the difference in

ranking between the initial values and the re-estimated one:

∆i = |rankL1
(x⃗i)− rankre-es

L2
(x⃗i)|
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The uncertainty level is defined as:

s =
1

λre-es

λre-es∑
i=1

(
2∆i −∆lim

θ (rankre-es
L2

(x⃗i)− 1L̃i
re-es>L̃i)−∆lim

θ (rankL1(x⃗
i)− 1L̃i

re-es<L̃i))
)

where ∆lim
θ (n) denotes the θ×50 percentile of the possible rank changes and it is introduced to limit the impact of minor

ranking changes, which might be insignificant

If the computed uncertainty level s is positive, it indicates significant uncertainty in the current evaluations. In response,
the number of re-evaluations M is adaptively increased:

M ←− αM

where α is a scaling factor greater than one.

However, this approach does not consider the form of the noise, potentially resulting in sub-optimal estimates of the
number of re-evaluations (M ). Moreover, it implies a computation overhead due to the necessity of re-estimating the
function value of λre-es candidates.

3 Adaptive Re-evaluation Method (AR-CMA-ES)

As previously discussed, our method serves as an extension of the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES), with the primary objective of dynamically estimating the optimal number of function re-evaluations
(denoted as M ) required for each iteration. We begin our investigation by generalizing the update mechanism of the
search position in the CMA-ES algorithm as:

z⃗ =

λ∑
i=1

wiC
1/2ε⃗ i, wi = h

(
∆L̃i

)
, ε⃗ i ∼ σN (0, I), (4)

where ∆L̃i = L̃(m⃗)− L̃(m⃗+C1/2ε⃗ i) is the change of the noisy cost function and h : R→ R is a strictly increasing
weight function, and C is the covariance matrix. We refer to ε⃗ i as the i-th mutation vector.

Instead of using the default weight function (see Eq. (3)), we consider the proportional weight function for the ease of
analysis, which assigns a positive weight in proportion to the loss value of each mutation:

h
(
∆L̃i

)
=

∆L̃i +A∑λ
k=1 ∆L̃k + λA

, (5)

where A is chosen as the smallest possible value that ensures all weights remain positive with high probability.

Consider the first-order Taylor expansion:

∆L̃i = −
〈
∇L(m⃗),C1/2ε⃗ i

〉
+O

(∥∥∥C1/2ε⃗ i
∥∥∥2
2

)
+ δ i (6)

= −⟨g⃗, ε⃗ i⟩+R
∥∥ε⃗ i
∥∥2
2
+ δ i (7)

where δi ∼ N
(
0, ηi

M

)
is the evaluation noise which is independent of the mutation ε⃗i, g⃗ = C1/2L(m⃗) and

R ∈ R. When the step-size σ is small, we have ∆L̃i ∼ (σ
∥∥C1/2∇L(m⃗)

∥∥
2
+
√
ηi/M)N (0, 1). Choosing

A ≥ c
(
σ
∥∥C1/2∇L(m⃗)

∥∥
2
+
√
ηi/M

)
will ensure Pr(∆L̃i + A ≤ 0) ≤ 1 − Φ(c) (e.g., c = 3 gives ca. 0.15%

chance of realizing negative weights). Also, since A is a probabilistic upper bound of ∆L̃i, we can relax the denomina-
tor of Eq. (5) to 2λA, which leads to a modified search direction:

z⃗ ′ =
1

2λA

λ∑
i=1

(∆L̃i +A)C1/2ε⃗ i, ε⃗ i ∼ σN (0, I). (8)

Although the above expression is easier to analyze, we have to show that z⃗ ′ does not differ too much from z⃗:

z⃗ ′ =

∑λ
k=1 ∆L̃k + λA

2λA
z⃗ =

(
1

2
+

1

2c
N (0, 1)

)
z⃗. (9)
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The probability that z⃗ ′ inverts z⃗ is 1− Φ(c) which is pretty tiny for c ≥ 3. Hence, we can safely take Eq. (8) for the
following analysis.

Our goal is to estimate the number of function re-evaluations (M ) required by maximizing their efficiency. This
approach strikes a balance by enhancing the expected improvement gained in each generation while minimizing the
number of function re-evaluations.The efficiency (similar to [GLD+21]) metric is defined as follows :

γ =
E [L(m⃗)− L(m⃗+ z⃗ ′)]

M
. (10)

Computing the exact form of the efficiency is hard, we can instead focus on finding a lower bound that can be easily
maximized. This approach simplifies the task while still guiding the optimization process effectively. Firstly, we consider
a change of basis of Rd, i.e., ∀i ∈ [1..d], e⃗ ′

i = C1/2e⃗i. Note that ∆L̃ is not affected by the change of basis. In the new
basis, the update vector is:

v⃗ ′ = C−1/2z⃗ ′ =
1

2λA

λ∑
i=1

(∆L̃i +A)ε⃗ i︸ ︷︷ ︸
v⃗ i

(11)

Using the first-order Taylor expansion, we proceed to calculate the first moment and the second non-central moment for
each individual component of v⃗ i(see Appendix A.2). For k ∈ [1..d], we have:

E
[
vik
]
= −gkσ2 (12)

E
[
(vik)

2
]
=

ηiσ
2

M
+ (∥g⃗∥22 + 2g2k)σ

4 +A2σ2 (13)

where vik and gk are the k-th component of v⃗ i and g⃗, respectively.

