
Leiden University
ICT in Business and the Public Sector

The data-driven development of a maturity model
for machine learning teams

Name: Ceyhan Deve

Student ID: s1694294

Date: 31/01/2024

1st supervisor: Prof.dr.ir. J.M.W. Visser

2nd supervisor: dr. C.J. Stettina MSc

MASTER’S THESIS

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1

2333 CA The Netherlands

Abstract

Background: Software systems are increasingly equipped with machine learning (ML) components. Due

to the different nature of these ML-based software systems compared to traditional software systems,

ML-based software systems require novel software engineering (SE) methods and guidelines in order

to be developed robustly and responsibly. In literature, engineering best practices are described and

grouped into collections to address the challenges that ML-based software systems pose. Nevertheless,

the guidance and support of ML teams is limited regarding their current use of best practices and the

improvement of their best practice adoption.

Objective: We aim to develop and validate a maturity model for ML-based software systems, which

guides ML teams in assessing and improving their development processes based on a set of engineering

practices.

Method: In order to develop and validate the maturity model for ML teams, we applied the design

science methodology. We identified common steps in development frameworks for maturity models,

which provided a direction for the development of the maturity model. The maturity model is created

based on adoption data of these practices and existing maturity models in the field of software

engineering. For the validation of the model, we conducted a case study involving multiple ML teams

in order to determine whether it satisfies several criteria, such as comprehensibility and accuracy.

Participating teams were asked to perform a maturity self-assessment with the model after which their

opinion and feedback on the model were collected.

Results: We presented a maturity model for ML teams, which encompasses 45 engineering practices

for the development of ML-based software systems. In the model, the practices are organised into two

representations: the domain and maturity representation. The domain representation describes the

maturity of a ML team on various aspects of their development process with the use of engineering

capability (EC) levels. The maturity representation, however, focuses on the overall maturity of a team

represented by maturity levels. The practices are ordered into the levels based, among others, on their

adoption by 139 ML teams. Overall, we found during the model validation that ML teams perceive

the model as comprehensible, easy to use, complete, correct and useful, despite minor issues. Teams,

however, stated that the model does not represent their actual maturity completely and suggested

altering the scoring method to allow for better comparison between teams. Moreover, some teams

indicated that the practical use of the model is subject to the willingness of the teams themselves and

support from the leaders of their organisations. Based on the obtained findings, we suggested some

model refinements.

Conclusion: The development and validation of a maturity model for ML teams contribute to the

robust and responsible development, deployment and maintenance of ML-based software systems

by these teams. The developed model assists teams in obtaining insights into their development

processes in terms of their practice adoption. The model and the ordering approaches devised during

its development could serve as a basis for the operationalisation of practices and the development of

other models in different domains. The model is positively received by ML teams. More research is,

however, required into the creation of support from ML teams and stakeholders for the implementation

of such a model in real-world settings.

Acknowledgements

The conduction of my master’s thesis did not proceed as initially expected and was a challenging

period of time for me. I was being faced with many unexpected external circumstances. Nevertheless,

Prof.dr.ir. Joost Visser, my first supervisor, has always supported me throughout my master’s thesis.

I would like to express my deepest gratitude to him for his continued understanding, patience and

flexibility. Without the guidance of Prof.dr.ir. Joost Visser, I would not have been able to complete my

thesis. Furthermore, I would like to extend my sincere thanks to dr. Christoph Stettina MSc, my second

supervisor, for providing new and insightful perspectives on my thesis at the end of each research

phase.

Moreover, I would like to thank all the ML teams that participated in the case study, which was part of

this master’s thesis. These ML teams provided us with valuable practical insights that enabled us to

validate our developed maturity model.

Finally, I am thankful to my parents and little brother for continuously being caring, supportive and

encouraging during my entire studies.

Contents

1 Introduction 5

1.1 Research problem . 5

1.2 Research question . 6

1.3 Methodology . 6

1.4 Outline . 7

2 Background 8

2.1 Differences and challenges in ML . 8

2.2 Maturity models . 11

2.3 Engineering best practices in ML . 11

3 Design science 13

3.1 The paradigm . 13

3.2 Design science framework . 13

3.3 Goals and problems . 14

3.4 Design cycle . 15

3.4.1 Problem investigation . 16

3.4.2 Treatment design . 16

3.4.3 Treatment validation . 17

4 Maturity models for software engineering 18

4.1 Traditional software development models . 18

4.2 Agile software development models . 20

4.3 Software security models . 22

4.4 FLOSS development models . 23

4.5 Comparison of maturity models . 24

5 Design approaches 26

5.1 Approaches for general models . 26

5.2 Approaches for specific models . 29

5.3 Common development phases . 30

6 Model development 33

6.1 The scoping of the model . 33

6.2 The construction of the model . 35

6.2.1 The dataset . 35

6.2.2 The creation of a data pool . 35

6.2.3 The adoption of the practices . 37

6.2.4 The structure of the model . 38

6.2.5 The creation of the domain representation . 39

6.2.6 The creation of the maturity representation . 45

6.2.7 The application of the model . 50

6.2.8 Consistent and objective assessments . 51

6.2.9 The design decisions . 53

7 Model validation 54

7.1 Case study design . 54

7.2 Results . 55

7.2.1 The participants . 55

7.2.2 The interviews . 56

7.2.3 The questionnaire . 60

7.2.4 Requirement satisfaction . 61

7.2.5 Model refinements . 62

8 Discussion 64

8.1 The maturity model . 64

8.2 The model validation . 65

8.3 The knowledge questions . 66

9 Conclusion 69

References 71

A The domain representation 77

B The maturity representation 80

C The application guide 82

D The practice cards 84

E The interview guide 88

F The questionnaire 90

Chapter 1

Introduction

1.1 Research problem

In recent years, the use of machine learning (ML) has become prevalent in practical and industrial

settings. Organisations increasingly adopt ML components in their software systems (Liu et al., 2020).

These ML components can be applied to a wide variety of complex real-world problems, such as fraud

detection, product recommendation and image recognition.

ML components have different characteristics than traditional software components (Ishikawa & Yosh-

ioka, 2019). For example, ML components are more data-intensive. The behaviour of ML components is

not directly programmed, but is acquired through learning on data (i.e. training data). Moreover, these

components continuously evolve as a result of changes in input data. Furthermore, the outputs of ML

components are uncertain for unseen data, data that was not part of the training data.

Due to different characteristics of ML components, the development process of ML-based software

systems, i.e., software systems with these ML components, differs from that of traditional software

systems (Nascimento et al., 2019). The development process of these systems involves, for example,

different phases and tasks, such as data pre-processing, feature engineering and model training. The

emergence of ML components in software systems has introduced a different paradigm of software

development. Software engineering (SE) methods and guidelines for traditional software systems are

mostly not sufficient for ML-based software systems. Therefore, in order to robustly and responsibly

develop, deploy and maintain these systems, novel methods and guidelines are required (Ishikawa

& Yoshioka, 2019; Lwakatare et al., 2019). Some of such methods and guidelines have already been

presented in literature, such as DeepXplore (Pei et al., 2019), a white-box framework to systematically

test deep learning (DL) systems.

The different nature of ML-based software systems makes the development, deployment and mainte-

nance of these systems challenging (Ishikawa & Yoshioka, 2019; Lwakatare et al., 2020; Nascimento

et al., 2019). In order to address the challenges that ML-based software systems pose, engineering best

practices have started to emerge in both grey and academic literature (e.g. Amershi et al., 2019; Breck

et al., 2017). Nevertheless, guidance and support of ML practitioners during the development process

of ML-based software systems is still limited. In particular, ML practitioners lack insights into their

current use of best practices and the improvement of their adoption.

5

1.2 Research question

As guidance and support of ML practitioners is limited, in this thesis we develop and validate a

maturity model for the development processes of ML teams, teams that develop ML-based software

systems. Maturity models are tools that assist in determining the maturity of objects (i.e. organisations,

processes or people) along a defined evolution path of discrete stages (Becker et al., 2009; de Bruin

et al., 2005; Otto et al., 2020). The maturity of an object under consideration could refer to the level of

performance, effectiveness or competence of that object.

In literature, a few maturity models in the field of ML have already been proposed (e.g. Akkiraju

et al., 2020; John et al., 2021; Mateo-Casalı́ et al., 2023). Most of these ML maturity models address

the operationalisation of ML-based software systems within organisations (e.g. integrating ML-based

software systems within manufacturing operations). In contrast, our maturity model will focus on the

development processes of these systems on a team level.

Our maturity model will be developed based on a set of engineering best practices that is defined in

the studies of Serban et al. (2020, 2021). In these studies, the researchers determine the state of the art

of the development process of ML-based software systems based on the compilation of a catalogue of

practices from literature, which is referred to as the SE4ML catalogue1. During the validation of the

maturity model, we collect practical insights in order to propose further refinements of the model.

With the development and validation of a maturity model, we aim to provide teams with a straight-

forward framework that enables teams to assess their development processes and offers support and

guidance in improving these processes. The underlying research question (RQ) is thus as follows:

RQ: How can the development processes of ML teams be assessed based on engineering best

practices in order to provide these teams with guidance and support in improving their processes?

1.3 Methodology

In this study, we will use the design science methodology, which is a research paradigm that aims to

enhance technical and scientific knowledge based on the development of artifacts that address problems

and improve aspects of their contexts (Vom Brocke et al., 2020). In order to develop and validate a

maturity model for ML teams, we will follow the (iterative) design cycle within the design science

methodology, which consists of three tasks: problem investigation, treatment design and treatment

validation.

For the development of the maturity model, common phases of model development frameworks in

academic literature will be defined and followed. To validate the model and determine its relevance

and accuracy, a case study involving the development processes of ML teams will be conducted. In

this case study, ML teams will be asked to assess their development processes with the use of the

maturity model, after which these teams will be interviewed about the application and the content of

the developed model. Furthermore, teams will be asked to complete a questionnaire in which they are

asked to rate the model on a set of criteria.

1https://se-ml.github.io/practices/

6

https://se-ml.github.io/practices/

1.4 Outline

This thesis is structured as follows. Chapter 2 provides background information on the differences

between traditional software development and ML development, and the challenges that ML-based

software systems pose. In addition, background information is provided on maturity models and

engineering best practices for ML-based software systems. Chapter 3 elaborates on the applied method,

i.e., the design science methodology. Chapter 4 discusses different maturity models in the field of SE.

Chapter 5 focuses on design approaches for maturity models and states the common phases in the

development of the models. Chapter 6 describes the development of our maturity model while Chapter

7 presents the design of the validation of the model and the obtained findings. The model development

and the findings of the model validation are discussed in Chapter 8. Finally, Chapter 9 concludes the

thesis and provides recommendations for future research.

7

Chapter 2

Background

The following sections provide relevant background information on the differences between the

development of traditional software systems and ML-based software systems, challenges in the field of

ML, the notion of maturity models and the engineering best practices identified during the studies of

Serban et al. (2020, 2021).

2.1 Differences and challenges in ML

As stated before, ML-based software systems are different than traditional software systems. Due to the

different nature of ML-based software systems, the development, deployment and maintenance of these

systems is challenging. In this section, we elaborate on the differences between the development process

of traditional software systems and ML-based software systems and the development challenges that

ML-based software systems pose in order to provide more context to the research problem described in

Section 1.1.

A study that focuses on the differences between the development of ML-based software systems and

traditional software systems was conducted by Wan et al. (2021). In order to determine the differences

between the development of these two types of systems, the researchers followed a mixed method

approach, i.e., a combination between qualitative and quantitative data collection methods. They

interviewed several software practitioners with experience in both ML development and non-ML

development. Based on these conducted interviews, they were able to define 80 statements that describe

the differences between the two types of systems. These defined statements were refined and reduced to

31 statements during three focus groups (i.e. group interviews). The statements were subsequently used

in a questionnaire among software practitioners. For each statement, the practitioners had to determine

their degree of agreement with that statement on a 5-point Likert scale ranging from strongly disagree

to strongly agree.

Wan et al. (2021) found that, in contrast to traditional software systems, the validation of requirements

(i.e. determining whether requirements satisfy the requests of stakeholders) of ML-based software

systems requires several preliminary experiments in which different ML algorithms are tested. As the

performance of ML-based software systems might degrade after a period of time in production, the

requirements should incorporate this degradation of performance. ML-based software systems are

expected to be capable of detecting the performance degradation, and adapting to this degradation by

8

incorporating new data or a complete new model. In addition, the researchers found that the detailed

design of ML-based software systems is more time-consuming compared to traditional software systems

and is performed in a more iterative manner. Furthermore, a good performance of ML-based software

systems on test data does not guarantee the performance of these systems in production, which depends

to a large extent on the similarities between the training data and the incoming data. Moreover, the

researchers found that the capabilities of ML-based software systems largely depend on the processing

of the data.

Besides the differences between the development processes of traditional systems and ML-based

software systems, Wan et al. (2021) identified differences between these two types of systems in terms of

work characteristics. The researchers found, for example, that developers of ML-based software systems

require knowledge of mathematics, information theory and statistics. In addition, they found that it

is more difficult to create an accurate plan for the development of ML-based software systems and

there are no clear roadmaps for the development of effective ML components. Lastly, ML practitioners

face more challenges in the communication with customers than traditional software practitioners as

customers tend to find it difficult to interpret the results of the development of ML-based software

systems.

Similar to Wan et al. (2021), Liu et al. (2020) address the differences between the development of

traditional software systems and ML-based software systems. However, Liu et al. (2020) focus on

emerging and changing tasks in the software development process when ML components are integrated

in software systems. In order to identify these tasks, the researchers interviewed ML practitioners

from both industry and academia. In total, they found 25 tasks that are related to different software

development phases. Some of the tasks that emerge or change during the development of ML-based

software systems are: data exploration and understanding, data cleaning, feature extraction, algorithm

selection and criteria (i.e. performance metrics) selection.

In academic literature, several studies address the development challenges of ML-based software

systems. Ishikawa and Yoshioka (2019), for example, identified engineering challenges of ML-based

software systems and their causes (in general) based on a questionnaire among ML practitioners from

Japan. They found that practitioners consider the decision making with customers and testing and

quality assurance as the most difficult activities in the engineering of ML-based software systems.

Furthermore, the researchers found that according to the practitioners the posed challenges by the

systems mostly originate from the lack of test oracle (i.e. source of information that indicates whether

systems behave correctly in terms of their outputs for given inputs), the imperfection of the systems

and their behavioural uncertainty for unseen data. In the questionnaire, Ishikawa and Yoshioka (2019)

asked the practitioners to motivate their provided answers. Based on the comments of the practitioners,

the researchers were able to obtain further insights into their findings. Regarding the decision making

with customers, they found, among other things, that ML practitioners stated that there is a gap in

the understanding of ML between engineering teams and their customers. In addition, they found

that customers have unrealistic expectations in terms of the functionality and the performance (e.g.

the accuracy) of the systems. Regarding testing and quality assurance, the researchers found that the

nondeterministic nature of the systems is perceived difficult by practitioners. Furthermore, the concept

of test coverage is difficult to understand and apply effectively in the context of ML.

Similar to Ishikawa and Yoshioka (2019), Lwakatare et al. (2020) identified challenges and their cor-

9

responding solutions for the development and maintenance of ML-based software systems based on

a systematic literature review. The identified challenges were organised across two dimensions: the

ML development life-cycle and quality attributes. In the study, Lwakatare et al. (2020) distinguish the

following four quality attributes: adaptability, scalability, privacy and safety. In total, the researchers

found 23 challenges and 8 solutions. Most of these identified challenges are related to the adaptability

and scalability of the systems. The most occurring challenges regarding the adaptability in literature are

unstable data dependencies and data quality problems, and narrow evaluation metrics. In a continuously

evolving system, training data is created in a development pipeline from a continuous stream of input

data which, originates from sources with different qualities. These changes in input data could lead to

a degradation of the performance of the system. Furthermore, traditional ML metrics (e.g. accuracy and

precision) do not capture the business impact of the systems and are, therefore, considered insufficient

to evaluate their overall performance. In order to address unstable data dependencies and data quality

problems, Lwakatare et al. (2020) found that practitioners employ data validation tools, i.e., tools that

check and monitor the quality of data. In order to deal with narrow evaluation metrics, they identified

that tests and development strategies can be used that assist practitioners in determining whether

ML-based software systems are ready to be deployed in production. Moreover, A/B model experiments,

i.e., online experiments in which the performance of different variants of ML components of the systems

are evaluated, can be conducted. In these experiments, the performances of these components are also

evaluated on different defined business metrics (i.e. KPIs).

Regarding the scalability of the systems, challenges related to balancing the efficiency and effectiveness

in ML end-to-end development processes, and design of a ML infrastructure are most frequently

reported on in literature (e.g. Hazelwood et al., 2018; Polyzotis et al., 2018; Raeder et al., 2012). The

researchers found that these challenges can be addressed by the use of ML frameworks and platforms,

which assist practitioners, among other things, in the quality control and maintenance of ML-based

software systems.

Another study that identified challenges of the development of ML-based software systems is conducted

by Nascimento et al. (2019). In contrast to the other studies, Nascimento et al. (2019) focused especially

on challenges that ML practitioners face during the development of ML-based software systems in

small software companies. In order to identify the challenges, the researchers interviewed seven ML

practitioners from three small software companies in Brazil. Based on these interviews, they found

three main challenges of the development of ML-based software systems: the identification of business

metrics of customers, the lack of a defined development process and the design of a structure for the

required database. In order to address these identified challenges, Nascimento et al. (2019) proposed

two checklists: CheckBM and CheckDP. CheckBM focuses on the identification of customer’s business

metrics while CheckDP addresses both the lack of a defined development process and the design of

database structure. In order to create these checklists, the researchers used literature and practices used

and known by the interviewed practitioners. Each checklist consists of a set of tasks with corresponding

verification criteria (i.e. items) that need to be checked. For CheckBM, for example, Nascimento et al.

(2019) determined tasks that are performed by the practitioners during the identification of customer’s

business metrics. For each task, they defined validation criteria related to a particular task.

10

2.2 Maturity models

Maturity models are tools that describe the maturity of objects (e.g. organisations, processes or people)

as an evolution path of discrete stages (Becker et al., 2009; Otto et al., 2020). The maturity of a particular

object could, for example, be defined as the performance, competence or effectiveness of that object.

The sequence of discrete stages is referred to as the maturity levels. Van Steenbergen et al. (2010) refer

to maturity models that distinguish a particular number of consecutive maturity levels as fixed-level

maturity models.

The lowest maturity level mostly represents the initial maturity state of an object under consideration

while the highest maturity level represents a state of total maturity of that object. For each maturity

level, a model provides characteristics and criteria that need to be satisfied in order to reach that level.

Based on these characteristics and criteria, an assessment with a maturity model could be conducted in

order to determine the current maturity level of the object under consideration (i.e. the position of the

object along the defined evolution path).