Considering the Quadratic Upper Bound on the loss function (see Theorem A.1), we can compute a lower bound on the
expected improvement gained by updating the centre of mass. This analysis is detailed in Appendix A.3. Consequently,
we establish the following lower bound:

E
[
L̃(m⃗)− L̃(m⃗+ z⃗ ′)

]
= E

[
L̃(m⃗)− L̃(m⃗+C1/2v⃗ ′)

]
(14)

≥ E
[
−⟨g⃗, v⃗ ′⟩ − K

2

∥∥∥C1/2v⃗ ′
∥∥∥2
2

]
(15)

−−E [⟨g⃗, v⃗ ′⟩]− K

2
E
[∥∥∥C1/2v⃗ ′

∥∥∥2
2

]
(16)

≥ −E [⟨g⃗, v⃗ ′⟩]− Kλd

2
E
[
∥v⃗ ′∥22

]
(17)

=
σ2

2A
∥g⃗∥22 −

σ4(λ+ d+ 1)Kλd

8λA2
∥g⃗∥22 −

dKλdσ
2

8λ
− 1

M

σ2dKλd

8λ2A2

λ∑
i=1

ηi (18)

where λd is the biggest eigenvalue of C and K is the Lipschitz constant of∇L̃i. Let us comment on the steps in the
previous computation

• (14) to (15): follows the Quadratic Upper Bound (see Theorem A.1)
• (15) to (16): follows the Linearity of expectation

• (16) to (17): we have a consistent norm with
∥∥C1/2v⃗ ′

∥∥
2
≤
∥∥C1/2

∥∥
2
∥v⃗ ∥2, and

∥∥C1/2
∥∥
2
=
√
λd

• (17) to (18): step-by-step solution on the 2 elements can be found in Appendix A.3

Considering the lower bound on expected improvement (eq. (18)), we can establish a lower bound on efficiency:

γ ≥ − 1

M2

σ2

2A2

(
dKλd

4λ2

λ∑
i=1

ηi

)
+

1

M

σ2

2A2

(
A ∥g⃗∥22 −

σ2(λ+ d+ 1)Kλd

4λ
∥g⃗∥22 −

A2dKλd

4λ

)
(19)

= − 1

M2

σ2

2A2
a+

1

M

σ2

2A2
b (20)

6



A PREPRINT - JUNE 18, 2024

So we have a quadratic equation, where if b is positive, we have a finite M that maximises γ (we know the coefficient
of 1

M2 is always positive):

M∗ =
2a

b
(21)

We employ an exponential smoothing technique on the estimated function re-evaluations to ensure stability:

M ←− (1− β)M + βM∗, β ∈ [0, 1]

Estimating the evaluation noise Given that each individual evaluation noise follows approximately the same
distribution as the theoretical noise 1√

M
N (0, σn), we consider the following estimator:

λ∑
i=1

ηi ≈ λσ2
n (22)

Estimating the loss gradient We observe that eq. (12) indicates the mutation vectors are unbiased estimators of the
loss gradient:

g⃗ = −
E
[
v⃗ i
]

σ
. (23)

We construct an estimator of this expected value by aggregating all mutation vectors, i.e.,

g⃗ ∗ = − 1

λσ

λ∑
i=1

v⃗ i. (24)

Furthermore, we can exponentially smooth such an estimation across iterations of CMA-ES to get a more robust value.

g⃗ ←− (1− α)g⃗ + αg⃗ ∗, α ∈ [0, 1] (25)

4 Experiments

Experiments This study conducts a comprehensive comparative analysis of our method (AR-CMA-ES) with 2
other optimization algorithms: UH-CMA-ES and 3-Stage CMA-ES. The evaluation aims to assess the robustness and
performance of these algorithms across a diverse set of functions, including uni-modal and multi-modal functions, as
well as dimension-separable and non-separable functions (see Table 1). Additionally, the analysis considers varying
levels of noise, represented by different variances of the noise term σ2

n ∈ [1, 10, 100].

Table 1: Benchmark functions used in the experiments with their respective search space (d −→ the dimension of the
search space, lb −→ lower bound and ub −→ upper bound)

Name L(x⃗) Search Space

Sphere
∑d

i=1 x
2
i [−5, 5]d

Ellipsoid
∑d

i=1 100
i−1
d−1x2

i [−5, 5]d

Rotated Ellipsoid
∑d

i=1 100
d−i
d−1x2

i [−5, 5]d
Hyper-Ellipsoid

∑d
i=1 ix

2
i [−5, 5]d

Rotated Hyper-Ellipsoid
∑d

i=1(d− i+ 1)x2
i [−5, 5]d

Rastrigin 10d+
∑d

i=1

[
x2
i − 10 cos(2πxi)

]
[−5, 5]d

Trid
∑d

i=1(xi − 1)2 −
∑d

i=2 xixi−1 [−d2, d2]d
Cosine Mixture −0.1

∑d
i=1 cos(5πxi) +

∑d
i=1 x

2
i [−1, 1]d

Bohachevsky
∑d−1

i=1

[
x2
i + 2x2

i+1 − 0.3 cos(3πxi)− 0.4 cos(4πxi+1) + 0.7
]

[−15, 15]d

Schwefel02
∑d

i=1

(∑i
j=1 xi

)2
[−10, 10]d

To establish a fair comparison, all algorithms are initialized with consistent starting parameters: λ = 100, µ = 50 and
σ0 = 0.1 ∗ (ub− lb). Our method differs from the others by incorporating two specific parameters: the exponential
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smoothing factors. We extensively tested various combinations and determined that setting α and β to 0.1 yielded the
most consistent and reliable results. Also, different from the analytical results, we choose the probabilistic upper bound
as the smallest improvement observed (A ←− minλi=1 ∆L̃i). Furthermore, each function’s global Lipschitz gradient
constant (K) was computed analytically to ensure precise evaluation. We tested our algorithm across different budgets
of function evaluations, with a limit set on the number of function re-evaluations per individual in a generation at 1% of
the total evaluation budget.

This study aims to provide valuable insights into our algorithm’s strengths and weaknesses by analyzing it across
different function types and noise levels. Thus, it will aid in selecting the most suitable approach for various optimization
tasks.

Results Figure 1 presents the empirical cumulative distribution function (ECDF) for different dimensions (10, 20) and
budgets (1e7, 1e8, 1e9). We computed the mean ECDF across all functions and noise levels. As we increase the budget
and the function dimension, and hence the complexity, AR-CMA-ES shows a substantial performance improvement
compared to 3-Stage CMA-ES. With more complex problems, 3-Stage CMA-ES lacks the ability to adapt effectively,
as there is no assurance that the increased number of function re-evaluations is necessary. Moreover, we observe a
slight but consistent improvement with AR-CMA-ES compared to UH-CMA-ES. For smaller and smaller errors to the
optimum, AR-CMA-ES achieves a higher percentage of solutions that meet those thresholds compared to UH-CMA-ES,
indicating better performance in reaching closer to the optimal solutions.

In Appendix B, Figure 6 and Figure 7 also present the mean ECDF across different dimensions (10, 20), budgets (1e7,
1e8, 1e9), and noise levels (1, 10, 100). As the noise level increases, there is a slight decrease in performance. This
behavior is due to the overestimation, as the number of function re-evaluations is linearly dependent on the noise.
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Figure 1: The combined Empirical Cumulative Distribution (ECDF) of all benchmark functions (each computed from
20 independent runs) across dimensions 10D and 20D, and varying budgets (1e7, 1e8, 1e9).
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For closer analysis, we consider two specific functions: the Rastrigin function and the Trid function. The Rastrigin
function is highly multimodal, presenting numerous local optima, while the Trid function is a non-separable function
across dimensions, making it a challenging problem for optimization algorithms.

Figure 2 shows the empirical cumulative distribution function (ECDF) for the 20D Rastrigin function with a budget of
1e9 function evaluations and different noise levels ( σ2

n ∈ [1, 10, 100]). The Rastrigin function is highly multimodal, so
optimization can easily get stuck in local minima. However, we observe a significant improvement with AR-CMA-ES
compared to 3-Stage CMA-ES and a slight improvement over UH-CMA-ES. From Figure 3 showing the convergence
plot, it is clear that the improvement gained by our method is due to the higher number of functions that succeed in
avoiding local minima.
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Figure 2: Empirical Cumulative Distribution Function (ECDF) for the 20D Rastrigin function with a budget of 1e9
function evaluations under different noise levels (σ2

n ∈ [1, 10, 100]).
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Figure 3: Convergence plot for the 20D Rastrigin function with a budget of 1e9 function evaluations under different
noise levels (σ2

n ∈ [1, 10, 100]).