According to Pöppelbuß and Röglinger (2011), three purposes of use of maturity models can be distin-

guished:

• Descriptive: A maturity model with a descriptive purpose of use assists in determining the

current maturity state (i.e. as-is situation) of the object under consideration based on an assessment

regarding the given characteristics and criteria.

• Prescriptive: A maturity model with a prescriptive purpose of use assists in identifying areas of

improvement and provides specific measures to guide these improvements.

• Comparative: A maturity model with a comparative purpose of use allows for comparing the

object under consideration with other assessed objects based on historical assessment data.

These purposes of use are not mutually exclusive. For example, a descriptive maturity model could also

have a comparative purpose of use. Furthermore, a model with a prescriptive purpose of use should

also contain all characteristics of a descriptive model.

Since the introduction of the Capability Maturity Model (CMM; Humphrey, 1988), a maturity model

for software development processes, in 1988, maturity models have gained significant popularity and a

large number of models have been proposed in different domains ranging from software engineering to

risk management (Pöppelbuß & Röglinger, 2011).

2.3 Engineering best practices in ML

Our maturity model for ML teams will be developed based on a set of engineering best practices for

ML-based software systems, which is referred to as the SE4ML catalogue. Most of the practices (i.e.

29 of the 45 best practices) in this catalogue are identified during a study by Serban et al. (2020). In

this study, Serban et al. (2020) aimed to determine how teams develop, deploy and maintain ML-based

software systems based on the identification of best practices from grey and academic literature. The

identified practices consist of traditional SE practices, modified SE practices to be suitable for ML-based

software systems and new practices designed specifically for these systems. The practices are divided

11

into six aspects related to the ML development life-cycle: data, training, deployment, coding, team and

governance.

Besides the identification of best practices, the researchers determined the adoption of the identified

practices and validated their perceived effects (agility, software quality, team effectiveness and traceabil-

ity) through a questionnaire among ML practitioners (especially ML teams). Based on the obtained

responses, Serban et al. (2020) ranked the practices on their degree of adoption and tested several

relationships between the practices and their perceived effects using statistical models.

The rest of the practices in the catalogue are identified in a study by Serban et al. (2021), which

complements their previously discussed work. This follow-up study focused on bridging the gap

between proposed guidelines for the development of trustworthy ML (i.e. the development of ML in an

ethical and robust manner) and operational practices for practitioners. In order to bridge this gap, the

researchers identified practices for trustworthy ML based on a review of grey and academic literature.

Similar to their previous study, Serban et al. (2021) also determined the adoption of the identified

practices by practitioners through a questionnaire. The used questionnaire in this follow-up study is an

extension of the questionnaire of the initial study with questions related to newly identified practices

for the development of trustworthy ML. The extended questionnaire measures thus both the adoption

of the initial set of practices and the set of practices for trustworthy ML.

12

Chapter 3

Design science

3.1 The paradigm

In this study, we apply the design science methodology as described by Wieringa (2014). Design science

is the design and study of artifacts in particular problem contexts, i.e., contexts in which problems are

situated (e.g. organisations, business processes and people). Artifacts in design science are, for example,

methods, frameworks and algorithms. The designed artifacts interact with problem contexts in order to

improve some aspects of these contexts and address the problems. With the development and study of

artifacts in problem contexts, design science aims to enhance scientific and technical knowledge.

In this case, the artifact is a maturity model for ML-based software systems and the problem context

with which the model interacts, is the development processes of ML teams.

3.2 Design science framework

The two parts of design science, the design and study of artifacts, are connected to a social and

knowledge context, and together form the design science framework. This conceptual framework,

which represents the entire context of design science research, is shown in Figure 3.1. The social context

consists of stakeholders who affect the research or are affected by it, such as sponsors of the research

and users of the artifact. The knowledge context comprises all knowledge available prior to design

science research, such as scientific theories, design specifications of existing artifacts and lessons learned

from previous design science research. Design science research uses this knowledge and may expand it

with the development of a new artifact or answering knowledge questions. In Section 3.3, we elaborate

on knowledge questions.

13

Figure 3.1: The design science framework. The framework illustrates all concepts, entities and relationships of design science
research. Figure is based on Wieringa (2014).

3.3 Goals and problems

Design science research has two kinds of goals: design goals and knowledge goals. Design goals can

be divided into instrument and artifact design goals. Instrument design goals are the goals to design

research instruments during the research, while artifact design goals are the goals to design artifacts.

The instrument design goals could support the achievement of knowledge goals, which are the goals

related to the creation of knowledge with the research. The artifact design goals contribute to the

improvement of the problem context, which in turn supports the achievement of the goals of external

stakeholders. The improvement of the problem context and the goals of external stakeholders form the

goals in the social context of design science research.

The design and study of artifacts are related to two research problems, namely design problems and

knowledge questions. A design problem, also referred to as a technical research question, connects the

problem context with the external stakeholder goals and requires the development of an artifact such

that its interaction with the problem context contributes to the achievement of the goals of external

stakeholders. A design problem is thus the problem to design an artifact in order to improve a problem

context and is related to an artifact design goal of design science research. Knowledge questions are

empirical or analytical questions about the artifact, its problem context and the interaction between

them. These knowledge questions are derived from the knowledge goals of design science research.

In this study, we define the design problem, which is a transformation of the defined research question,

as follows: improve the development processes of ML teams by developing a maturity model for

ML-based software systems that operationalises engineering best practices in order to provide these

teams with guidance and support during their development processes. The artifact design goal that

corresponds to this design problem is to develop a maturity model for ML-based software systems.

14

The knowledge questions (KQ) with their underlying goals (G) are defined as follows:

KQ1: What are the current maturity models in the domain of SE?

KQ2: What approaches are available for the development of maturity models?

KQ3: How can the adoption of engineering best practices in the development processes of ML teams be

operationalised?

KQ4: How accurate and relevant is the created maturity model for the development processes of ML teams?

G1: Obtain insights into the content and structure of available maturity models in the domain of SE.

G2: Define the common phases in the development of maturity models.

G3: Determine how the adoption of engineering best practices can be measured in an objective and

general manner.

G4: Determine to which extent the developed maturity model helps ML teams with assessing and

improving their development processes in practice.

We omit the instrument design goals of our study in this section as these goals do not correspond to

one of the research problems of design science and are indirectly attained when other defined goals are

attained.

3.4 Design cycle

Design problems are addressed by following the design cycle, which is shown in Figure 3.2. The design

cycle, which is a part of the larger engineering cycle, comprises three tasks: problem investigation,

treatment design and treatment validation. A treatment can be defined as an artifact that interacts with

the problem context. In the engineering cycle, a validated treatment, which is the result of the design

cycle, is implemented in a real-world setting and evaluated on its effectiveness. Design science research

often iterates several times over the design cycle.

Although the design cycle provides a sequence of tasks, the cycle does not prescribe how to actually

perform these tasks. The design cycle only indicates that the problem should be identified, the treatment

should be designed and validated in order to address a design problem.

Figure 3.2: The design cycle. The design cycle provides a sequence of tasks to address design problems. Nevertheless, the cycle
does not prescribe how these tasks should be executed. In design science research, often several iterations through the design
cycle are performed.

15

In this study, we perform one iteration over the design cycle in order to develop and validate the

maturity model for ML-based software systems. In the following sections, we elaborate on each task of

the cycle.

3.4.1 Problem investigation

The problem investigation is the study of a problem, which serves as a preparation for the design of the

artifact. During the problem investigation, the problem to be addressed is defined and the stakeholder

goals are identified. As part of the study of a problem, the aspects of the problem, their causes and

effects on stakeholders goals are determined.

3.4.2 Treatment design

During treatment design, the artifact that needs to address the problem is designed (i.e. the treatment).

Prior to the design of a treatment, requirements (R), desired properties of a treatment from the

perspective of stakeholders, are specified. In design science, specified requirements, are justified with

contribution arguments (CA), which argue that the treatment contributes to stakeholders goals in case

it satisfies the specified requirements. A requirement could have several contribution arguments and

contribute as a result to several stakeholder goals. As contribution arguments argue that the interaction

between an artifact and its problem context contributes to stakeholder goals, these contribution

arguments can be considered as predictions.

We define the requirements for the maturity model that we develop and validate with corresponding

contribution arguments as follows:

R1: The maturity model should provide ML teams with insights into the current state of their

development processes based on their adoption of best practices.

CA1: If teams are able to provide their adoption of best practices accurately and the maturity model

is able to provide teams with insights into the current state of their processes based on their

adoption of practices, then the model enables teams to assess their processes based on best

practices.

R2: The maturity model should guide ML teams to their desired state of their development processes.

CA2: If the maturity model guides teams to their desired state of their processes and teams are able to

specify their desired state, then the model enables teams to plan and execute the improvement

of their processes.

R3: The maturity model should be understandable and applicable with minimal effort (i.e. at most

three hours to understand the model and conduct an assessment) by ML teams.

CA3: If the maturity model is understandable and applicable with minimal effort (i.e. at most three

hours), and teams have a particular proficiency in ML and sufficient insight into the used

approaches in their processes, then the model enables teams to assess and improve their

processes in a straightforward way.

16

3.4.3 Treatment validation

The validation of a treatment focuses on determining whether the artifact addresses the defined problem.

As real-world implementations of a designed artifact do not (yet) exist, a prototype of the artifact and

a model of its problem context, which simulate a real-world implementation, are used to validate an

artifact. A prototype of an artifact, which interacts with a model of its problem context is referred to as

a validation model. During treatment validation, the interaction between the prototype of the artifact

and a model of its problem context is studied in order to predict what the effects would be and whether

the defined requirements are satisfied in case the artifact is implemented in a real-world setting. In our

study, our maturity model will be prototyped in Excel. The development processes of ML teams that

will participate in our case study for the validation of the model will serve as models of its problem

context.

17

Chapter 4

Maturity models for software
engineering

Various maturity models for different application domains (e.g. IT management and process man-

agement) have been proposed in academia and industry. In the following sections, we discuss and

compare existing maturity models in order to determine their design, which can serve as a guide for the

construction of our own model. As we develop a maturity model for the development processes of ML

teams, we focus on maturity models that guide the improvement of processes in the field of software

engineering. We distinguish four types of such maturity models: traditional software development

models, agile software development models, software security models and Free/Libre Open Source

Software (FLOSS) development models.

We exclusively discuss maturity models of which the design or development is documented extensively.

4.1 Traditional software development models

The Capability Maturity Model Integration for Development

One of the most applied maturity models for software process improvement in practice is the Capability

Maturity Model Integration for Development (CMMI-DEV), which was developed by industry, the US

government and the Software Engineering Institute (SEI; CMMI Product Team, 2010; Fontana et al.,

2015). CMMI-DEV guides organisations in improving their processes for the development of products

and services based on best practices. CMMI-DEV comprises 22 process areas, which are divided into

four categories: process management, project management, engineering and support. A process area

is a set of related practices in the corresponding area that, when adopted, satisfies goals that are

considered significant for improving that area. Each process area contains three model components:

required, expected and informative components. Required components are generic and specific goals

that are essential for improving the process in a particular process area. The expected components are

generic and specific practices that are significant for satisfying generic goals and specific goals (the

required components), respectively. Informative components are components that assist model users

in understanding these goals and practices, such as explanations, notes and example work products.

Generic goals and practices apply to several process areas while specific goals and practices correspond

to one particular process area.

18

CMMI-DEV distinguishes two improvement paths: the continuous and staged representations. The

continuous representation enables organisations to improve their processes regarding a set of selected

process areas while the staged representation enables organisations to improve their processes incre-

mentally by addressing consecutive sets of predefined process areas. In the continuous representation,

capability levels indicate the state of processes of organisations regarding a process area. The following

capability levels are defined: 0) Incomplete, 1) Performed, 2) Managed and 3) Defined. The staged rep-

resentation, however, uses maturity levels that represent the overall state of processes of organisations.

The following maturity levels are distinguished: 1) Initial, 2) Managed, 3) Defined, 4) Quantitatively

managed and 5) Optimizing. The first levels of both representations represent the initial state of the

processes of organisations.

The Software Engineering Maturity Model

Another maturity model for software process improvement is the Software Engineering Maturity Model

(SEMM), which is intended for small enterprises in the Spanish software industry (Garzás et al., 2013).

The model was developed by academia, industry and the Spanish government under supervision

of the Spanish Association for Standardization and Certification (AENOR) in order to improve the

quality of software development in these enterprises. SEMM comprises three components based on

several ISO/IEC standards (i.e. international norms): an assessment model for process capability and

organisational maturity, a software lifecycle model and an auditing process.

The structure of the assessment model is based on ISO/IEC 15504-7, which provides a framework

for the assessment of the maturity of organisations. The assessment model defines four maturity

levels of organisations: 0) Immature, 1) Basic, 2) Managed and 3) Established. For each maturity level

(except level one), a set of processes (e.g. project planning process and software integration process) is

defined based on studies on software process improvement in small enterprises and ISO/IEC 12207,

which describes the development process of software systems. Within the assessment model, a set of

process attributes is adopted from ISO/IEC 15504-5, which represents required characteristics for the

institutionalisation of the defined processes. This set of process attributes apply to all processes. The

process attributes are divided into three capability levels: 1) Performed, 2) Managed and 3) Established.

These process attributes consists of general practices and work products. The set of general practices of

a process attribute should be adopted in order to satisfy the purpose of that particular process attribute.

The general practices are adaptations of practices in an exemplary assessment model presented in

ISO/IEC 15504-5. Besides the general process components (i.e. process attributes), processes contain

process specific components: outcomes and activities. The outcomes and activities of processes are

defined in the software lifecycle model of SEMM, which is based on ISO/IEC 12207. The outcomes are

required characteristics for the implementation of the process. Activities represent the tasks that could

be performed in order to fulfil these characteristics.

The maturity of an enterprise is determined based on its achieved capability levels of all processes in

the assessment model. In order to determine the capability level of a process, each process attribute

is evaluated with the use of a scale, which indicates the degree of achievement of components corre-

sponding to a particular process attribute in terms of percentage intervals. The scale distinguishes the

following achievement degrees: not achieved, partially achieved, largely achieved and fully achieved.

Process attributes corresponding to a particular capability level should be at least partially achieved and

19

process attributes of any lower levels should be fully achieved in order to achieve that capability level.

The maturity level corresponding to the obtained capability levels for the processes is determined based

on some derivation rules. For example, an enterprise achieves maturity level 2 in case the enterprise

achieves capability level 2 for all processes corresponding to this maturity level.

4.2 Agile software development models

As most traditional software development models define maturity as the institutionalisation of well-

defined processes, which is not usual in agile software development environments, the achievement

of a high degree of maturity is not compatible with maintaining agility (Fontana et al., 2014). Hence,

traditional software development models are not directly applicable to agile environments.

In the field of agile software development, two types of studies address the accomplishment of maturity

while maintaining the benefits of agile methods (Fontana et al., 2018; Fontana et al., 2015). The first

group of studies focuses on the adaptation of agile practices and principles in order be suitable for

traditional software development models, such as CMMI-DEV. The second proposes novel maturity

models for agile software development. In the context of this study, we focus on the second group of

studies.

The agile adoption framework

Sidky et al. (2007) presented an agile adoption framework, which guides and assists organisations in

agile adoption. The agile adoption framework comprises two components: the Sidky Agile Measurement

Index (SAMI) and a four-stage assessment process. SAMI identifies the agile potential (i.e. the degree

of agility that can be accomplished) of projects and organisations. The four-stage process assists in

determining whether organisations are ready for agile adoption and what set of agile practices could

be adopted based on their agile potential.

SAMI defines five agile levels, which represent degrees of agility of an organisation or project: 1) Col-

laborative 2) Evolutionary 3) Effective 4) Adaptive and 5) Encompassing. The agile levels of SAMI

correspond to qualities identified from the agile manifesto. Agile levels consist of practices. The prac-

tices of each level are divided over a set of agile principles, which represents characteristics of an

agile development process (e.g. human centric and technical excellence). A principle indicates the

manner in which practices contribute to the achievement of an agile quality of a particular level. Each

agile practice corresponds to required organisational characteristics (in the form of questions) for the

successful adoption of that practice. For each organisational characteristic, a set of indicators is defined,

which assesses a particular characteristic. The indicators corresponding to required organisational

characteristics for an agile practice are used to determine to which extent an organisation is ready to

adopt that practice.

The four-stage process contains the following stages: identification of discontinuing factors, project level

assessment, organisational readiness assessment and reconciliation. In the first stage, a pre-assessment

is conducted that identifies the presence of discontinuing factors, i.e., factors that could prevent the

successful adoption of agile practices, in an organisation. In case the pre-assessment indicates that

these factors are not present, an organisation could continue with the agile adoption initiative. In the

second stage, SAMI is used to determine the highest level of agility that a project of an organisation can

20

accomplish, which is referred to as the target level. In order to determine the target level, the assessment

with SAMI focuses on limiting agile practices, i.e., practices that depend on the presence of factors

(project characteristics) that are outside the control of a project or organisation for their adoption. The

assessment identifies to which extent these required factors associated with limiting agile practices are

present. The target level is the first agile level corresponding to a limiting agile practice of which one of

its factors is identified to be absent.

In the third stage, the extent to which an organisation is ready to accomplish the target level is

determined. In order to determine the organisation’s readiness, the organisational characteristics

corresponding to the agile practices up to the target level are assessed based on their presence.

The highest level of agility that an organisation can accomplish depends on its readiness to adopt

the practices up to the target level, which is referred to as the organisational readiness level. The

organisational readiness level is the first agile level corresponding to an agile practice of which one

of its required organisational characteristics is absent. In the final stage, the differences between the

target level and organisational readiness level are reconciled in order to determine the set of agile

practices that will be adopted in the project. For example, an organisation could determine to improve

the presence of some organisational characteristics that prevent the accomplishment of the target level

in case its organisational readiness level is lower than the target level.

The Scaled Agile Framework Maturity Model

Another framework that focuses on agile software development is the Scaled Agile Framework Maturity

Model (SAFe MM), which was proposed by Turetken et al. (2017). SAFe MM guides organisations in

the adoption of SAFe and assesses its adoption level. SAFe provides values, principles and practices in

order to enable large organisations to scale agile and obtain business agility.

SAFe MM was developed in two main steps: the development and refinement of an initial model. In

order to develop the initial version of SAFe MM, Turetken et al. (2017) adapted and extended SAMI

with SAFe practices. After the development of the initial model, the initial model was refined through a

Delphi study, i.e., a research approach, which aims to establish consensus on a particular subject by

allowing experts to give their opinions and reconsider these opinions based on the opinions of other

experts. In the Delphi study, a panel of seven SAFe and agile experts from industry reviewed the initial

model. The conducted Delphi study consisted of two rounds. In the first round, the panel of experts

assessed each practice in the model in order to determine whether it should remain unchanged, be

changed (e.g. its description and position in the model) or removed. Moreover, the panel was asked to

answer detailed questions regarding the completeness and alignment of the content of the model. In the

second round, the panel of experts was requested to reach consensus on their proposed improvements

based on the results of the first round.