Figure 4 shows the empirical cumulative distribution function (ECDF) for the 20D Trid function with a budget of 1e9
function evaluations and different noise levels (σ2

n ∈ [1, 10, 100]). As discussed, the Trid function is non-separable
across dimensions (the minimum cannot be found by optimizing each dimension separately). We observe that AR-CMA-
ES achieves substantial improvement compared to 3-Stage CMA-ES and a noticeable improvement over UH-CMA-ES.
s shown in Figure 3, 3-Stage CMA-ES did not achieve certain error thresholds, and the comparison includes only the
convergence curves of the two adaptive methods. We can see that our method outperforms UH-CMA-ES across all
noise levels, and even shows a slight increase in performance as the noise level increases.
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Figure 4: Empirical Cumulative Distribution Function (ECDF) for the 20D Trid function with a budget of 1e9 function
evaluations under different noise levels (σ2

n ∈ [1, 10, 100]).

0.0 0.2 0.4 0.6 0.8 1.0
Function Evaluations 1e9

10 4

10 5

10 6

10 7

Er
ro

r

20D Trid
  2

n = 1, 1e9 budget
UH-CMA-ES
AR-CMA-ES

(a) 20D Trid - σ2
n = 1

0.0 0.2 0.4 0.6 0.8 1.0
Function Evaluations 1e9

10 3

10 4

10 5

10 6

Er
ro

r

20D Trid
  2

n = 10, 1e9 budget
UH-CMA-ES
AR-CMA-ES

(b) 20D Trid - σ2
n = 10

0.0 0.2 0.4 0.6 0.8 1.0
Function Evaluations 1e9

10 2

10 3

10 4

10 5

Er
ro

r

20D Trid
  2

n = 100, 1e9 budget
UH-CMA-ES
AR-CMA-ES

(c) 20D Trid - σ2
n = 100

Figure 5: Convergence plot for the 20D Trid function with a budget of 1e9 function evaluations (FE) under different
noise levels (σ2

n ∈ [1, 10, 100]).

5 Conclusion

In this paper, we introduced AR-CMA-ES, an enhancement of the CMA-ES algorithm designed to improve robustness
against additive noise in optimization tasks. Our method incorporates a novel updating rule for the center of mass,
which adapts based on actual performance improvements.

We derived a lower bound on the efficiency of function re-evaluations and developed an analytical solution for
determining the optimal number of function re-evaluations. This adaptive strategy optimizes performance and ensures
efficient resource allocation without significant computational overhead, leading to better optimization in noisy
environments. AR-CMA-ES substantially outperforms 3Stage-CMA-ES and demonstrates a slight but consistent
advantage over UH-CMA-ES. While AR-CMA-ES demonstrates significant improvements in handling additive noise
and optimizing performance, it has several limitations that warrant consideration.

• Assumptions on Noise Characteristics: AR-CMA-ES is designed with a focus on additive noise. If the
noise characteristics deviate from this assumption, such as in cases with multiplicative noise or other forms of
complex noise patterns, the algorithm’s performance might degrade. Further research is needed to extend the
method to handle a broader range of noise types effectively.

• Impact of Noise Variance: The number of function re-evaluations in AR-CMA-ES is linearly dependent on
the noise variance. As the noise level increases, this dependency can lead to a reduction in performance. The
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increased need for re-evaluations in high-noise environments can strain computational resources and affect
overall optimization efficiency.

• Potential Benefits of Local Estimators for Lipschitz Constants: Function re-evaluation in AR-CMA-ES is
linearly dependent on the Lipschitz constant of the gradient. Utilizing local estimators for Lipschitz constants
could reduce the probability of overestimating the number of function re-evaluations in AR-CMA-ES. By
providing more accurate estimates tailored to specific regions of the optimization landscape, local estimators
may help mitigate the impact of high global Lipschitz constants on algorithm performance.

• Limited Empirical Validation: While AR-CMA-ES demonstrates performance improvements on synthetic
benchmark functions, its effectiveness on real-world problems remains to be fully explored. The empirical
validation primarily focuses on synthetic functions that adhere to the assumptions about the function and noise
type. Further experimentation is needed to evaluate the method’s performance on functions that naturally
conform to these assumptions. Examples include quantum loss functions, which are prevalent in quantum
computing optimization tasks. Extending the empirical validation to encompass a broader range of real-world
problems will provide deeper insights into the method’s applicability and effectiveness in practical scenarios.

Despite these limitations, AR-CMA-ES offers a promising approach for improving the robustness of evolutionary
algorithms in noisy optimization environments. Future work will focus on addressing these challenges and further
refining the method to enhance its applicability and performance across a broader range of optimization tasks.
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A Appendix: Theorems and step-by-step solutions

A.1 Quadratic Upper Bound

Theorem Considering a differentiable function f(x) with a Lipschitz continuous gradient∇f , we have the following
upper bound on f

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ K

2
∥y − x∥22 , ∀x, y (26)

where K is the Lipschitz constant of the gradient∇f (proof on [Pol63]).