The final version of SAFe MM consists of three types of practices: agile practices from SAMI, modified

agile practices from SAMI and SAFe practices. Similar to SAMI, the achievement of each practice in

SAFe MM is assessed with the use of indicators corresponding to characteristics of that practice. For

the SAMI practices, the original indicators are used. In order to assess the achievement of a practice,

all corresponding indicators are rated with a scale derived from ISO/IEC 15504. This scale has the

following options: not achieved, partially achieved, largely achieved and fully achieved. In contrast to

SAMI, the assessment results are not aggregated into a single maturity level.

21

4.3 Software security models

The Building Security in Maturity Model

A well-established, data-driven maturity model for software security is the Building Security in

Maturity Model (BSIMM; Synopsys, 2022), which quantifies performed activities during software

security initiatives (SSIs) of various organisations. These organisations form the BSIMM community.

Based on the quantified software security activities of organisations that are part of the community,

BSIMM aims to assists other organisations in evaluating and planning their own SSIs. As BSIMM

focuses on activities that are actually performed during SSIs, the model evolves annually. SSIs are

organisational-wide programs to coordinate the establishment, measurement and evolution of software

security activities.

BSIMM organises the performed software security activities across the BSIMM community into a soft-

ware security framework (SSF). The SSF distinguishes four domains: governance, intelligence, the secure

software development lifecycle (SSDL) touchpoints and deployment. The domains consists of practice

areas (e.g. attack models and security testing). Each practice area encompasses the corresponding

security activities. The security activities of a practice area within a domain are divided across three

levels based on their observation frequencies in BSIMM community. Level 1 activities are the most

commonly performed activities, level 2 activities are performed less frequently and level 3 activities are

rarely preformed across the community.

The results of an assessment with BSIMM are, among others, a scorecard, which reflects the current

state of an assessed SSI of an organisation relative to the SSIs of the BSIMM community. The scorecard

presents which of the software security activities observed across the community are performed during

the SSI. Each software security activity in the scorecard is accompanied by its observation frequency.

The scorecard enables organisations to understand the state of their SSIs, communicate the state with

stakeholders (e.g. customers and executives), identify gaps against expectations, prioritise identified

gaps and create improvement plans.

The Software Assurance Maturity Model

Another well-known maturity model that focuses on software security is the Software Assurance

Maturity Model (SAMM), which guides organisations in assessing and improving their software

security posture (i.e. the ability to develop and deploy secure software; OWASP, n.d.-a).

SAMM encompasses 15 security practices, which are divided over five business functions: governance,

design, implementation, verification and operations. Each security practice consists of activities, which

are separated in two streams. The streams of a security practice represent particular aspects of that

practice with corresponding high-level objectives. The activities corresponding to a security practice

are arranged in three maturity levels. Each maturity level consists of a specific objective, activity, and

assessment question with corresponding answer options and quality criteria, which depend on the

stream.

SAMM is usually applied through a sequence of six phases: preparation, assessment, target setting,

planning, implementation and roll-out (OWASP, n.d.-b). In the preparation phase, the scope of the

improvement initiative is defined (e.g. the entire organisation, a particular software system, project or

22

team) and relevant stakeholders are identified. Subsequently, a maturity self-assessment is conducted by

answering the questions corresponding to the maturity levels based on an evaluation of the current state

of practices within the defined scope. The maturity self-assessment identifies the maturity of the scope

regarding each security practice of SAMM. In the target setting phase, a target for the improvement

initiative is set by determining which activities should be implemented in order to improve maturity of

the scope. Moreover, the impact of the set target on the organisation is determined.

After the target is set, a roadmap for the implementation of the selected activities is created. In

the roadmap, the activities are divided over a number of phases with a particular duration. In the

implementation phase, the set of selected activities are implemented based on the created roadmap.

Finally, the implemented improvements are made visible across the organisation through trainings and

communication with management. Furthermore, the effectiveness of the improvements in terms of

impact and usage are identified.

4.4 FLOSS development models

FLOSS projects, projects in which software is developed that is free to execute, study, modify and

distribute, are characterised by the geographical decentralisation of the developers, the importance

of the contributions to the projects and their reputations (Petrinja & Succi, 2012; The Free Software

Foundation, 2023). Similar to the aspects of agile software projects, these aspects of FLOSS projects

are not sufficiently incorporated in traditional software development models. Hence, several maturity

models for FLOSS development are proposed.

QualiPSo Open Source Maturity Model

One of the maturity models for FLOSS development is the QualiPSo Open Source Maturity Model

(OMM), which assists in assessing and improving the quality of the FLOSS development process

(Petrinja & Succi, 2012). OMM consists of 25 components which represent aspects that are perceived as

important for the quality of the FLOSS development process (e.g. project documentation and license

management). In OMM, these components are referred to as TrustWorthy Elements (TWEs). Based on

their perceived importance, the TWEs are divided into three maturity levels: 1) Basic 2) Intermediate

3) Advanced.

The TWEs are decomposed into smaller components based on the Goal-Question-Metric (GQM)

approach. Each TWE comprises one or more goals related to that particular TWE. The defined goals in

OMM address three types of aspects: the creation of elements (e.g. documentation, software components

and processes), the management of these created elements and their improvement. Each goal in turn

consists of practices, which represent activities which are commonly undertaken in FLOSS projects. For

each practice, OMM defines several metrics that assist in determining to which extent the corresponding

practice is fulfilled.

During the assessment of a FLOSS project, the metrics corresponding to the practices are assigned a

value ranging from 1 to 4, which represents their degree of fulfilment. Metrics that are not applicable

to the project are assigned a value of 0. For each practice, a rating is calculated based on the assigned

values to the corresponding metrics. In order to determine whether a maturity level is obtained, the

sum of all practice ratings is divided by the sum of the maximum achievable practice ratings for that

23

corresponding level. For a level to be fulfilled, this calculated maturity rating should be at least 90%.

OMM distinguishes two types of assessments: a (internal) complete and (external) partial OMM

assessment. In a complete OMM assessment, individuals that have access to all documents of a FLOSS

project participate, while in a partial OMM assessment the assessors only have access to publicly

available documents.

4.5 Comparison of maturity models

In Table 4.1, the discussed maturity models for software engineering in the previous sections are

compared based on several design characteristics. From the comparison, we notice that most of the

discussed maturity models have a prescriptive purpose of use. These maturity models do not only assist

in assessing the current states (i.e. the as-is situations) of objects under consideration, but also propose

measures to guide the improvement of these objects. As our aim is to develop a maturity model that

guides ML teams in improving their development processes, our model should also have a prescriptive

purpose of use.

All discussed maturity models, except SAMI, are grounded in knowledge and experience from industry.

This often originates from the fact that maturity models are developed or adapted using the contributions

of practitioners. Besides their grounding in knowledge and experience from industry, some of the

models are also based on literature, such as existing models and standards (e.g. CMMI-DEV and

ISO/IEC standards).

The maturity model that we will develop in this study focuses on maturity assessments at the team

level. In contrast, most discussed models assist in determining the maturity of entire organisations.

Assessments with the models are mostly performed by teams of assessors based on artifacts, such as

process documentation and dashboards. In most cases, these teams consist of internal and/or external

assessors. Internal assessors are individuals which are related to the object under consideration while

external assessors are independent professionals in the domain of the maturity model.

24

Table 4.1: Comparison of maturity models for software engineering

CMMI-DEV SEMM SAMI SAFe MM BSIMM SAMM OMM

Purpose Descriptive Prescriptive Prescriptive Prescriptive Descriptive Prescriptive Prescriptive

Grounding Industry Literature and

industry

Literature Literature and

industry

Industry

(data)

Industry Literature and

industry

Analysis level Organisation Organisation Organisation

and project

Organisation Organisation Organisation Project

Maturity levels 5 4 5 5 3 3 3

Assessment type Third-party

assessment

Third-party

assisted

assessment

(Certification

audit)

Internal or

third-party

assessment

Third-party

assisted

assessment

Third-party

assessment

Internal

assessment

(self-

assessment)

Internal or

third-party

assessment

Assessment base Artifacts and

affirmations1

Artifacts and

affirmations1

Indicators Indicators and

workshops

Artifacts and

interviews

Interviews or

workshops

Artifacts

Assessors Team of

internal and

external

assessors

Team of

internal and

external

assessors

Agile coach or

internal

employee(s)

Internal

assessors

accompanied

by model

developers

Team of two

or three

BSIMM

assessors

One or more

internal

assessors

Team of

assessors

Application Thousands of

organisations

worldwide

Several

organisations

from the

Spanish

software

industry

One

organisation

for which the

benefits of the

application is

described in

an academic

study

One

organisation

as part of a

case study to

evaluate the

model

130

organisations

across

different

industries

Various

organisations

worldwide

Several FLOSS

projects as

part of

academic

studies

1 A confirmation that a particular element (e.g. a best practice) of which the implementation is required by a maturity model, is actually implemented.

This confirmation could be collected through different methods (e.g. interviews and questionnaires).

25

Chapter 5

Design approaches

Although numerous maturity models for different domains are presented in literature, methods and

procedures for the development of such maturity models are less extensively covered. In the following

sections, we discuss several design approaches for maturity models. We distinguishes two types of

design approaches: approaches for general (i.e. fixed-level maturity models) and specific models. After

discussing the design approaches, we identify the common phases in the development of maturity

models.

5.1 Approaches for general models

One of the initial studies on the development of maturity models is the work of de Bruin et al. (2005).

In this study, de Bruin et al. (2005) presented a development framework for maturity models in which

the general phases of the development of these models are specified. In order to provide support for

the presented framework, the framework was applied for the development of two maturity models in

the domains of business process management and knowledge management.

The phases, which are included in the development framework, are as follows: scope, design, populate,

test, deploy and maintain. In the scope phase, the focus of the maturity model, i.e., the domain that

the model will target, is determined. Moreover, stakeholders are identified that will be involved in the

development of the model. These stakeholders could be from academia, industry and the government. In

the design phase, the design (i.e. structure) of the model, which should reflect the needs of the intended

audience of the model, is determined. Maturity models mostly represent the maturity of an entity

through a number of stages of which their requirements build upon each other. In addition, the design

of the model involves several other decisions, such as the assessment method (e.g. self-assessment or

third-party assisted) and the intended assessors.

In the populate phase, the content of the model is defined. The domain of the model is decomposed

into domain components and sub-components. In order to decompose the domain into components, a

combination of several research methods (e.g. literature review, interviews and the Delphi method) is

usually employed. Besides the definition of the content, in the populate phase the assessment instrument,

i.e., the instrument with which the assessment will be conducted, is created. After the populate phase,

the model and the created assessment instrument are tested for validity and reliability. Subsequently, the

model is deployed (i.e. made available for use) in real-world settings, and its generalisability is verified

26

and improved. In order to gradually standardise the model and acquire acceptance, the deployment of

the model is executed in two steps. The model is first deployed to stakeholders that were involved in

its development and testing after which it is deployed to entities that were not part of these phases.

The last phase of the framework focuses on the evolution and refinement of the model. As the domain

and the understanding of the model evolve over time, the model is required to change in order to

stay relevant. According to the framework, changes to the model should be tracked in the form of a

repository.

Based on the work of de Bruin et al. (2005), Mettler (2011) proposed a phased approach for the

development of maturity models. The phased approach consists of the following phases: scope definition,

design of the model, design evaluation and evolution reflection. For each phase, Mettler (2011) identified

design decision parameters, i.e., decisions that have to be taken during the development of maturity

models. In the scope definition, the scope of the maturity model is defined. The scope definition

involves the following design decisions: the extent of the model (i.e. focus on general or more-specific

subject), the novelty of the targeted subject (e.g. focus on a mature or completely new subject), level

of the analysis (e.g. group or organisation level), the intended audience and the distribution of the

model (i.e. open or exclusive access). After the scope is defined, the maturity model is developed. In

order to develop the model, the targeted notion of maturity should be defined (e.g. process-focused

or object-focused definition), which influences the content of the model. For example, in case of a

process-focused definition of maturity the content of the model should focus on process activities

and practices while an object-focus definition requires the definition of functional and non-functional

requirements. Besides defining the notion of maturity, the dimensionality of the model (i.e. one or

multi-dimensional), the driver of the model design (i.e. theory-driven, practice-driven or a combination),

the form of the model (e.g. software application), the assessment method and the intended users should

be determined.

In the design evaluation phase, the model is verified and validated. Verification is the process of

determining to which extent the model satisfies the intent of the designer accurately, while validation

focuses on determining whether the model represents the real-world from the perspective of the

intended users. The development process of the model could also be evaluated in this phase. Besides

deciding on the subject of the evaluation, the timing of the evaluation should be determined, which

influences the required research method. An evaluation could be performed before (ex-ante) or after the

artifact (ex-post) is implemented in a real-world setting. In the last phase, an approach for the evolution

of the model is conceived in order to incorporate the continuous change of the targeted subject and

maintain the standardisation and acceptance of the model. In order to conceive an evolution approach,

the subject (i.e. model content and assessment approach) and the frequency (i.e. non-recurring or

continuous) of the evolution should be determined. Moreover, it should be determined who provides

the incentive for model changes (i.e. internal or external). For example, model changes can be induced

by the users of the model or the model designer.

Another study that addresses the development of maturity models was conducted by Becker et al.

(2009). In this study, Becker et al. (2009) defined requirements for the development of these models

based on guidelines for design science research proposed by Hevner et al. (2004). The researchers

compared several maturity models in different domains on their fulfilment of these requirements.

Based on this comparison, Becker et al. (2009) proposed a procedure model for the development of

maturity models, which supports model designers in achieving the defined requirements. In order to

27

demonstrate the applicability of the procedure model, the model was applied for the development of a

maturity model in the domain of IT performance measurement.

The procedure model begins with the problem definition, in which the problem to be solved is defined

and its relevance is identified. In order to define the problem, the domain and the intended audience of

the model need to be determined. After the problem definition, existing maturity models are compared

in order to determine the design strategy. Within the procedure model, the following design strategies

are distinguished: the development of a completely new design, the improvement of an existing model,

the combination of models into a new model and the application of structures or the content of existing

models to a different domain.

The central phase of the procedure model is the iterative development of the maturity model. The

development of the maturity model consists of the following steps: determination of the high-level

structure of the model (i.e. one-dimensional or multi-dimensional), selection of a method for the design

of each abstraction level (i.e. model dimensions or their attributes), design of the model according to

the selected methods and testing of the model on its adequacy, consistency and comprehensiveness.

Based on the results of the test, another iteration over development steps can be performed.

After the development of the model, the forms in which the model is transferred (i.e. transfer forms) to

the intended users are conceived. Maturity models could, for example, be transferred to the targeted

audience in the form of check-lists, reports, manuals and software applications. The design of the

model transfer should incorporate possibilities for the evaluation of the model in order to allow users

to provide feedback on the model (e.g. forms for change requests). In the next phase, the model is

made accessible in the conceived forms. Finally, the model is evaluated in order to determine whether

the model solves the defined problem and provides the aimed benefits. Based on the results of this

evaluation, the development process may be reiterated, the transfer design may be modified while

the maturity model remains unchanged or the maturity model may be rejected completely. If an

unchanged maturity model is required to address the defined problem permanently, the model needs

to be evaluated regularly in order to determine whether model modifications are necessary due to

changing conditions, technical advancements and novel scientific insights.

In contrast to the previously discussed studies, Pöppelbuß and Röglinger (2011) focused on the maturity

model development from the perspective of the models instead of their development process. They

proposed a framework, which consists of design principles, i.e., principles of form and function, that

maturity models should comply with in order to be employed in a useful manner. In order to define the

design principles, Pöppelbuß and Röglinger (2011) reviewed literature related to maturity models. The

framework serves as a kind of checklist, which assists researchers and practitioners in the development

of novel maturity models and enables them to compare existing models. The defined design principles

are categorised based on application purposes of maturity models. Within the framework, the following

design principles are distinguished: basic principles, principles for a descriptive application purpose

and principles for a prescriptive application purpose. Maturity models should comply with the basic

principles regardless of their purpose. A descriptive model should comply with the basic principles

and the principles for a prescriptive application purpose while a prescriptive model should satisfy the

design principles of all categories.

In order to demonstrate the usefulness of the framework, three maturity models in the domain of

business process management were evaluated on their fulfilment of the design principles. Pöppelbuß

28

and Röglinger (2011) found that the evaluated models comply well with the basic design principles

and the principles for a descriptive application purpose. The principles for a prescriptive application

purpose, however, are not sufficiently fulfilled. Hence, Pöppelbuß and Röglinger (2011) concluded that

especially these principles are helpful for the development of maturity models and contribute to the

practicability of models when satisfied.

5.2 Approaches for specific models

Besides research on the development of general maturity models, a few studies address the development

of specific types of models. Maier et al. (2012) proposed a roadmap for the development of maturity

grids. They describe maturity grids as process maturity frameworks that specify the characteristics that

any process should have to deliver a high performance and the capabilities that every organisation

should possess in order to develop and deploy these high-performance processes. In maturity grids,

process performance aspects are structured against a set of maturity levels. For each process performance

aspect, a textual description of the characteristics at each maturity level is provided.

The roadmap was developed based on a review of 24 maturity grids, the feedback of two experts and

the own expertise of Maier et al. (2012). In order to demonstrate the utility of the roadmap, the roadmap

was used for the development of a maturity grid, which focuses on communication management

within design engineering organisations. The roadmap comprises the following four phases: planning,

development, evaluation and maintenance. Similar to Mettler (2011), Maier et al. (2012) defined a set of

decision parameters for each phase. In the planning phase, the intended audience (i.e. all stakeholders

involved in the assessment), the assessment purpose (i.e. raise awareness or benchmarking against best

practice entity), the scope of the grid (i.e. general focus or domain-specific focus), and success criteria for

model development and application are specified. After the planning phase, the grid is developed. In

order to develop the grid, process areas and maturity levels should be defined. In addition, the textual

descriptions of process area characteristics at each maturity level should be formulated. Moreover, the

distribution method of the grid should be determined.

In the evaluation phase, the grid is tested in practice by organisations. These evaluations are performed

in order to obtain feedback from participating organisations and iteratively refine the grid. These

evaluations should be performed until no more significant improvement suggestions are obtained and

the designer of the grid is satisfied with the evaluation results. In an evaluation, the grid is validated.

The validation of the grid focuses on determining whether the intent of the designer corresponds with

the understanding of its users. Furthermore, the obtained assessment results from applying the grid

are tested for correctness. Besides validation, the grid is verified against the defined success criteria in

the planning phase. Finally, as the domain of the grid broadens and deepens, the grid is continuously

maintained in order ensure its accuracy and relevance. In case of major adjustments to the grid, the

evaluation phase should be repeated. Besides the maintenance of the grid, the development process of

the grid and obtained results (e.g. from assessments) should be adequately documented and properly

communicated.