The functions discussed in this paper adhere to the properties required by the previous theorem. Therefore we have:

L̃(m⃗+C1/2v⃗ ′) ≤ L̃(m⃗) + ⟨∇L(m⃗),C1/2v⃗ ′⟩+ K

2

∥∥∥C1/2v⃗ ′
∥∥∥2
2
= (27)

L̃(m⃗)− L̃(m⃗+C1/2v⃗ ′) ≥ −⟨g⃗, v⃗ ′⟩ − K

2

∥∥∥C1/2v⃗ ′
∥∥∥2
2

(28)

where g⃗ = C1/2∇L(m⃗).

A.2 Individual components of v⃗ i

We have v⃗ i = ∆L̃iε⃗ i, we can define for each k ∈ [1..d] the indicvidual component as:

vik = (∆L̃i +A)ε i
k = (29)

=
[
−
〈
g⃗, ε⃗ i

〉
+ δ i −R

∥∥ε⃗ i
∥∥2
2
+A

]
ε i
k (30)

where εik ∼ σN (0, 1), δi ∼ N (0, ηi

M ) and δi is independent of εik.

We have the first moment of each individual component:

E
[
vik
]
=E

[
−⟨g⃗, ε⃗i⟩ε i

k + δiε i
k −R

∥∥ε⃗i∥∥2
2
ε i
k +Aε i

k

]
= (31)

=− E
[
⟨g⃗, ε⃗i⟩ε i

k

]︸ ︷︷ ︸
A1

+E
[
δiε i

k

]︸ ︷︷ ︸
A2

−RE
[∥∥ε⃗i∥∥2

2
ε i
k

]
︸ ︷︷ ︸

A3

+AE
[
ε i
k

]︸ ︷︷ ︸
A4=0

(32)

We will compute each element (A1, A2, A3) separately:

A1 =E
[
⟨g⃗, ε⃗i⟩ε i

k

] (a)
= E

 d∑
j=1

gjε
i
jε

i
k

 (b)
=

d∑
j=1

gjE
[
ε i
jε

i
k

]
= (33)
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(c)
=gkE

[
(ε i

k)
2
]
+

d∑
j ̸=k

gjE
[
ε i
j

]
E
[
ε i
k

] (d)
= gkσ

2 (34)

Some comments on the steps in the previous computation:

• (a): follows definition of inner product
• (b): follows the Linearity of expectation
• (c): ε i

j and ε i
k are independent ∀k ̸= j

• (d): E
[
ε i
k

]
= 0 and E

[
(ε i

k)
2
]
= σ2,∀k

A2 = E
[
δiε i

k

] (a)
= E

[
δi
]
E
[
ε i
k

] (b)
= 0 (35)

Some comments on the steps in the previous computation:

• (a): δi and ε i
k are independent ∀k

• (b): E
[
δi
]
= 0 and E

[
ε i
k

]
= 0,∀k

A3 =E
[∥∥ε⃗i∥∥2

2
ε i
k

] (a)
= E

 d∑
j=1

(ε i
j )

2ε i
k

 (b)
=

d∑
j=1

E
[
(ε i

j )
2ε i

k

]
= (36)

(c)
=E

[
(ε i

k)
3
]
+

d∑
j ̸=i

E
[
(ε i

j )
2
]
E
[
ε i
k

] (d)
= 0 (37)

Some comments on the steps in the previous computation:

• (a): follows definition of norm
• (b): follows the Linearity of expectation
• (c): ε i

j and ε i
k are independent ∀k ̸= j

• (d): E
[
ε i
k

]
= 0, E

[
(ε i

k)
2
]
= σ2 and E

[
(ε i

k)
3
]
= 0,∀k

So, considering equations (34),(35),(37), we have the following final form for the first moment of vik
E
[
vik
]
= −gkσ2 (38)

We also can compute the second non-central moment of each individual component:

E
[
(vik)

2
]
=E

[
(∆L̃i +A)2(εik)

2
]

(39)

=E
[(
−⟨g⃗, ε⃗ i⟩+ δi +R

∥∥ε⃗ i
∥∥2
2
+A

)2
(εik)

2

]
= (40)

=E
[
⟨g⃗, ε⃗ i⟩2(εik)2

]︸ ︷︷ ︸
B1

+E
[
(δi)2(εik)

2
]︸ ︷︷ ︸

B2

+R2 E
[∥∥ε⃗ i

∥∥4
2
(εik)

2
]

︸ ︷︷ ︸
B3

+A2 E
[
(εik)

2
]︸ ︷︷ ︸

B4=σ2

= (41)