Another study that focuses on a specific type of maturity models was conduced by van Steenbergen et al.

(2010). In this study, van Steenbergen et al. (2010) presented a method for the development of focus area

maturity models. A focus area maturity model consists of focus areas related to a particular functional

domain (e.g. enterprise architecture or software product management). Each focus area comprises a

29

set of capabilities of progressive maturity. All capabilities of the focus area are structured relative to

each other in a matrix, which defines an incremental maturity path. In the matrix, the focus areas are

placed against the maturity levels. The capabilities, which are denoted by letters, are positioned at

a particular maturity level in this matrix. The positions of the capabilities in the matrix indicate the

order in which these capabilities should be acquired. The matrix describes which capabilities should

be acquired after acquiring capabilities in the same focus area and other focus areas (i.e. intra and

inter-process dependencies).

The presented method was developed based on a literature review on existing development methods and

practical experience. Based on this literature review, van Steenbergen et al. (2010) derived generic phases

in the development of maturity models. For each generic phase, they defined a set of development

steps that are specific for focus area maturity models. The method comprises ten steps divided

over four generic phases: scoping of functional domain, identifying focus areas, defining capabilities,

identifying dependencies between capabilities, structuring capabilities in matrix, developing assessment

instrument, defining improvement actions, implementing the model, iteratively refining the model and

communicating design results. The steps are schematically represented in an activity diagram.

5.3 Common development phases

Similar to van Steenbergen et al. (2010), we identify common phases in the development of maturity

models based on a comparison of the discussed process frameworks, i.e., frameworks that describe the

process of developing maturity models. The comparison comprises development process frameworks

for general maturity models as we focus on this type of maturity models in this study. The method

of van Steenbergen et al. (2010) for the development of focus area maturity models is thus omitted

from this comparison. We, however, incorporate the roadmap for the development of maturity grids

proposed by Maier et al. (2012) due to the similarities between these grids and general maturity models.

The comparison of the process frameworks is represented in Table 5.1. We identify the following

common development phases in the development process frameworks:

• Scoping: The definition of the scope of the maturity model. The scope definition encompasses

specifications of the targeted domain and the intended audience.

• Construction: The construction of the maturity model, which often comprises the selection

of design methods, the determination of the model dimensionality, the definition of model

components, the design of the assessment instrument and the specification of the model users.

• Validation: The testing of the maturity model in practice on several criteria (e.g. completeness,

usability and accuracy) before its implementation in real-world settings.

• Deployment: The publication of the maturity model to the targeted users in real-world settings.

• Revision: The change and refinement of the maturity model due to evolution of the model domain

in order to ensure its accuracy and relevance. Modifications could be the result of evaluations, i.e.,

the study of maturity models in real-world settings.

As stated before, the design evaluation phase of the process framework of Mettler (2011) could be

performed ex-ante or ex-post. In Table 5.1, the design evaluation phase is placed under the validation

phase as we assume that the evaluation is performed ex-ante. In case of an ex-post evaluation, the

30

evaluation is, however, performed after the implementation of the model in real-world settings and

should be considered part of the revision phase. Moreover, it is important to note that model validation

is part of the iterative development phase of the process framework of Becker et al. (2009).

The development process frameworks and the identified common phases provide a direction for the

development of the maturity model for ML-based software systems. Due to time constraints, we do not

implement our model in real-world settings. In this study, we, therefore, focus only on the scoping,

construction and validation phases.

31

Table 5.1: Comparison of development process frameworks for maturity models

Generic phases de Bruin et al. (2005) Becker et al. (2009) Mettler (2011)2 Maier et al. (2012)

Scoping Scoping: The focus of the

model and the

development stakeholders

are determined.

Problem definition: The

problem to be solved is

defined and its relevance is

identified.

Scope definition: The scope

of the model is defined,

which comprises decisions

on the extent of the model,

the level of the analysis, the

subject novelty, the

intended audience and

distribution of the model.

Planning: The specification

of the intended audience,

the assessment purpose, the

scope of the grid and

success criteria.

Construction Designing: The design of

the model (i.e. structure) is

determined, which involves

several design choices (e.g

the assessment method and

intended assessors).

Populating: The content of

the model and the

assessment instrument are

determined.

Comparison of existing

models: Existing maturity

models in the targeted

domain are compared.

Determination of the

design strategy: The design

strategy is determined

based on the comparison of

existing models in the

previous phase.

Iterative development of

the model: The model is

iteratively developed,

which encompasses the

following steps:

determining model

structure, selecting

approaches, designing and

testing of the model1.

Design of the model: The

model is developed, which

encompasses the definition

of the notion of maturity,

the dimensionality of the

model, design driver, form

of the model, the

assessment method and the

intended users.

Development: The

development of the grid,

which involves the

definition of process areas

and maturity levels, the

formulation of process area

descriptions and the

determination of the

distribution method.

Validation Testing: The model and the

assessment instrument are

tested for validity and

reliability.

Design evaluation: the

model is verified (i.e.

determining to which

extent designer’s intent is

satisfied) and validated (i.e.

determine whether the

model represents the

real-world)

Evaluation: The validation

(i.e. correspondence

between developer’s intent

and understanding of users,

and correctness of results)

and verification of the grid

against success criteria.

Deployment Deployment: The model is

made available for use, and

its generalisability is

verified and gradually

improved.

Conception of the transfer

design: The transfer of the

model to the intended users

is conceived.

Implementation of transfer

design: The model is made

accessible according to the

conceived transfer design.

Revision Maintenance: The model is

changed and refined as a

result of the evolution of

the model domain and its

understanding over time.

Evaluation: The model is

evaluated in order to

determine whether the

model provides a solution

for the defined problem

and the aimed benefits.

Evaluations could results in

transfer and model

modifications.

Evolution reflection: A

model evolution approach

is conceived in order to

incorporate subject changes

and ensure model

standardisation and

acceptance.

Maintenance: The grid is

continuously maintained to

keep the grid accurate and

relevant. Moreover, the

development process and

obtained results are

documented and

communicated.

1 The testing of the model could be considered equivalent to the validation of the model, which is part of the iterative development phase.
2 The design evaluation phase is assumed to be conducted ex-ante. In case of an ex-post evaluation, the design evaluation phase is part of the

revision phase.

32

Chapter 6

Model development

The identified scoping and model construction phases in Section 5.3 guide the development of our

maturity model. In these phases, we follow the design decision parameters of de Bruin et al. (2005) and

Mettler (2011). Furthermore, we adhere to some of the guidelines proposed by Becker et al. (2009). As

Maier et al. (2012) address the development of maturity grids, we do not focus on their work during

the development of our model.

In the following sections, we elaborate on the scoping and construction of our model.

6.1 The scoping of the model

As stated before, our maturity model focuses on the development process of ML-based software systems

on a team level. Over the past years, the development of these systems has been increasingly covered

in literature (e.g. Giray, 2021; Wan et al., 2021; Washizaki et al., 2019). As ML teams currently have

little insights into their adoption of best practices and guidance for the improvement of their practice

adoption is limited, our model aims to support and guide ML teams in assessing and improving

their development processes based on a set of 45 best practices identified by Serban et al. (2020, 2021).

Therefore, the model allows teams to obtain insights into the current situation (i.e. the as-is situation) of

their development processes in terms of their best practice adoption and to adapt these processes based

on this practice adoption.

We follow the categorisation of Serban et al. (2020, 2021) of the best practices into groups, which we refer

to as practice domains. Our maturity model thus covers the following six domains of the development

process of ML-based software systems: data, training, coding, deployment, team and governance. The

practice domains with their corresponding descriptions are shown in Table 6.1.

33

Table 6.1: The practice domains with corresponding descriptions. This categorisation of practices is derived from Serban et al.
(2020, 2021).

Practice domains Description

Data Practices related to the collection, preparation and cleaning of data, which is
used for training the ML models.

Training Practices associated with the training experiments, which involve the
development, evaluation and monitoring of ML models.

Coding Practices for writing, testing and integrating code. These practices are derived
from traditional software engineering.

Deployment Practices associated with the deployment of the ML models, which include the
deploying of the ML models, and their monitoring and maintenance in
production.

Team Practices for collaboration and communication in the ML teams.

Governance Practices that enforce responsible employment of ML, which include, among
other things, privacy, transparency and fairness.

The model will be constructed based on adoption data of the best practices and existing maturity

models for software engineering in literature. After the construction of the model, the model will be

validated on several characteristics through a case study involving multiple ML teams. Based on the

case study, we will determine the quality of the model in terms of the defined characteristics and

propose adaptations for the model.

In an attempt to contribute scientifically to the field of ML and enable ML practitioners to develop,

deploy and maintain ML-based software systems more robustly and responsibly, our model is publicly

available1 and licensed under the Creative Commons Attribution-ShareAlike 4.0 International License 2.

All the design decisions related to the scoping of the model are summarized in Table 6.2.

Table 6.2: The design decision parameters of de Bruin et al. (2005) and Mettler (2011) for the scoping phase accompanied by
our decisions. These decisions define the scope of our model.

Decision parameters Decision

Model subject The development process of ML-based software systems

Analysis level Team level

Subject novelty Emerging

Stakeholders Academia and practitioners

Intended audience ML teams

Accessibility Publicly available (i.e open)

1https://github.com/SE-ML/Maturity-model
2https://creativecommons.org/licenses/by-sa/4.0/

34

https://github.com/SE-ML/Maturity-model
https://creativecommons.org/licenses/by-sa/4.0/

6.2 The construction of the model

6.2.1 The dataset

As stated in Section 6.1, our maturity model is developed based on the adoption of best practices by ML

practitioners (especially teams). In order to determine the adoption of the practices, we use a dataset

that comprises the responses from teams to the questionnaires conducted during the studies of Serban

et al. (2020, 2021). The questionnaire that corresponds to the initial study of Serban et al. (2020) is

referred to as the initial questionnaire, while the questionnaire that is related to the follow-up study of

Serban et al. (2021) is referred to as the extended questionnaire.

Both questionnaires consist of three types of questions: the preliminary questions, practice adoption

questions and perceived effect questions. The preliminary questions are mostly questions on the

(demographic) factors of the teams, such as team size and team experience. The practice adoption

questions are questions regarding the adoption of the practices by the teams. In order to measure

the adoption of practices, Serban et al. (2020, 2021) used a Likert scale with four answers in their

questionnaires that represent possible adoption degrees of the practices: not at all, partially, mostly

and completely. For some practice adoption questions, Serban et al. (2020, 2021) added other possible

answers to this Likert scale, such as not applicable. The perceived effects questions, the last type of

question, focus on the perceived effects of the practices when adopted.

The initial questionnaire consists of 45 questions. The extended questionnaire is an extension of the

initial questionnaire with 14 practice questions and one perceived effect question related to the identified

practices for trustworthy ML in the follow-up study. The dataset contains in total 504 responses of which

378 responses correspond to the initial questionnaire and 126 responses correspond to the extended

questionnaire.

6.2.2 The creation of a data pool

In order to be able to develop the maturity model based on adoption data of the practices, we create a

consistent data pool by processing the dataset. In this regard, we follow BSIMM, which was discussed

in Section 4.3. BSIMM is constructed based on a data pool of firms (i.e. the BSIMM community). In

contrast to BSIMM, the data pool that we create consists of a number of teams instead of firms.

For the creation of the data pool, all questions that do not occur in both the initial and extended

questionnaire are removed to ensure that all participants in our data pool have answered the same

questions. Furthermore, the responses of participants that are not part of a team that builds ML-based

software systems or use ML are discarded from the dataset. Moreover, we filter out all responses of

teams that did not answer at least one practice adoption question with one of the four adoption degrees

in the defined Likert scale. Therefore, our data pool contains exclusively teams that answered the

selected practice adoption questions with adoption degrees.

The resulting data pool, which is used for the development of our model, consists of 139 teams. Figure

6.1 illustrates the data pool based on several (demographic) factors. In the data pool, three types

of teams are distinguished: teams that build ML-based software systems, teams in which one team

member builds the systems and teams that use ML. From Figure 6.1a, we observe that most of the

teams in our data pool (i.e. 82.7%) build ML-based software systems while in a small proportion of

35

the teams (i.e. 2.9%) only one member builds the system. In Figure 6.1b, the distribution team sizes is

presented. The largest percentage of teams of 25.2% consists of 4 to 5 members. This is almost equal to

the percentage of teams (24.5%) with a size of 6 to 9 members.

The teams in our data pool are from all over the world as shown in Figure 6.1c. The largest proportions

of teams in the data pool correspond to Europe, North America and Asia. For a small proportion of the

teams (i.e. 0.7%), the geographical location is unknown. In Figure 6.1d, we present the proportion of

teams per organisation type. Most teams work at a tech company, a university or in a non-commercial

research lab. A small proportion of the teams of 10.8% work at a governmental organisation. As can be

seen from Figure 6.1e, most of the teams in our data pool have between 1 to 5 years of experience. With

a proportion of 35.3%, an experience between 2 to 5 years occurs the most under the teams followed by

an experience between 1 to 2 years with a proportion of 30.2%.

Figure 6.1f shows the used data sources by the teams in proportions. From this figure, we observe that

the three most used data sources are tabular data, text and images. A proportion of 14.4% of the teams

use other data sources than the specified sources, such as logs and sensor data.

(a) Application of ML within the teams (b) Size of the teams (c) Geographical locations of the teams

(d) The types of organisations (e) Experience of the teams (f) Used data sources by teams

Figure 6.1: Information about the teams of the created data pool used for the development of the maturity model. The data
pool is visualised based on several (demographic) factors.

36

6.2.3 The adoption of the practices

Based on the created data pool, we determine the adoption of best practices by the teams in this pool.

Within our maturity model, we define two scores that represent the adoption of a practice: the practice

adoption and the adoption percentile. The practice adoption corresponds to the number of teams that

have adopted a particular practice. We consider a practice adopted by a team if it has been assigned an

adoption degree of at least ‘mostly’. The practice adoption score could be considered similar to the

observation frequency of a security activity in the data pool of BSIMM, which indicates the number

of firms that perform that activity. The adoption percentile of a practice is the percentile rank of the

corresponding practice adoption score compared to the practice adoption scores of all other practices.

The percentile rank of the practice adoption score represents how often the corresponding practice is

adopted compared to the other practices. This allows for the comparison between different practice

adoption scores. For example, a practice with an adoption percentile of 90% indicates that 90% of the

other practices have an equal or lower practice adoption score than this practice.

Table 6.3 presents all practices with their corresponding adoption scores ordered from high to low. As

the practice adoption questions that do not occur in both the initial and extended questionnaire are

discarded from the data, the adoption of some practices is not determined.

Table 6.3: The practices with their adoption scores arranged in descending order. Two adoption scores are distinguished: the
practice adoption and the adoption percentile. The practice adoption score of a practice represents the number of teams in our
data pool that have adopted that practice while the adoption percentile represents the percentile rank of its practice adoption
score. Some practices do not have adoption scores due the manner in which the dataset is processed.

Nr. Practice Practice domain Practice adoption Adoption percentile

1 Capture the training objective in a metric that is easy to measure and understand. Training 102 100.0

2 Share a clearly defined training objective within the team. Training 97 96.4

3 Enable parallel training experiments. Training 96 91.1

4 Continuously measure model quality and performance. Training 96 91.1

5 Use versioning for data, model, configurations and training scripts. Training 95 83.9

6 Use a collaborative development platform. Team 95 83.9

7 Share status and outcomes of experiments within the team. Training 90 78.6

8 Write reusable scripts for data cleaning and merging. Data 85 75.0

9 Communicate, align, and collaborate with others. Team 80 67.9

10 Work against a shared backlog. Team 80 67.9

11 Continuously monitor the behaviour of deployed models. Deployment 80 67.9

12 Ensure data labelling is performed in a strictly controlled process. Data 79 60.7

13 Make data sets available on shared infrastructure (private or public). Data 75 57.1

14 Enable automatic roll backs for production models. Deployment 72 53.6

15 Automate model deployment. Deployment 68 50.0

16 Peer review training scripts. Training 66 46.4

17 Perform checks to detect skew between models. Deployment 62 42.9

18 Use static analysis to check code quality. Code 60 39.3

19 Log production predictions with the model’s version and input data. Deployment 56 35.7

20 Enable shadow deployment. Deployment 54 30.4

21 Enforce fairness and privacy. Governance 54 30.4

22 Test all feature extraction code. Training 53 25.0

23 Automate hyper-parameter optimisation. Training 50 21.4

24 Check that input data is complete, balanced and well distributed. Data 48 17.9

25 Use sanity checks for all external data sources. Data 47 14.3

26 Run automated regression tests. Coding 42 10.7

27 Actively remove or archive features that are not used. Training 37 7.1

28 Assign an owner to each feature and document its rationale. Training 28 3.6

29 Test for social bias in training data. Data - -

30 Prevent discriminatory data attributes used as model features. Data - -

31 Use privacy-preserving machine learning techniques. Data - -

32 Employ interpretable models when possible. Training - -

37

Table 6.3: The practices with their adoption scores arranged in descending order. Two adoption scores are distinguished: the
practice adoption and the adoption percentile. The practice adoption score of a practice represents the number of teams in our
data pool that have adopted that practice while the adoption percentile represents the percentile rank of its practice adoption
score. Some practices do not have adoption scores due the manner in which the dataset is processed. (Continued)

Nr. Practice Practice domain Practice adoption Adoption percentile

33 Automate feature generation and selection. Training - -

34 Automate configuration of algorithms or model structure. Training - -

35 Assess and manage subgroup bias. Training - -

36 Use continuous integration. Coding - -

37 Assure application security. Coding - -

38 Provide audit trails. Deployment - -

39 Decide trade-offs through defined team process. Team - -

40 Establish responsible AI values. Governance - -

41 Perform risk assessments. Governance - -

42 Inform users on machine learning usage. Governance - -

43 Explain results and decisions to users. Governance - -

44 Provide safe channels to raise concerns. Governance - -

45 Have your application audited. Governance - -

6.2.4 The structure of the model

As stated in Section 2.2, maturity models represent the maturity of objects as a sequence of stages (i.e.

maturity levels). According to de Bruin et al. (2005), stages of maturity models should have short names

that indicate their purpose, and descriptions that expand their names and provide information on their

content (e.g. their requirements and measures). De Bruin et al. (2005) distinguish two approaches for

defining maturity stages: a top-down approach and a bottom-up approach. Both approaches address

what represents maturity and how maturity is measured. In the top-down approach, the descriptions of

the stages (i.e. what) are created firstly after which the content of the stages (i.e. how) is determined. In

the bottom-up approach, the content (i.e. how) is determined first after which descriptions (i.e. what) are

created to reflect the content.

De Bruin et al. (2005) also state that in the development of maturity models it is important to consider

how maturity stages are presented to the audience of the model. In the linear stage approach, maturity

is represented as a sequence of one-dimensional linear stages. An assessment with a linear stage model

(i.e. a model that represents maturity as one-dimensional linear stages) results in an overall maturity

stage for the entire object under consideration. In the stage-gate approach, the domain (i.e. the subject)

of the model is divided into components and subcomponents in order to allow for separate assessments

of discrete aspects of the object in addition to its overall assessment.

As the practices identified by Serban et al. (2020, 2021) serve as the starting point for the development

of our maturity model, we use the bottom-up approach in order to define the maturity stages for the

development process of ML-based software systems. After all, the identified practices form the content

of the model (i.e. how). Based on these practices, the descriptions of the stages (i.e. what) are created.

In order to enable ML teams to assess their development processes in a comprehensive manner and

to improve specific aspects of these processes, we use the stage-gate approach for the development of

our model. Therefore, our maturity model distinguishes two representations (i.e. views), the domain

and maturity representation, which are slightly similar to the improvement paths of CMMI-DEV. The

domain representation focuses on the maturity of teams regarding the practice domains described in

Table 6.1 represented by engineering capability (EC) levels. These practice domains, which consist of

several practices, form the components of the domain of our model. As the number of practices is

limited, we do not divide the practice domains further into subcomponents. In contrast to the domain

representation, the maturity representation focuses on the overall maturity of teams represented by

38

maturity levels. The maturity levels consist of practices of EC levels of particular practice domains.

Both representations contain thus the same set of practices, but the practices in each representation are

organised in a different manner. Figure 6.2 illustrates the structure of our model.

Figure 6.2: The structure of our maturity model. The model comprises two representations (i.e. views): the domain representation
and maturity representation. The domain representation uses EC levels to describe the maturity stages of teams regarding the
practice domains while the maturity representation uses maturity levels to indicate the maturity stages of the overall development
processes of teams. Each maturity level is built of practices of EC levels of several practice domains.

6.2.5 The creation of the domain representation

The ordering approach

After determining the adoption of the practices (Section 6.2.3), the practices are organised into the

domain representation. For each practice domain, the corresponding practices are divided across the

different EC levels. Our maturity model distinguishes three EC levels with practices. In addition, the

model defines an initial level, i.e., EC level 0. In contrast to the other three levels, this level does not

consist of practices and is considered the starting point of the maturity of teams regarding the practice

domains. In order to divide the practices of each domain across these levels, we devised an approach

that consists of the following steps:

1) Divide practices based on their adoption. Practices with an adoption percentile greater than

67 are assigned to level 1, practices with an adoption percentile greater than 33 and less than or

equal to 67 are placed in level 2, and practices with an adoption percentile equal to or less than

33 are placed in level 3. Practices that are more frequently adopted by teams in our data pool

are thus placed in lower levels assuming that these practices are easier to adopt. This manner of

dividing practices across levels is similar to the way in which security activities of practice areas

are divided across levels based on their observation frequency in BSIMM. In BSIMM, security

activities with a higher observation frequency are assigned to lower levels as these activities are

more commonly executed than security activities with a lower observation frequency.

39

2) Assign remaining practices based on their similarity. Practices for which the adoption is not

determined, are assigned to particular levels based on their similarity in content with other

practices in these levels assuming that practices with similar content have the same level of

complexity.

3) Switch the positions of practices. Switch the positions of practices with other practices in

order to have a logical progression of practices in and between levels. For example, a practice

could be switched from its position with another practice in case its adoption depends on the

achievement of that other practice. Moreover, general practices could be followed by more specific

practices assuming that general practices form the basis of specific practices and assist in their

implementation.

Ordering the practices into levels

Table 6.4 presents the division of practices across the three different levels after conducting step 1 of

our devised approach. In this table and the remainder of this chapter, we refer to the practices with

their assigned numbers in Table 6.3.

After step 1, we perform steps 2 and 3 of our approach. In the practice domain “Data”, we assign

practices 29 (test for social bias), 30 (prevent the use of discriminatory attributes as features) and 31

(use privacy-preserving techniques) to level 3 of the domain as these practices are related to practices

24 (continuously check input data) and 25 (use sanity checks) of that level. After all, practices 24 and 25

focus on checking and processing the data, which is also the basis of practices 29, 30 and 31. Within

this level, practice 29 is placed after practice 31 assuming that teams that work with personal data first

take measures to preserve privacy (more general) before these teams test for social bias within that

data (more specific). Practice 24 follows practices 25, 31 and 29, as the execution of these practices is

encompassed by the content of practice 24.

Practices 33 (automate feature generation and selection) and 34 (automate configuration of model

structures) corresponding to practice domain “Training” are assigned to level 3 since both of these

practices focus on automating particular ML tasks similar to practice 23 (automate hyper-parameter

optimisation). Furthermore, practices 32 (employ interpretable models when possible) and 35 (assess

and manage subgroup bias) are added to level 3 as these practices are related to practice 28 (assign

an owner to each feature and document its rationale). All these three practices encompass aspects of

trustworthy ML. Practice 28 contributes to the explainability of the model by documenting the rationale

of the feature. Similarly, practice 32 and 35 address explainability and fairness through the employment

of interpretable models and the prevention of subgroup bias, respectively.

After practices 32, 33 and 35 are added to level 3, practice 22 (test all feature extraction code) is

transferred from level 3 to level 2 as practice 22 is related to practice 16 (peer review training scripts) in

that level. Both practices focus, after all, on reviewing code. Moreover, practices 23 and 34 are moved

from level 3 to level 2. By moving these practices to level 2, all practices related to automating ML tasks

and reviewing code are assigned to level 2 and all practices related to trustworthy ML are assigned to

level 3. Although practice 33 focuses on automating feature generation and selection, this practice is

added to level 3 instead of level 2 as practice 22 in level 2 assumes that features are manually engineered.

For the same reason, practice 33 follows practice 27 (remove or archive unused features) and 28 in

level 3. Practice 33 is thus placed after all practices for which it is assumed that features are manually

40

Table 6.4: The division of practices across the EC levels for each practice domain after the first step of our devised approach.
In this step, the practices are organised in levels based on their adoption percentiles. The practices are referred to with their
assigned numbers in Table 6.3. EC level 0 does not contain practices and is, therefore, not shown. Furthermore, practices without
adoption scores are discarded.

DATA

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

8 85 75.0

Engineering capability level 2

12 79 60.7

13 75 57.1

Engineering capability level 3

24 48 17.9

25 47 14.3

TRAINING

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

1 102 100.0

2 97 96.4

3 96 91.1

4 96 91.1

5 95 83.9

7 90 78.6

Engineering capability level 2

16 66 46.4

Engineering capability level 3

22 53 25.0

23 50 21.4

27 37 7.1

28 28 3.6

CODING

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

- - -

Engineering capability level 2

18 60 39.3

Engineering capability level 3

26 42 10.7

DEPLOYMENT

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

11 80 67.9

Engineering capability level 2

14 72 53.6

15 68 50.0

17 62 42.9

19 56 35.7

Engineering capability level 3

20 54 30.4

TEAM

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

6 95 83.9

9 80 67.9

10 80 67.9

Engineering capability level 2

- - -

Engineering capability level 3

- - -

GOVERNANCE

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

- - -

Engineering capability level 2

- - -

Engineering capability level 3

21 54 30.4

engineered.

As a training objective should be shared first within the team before this objective can be captured in

a metric, the positions of practice 1 (capture the training objective in a metric) and practice 2 (share

a training objective within the team) in level 1 are switched. The adoption of practice 2 requires the

accomplishment of practice 1. Furthermore, the positions of practice 27 and 28 in level 3 are switched

assuming that the adoption of practice 28 could assist teams in the accomplishment of practice 27. After

all, practice 28 could enhance the understanding of features that in turn could help teams to remove or

archive unused features more easily (i.e. practice 27). Moreover, the positions of practice 32 and 35 are

41

switched since we assume that practice 32 is more impactful in ensuring trustworthy ML than practice

35. Practice 32 requires changing the entire model for an interpretable model while practice 35 only

requires the assessment of a model aspect (subgroup bias).

In the domain “Coding”, practice 36 (use continuous integration) is added to level 3 assuming that this

practice is the most complete and sophisticated practice regarding the writing, testing and integration of

code. Practice 18 (use static analysis to check code quality), practice 26 (run automated regression tests)

and practice 37 (assure application security) can all be carried out as part of continuous integration.

Therefore, these practices should be adopted before practice 36. Practice 37 is added to level 3 due to its

similarity to practice 26 as both practices focus on the identification of bugs (from the perspective of the

security and functionality of the application, respectively). Practice 26 and 37 are transferred from level

3 to 2 since their adoption could contribute to the accomplishment of practice 36. After all, practice 26

and 37 could be considered part of practice 36, as explained above. Practice 18 is moved from level 2 to

level 1. Practice 18 focuses on enhancing the code quality, which facilitates easier maintenance, testing

or extension of the code. This in turn is useful for the adoption of the practices in level 2, which mainly

focus on testing the code for bugs.

In the “Deployment” domain, practice 38 (provide audit trails) is assigned to level 3. Practice 38

addresses the social implications of machine learning and artificial intelligence (AI) with regards to

respecting consumer rights. This calls for regulations on ML-based software systems and insight into

model behaviour through audits. As this is a current open problem, the adoption of practice 38 is

considered as complex and therefore this practice is placed in level 3.

Practice 20 (enable shadow deployment) is transferred from level 3 to 2 because it is related to practice

17 (perform checks to detect skew between models) as the deployment of shadow models could assists

teams in preventing skew between the training and test data. Moreover, the positions of practices 14

(enable automatic roll backs for production model) and 15 (automate model deployment) are switched

in order to have these practices in a chronological order (i.e. automatically rolling back models can be

performed after the deployment of the models).

Practice 39 (decide trade-offs through defined team process) corresponding to the practice domain

“Team” is added to level 3 of that domain because we assume that this practice is the most complex

practice regarding the collaboration and communication within teams. It requires the definition and

enforcement of a standardised team process for which the adoption of other practices in this domain

could be useful. Furthermore, practice 10 (work against a shared backlog) is transferred from level 1 to

level 2 assuming that the achievement of practice 10 depends (partially) on the adoption of practice 9

(communicate, align, and collaborate with others). After all, for teams to be able to share a backlog

within the team and with external stakeholders (i.e. practice 10), these teams first need to communicate,

collaborate and align internally and externally (i.e. practice 9).

As only the adoption of practice 21 (enforce fairness and privacy) in the practice domain “Governance”

is determined, our devised approach cannot completely be used to organise the practices of this domain

across the three levels. In the practice domain “Governance”, we, therefore, arrange the practices based

on their similarities and generality. We consider practices 21 and 40 (establish responsible AI values) as

the most broad and general practices in this practice domain. As a result, practices 21 and 40 form the

basis of all other practices in this domain and these practices are, therefore, assigned to level 1.

42

Practices 41 (perform risk assessments) and 45 (have your application audited) are clustered together as

both practices focus on assessments of ML-based software systems. Similarly, practices 42 (inform users

on machine learning usage), 43 (explain results and decisions to users) and 44 (provide safe channels to

raise concerns) all ensure a transparent use of ML within software systems from the perspective of the

users and are, therefore, grouped together. As we believe that practices 41 and 45 require more effort to

adopt than practices 42, 43 and 44 , these practices are placed in level 3 and practices 42, 43 and 44 in

level 2.

Table 6.5 presents the division of the practices across the three EC levels for each practice domain, i.e.,

the domain representation, after the completion of steps 2 and 3. As stated before, the practices are

referred to with their assigned numbers in Table 6.3. In steps 2 and 3, 17 practices without adoption

scores are assigned to one of the EC levels and the position of 16 practices are switched in or between

levels, respectively. The domain representation with written out practices can be found in Table A.1 of

Appendix A.

Table 6.5: The division of all practices across the EC levels for each practice domain based on our approach. In our maturity
model, this division is referred to as the domain representation. EC level 0 does not contain practices and is, therefore, not shown.
The division only presents the practices with their assigned numbers in Table 6.3. The complete domain representation, which
consists of written out practices, can be found in Appendix A.

DATA

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

8 85 75.0

Engineering capability level 2

12 79 60.7

13 75 57.1

Engineering capability level 3

25 47 14.3

31 - -

29 - -

24 48 17.9

30 - -

TRAINING

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

2 97 96.4

1 102 100.0

4 96 91.1

3 96 91.1

5 95 83.9

7 90 78.6

Engineering capability level 2

16 66 46.4

22 53 25.0

23 50 21.4

34 - -

Engineering capability level 3

28 28 3.6

27 37 7.1

33 - -

35 - -

32 - -

CODING

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

18 60 39.3

Engineering capability level 2

26 42 10.7

37 - -

Engineering capability level 3

36 - -

43

Table 6.5: The division of all practices across the EC levels for each practice domain based on our approach. In our maturity
model, this division is referred to as the domain representation. EC level 0 does not contain practices and is, therefore, not shown.
The division only presents the practices with their assigned numbers in Table 6.3. The complete domain representation, which
consists of written out practices, can be found in Appendix A. (Continued)

DEPLOYMENT

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

11 80 67.9

Engineering capability level 2

15 68 50.0

14 72 53.6

20 54 30.4

17 62 42.9

19 56 35.7

Engineering capability level 3

38 - -

TEAM

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

6 95 83.9

Engineering capability level 2

9 80 67.9

10 80 67.9

Engineering capability level 3

39 - -

GOVERNANCE

Nr. Practice
adoption

Adoption
percentile

Engineering capability level 1

40 - -

21 54 30.4

Engineering capability level 2

42 - -

43 - -

44 - -

Engineering capability level 3

41 - -

45 - -

The engineering capability levels

After organising the practices across the EC levels, we create short names (i.e. labels) and descriptions for

the four EC levels. Following the top-down approach described by de Bruin et al. (2005) , the short name

and description of an EC level cover the content of the practices of all practice domains corresponding

to that level. Table 6.6 presents the EC levels within our maturity model with corresponding names and

descriptions.

Table 6.6: The EC levels with corresponding names and descriptions.

Engineering capability level Description

0 - Initial
EC level 0 is defined as initial. At EC level level 0, practices related to ML
tasks within the corresponding domain are adopted ad hoc or not adopted
at all.

1 - Beginner

EC level 1 practices are defined as beginner practices. Beginner practices
are considered to be the most fundamental practices within the ML
development process. These practices form the prerequisites for all other
practices within the corresponding domain.

2 - Intermediate

EC level 2 practices are defined as intermediate practices. Intermediate
practices build upon the beginner practices. These intermediate practices
are associated with automated, monitored and reviewed machine learning
tasks. Most intermediate practices require intensive collaboration within
ML teams, and the involvement of external stakeholders (stakeholders
outside the team).

3 - Advanced

EC level 3 practices are defined as advanced practices. Advanced practices
are considered to be the most sophisticated practices for the development of
ML-based software systems. These advanced practices are related to clearly
defined and planned ML tasks. The practices prevent negative impact of the
use of ML on social, ethical, technical and financial aspects. Some advanced
practices are often overlooked during the ML development process.

44

6.2.6 The creation of the maturity representation

From EC levels to the maturity representation

As stated in Section 6.2.4, the distinction of two representations in our maturity model slightly

resembles the structure of CMMI-DEV that defines two improvement paths: the continuous and staged

representations. In CMMI-DEV, the obtained results by using the continuous representation, i.e., the

achieved capability levels for particular process areas, can be converted to an associated maturity level

that represents the overall maturity of the processes of organisations (CMMI Product Team, 2010).

Therefore, CMMI-DEV assigns sets of process areas to maturity levels and specifies for each maturity

level which capability levels the assigned process areas should have to be equivalent to a particular

maturity level. For example, for an organisation to accomplish maturity level 2, all process areas

assigned to that maturity level should achieve capability level 2 or level 3.

As we slightly follow CMMI-DEV with the distinction of two improvement paths, our maturity model

also enables ML teams to convert their obtained assessment results with the domain representation,

i.e., EC levels for particular practice domains, to maturity levels (or vice-versa). Therefore, the levels of

the maturity representation are composed of EC levels of particular practice domains (i.e. sets of EC

levels of practice domains), which we refer to by their corresponding practice domain and EC level. For

example, “Team EC level 1” refers to the practices of EC level 1 related to the practice domain “Team”.

The maturity representation distinguishes six maturity levels of which the first level is an initial level.

The EC levels of the practice domains are assigned to maturity levels based on the adoption, similarity

and dependency of their corresponding practices. In case EC levels are assigned to maturity levels

based on the adoption of their practices, we attempt to compose the levels of practices with a similar

adoption in such a way that the higher the level, the lower the adoption of the practices of that level.

After the EC levels of practice domains are assigned to a maturity level, the corresponding practices are

ordered logically in and between levels.

Assigning EC levels and ordering their practices

As maturity level 1 is an initial level that serves as the starting point of the maturity of ML teams,

this maturity level does not contain any practices. The practices corresponding to EC level 1 of

practice domains “Training”, “Team” and “Data” are assigned to maturity level 2 because the adoption

percentiles of these practices are approximately similar ranging from 75.0 to 100.0. The practices within

maturity level 2 are ordered such that these practices form a logical progression, which reflect our

perspective on subsequent steps that ML teams should perform as part of their development processes.

Maturity level 3 is composed of “Data EC level 2”, “Team EC level 2” and “Deployment EC level 1”.

Similar to maturity level 2, all practices of the assigned EC levels to maturity level 3 have approximately

equal adoption percentiles ranging from 57.1 to 67.9. From maturity level 3, the practices assigned to a

particular maturity level are ordered based on the ordering of practices of the previous level. In this

case, the ordering of practices in maturity level 3 is based on the ordering of the practices in maturity

level 2. In order to arrange the practices of a maturity level (from level 3) based on the previous level,

the following approach is used:

1) Check for practice p in level n if there exists one or more practices in level n + 1 that is/are related

to that practice.

45

2) If so, this/these practice(s) is/are placed at the first available position in level n + 1, otherwise

continue to step 3.

3) Steps 1 and 2 are repeated for practice p + 1 until all practices of level n + 1 are assigned to a

position in that level. If all practices of level n are checked, but some practices of level n + 1 are

not assigned to a position, continue to step 4.

4) Order the remaining practices of level n + 1 based on aspects such as their assumed generality,

complexity and priority relative to all other practices in that level.

In case of maturity levels 2 and 3, practice 4 (continuously measure model quality and performance) of

maturity level 2 is, for example, related to practice 11 (continuously monitor the behaviour of deployed

models) of maturity level 3 since both practices focus on monitoring the models. As practice 4 is the

second practice that is related to a practice in maturity level 3 (in this case practice 11), practice 11 is

placed as the second practice of maturity level 3.