− 2E
[
⟨g⃗, ε⃗ i⟩δi

]︸ ︷︷ ︸
B5

−2RE
[
⟨g⃗, ε⃗ i⟩

∥∥ε⃗ i
∥∥2
2
(εik)

2
]

︸ ︷︷ ︸
B6

+2RE
[
δi
∥∥ε⃗ i
∥∥2
2
(εik)

2
]

︸ ︷︷ ︸
B7

= (42)

− 2AE
[
⟨g⃗, ε⃗ i⟩(εik)2

]︸ ︷︷ ︸
B8

+2AE
[
δi(εik)

2
]︸ ︷︷ ︸

B9

+2ARE
[∥∥ε⃗ i

∥∥2
2
(εik)

2
]

︸ ︷︷ ︸
B10

(43)

We will compute each component (B1, B2, B3, B4, B5, B6, B7, B8, B9, B10) separately:

B1 =E
[
⟨g⃗, ε⃗ i⟩2(εik)2

] (a)
= E

 d∑
j=1

d∑
l=1

gjglε
i
jε

i
l(ε

i
k)

2

 (b)
=

d∑
j=1

d∑
l=1

gjglE
[
εijε

i
l(ε

i
k)

2
]
= (44)
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(c)
=

d∑
j ̸=k

d∑
l ̸=j,k

gjglE
[
εij
]
E
[
εil
]
E
[
(εik)

2
]
+ 2

d∑
j ̸=k

gjgkE
[
εij
]
E
[
(εik)

3
]
+

d∑
j ̸=k

g2jE
[
(εij)

2
]
E
[
(εik)

2
]
+ g2kE

[
(εik)

4
]
=

(45)

(d)
=

d∑
j ̸=k

g2jσ
4 + 3g2kσ

4
(e)
= (∥g⃗∥22 + 2g2k)σ

4 (46)

Some comments on the steps in the previous computation:

• (a): follows definition of inner product
• (b): follows the Linearity of expectation
• (c): ε i

j and ε i
k are independent ∀k ̸= j

• (d): E
[
ε i
k

]
= 0, E

[
(ε i

k)
2
]
= σ2, E

[
(ε i

k)
3
]
= 0 and E

[
(ε i

k)
4
]
= 3σ4,∀k

• (e): follows definition of norm

B2 =E
[
(δi)2(εik)

2
] (a)
= E

[
(δi)2

]
E
[
(εik)

2
] (b)
=

ηi
M

σ2 (47)

Some comments on the steps in the previous computation:

• (a): δi and εik are independent ∀k
• (b): E

[
(δi)2

]
= ηi

M and E
[
(εik)

2
]
= σ2

B3 =E
[∥∥ε⃗ i

∥∥4
2
(εik)

2
] (a)
= E

 d∑
j=1

d∑
l=1

(εij)
2(εil)

2(εik)
2

 (b)
=

d∑
j=1

d∑
l=1

E
[
(εij)

2(εil)
2(εik)

2
]
= (48)

(c)
=

d∑
j ̸=k

d∑
l ̸=j,k

E
[
(εij)

2
]
E
[
(εil)

2
]
E
[
(εik)

2
]
+ 2

d∑
j ̸=k

E
[
(εij)

2
]
E
[
(εik)

4
]
+

d∑
j ̸=k

E
[
(εij)

4
]
E
[
(εik)

2
]
+ E

[
(εik)

6
]
=

(49)

(d)
=

d∑
j ̸=k

d∑
l ̸=j,k

σ6 + 2

d∑
j ̸=k

3σ6 +

d∑
j ̸=k

3σ6 + 15σ6 = (d− 1)(d− 2)σ6 + 6(d− 1)σ6 + 3(d− 1)σ6 + 15σ6 (50)

=(d2 + 6d+ 8)σ6 (51)

Some comments on the steps in the previous computation:

• (a): follows definition of norm
• (b): follows the Linearity of expectation
• (c): ε i

j and ε i
k are independent ∀k ̸= j

• (d): E
[
(ε i

k)
2
]
= σ2, E

[
(ε i

k)
4
]
= 3σ4 and E

[
(ε i

k)
5
]
= 15σ6,∀k

B5 =E
[
⟨g⃗, ε⃗ i⟩δi

] (a)
= E

[
⟨g⃗, ε⃗ i⟩

]
E
[
δi
] (b)
= 0 (52)

Some comments on the steps in the previous computation:

• (a): δi and εik are independent ∀k
• (b): E

[
δi
]
= 0

B6 =E
[
⟨g⃗, ε⃗ i⟩

∥∥ε⃗ i
∥∥2
2
(εik)

2
] (a)
= E

 d∑
j=1

d∑
l=1

gjε
i
j(ε

i
l)

2(εik)
2

 (b)
=

d∑
j=1

d∑
l=1

gjE
[
εij(ε

i
l)