As practices of EC level 1 corresponding the practice domains “Code” and “Governance”, and practices

of EC level 2 related to the practice domain “Deployment” have similar adoption percentiles and all

their adoption percentiles are lower than the practices allocated to previous maturity levels, these

practices are assigned to maturity level 4. Furthermore, maturity level 4 comprises “Training EC level 2”

since some of its corresponding practices are related to the assigned practices of the practice domains

“Coding” and “Deployment”. For example, practices 23 (automate hyper-parameter optimisation) and

34 (automate configuration of model structures) both focus on automating ML tasks such as practices

14 (enable automatic roll backs for production model) and 15 (automate model deployment) of the

practice domain “Deployment”. In addition, practices 16 (peer review training scripts) and 22 (test

all feature extraction code) focus on reviewing code as practice 18 (use static analysis to check code

quality) of the practice domain “Coding”.

Practice 11 (continuously monitor the behaviour of deployed models) of maturity level 3 is related to

the practices corresponding to EC level 2 of the practice domain “Deployment” (i.e. practices 15, 14,

20, 17 and 19) assigned to maturity level 4. After all, all of these practices focus on the deployment

of ML-based software systems. Following our described approach, the practices corresponding to EC

level 2 of the practice domain “Deployment” are placed as the first practices of maturity level 4 since

practice 11 is the first practice of maturity level 3 that is related to these practices. As practice 11 is the

only practice that is related to practices of maturity level 4, the other practices of this maturity level are

ordered based on other aspects. Practices 23 (automate hyper-parameter optimisation) and 34 (automate

configuration of model structures) follow the practices related to EC level 2 of the practice domain

“Deployment” assuming that teams first will automate tasks related to the deployment of ML-based

software systems (more common) before automating tasks related to the training of these systems (less

common). As we assume that practices on reviewing code have a higher priority than practices related

to the responsible employment of ML, practices 18 (use static analysis to check code quality), 16 (peer

review training scripts) and 22 (test all feature extraction code) are placed before practices 40 (establish

responsible AI values) and 21 (enforce fairness and privacy).

“Data EC level 3” and “Coding EC level 2” are assigned to maturity level 5 based on the adoption

percentiles of practices 25 (use sanity checks), 24 (continuously check input data) and 26 (run automated

regression tests), which are similar. As the practices of EC level 2 of the practice domain “Governance”

46

are related to some practices of EC level 3 of the practice domain “Data”, these practices are also

added to maturity level 5. After all, practices 31 (use privacy-preserving techniques), 29 (test for social

bias) and 30 (prevent the use of discriminatory attributes as features) and the practices of EC level

2 of practice domain “Governance” all focus on ensuring trustworthy ML. Practices 31, 29 and 30

address the fair use of ML-based software systems, while the practices of EC level 2 of practice domain

“Governance” ensure the transparent employment of these systems.

Except for practice 25 (use sanity checks) and 30 (prevent the use of discriminatory attributes as

features), the order of the practices in maturity level 5 is mostly based on the order of the practices of

maturity level 4. Practice 25 is placed as the first practice of level 5 because we assume that it is the

most general practice of level 5. Practices 26 (run automated regression tests) and 37 (assure application

security) of “Coding EC level 2” are placed after practice 25. These practices are related to practice 18

from maturity level 4, which is the first practice of maturity level 4 that is related to practices in level 5,

as they all belong to the practice domain “Coding”. The next two practices of maturity level 4 that are

related to practices of maturity level 5 are practices 40 (establish responsible AI values) and 21 (enforce

fairness and privacy) of the practice domain “Governance”. These practices are related to all remaining

practices of level 5 as they all focus on trustworthy ML. Therefore, all remaining practices of level 5 are

placed after practice 37. However, practice 30 is placed as the last practice of level 5 since we assume

that is the most rigorous practice to ensure the trustworthy employment of ML-based software systems.

In contrast to the other practices of level 5 that focus on trustworthy ML, practice 30 is the only practice

that directly requires the adaptation of the model for its adoption.

Maturity level 6 contains all remaining EC levels. The order of their corresponding practices is completely

based on the order of practices of the previous level.

Table 6.7 shows the EC levels that each practice domain should be at order to be equivalent with

a maturity level, which allows ML teams to convert their assessment results obtained by using the

domain representation into maturity levels (or vice-versa). In addition, Table 6.8 presents the division

of the practices into the maturity levels. This division, which is referred to in our maturity model as the

maturity representation, with written out practices can be found in Table B.1 of Appendix B.

Table 6.7: The maturity levels represented in EC levels of practice domains. For each maturity level, it is indicated which EC
levels the practice domains should be at in order for ML teams to achieve a particular maturity level.

Maturity
level 1

Maturity
level 2

Maturity
level 3

Maturity
level 4

Maturity
level 5

Maturity
level 6

Data EC level 1 EC level 2 EC level 2 EC level 3 EC level 3

Training EC level 1 EC level 1 EC level 2 EC level 2 EC level 3

Coding EC level 1 EC level 1 EC level 3

Deployment EC level 1 EC level 2 EC level 2 EC level 3

Team EC level 1 EC level 2 EC level 2 EC level 2 EC level 3

Governance EC level 1 EC level 2 EC level 3

47

Table 6.8: The division of all practices across the maturity levels. In our maturity model, this division is referred to as the
maturity representation. Each maturity level is composed of practices of capability levels corresponding to particular practice
domains. Maturity level 1 is considered the starting point of the maturity of ML teams and is, therefore, not shown. The division
only presents the practices with their assigned numbers in Table 6.3. The complete maturity representation, which consists of
written out practices, can be found in Appendix B.

Nr. Practice
domain

Practice
adoption

Adoption
percentile

Maturity level 2

2 Training 97 96.4

1 Training 102 100.0

6 Team 95 83.9

8 Data 85 75.0

4 Training 85 75.0

7 Training 90 78.6

5 Training 95 83.9

3 Training 96 91.1

Maturity level 3

12 Data 79 60.7

11 Deployment 80 67.9

9 Team 80 67.9

10 Team 80 67.9

13 Data 75 57.1

Maturity level 4

15 Deployment 68 50.0

14 Deployment 72 53.6

20 Deployment 54 30.4

17 Deployment 62 42.9

19 Deployment 56 35.7

23 Training 50 21.4

34 Training - -

18 Coding 60 39.9

16 Training 66 46.6

22 Training 53 25.0

40 Governance - -

21 Governance 54 30.4

Nr. Practice
domain

Practice
adoption

Adoption
percentile

Maturity level 5

25 Data 47 14.7

26 Coding 42 10.7

37 Coding - -

31 Data - -

29 Data - -

24 Data 48 17.9

42 Governance - -

43 Governance - -

44 Governance - -

30 Data - -

Maturity level 6

36 Coding - -

28 Training 28 3.6

27 Training 37 7.1

33 Training - -

35 Training - -

32 Training - -

39 Team - -

41 Governance - -

38 Deployment - -

45 Governance - -

48

The maturity levels

Similar to the EC levels, we create names and descriptions for the maturity levels after assigning EC

levels of practice domains to the levels and ordering their corresponding practices. Each maturity level

indicates a particular maturity state of the development processes of ML teams. The maturity levels

with their names and descriptions are shown in Table 6.9.

Table 6.9: The maturity levels with corresponding names and descriptions.

Maturity level Description

1 - Initial

A maturity level 1 development process is characterised as initial. At
maturity level 1, ML-based software systems are developed arbitrarily.
Within a maturity level 1 development process, ML tasks are executed ad
hoc and chaotically. Maturity level 1 does not comprise practices.

2 - Basic

A maturity level 2 development process of a ML team is defined as a basic
development process. A basic development process encompasses practices
related to the most fundamental tasks for the development of a ML-based
software system. At maturity level 2, the focus of a ML team is mostly on
the execution of training experiments and their results.

3 - Progressed

A maturity level 3 development process is characterised as a progressed
development process. A progressed development process builds upon a
basic development process. While a basic development process focuses on
training experiments and their outcomes, a progressed development
process covers all essential steps (performed in a moderately basic manner)
within the ML workflow. At maturity level 3, the development of ML-based
software systems is conducted in a more organised manner, which
establishes traceability of work items. Maturity level 3 contains thus mostly
practices associated with collaborative and data management tasks.

4 - Optimised

A maturity level 4 development process is defined as an optimised
development process. At maturity level 4, the development process is
improved in terms of training (experiments), deployment and coding,
which is mostly enforced with automation and checks. Besides, ML teams
start to pay attention to fairness. An optimised development process
comprises automation within training experiments, automated model
deployment, and model and coding checks (e.g. peer reviewing code).

5 - Proactively optimised

A maturity level 5 development process is defined as a proactively
optimised development process. A proactively optimised development
process focuses on preventing negative impact on and of the built software
system in terms of technical, social, ethical aspects, which assures a
responsibly built and qualitative system. Hence, maturity level 5

encompasses practices related to (data) errors, bugs, cyber attacks and bias
prevention.

6 - Perfected

A maturity level 6 development process is defined as a perfected
development process. At maturity level 6, all defined domains (e.g. “Data”
and “Coding”) within the ML workflow are considered to be fully
developed. A perfected development process contains practices related to
defined and reviewing tasks.

49

6.2.7 The application of the model

In order to enable ML teams to independently apply our maturity model without the assistance of

external stakeholders (e.g. the developers of the maturity model), assessments with our maturity model

are conducted on a self-assessment basis. For a ML team to conduct an assessment of their development

process, a team should choose which representation(s) to use: the domain representation, the maturity

representation or both. During the assessment, a team should determine to which extent they adopt

each practice of the selected representation(s). De Bruin et al. (2005) suggest to use Likert scales for

assessment questions in order to improve reliability and response consistency. We, therefore, use the

Likert scale of Serban et al. (2020, 2021) to reflect the degrees of adoption. As stated in Section 6.2.1, this

Likert scale distinguishes four possible adoption degrees: not at all, partially, mostly and completely.

Since some practices in our maturity model are not applicable to all development processes of ML

teams, we add “not applicable” to the possible answers of the scale for these particular practices. These

practices are practices 12, 25, 31, 29, 30, 22, 28, 27, 33, 35 and 21. Teams for which these practices are not

applicable, do not have to take them into account during the assessment of their development processes.

For example, the adoption of practices 30 (prevent the use of discriminatory attributes as features) and

31 (use privacy-preserving techniques) are irrelevant for ML teams that do not use personal data during

their development processes.

In our maturity model, a particular level is accomplished when all practices corresponding to that

level and all practices of any lower levels are adopted. A practice is considered to be adopted as a

team adopts that practice “mostly” or “completely” within its development process. Practices that are

considered “not applicable” by a team are not taken into account when determining the achieved level.

As stated in Section 5.1, according to Becker et al. (2009) part of the development of a maturity model is

the conception of the transfer forms of the model, i.e., the forms in which the model is transferred to the

users of the model (e.g. reports and software applications). In addition, de Bruin et al. (2005) state that

during the development of a model it is necessary to create the instrument with which the assessment

should be conducted. Moreover, Mettler (2011) identified the form of the model as one of the important

design decision parameters for the development of a model. For our maturity model, we, therefore,

created a report (i.e. framework report) and an interactive workbook in Excel, which support teams in

applying the model. The report provides teams with all essential information in order to be able to

comprehend and use the model. The interactive workbook provides teams with a straightforward way

to assess their development processes, obtain their assessment results and plan the improvement of

their processes.

In order to assist teams in planning the improvement of their development processes, teams could

create a roadmap in the “process improvement” spreadsheet of the interactive workbook, which defines

the improvement of their processes in several phases. From the assessment of a development process,

a team can determine for which practices the adoption needs to be improved in order to reach their

desired level(s). A team should distribute these practices over the different phases of the roadmap to

define an incremental plan for their process improvement initiative. For each practice in a phase, a team

should also specify the aimed adoption for that practice at the end of a phase.

The use of a roadmap in the interactive workbook of our maturity model that enables teams to plan

their improvement initiatives is based on SAMM (OWASP, n.d.-b). As stated in Section 4.3, in SAMM a

roadmap could be created for the implementation of activities that are required for the object under

50

consideration (e.g. an organisation) to achieve its desired maturity regarding its software security

posture. In the roadmap, these required activities are distributed over a number of phases with a

particular duration.

In order to guide teams during the application of our maturity model, we created the application

guide. The application guide defines the application of our model as a process of five consecutive steps:

1) plan and prepare the assessment 2) conduct the assessment 3) set maturity target(s) 4) plan process

improvement 5) execute process improvement plan. Each step of the application guide is described

by several components, which are based on the components of the steps of the quick start guide of

SAMM (OWASP, n.d.-b): the purpose of the step, the required (sub)activities, useful resources and best

practices for the execution of a step. The application guide can be found in Appendix C.

6.2.8 Consistent and objective assessments

As stated in Section 6.2.7, ML teams can assess their development processes with the use of our maturity

model through a self-assessment. A disadvantage of a self-assessment is that obtained assessment

results are to a certain extent subjective as assessors (in this case ML teams) could under- or overestimate

their own capabilities. In order to reduce the subjectivity of and improve the consistency between

assessments that are performed with our maturity model, we studied how other maturity models in

the field of SE assure that their assessments are objective and consistent.

For example, assessments with CMMI-DEV, which are referred to as appraisals, should satisfy sets of

requirements defined in the Appraisal Requirements for CMMI (ARC) document (SCAMPI Upgrade

Team, 2011a). The ARC document defines three types of appraisal methods based on the set of

requirements that a particular method satisfies: ARC Class A, B and C appraisal methods. The

requirements in the ARC document ensure consistency between the different appraisals and appraisal

methods. An example of an ARC Class A appraisal method is the Standard CMMI Appraisal Method

for Process Improvement (SCAMPI) A (SCAMPI Upgrade Team, 2011b). SCAMPI A is well-defined and

extensively described, which supports the consistency between different appraisals performed with this

method. SCAMPI A comprises three phases. Each phase consists of several processes. These processes

are described based on several elements, such as purpose, activities and outcome. The activities of

the processes can, in turn, be decomposed into three components: required practices, parameters

and limitations, and implementation guidance. All three types of appraisal method classes require

the appraisal of organisations based on artifacts (e.g. organisational policies and meeting notes) and

affirmations, which provide objective evidence as the basis for these appraisals.

Similar to SCAMPI A, the audit process of SEMM, which complies with the IOS/IEC 1702 standard,

is well-defined (Garzás et al., 2013). During the auditing of organisations, artifacts and affirmations

should be presented as evidence for the institutionalisation of processes. Moreover, the achievement of

process attributes is determined with the use of a scale that represents the degree of achievement of

components corresponding to a particular process attribute in terms of percentage intervals.

SAMM has a quick start guide, which describes the core steps required to apply the maturity model

(OWASP, n.d.-b). As evident from Section 6.2.7, each step of this quick start guide consists of several

components, such as its purpose and activities. In order to ensure the objectivity of assessments, each

assessment question of SAMM is accompanied with quality criteria, which assist assessors in answering

the corresponding question (OWASP, n.d.-c). In case none of the quality criteria is satisfied by the

51

organisation under assessment, the associated question should be answered with “no”. Otherwise, one

of the other answer options should be selected.

BSIMM also describes how the model can be applied to assess and evolve SSIs of organisations. During

an assessment with BSIMM, a team of assessors conducts interviews and studies artifacts in order to

determine which software security activities are performed by an organisation.

In contrast to the other discussed maturity models, OMM does not define a process for its application.

Nevertheless, OMM consists of several aspects that contribute to the objectivity of its assessments

(Petrinja & Succi, 2012). For example, the main components (i.e. TWEs) of OMM are decomposed

into smaller components based on the GQM approach accompanying the practices in the model with

metrics that assist in the assessment of their fulfilment. Furthermore, the metrics corresponding to a

particular practice are assigned a value ranging from 0 to 4, which represents their degree of fulfilment

in percentage intervals. Assessors assign these values to the metrics based on available documents

related to a FLOSS project under assessment. Based on a defined rating mechanism, the assigned values

are aggregated into several scores (e.g. the level of a TWE and the overall maturity level).

All in all, most of the discussed maturity models provide detailed information on their application

to support the consistency between different assessments. Therefore, we believe that the application

guide that we created for our maturity model could contribute to the consistency between assessments

performed with our model. In order to ensure the objectivity of assessments, most models require

assessments to be based on objective evidence (e.g. artifacts). Furthermore, the models accompany their

assessment questions with additional criteria or indicators (e.g. metrics), or make use of quantitative

scales. In order to reduce the subjectivity of assessments of our own model, we, therefore, advice ML

teams in our application guide to base their assessment decisions on artifacts that were created during

their development processes (i.e. development artifacts).

In addition, we propose the practice cards, i.e., cards that provide detailed information on practices.

A practice card describes a practice based on several components: a description of the practice, its

purpose, its perceived effect, assessment criteria and related practices. The defined assessment criteria

on a practice card of a particular practice aim to assist ML teams in determining to which degree that

particular practice is adopted during an assessment. The assessment criteria are derived from grey

and academic literature. In case the development process of a team satisfies all assessment criteria of a

practice, that practice can be considered to be adopted completely. If none of the assessment criteria are

satisfied, the practice should be considered to be not adopted at all. By defining assessment criteria for

practices, we thus basically define the extreme ends of the used Likert scale in our maturity model.

In this study, practice cards are only made for a few practices, which serve as an example of how the

subjectivity of assessments can be reduced. These practice cards with corresponding assessment criteria

can be found in Appendix D.

52

6.2.9 The design decisions

In the previous sections, we discussed how our maturity model is constructed. Table 6.10 contains the

decision parameters corresponding to this construction phase with our made decisions. The decision

parameters are derived from Becker et al. (2009), de Bruin et al. (2005), and Mettler (2011).

Table 6.10: The design decision parameters related to the construction phase accompanied by our decisions. These decision
parameters are based on Becker et al. (2009), de Bruin et al. (2005), and Mettler (2011).

Decision parameters Decision

Grounding Literature & industry (data)

Model structure Two representations

Maturity definition Process-focussed

Maturity levels 6

Assessment type Self-assessment

Assessment base Artifacts and assessment criteria

Assessors ML teams

Model forms Report and Excel workbook

53

Chapter 7

Model validation

After the development of our maturity model, we validated the model to determine to which extent the

developed model assists ML teams in assessing and improving their development processes. In order

to validate the model, we conducted a case study involving several ML teams.

7.1 Case study design

The case study was designed by following some of the guidelines of Runeson and Höst (2009). In

the case study, we asked ML teams (i.e. the participants) to assess their development processes

with our developed maturity model. In order to enable the teams to apply our maturity model in a

straightforward manner, we provided the teams with the framework report and the interactive Excel

workbook, which were created for our maturity model. The framework report aimed to assist the

participating teams in familiarising themselves with the model while the interactive workbook aimed

to help the teams to assess their development processes (by filling it in). Before distributing the report

and the workbook, we conducted a pilot in which we asked a ML practitioner to conduct a fictional

assessment with our maturity model in order to determine whether the model is understandable and

whether it is clear how to apply the model with the workbook and whether the workbook functions

correctly. Based on the feedback of the practitioner, we revised the materials (i.e. the framework report

and workbook).