2(εik)
2
]
= (53)
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(c)
=

d∑
j ̸=k

d∑
l ̸=j,k

gjE
[
εij
]
E
[
(εil)

2
]
E
[
(εik)

2
]
+

d∑
j ̸=k

gjE
[
εij
]
E
[
(εik)

4
]
+ (54)

+

d∑
j ̸=k

gjE
[
(εij)

2
]
E
[
(εik)

3
]
+

d∑
j ̸=k

gjE
[
(εij)

3
]
E
[
(εik)

2
]
+ gkE

[
(εik)

5
]
= (55)

(d)
=0 (56)

Some comments on the steps in the previous computation:

• (a): follows definition of norm and inner product
• (b): follows the Linearity of expectation
• (c): ε i

j and ε i
k are independent ∀k ̸= j

• (d): E
[
(ε i

k)
2
]
= σ2, E

[
(ε i

k)
4
]
= 3σ4 and E

[
(ε i

k)
5
]
= 15σ6,∀k

B7 =E
[
δi
∥∥ε⃗ i
∥∥2
2
(εik)

2
] (a)
= E

[
δi
]
E
[∥∥ε⃗ i

∥∥2
2
(εik)

2
] (b)
= 0 (57)

Some comments on the steps in the previous computation:

• (a): δi and εik are independent ∀k
• (b): E

[
δi
]
= 0

B8 = E
[
⟨g⃗, ε⃗ i⟩(εik)2

] (a)
= E

 d∑
j=1

gjε
i
j(ε

i
k)

2

 (b)
=

d∑
j=1

gjE
[
εij(ε

i
k)

2
]

(58)

(c)
= gjE

[
(εik)

3
]
+

d∑
j ̸=k

gjE
[
εij
]
E
[
(εik)

2
] (d)
= 0 (59)

Some comments on the steps in the previous computation:

• (a): follows definition of inner product
• (b): follows the Linearity of expectation
• (c):ε i

j and ε i
k are independent ∀k ̸= j

• (d): E
[
(ε i

k)
]
= 0, E

[
(ε i

k)
2
]
= σ2 and E

[
(ε i

k)
3
]
= 0,∀k

B9 = E
[
δi(εik)

2
] (a)
= E

[
δi
]
E
[
(εik)

2
] (b)
= 0 (60)

Some comments on the steps in the previous computation:

• (a): δi and εik are independent ∀k
• (b): E

[
δi
]
= 0

B10 = E
[∥∥ε⃗ i

∥∥2
2
(εik)

2
] (a)
= E

 d∑
j=1

(εij)
2(εik)

2

 (b)
=

d∑
j=1

E
[
(εij)

2(εik)
2
]
= (61)

(c)
= E

[
(εik)

4
]
+

d∑
j ̸=k

E
[
(εij)

2(εik)
2
] (d)
= 3σ4 +

d∑
j ̸=k

σ4 = (d+ 2)σ4 (62)

Some comments on the steps in the previous computation:
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• (a): follows definition of norm

• (b): follows the Linearity of expectation

• (c): ε i
j and ε i

k are independent ∀k ̸= j

• (d): E
[
(ε i

k)
2
]
= σ2 and E

[
(ε i

k)
4
]
= 3σ4,∀k

So, using equations (46),(47),(51),(52),(56),(57),(59),(60) and (62), we have the following final form for the second
non-central moment of vik:

E
[
(vik)

2
]
=

ηiσ
2

M
+ (∥g⃗∥2 + 2g2k)σ

4 +A2σ2 +R2(d2 + 6d+ 8)σ6 + 2AR(d+ 2)σ4 (63)

Considering the approximation where we remove R-terms, we have:

E
[
(vik)

2
]
≈ ηiσ

2

M
+ (∥g⃗∥2 + 2g2k)σ

4 +A2σ2 (64)

A.3 Expected Lower Bound

We have the following lower bound:

E
(
L̃(θ⃗)− L̃(θ⃗ + z⃗)

)
≥ −E [⟨g⃗, v⃗ ′⟩]︸ ︷︷ ︸

C1

−Kλd

2
E
[
∥v⃗ ′∥22

]
︸ ︷︷ ︸

C2

(65)

We will compute each component (C1, C2) separately:

C1 =E [⟨g⃗, v⃗ ′⟩]
(a)
= E

[
⟨g⃗, 1

2λA

λ∑
i=1

v⃗ i⟩

]
(b)
=

1

2λA

λ∑
i=1

E
[
⟨g⃗, v⃗ i⟩

]
= (66)

(c)
=

1

2λA

λ∑
i=1

E

[
d∑

k=1

gkv
i
k

]
(d)
=

1

2λA

λ∑
i=1

d∑
k=1

gkE
[
vik
] (e)
=

1

2λA

λ∑
i=1

d∑
k=1

−g2kσ2 = (67)