For the convenience of the participating teams, the teams were asked in the case study to select one of

the model representations (i.e. domain or maturity representation) to conduct the assessment. After the

teams selected a model representation, the teams were instructed to assign the most applicable adoption

degree to each practice in the selected representation in the interactive workbook. Subsequently, the

maturity of the teams was automatically determined based on their assigned adoption degrees and

presented to them in the workbook.

After the teams conducted assessments with our maturity model, we interviewed the teams in order to

obtain their opinion and feedback on the model. The conducted interviews were semi-structured, which

allowed us to improvise and expand on the responses of the teams. The interviews were structured

according to the funnel model (Runeson & Höst, 2009). Firstly, we presented the purpose of the interview

and the case study to the participating teams. Subsequently, we asked the teams some introductory

questions of which some were related to their demographics. The introduction was followed by the

54

two main parts of the interview. The first main part of the interview focused on the application of

the maturity model, while the second main part focused on its content. The interview questions of

the main parts are based on the following criteria that we defined for the validation of our developed

maturity model: the comprehensibility, ease of use, completeness, correctness, accuracy, usefulness

and feasibility of the model. These validation criteria are derived from Salah et al. (2014) and the

Technology Acceptance Model (TAM; Davis, 1989). The TAM specifies when individuals use and accept

new technology and how the acceptance of new technology is influenced. According to the model, the

intention of individuals to use new technology is affected by their perceived usefulness and ease of use

of this technology. For the interviews, we created an interview guide, which can be found in Appendix

E.

In order to determine the opinion and feedback of ML teams on our model more precisely, we also

administered a questionnaire to the participating teams after the interviews. In our case study, we thus

combined different data collection methods, which is also referred to as methodological triangulation.

According to Runeson and Höst (2009), triangulation is required when a study mainly relies on

qualitative data (as our case study).

In the questionnaire, we asked the teams to summarise their provided opinion and feedback during the

interviews by rating the model on some of the defined validation criteria. For these rating questions,

we used a Likert scale that ranges from 1 to 5. After each rating question, the teams were asked to

motivate their answer (i.e. the selected rating). The questionnaire can be found in Appendix F.

7.2 Results

7.2.1 The participants

Four (ML) teams participated in our case study. Three of these teams (team B, C, D) are all involved

in the development of ML-based software systems. One team (team A), however, only assists other

teams in the development of the systems by supervising their quality and improving ML development

standards. Although team A is not directly involved in the development of the systems, team A has a

good overview of how these systems are developed by other teams in their company.

Table 7.1 presents the characteristics of the four participating teams. As shown in this table, three of the

four teams work in a non-tech company, while only one team works in a tech company. The companies

in which the four teams are working are active in three different industries. Teams A and B both work

for companies that are part of the online travel agency industry. The companies that teams C and D

work for, are active in the financial services and healthcare industry, respectively. All teams have at least

four members.

The teams that participated in our case study are quite experienced. The team members of team B are

among the most experienced of all teams with at least 8 years of experience. Team D consists both of

experienced and less experienced members with their experience ranging from 1 to 20 years. Except for

team A, the teams use different data sources during the development of ML-based software systems.

Team B and D both use textual data. Besides the use of textual data, team D uses images. In contrast to

the other teams, team C uses tabular data for the development of the systems.

55

Table 7.1: The characteristics of the teams that participated in the case study

Organisation type Industry Team size Team experience Used data

Team A Non-tech company Online travel agency 4 ppl. ≥ 4 years N/A

Team B Non-tech company Online travel agency 6 ppl. ≥ 8 years Textual data

Team C Non-tech company Financial services 6 ppl. ≥ 3 years Tabular data

Team D Tech company Healthcare 5-15 ppl. 1-20 years Images & textual data

7.2.2 The interviews

As stated in Section 7.1, the teams were asked to select one of the two representations for the assessment

of their development processes with our maturity model. In the case study, all participating teams

provided us with their opinion and feedback on the model based on its application with the domain

representation. In order to be able to validate the model as thoroughly as possible, we, however, asked

the teams to familiarise themselves with both representations. We present the results of the interviews

per validation criteria or topic below.

Comprehensibility In general, most of the teams found the content of the maturity model easy to

understand. However, the teams did not understand all aspects of the model directly. For example,

team B had to look up the meaning of some practices in the SE4ML catalogue. Some teams did not

understand one or more practices used in the model completely. Team A and C both, for example, did

not understand practice 34 (automate configuration of model structures). Besides practice 34, team C

did not understand practice 43 (explain results and decisions to users). This team found the information

in the SE4ML catalogue too theoretical and stated that the practices would be easier to understand

when all practices have a corresponding practice card. Team A, B and C did not directly understand

how the maturity scores were determined based on their conducted assessments. Therefore, we had to

explain the scoring method of our model to these teams during the interviews.

Team D stated the following during the interview about the comprehensibility of the model: “I think in

general it was pretty easy. First, I needed to get used to it and understand the document a bit. But once I got the

hang of it, it was not that hard.”

Ease of use All teams were able to assess their development processes with the use of the interactive

workbook of our maturity model in an easy manner. However, we found that the required macros

for the workbook, which generate the content of some spreadsheets, only function correctly when

the workbook is opened in Microsoft Excel. For team A and B, the workbook, therefore, did not

work properly as these teams did not have access to Microsoft Excel and opened the workbook in

Google Sheets. Furthermore, team C was not able to activate the macros in Microsoft Excel due to

particular settings. Therefore, these three teams did not automatically obtain their maturity based on

their selected adoption degrees. After these teams completed the assessment, we provided them with

another workbook containing their maturity scores.

Team A, B and D found it difficult to distinguish between the different adoption degrees in the used

Likert scale. For example, team A stated the following about the ease of use of the model: “The hardest

part was where to put partially and where to put mostly. Like how to differentiate between the two. It is a bit

subjective, but in general it was easy”.

56

In order to further improve the ease of use of the workbook, both team A and B suggested us to include

links for the practices in the representations to their corresponding information pages in the SE4ML

catalogue.

We asked three of the four teams (team B, C and D) to estimate how long it took them to familiarise

themselves with the maturity model and to conduct the assessment with the workbook. Team B needed

approximately one hour to understand the model and conduct the assessment, while teams C and D

required between one to one and a half hours.

Completeness The teams found that our maturity model is complete and does not miss any major

components or elements. Nevertheless, some of the teams made some minor suggestions for the addition

of some elements to further refine the model. As stated before, team A and B both suggested us to

include links for the practices in the model to their information pages in the SE4ML catalogue. Team C

and D would like to have more information on the practices in order to improve their understandability.

Team C, therefore, would like to have practice cards for all practices in the model.

As only for some practices the option “not applicable” is included in the used Likert scale, both team B

and C were sometimes forced to select “not at all” in case a practice was not applicable to them. For

example, team C stated the following: “We did think of some practices like use privacy preserving machine

learning techniques that they are not applicable to everybody. So then you fill in not at all, but that does not

necessarily mean you are not mature. That means that it is not needed or something”.

Correctness We asked the teams whether they think that the practices per domain in the domain

representation are logically organised across the EC levels. Team A found that practice 34 (automate

configuration of model structures) in level 2 of the practice domain “Training” is an advanced practice

as the adoption of this practice requires the implementation of sophisticated tools. Furthermore, the

team found that its difficulty is similar to that of practice 33 (automate feature generation and selection)

in level 3. Therefore, team A would move practice 34 from level 2 to level 3. Moreover, team A stated

that both practice 27 (remove or archive unused features) and 32 (employ interpretable models when

possible) of level 3 are easier to adopt than all practices in that level and therefore would move these

practices to another level.

In addition, the team found that the adoption of practices 42 (inform users on ML usage) and 44

(provide safe channels to raise concerns) in level 2 of the practice domain “Governance” would be the

responsibility of organisations instead of ML teams. As their adoption would also require less effort

than the adoption of practices 21 (enforce fairness and privacy) and 40 (establish responsible AI values)

in level 1 according to team A, the team would switch their positions with practices 21 and 40.

Similar to team A, team C would move practices 21 and 40 from level 1 to level 3 as they consider

these practices as difficult. Furthermore, they would change the position of practices from level 3 to 1

as the adoption of these practices is common within their industry. Lastly, the team stated that they

would move practices 5 (use versioning for data, model, configurations and training scripts) and 8

(write reusable scripts for data cleaning and merging) from the practice domains ”Training” and ”Data”,

respectively, to the practice domain ”Coding” as they think that these practices are more related to this

domain.

57

Both team B and D did not make any specific suggestions for the change of the positions of the practices,

but these teams commented on the division of the practices across EC levels in general. Team B, for

example, believes that the division of the practices across levels depends on the context in which the

maturity model is used. Team D made the following remark regarding the division of practices across

levels: “There are several points that are clearly beginner and some points that are clearly advanced. But there are

also some points that can be interchangeably placed in other directions, but I will not argue against it”.

Accuracy Two of the four teams (team B and C) found that their obtained maturity scores do not

completely represent their actual maturity adequately. For example, team B stated the following about

their obtained scores: “I think in general we are doing pretty good. I know we are lacking a lot of things, but

you will not have everything solved. That is not possible. So it does look a bit harsh”. Furthermore, team C

made the following remark about their obtained score regarding the practice domain “Governance”: “I

would not expect us to be very low on governance compared to the average data science team”.

As team A is not directly involved in the development of ML-based software systems, this team only

commented on the accuracy of our model in a general manner. This team found that our scoring method

in which all practices until a particular level should at least be mostly adopted for that level to be

achieved, is strict. Furthermore, team A stated that our scoring method does not allow for an adequate

comparison between teams as the scoring method assigns maturity scores without taking into account

the number of adopted practices. For example, two different teams could have the same maturity level

despite one team having adopted almost all practices until that level and the other team having adopted

only a few. Therefore, team A advised us to introduce a metric that indicates the fraction of adopted

practices per level in order to be able to compare the maturity of teams with the same level. Similar to

team A, team C suggested to adapt the scoring method of our model and to also incorporate practices

that are only adopted partially in the (final) maturity scores.

The fourth team (team D) did not understand our question about the accuracy of the model. Therefore,

we were not able to determine whether their obtained scores represent their actual maturity.

Usefulness Team B found our maturity model especially helpful for obtaining insights into their

development process in terms of their practice adoption. The team believes that these insights could

help them reflect on the current state and the improvement of their process. Nevertheless, in this

reflection the team would only consider practices that are relevant for them as this team treats the

maturity model more as a guideline. Furthermore, team B stated that the two adoption scores (i.e. the

practice adoption and adoption percentile) were interesting. However, these scores would not persuade

the team to take action, because the scores lack information about the systems developed by the teams

associated with these scores. Therefore, team B found that they could not determine whether the

practices are relevant for them based on these scores.

For team C, the obtained insights about their development process from the model were interesting,

but served more as a confirmation of the current state of their process as the team already had a good

overview of their adopted practices. Nevertheless, they found that it was useful to be presented with

their practice adoption in a structured manner. Team C made the following remark about the usefulness

of the model: “It’s a good reality check and it’s always nice to have some things concrete. But was it an eye

opener? No. . . You have a feeling how your team is, right?”.

58

Team D is both involved in ML product development projects and exploratory ML projects. According

to the team, our maturity model would be especially useful for their ML product development projects.

For these projects, team D stated that the model would provide sufficient insights into their development

process in order to improve their process. This obtained information from the model can according to

the team be used to communicate with third parties about their development process. Similar to team

B, however, team D considers their obtained maturity scores as a rough indication of their maturity and

would use the model more as a guideline for the improvement of their process.

As team A is not directly involved in the development of ML-based software systems, the question

whether the model is considered useful is not asked to this team.

Feasibility We asked two of the four teams (team A and D) whether they think that ML teams would

use our maturity model in practice to assess and improve their development processes. For the model

to be used in practice, team A believes that some willingness is required from the teams themselves

and that these teams should be supported by the leaders of their organisations. Similar to team A, team

D stated that teams will only use the model in practice if its use is required by the management of

their organisations. For the management of these organisations to adopt the model in practice, the team

claimed that the management has to be convinced of the impact that the model has on the productivity

of the teams in financial terms.

The representations We asked the teams whether they perceived the distinction between the domain

representation and the maturity representation as useful. According to team A, it was useful to be

presented with maturity scores related to both representations (i.e. EC levels and maturity levels).

Nevertheless, the team found that it was confusing that they were allowed to choose one of the two

representations in order to conduct the assessment. Therefore, team A advised us to no longer allow

teams to choose between the two representations. According to the team, the model would be easier to

use when teams would only be allowed to use the domain representation to conduct assessments. After

the assessments, the teams could then be presented with their obtained maturity results with the use of

the two representations and be allowed to choose with which representation to improve their processes.

Similar to team A, team C found the distinction between the two representations confusing and did not

understand why teams were allowed to choose between them. This team would only present the final

results of assessments with the use of these representations.

Team D preferred the domain representation over the maturity representation as this team found that

the practices in this representation are divided in a more straightforward manner. After all, the tasks

performed by this team during the development of ML-based software systems are also divided among

the team members based on the same domains as in the domain representation.

The practice cards Three of the four teams (team A, B and D) did not study the practice cards. During

the interviews, we, therefore, presented the practice cards to these teams and asked them for their

opinion about these cards. Team A found the practice cards helpful to better understand the practices.

However, team A questioned if the criteria on the practice cards capture all tasks related to a particular

practice. If a team performs a task related to a practice that is not among its assessment criteria,

that task will currently not count towards its adoption. The team, therefore, advised us to use the

assessment criteria within our maturity model as examples of tasks related to practices instead of strict

requirements that have to be satisfied. Similar to team A, team D questioned the comprehensiveness of

59

the assessment criteria of the practice cards.

Team B and C found that the assessment criteria of the practice cards clarify what the practices

entail. However, team B stated that the defined assessment criteria might not be applicable to every

development process of teams. The team made the following remark about the use of assessment

criteria within our model: “I am thinking whenever you write assessment criteria for practices in general: how

do you make sure that it is applicable to everyone? I do not think that you can say: you need to have A, B, C and

D, then you are good”.

7.2.3 The questionnaire

Table 7.2 presents the ratings that the participating ML teams in our case study gave to our maturity

model on part of the defined evaluation criteria. For each evaluation criteria, the average and standard

deviation of all corresponding ratings are determined. From Table 7.2, it can be seen that the ease of

use and the correctness of our model were rated with an average score of 4.75 and 4.25, respectively,

which are the two highest average scores. These scores indicate that our maturity model is perceived

as easy to use and correct by the teams. We suspect that the average score corresponding to ease of

use of our model can be explained by the fact that teams were provided with an interactive workbook,

which enabled them to apply our model in a straightforward manner. The average score regarding the

correctness of the model is supported by our findings from the interviews that indicate that teams only

had observed minor issues and had suggested small additions to the model.

The completeness and usefulness of our model were both rated with an average score of 4.00 indicating

that our model is complete and useful according to the teams. Team A, however, assigned the usefulness

of our model a score of 3 out of 5, which is the lowest score corresponding to this criteria. The team

motivated this rating in the questionnaire by stating that the usefulness of the model depends on the

organisation of teams and their motivation for using the model. Furthermore, team A believes that

teams should be supported by the leaders of their organisations to focus on their process improvement

for the model to be useful, which was also mentioned by the team during the interview.

The comprehensibility and feasibility of our model were rated the lowest of all criteria with average

scores of 3.75 and 3.50, respectively. Team C gave the comprehensibility of our model the lowest score

of all teams (3 out of 5). This can be explained by the fact that it required some effort from team C to

understand several practices used in our model. All other teams rated the comprehensibility with a

score of 4 out of 5.

The feasibility of our model was assigned a score of 3 by both team A and C while the other two

teams gave the feasibility a score of 4. This indicates that both team A and C believe that our maturity

model is less likely to be adopted in practice by teams for the assessment and improvement of their

development processes than team B and D. Team C stated in the questionnaire that they think that

our maturity model would only be used in practice if it is required. The score given by team A can be

explained by the fact that the team stated during the interview that leadership support and willingness

from the teams themselves is required for the model to be used in practice.

60

Table 7.2: The ratings given to the maturity model on different validation criteria by the ML teams that participated in our
case study. For each validation criteria, the average and standard deviation of all corresponding ratings is determined. The design
of the table is based on M. Overeem et al. (2022).

Comprehensibility Ease of use Completeness Correctness Usefulness Feasibility

Team A 4 5 4 4 3 3

Team B 4 4 4 5 4 4

Team C 3 5 4 4 4 3

Team D 4 5 4 4 5 4

Average 3.75 4.75 4.00 4.25 4.00 3.50

Std. Dev. 0.43 0.43 0.00 0.43 0.71 0.50

7.2.4 Requirement satisfaction

In Section 3.4.2, we defined requirements with corresponding contribution arguments for our maturity

model. Based on our findings from the case study, we can determine whether our developed model

satisfies these requirements. The requirements for our maturity model are stated below. For each

defined requirement, we discuss whether that requirement is satisfied.

R1: The maturity model should provide ML teams with insights into the current state of their

development processes based on their adoption of best practices.

As described before, three of the four teams (team B, C and D) found our developed maturity model

useful for obtaining insights into their development processes in terms of their practice adoption.

Team B stated that their practice adoption determined by our model could help them to reflect on the

current state of their development process. Team C stated that our model provided them with their

current practice adoption in a concrete and structured manner. Nevertheless, their practice adoption

determined by the model was only a confirmation for the team as they already knew which practices

they had adopted. Team D found that the model clearly specifies which aspects to focus on during the

development of ML-based software systems

As team A is not directly involved in the development of ML-based systems, the team does not adopt

practices themselves. Therefore, the question whether the model provides insights in the current state

of their development process in terms of their practice adoption is not applicable for them.

All in all, we consider requirement 1 (R1) as satisfied.

R2: The maturity model should guide ML teams to their desired state of their development processes.

In the “process improvement” spreadsheet of the workbook of our maturity model, teams can create a

roadmap in order to plan the improvement of their development processes in several phases. In order

to determine whether the model guides teams to their desired state of their development processes,

a study has to be conducted in which teams have to create roadmaps and improve their processes

according to these roadmaps. As our conducted case study was, however, only limited to assessments of

development processes with our model, none of the participating teams created and executed roadmaps

for process improvements. Therefore, we are not able to determine whether the model guides teams

to their desired state of their processes. We thus consider the satisfaction of requirement 2 (R2) as

61

inconclusive.

R3: The maturity model should be understandable and applicable with limited effort (i.e. at most

three hours to understand the model and conduct an assessment) by ML teams.

As stated in Section 7.2.2, we asked three of the four teams (team B, C and D) how long it took them

to understand the maturity model and conduct an assessment. All three teams spent approximately

between one and one and a half hours to familiarise themselves with the model and conduct the

assessment. Furthermore, all teams stated during the interviews that they were able to apply the

model in a straightforward manner despite minor issues (e.g. macros of the workbook not functioning

correctly). This is also supported by the average score of 4.75 that the teams gave regarding the ease of

use of the model in the questionnaire, which is the highest average score of all rated criteria.