=− 1

2λA
λ ∥g⃗∥22 σ

2 = − σ2

2A
∥g⃗∥22 (68)

Some comments on the steps in the previous computation:

• (a): follows the definition of v⃗ ′

• (b): follows the Linearity of inner product and Linearity of expectation

• (c): follows the definition of inner product

• (d): follows the Linearity of expectation

• (e): follows equation 38

C2 =E
[
∥v⃗ ′∥22

] (a)
= E [⟨v⃗ ′, v⃗ ′⟩]

(b)
= E

⟨ 1

2λA

λ∑
i=1

v⃗ i,
1

2λA

λ∑
j=1

v⃗ j⟩

 = (69)

(c)
=

1

4λ2A2

λ∑
i=1

λ∑
j=1

E
[
⟨v⃗ i, v⃗ j⟩

] (d)
=

1

4λ2A2

λ∑
i=1

λ∑
j=1

E

[
d∑

k=1

vikv
j
k

]
(e)
=

1

4λ2A2

λ∑
i=1

λ∑
j=1

d∑
k=1

E
[
vikv

j
k

]
= (70)

(f)
=

1

4λ2A2

λ∑
i=1

λ∑
j ̸=i

d∑
k=1

E
[
vik
]
E
[
vjk

]
+

1

4λ2A2

λ∑
i=1

d∑
k=1

E
[
(vik)

2
]
= (71)

(g)
=

1

4λ2A2

λ∑
i=1

λ∑
j ̸=i

d∑
k=1

g2kσ
4 +

1

4λ2A2

λ∑
i=1

d∑
k=1

(
ηiσ

2

M
+ (∥g⃗∥2 + 2g2k)σ

4 +A2σ2

)
= (72)
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=
λ(λ− 1)σ4

4λ2A2
∥g⃗∥22 +

1

4λ2A2

λ∑
i=1

d∑
k=1

ηiσ
2

M
+

1

4λ2A2

λ∑
i=1

d∑
k=1

(∥g⃗∥2 + 2g2k)σ
4 +

1

4λ2A2

λ∑
i=1

d∑
k=1

A2σ2 = (73)

=
(λ− 1)σ4

4λA2
∥g⃗∥22 +

1

M

σ2d

4λ2A2

λ∑
i=1

ηi +
λ(d+ 2)σ4

4λ2A2
∥g⃗∥22 +

A2dσ2

4λA2
= (74)

=
1

M

σ2d

4λ2A2

λ∑
i=1

ηi +
(λ+ d+ 1)σ4

4λA2
∥g⃗∥22 +

A2dσ2

4λA2
(75)

Some comments on the steps in the previous computation:

• (a): follows ∥x⃗∥22 = ⟨x⃗, x⃗⟩
• (b): follows the definition of v⃗ ′

• (c): follows the Linearity of inner product and Linearity of expectation
• (d): follows the definition of inner product
• (e): follows the Linearity of expectation

• (f): vik and vjk are independent ∀i ̸= j

• (g): follows equation 38 and 64

Considering equations (68) and (75), we have the following final form for the expected lower bound on the improvement
gained by updating the centre of mass m⃗:

E
(
L̃(m⃗)− L̃(m⃗+ z⃗)

)
≥ (76)

≥ −E [⟨g⃗, v⃗ ′⟩]− Kλd

2
E
[
∥v⃗ ′∥22

]
= (77)

=
σ2

2B
∥g⃗∥2 − 1

M

Kλdσ
2d

8λ2A2

λ∑
i=1

ηi −
Kλd(λ+ d+ 1)σ4

8λA2
∥g⃗∥22 −

dKλdσ
2

8λ
= (78)

=
σ2

2A
∥g⃗∥22 −

σ4(λ+ d+ 1)Kλd

8λA2
∥g⃗∥22 −

dKλdσ
2

8λ
− 1

M

σ2dKλd

8λ2A2

λ∑
i=1

ηi (79)
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B Appendix: All experiments
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Figure 6: The combined Empirical Cumulative Distribution (ECDF) of all 10D benchmark functions across different
noise levels (σ2

n ∈ [1, 10, 100]) and varying budgets (1e7,1e8, 1e9).
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Figure 7: The combined Empirical Cumulative Distribution (ECDF) of all 10D benchmark functions across different
noise levels (σ2

n ∈ [1, 10, 100]) and varying budgets (1e7,1e8, 1e9).
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Figure 8: Empirical Cumulative Distribution Function (ECDF) for each 10D function across different noise levels
(σ2

n ∈ [1, 10, 100]).
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Figure 9: Empirical Cumulative Distribution Function (ECDF) for each 20D function across different noise levels
(σ2

n ∈ [1, 10, 100]).
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