Regarding the comprehensibility of our model, most of the teams stated that in general they did

understand the content of our model easily despite that some aspects (e.g. the scoring method) of the

model were not directly understood. In comparison to most of the teams, team C had more difficulty

understanding our model, especially the practices. This is also evident by the ratings given on the

comprehensibility of the model in the questionnaire. Team A, B and D rated the comprehensibility with

a score of 4, while team C gave the comprehensibility a score of 3 resulting in an average score of 3.75,

which is one of the lowest average scores of all criteria. As only team C had issues with understanding

the model, we consider that our model is understandable with limited effort.

Overall, we can conclude that our maturity model satisfies requirement 3 (R3). Nevertheless, the

understandability of the model could be further improved as not all aspects of the model were directly

clear to all teams and team C had more difficulty understanding the model than other teams.

7.2.5 Model refinements

During our conducted case study, several issues with our developed maturity model emerged. Some of

these emerged issues can be addressed with minor adaptations to our model. As described before, three

of the four teams did not understand how their maturity was determined based on their conducted

assessments (i.e. the scoring method). In order to address this issue and improve the comprehensibility

of our model, we suggest to include an explanation of the scoring method of our model in the

“assessment report” spreadsheet, which presents the obtained maturity of teams, in the Excel workbook.

Some of the teams also did not understand one or more practices in our model (directly). In order

to assist teams in understanding the used practices in our model more easily, the practices in the

workbook should be linked to their corresponding information pages as suggested by team A and B

during the case studies. In addition, each practice could be accompanied with a practice card, which

provides detailed information on a practice, as proposed by team C. Team A and D, however, questioned

the comprehensiveness of the assessment criteria of the practice cards while team B questioned the

applicability of the criteria on every development process.

Furthermore, we found that not all practices in our maturity model are applicable to development

processes of all teams. We, therefore, suggest that the option “not applicable” should be included

between the possible answer options for more practices than is currently done.

62

During the case study, we also discovered that two of the four teams found the distinction between

the two representations confusing. In order to prevent confusion between the representations, the

suggestion of team A could be followed to allow teams to only conduct assessments with the domain

representation and to represent the maturity results with the use of the two representations. The

decision of teams of which representation to use should then be made only after they have conducted

an assessment and have been presented with their maturity results.

Besides the issues that can be addressed with minor adaptations to our model, several issues emerged

during the case study that require more effort to address. We discovered that our created Excel workbook

is not interoperable. Therefore, the workbook did not function properly for three of the four teams.

In order to make our maturity model more easily accessible for teams, the report and workbook of

our model could be combined into a web application, which would assist teams in understanding and

applying the model easily. Moreover, three of the four teams perceived the selection between adoption

degrees in the used Likert scale as difficult. Although the assessment criteria on the practice cards

were intended to facilitate the choice between the different adoption degrees, the teams questioned the

comprehensiveness and generality of the criteria, as described above. Possible solutions could be to

adapt the assessment criteria, create general definitions for adoption degrees or use metrics. However,

more research is required on facilitating objective selection between the adoption degrees. Lastly, team

B and C found that their maturity scores do not completely correspond to their actual maturity. In

addition, team A and C stated that partially adopted practices should be incorporated in the maturity

scores. Therefore, more study is required on the accuracy and scoring method of our model.

63

Chapter 8

Discussion

8.1 The maturity model

We developed a maturity model that aims to support and guide ML teams in the assessment and

improvement of their development processes. The developed maturity model consists of 45 practices

for the development of ML-based software systems, which are identified in the studies of Serban

et al. (2020, 2021). In the maturity model, these practices are arranged into two representations (i.e.

views): the domain and maturity representation. The domain representation focuses on the maturity of

teams regarding particular practice domains represented by engineering capability levels. The maturity

representation describes, however, the overall maturity of the development processes of teams indicated

by maturity levels. The domain representation can be used when a team aims to assess and improve

its development process regarding specific practice domains. The maturity representation, however, is

useful when a team wants to assess and improve its overall development process.

The practices in the domain representation are arranged into levels based, among other things, on their

adoption by the 139 teams in our data pool. In order to create this data pool, we processed a dataset

that contains the responses to the questionnaires administered during the studies of Serban et al. (2020,

2021). We, for example, removed all questions that do not occur in both questionnaires in order to

ensure that all teams in the data pool have answered the same set of questions. Based on the data pool,

we defined two scores that represent the adoption of the practices by the teams in the pool.

As the practices were ordered based, among others, on their adoption by the teams, the manner in

which we processed the dataset has influenced the ordering of the practices. After all, another way of

processing the dataset could have resulted in different adoption scores and another ordering of the

practices. Furthermore, as we removed questions that do not occur in both questionnaires, the adoption

of some practices is not determined. As a result, we ordered these practices based on their similarity

with or dependency on other practices, and their assumed complexity. Our approach of ordering the

practices can thus not be fully considered as data-driven. Therefore, this approach is not completely

objective and different orderings are possible. Further validation of the model should focus on studying

whether our ordering of the practices is acceptable or if the positions of practices should be changed.

Ideally, we believe that the arrangement of the practices should be completely based on data.

64

The levels of the maturity representation consist of sets of EC levels of particular practice domains,

which enables users to convert obtained EC levels with the domain representation into maturity levels

and vice-versa. Similar to the domain representation, these sets of EC levels of particular practice

domains are arranged into the maturity levels based on their adoption, similarity and dependency of

their corresponding practices. As a result, this ordering is limited by the same lack of objectivity as the

ordering of the practices in the domain representation. Furthermore, as maturity levels are composed

of EC levels of practice domains, the choices made in the construction of the domain representation

directly affect the composition of maturity levels. Moreover, the composition of maturity level is limited

by the fact that practices cannot be individually assigned to maturity levels but should always be

assigned together with their associated practices of the EC level of their domain.

Despite the limitations of our ordering approaches, we believe that these approaches could also be

used for the development of maturity models with different subjects than our model. Our ordering

approaches specify concretely how practices (or similar elements) can be arranged into levels, which is

not stated in studies on design approaches for maturity models. These studies often only present several

high-level guidelines for particular phases or steps in the development of maturity models. For our

approaches to be used for the development of a model with a different subject than our model, domains

of that subject with corresponding practices (or similar elements) should be identified. Furthermore,

data is required on the adoption of these practices by the targeted audience of the model. Moreover,

our model structure with two representations should be followed.

8.2 The model validation

In order to determine to which extent the developed maturity model assists teams in the assessment and

improvement of their development processes, we validated the model through a case study involving

four ML teams. In the case study, the participating teams were asked to assess their development

processes with the model. After the assessment of their processes with the model, the teams were

interviewed and asked to complete a questionnaire in order to obtain their opinion and feedback on the

model.

With the case study, we found that, in general, the model is positively perceived by the four ML teams.

The participating teams consider the model as easy to use and correct. Regarding these criteria, the

teams only had minor comments. Some teams had difficulty distinguishing the different answer options

in the used Likert scale. Furthermore, two teams suggested small modifications to the order of the

practices in the domain representation. In the questionnaire, the teams rated these two criteria with an

average score higher than 4.0 out of 5. The completeness and usefulness were rated with an average

score of 4.0 out of 5. The teams perceive the model as complete and stated that it does not miss any

major components or elements. Some teams would, however, like to be provided with more information

about the practices. Most of the teams also find that the model gives them sufficient insights into the

current state of their development processes. Nevertheless, two teams would only use the model as a

guideline for assessment and improvement of these processes.

The comprehensibility and feasibility of the model were rated lower than the previously discussed

criteria with an average score below 4.0 out of 5. During the interviews, most of the teams stated that

the content of the model is in general easy to understand despite minor comprehensibility issues. For

example, some teams did not understand a few practices and the scoring method directly. However, the

65

lower average score of the comprehensibility can be explained by the fact that it took one of the four

teams (team C) more effort to understand some of the practices. For the model to be used in practice,

some of the teams indicated that willingness is required from the teams themselves and that leadership

support is required, which explains the lower average score for the feasibility. Regarding the accuracy

of the model, some teams found that their obtained maturity scores do not completely represent their

actual maturity and that the scoring method needs adaptation to allow for better comparison between

teams.

As only a limited number of teams (i.e. four teams) participated in our case study, our obtained findings

should only be considered as an indication of how ML teams in general perceive the developed model.

In order to obtain a more complete view on how ML teams perceive the model, more teams should

have participated in our case study. Furthermore, two of the four participating teams were familiar

with the studies of Serban et al. (2020, 2021), which could have biassed their opinion and feedback

on the model, especially their understanding of our used practices. Moreover, with our case study,

we were not able to validate the model in its entirety. For example, we asked teams to use one of

the two representations for the assessment of their development processes. As all teams chose the

domain representation, teams were not able to provide their opinion and feedback purposefully on

model elements related to the maturity representation. Therefore, the opinion and feedback of teams

on the maturity representation was limited and excluded from our findings. Finally, we only asked the

teams to perform a self-assessment with our developed model. As a result, the teams did not create a

roadmap based on their obtained insights from their assessments. We, therefore, could not determine

whether allowing the teams to create a roadmap will support and guide these teams in improving their

processes. Furthermore, as our model was not implemented in real-world settings, we were not able to

determine whether the model is actually effective in improving the development processes of teams.

8.3 The knowledge questions

In Section 3.3, we defined knowledge questions. These knowledge questions were implicitly answered

in the previous chapters of this thesis. In this section, we summarise the answers to the knowledge

questions briefly.

KQ1: What are the current maturity models in the domain of SE?

We identified the following types of maturity models in the domain of SE: traditional software develop-

ment models, agile software development models, software security models and FLOSS development

models. For each category, we elaborated on one or two corresponding maturity models in Chapter 4.

We focused especially on models of which the design or development is documented extensively. In

total, we discussed seven maturity models in the domain of SE. These models are presented per model

type in Table 8.1. It is important to note that there are more maturity models available in the domain of

SE than discussed in this thesis and presented in the table.

One of the most applied models in the domain of SE is CMMI-DEV, which guides organisations in

the improvement of their processes for the development of products and services. By comparing the

identified models, we found that most models have a prescriptive purpose of use and are grounded in

knowledge and experience from industry. Assessments with these models are mostly performed by

teams of assessors, which base their assessment decisions on artifacts.

66

Table 8.1: The identified maturity models in the domain of SE per model type

Model type Models

Traditional software development CMMI-DEV and SEMM

Agile software development SAMI and SAFe MM

Software security BSIMM and SAMM

FLOSS development OMM

KQ2: What approaches are available for the development of maturity models?

In Chapter 5, we discussed six approaches for the development of maturity models. We distinguish

two types of development approaches: approaches for general and specific models. Table 8.2 presents

the identified development approaches for each type of approach. Similar to maturity models in the

domain of SE, there are probably more approaches than discussed in this thesis.

Most of the identified approaches describe the development of maturity models as a process that

consists of several steps or phases. We refer to such approaches as development process frameworks. By

comparing a set of process frameworks, we identified the following common phases in the development

of maturity models: scoping, construction, validation, deployment and revision. These process frame-

works and the identified common phases guided the development of our own maturity model. Due to

time constraints, we focused in this thesis only on the scoping, construction and validation phases.

Table 8.2: The identified development approaches per approach type

Approach type Development approaches

Approaches
for general models

De Bruin et al. (2005)

Mettler (2011)

Becker et al. (2009)

Pöppelbuß and Röglinger (2011)

Approaches
for specific models

Maier et al. (2012)

Van Steenbergen et al. (2010))

KQ3: How can the adoption of engineering best practices in the development processes of ML teams

be operationalised?

The operationalisation of the adoption of engineering best practices in the development processes of

ML teams is our developed maturity model. The development of our maturity model is extensively

described in Chapter 6. As described before, our maturity model consists of 45 engineering best

practices for the development of ML-based software systems. These practices are arranged into two

representations: the domain and maturity representation. The domain representation focuses on the

maturity of teams regarding the practice domains (e.g. data, training and coding) represented by EC

levels while the maturity representation focuses on the overall maturity of the development process of

teams represented by maturity levels. Including the initial levels, the model defines 4 EC levels and 6

maturity levels.

67

Our maturity model comes in the form of a report and an interactive Excel workbook, which aim to

assist teams in applying the model. In order to apply the model and conduct an assessment, teams

should select one of the two representations or both representations for the assessment. For each

practice, the teams should determine to which degree a practice is adopted by them with the use of a

Likert scale. The Likert scale distinguishes the following adoption degrees: not at all, partially, mostly

and completely. For some practices, teams are also allowed to select the answer “not applicable” to

indicate that a practice is not applicable to their development process. A particular level is accomplished

when all practices corresponding to that level and all practices of any lower levels are assigned an

adoption degree of at least “mostly”. Based on the insights of assessments, teams could create a

roadmap in order to plan their process improvement in several phases. The execution of assessments

and the creation of roadmaps can be done in the interactive workbook of our model.

KQ4: How accurate and relevant is the created maturity model for the development processes of ML

teams?

We validated our developed maturity model through a case study of which the results are presented

and discussed in Chapter 7. In the case study, two teams stated regarding the accuracy of our model

that their obtained maturity scores do not completely represent their actual maturity. Some teams

also indicated that the scoring method used in the model should be adapted in order to allow for

comparison between teams. After all, with our current scoring method, teams could have the same

maturity scores despite one team having adopted almost all practices until a particular level and the

other team having only adopted a few practices until that level.

Most of teams stated in the case study that our model provides them with sufficient insights into their

development processes. Two teams, however, stated that they would only use the model as a guideline

for the assessment and improvement of their processes. For example, one of these teams commented

that they would only focus on practices that they perceive relevant for their development process. In

the questionnaire, the teams rated the usefulness of the model with an average score of 4.00 out of 5.

Although most teams found the model useful, some teams indicated that ML teams would not use

such models by themselves and that some leadership support is required for the models to be used in

practice.

Overall, our maturity model is thus not completely accurate due to our devised scoring method.

Nevertheless, we can conclude that the model is relevant as it provides teams with sufficient insights

into their processes. For our model to be used in practice, ML teams should, however, be supported by

the leaders of their organisations.

68

Chapter 9

Conclusion

In this thesis, the development and validation of a maturity model for ML-based software systems is

extensively described. By developing a maturity model for ML-based software systems, we present ML

teams with a framework that provides them with insights into the current state of their development

processes in terms of their practice adoption. Based on these insights, we support teams in developing,

deploying and maintaining ML-based software systems more robustly and responsibly. During the

development of the model, we devised approaches to order the practices into levels. These approaches,

among others, involve the use of adoption data corresponding to these practices. With the development

of the maturity model, we thus demonstrate how engineering best practices for ML-based software

systems in literature can be structured into a coherent and practical format that assists teams to actually

operationalise these practices. The developed maturity model and the used ordering approaches could,

therefore, serve as an example for the operationalisation of best practices and the development of

maturity models in other domains.

By validating our developed maturity model, we determined how such a model is perceived by ML

teams. Overall, the obtained findings indicate that in general ML teams have a positive impression of

our model. Nevertheless, we found that the implementation of the model in practice needs leadership

support and willingness of teams. Therefore, more research is required that addresses how to create

support among practitioners and stakeholders (e.g. management) to apply such models in practice.

In future research, the developed maturity model could be revised based on our proposed refinements

in Section 7.2.5. For example, the report and the Excel workbook corresponding to the model could be

combined into a web application in order to improve its interoperability. Furthermore, the model could

in future research be further validated by asking more teams to provide their opinion and feedback

on the model. This validation study could, for example, be conducted after the proposed refinements

are implemented in the model. Another validation study on the developed model should especially

focus on elements of the model that are not covered in depth by our validation in order to ensure that

the model is validated as completely as possible and to obtain a more complete view of the opinion

and feedback of ML teams. Moreover, the adoption of practices that currently have no adoption scores

could be determined in future research. In order to incorporate the adoption of these practices into

the model, we suggest collecting new data on the adoption of all practices. Based on this new data

pool, the ordering of the practices can be revised, which results in another version of the model. This

reordering will improve the data-driven nature of the development of our model.

69

Finally, the model could in future research be implemented in real-world settings to study whether

the model is actually effective in improving the development processes of teams (i.e. evaluation of

the model). This study could entail an assessment of the processes and a creation of a roadmap with

the model that teams should follow to improve their development processes. The teams should be

monitored over a longer period of time to determine their progress and evaluate whether the model is

effective.

70

References

About ML. (2021). About ml reference document. https://partnershiponai.org/paper/about-ml-

reference-document/12/#Section-5

Akkiraju, R., Sinha, V., Xu, A., Mahmud, J., Gundecha, P., Liu, Z., Liu, X., & Schumacher, J. (2020).

Characterizing machine learning processes: A maturity framework. In D. Fahland, C. Ghidini,

J. Becker, & M. Dumas (Eds.), Business process management (pp. 17–31). Springer. https://doi.

org/10.1007/978-3-030-58666-9 2

Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nushi, B., & Zimmermann,

T. (2019). Software engineering for machine learning: A case study. 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP),

291–300. https://doi.org/10.1109/ICSE-SEIP.2019.00042

Aston, B. (2022). 10 best product backlog tools for backlog management. https://theproductmanager.

com/tools/best-product-backlog-tools/

Becker, J., Knackstedt, R., & Pöppelbuß, J. (2009). Developing maturity models for it management.

Business & Information Systems Engineering, 1, 213–222. https://doi.org/10.1007/s12599-009-

0044-5

Breck, E., Cai, S., Nielsen, E., Salib, M., & Sculley, D. (2017). The ML test score: A rubric for ML

production readiness and technical debt reduction. 2017 IEEE International Conference on Big

Data (Big Data), 1123–1132. https://doi.org/10.1109/BigData.2017.8258038

CMMI Product Team. (2010). CMMI for Development, Version 1.3. https://resources.sei.cmu.edu/

asset files/TechnicalReport/2010 005 001 15287.pdf

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information

technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008

de Bruin, T., Rosemann, M., Freeze, R., & Kaulkarni, U. (2005). Understanding the main phases of

developing a maturity assessment model. In D. Bunker, B. Campbell, & J. Underwood (Eds.),

Australasian Conference on Information Systems (ACIS) (pp. 8–19). Australasian Chapter of the

Association for Information Systems.

71

https://partnershiponai.org/paper/about-ml-reference-document/12/#Section-5
https://partnershiponai.org/paper/about-ml-reference-document/12/#Section-5
https://doi.org/10.1007/978-3-030-58666-9_2
https://doi.org/10.1007/978-3-030-58666-9_2
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://theproductmanager.com/tools/best-product-backlog-tools/
https://theproductmanager.com/tools/best-product-backlog-tools/
https://doi.org/10.1007/s12599-009-0044-5
https://doi.org/10.1007/s12599-009-0044-5
https://doi.org/10.1109/BigData.2017.8258038
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
https://doi.org/10.2307/249008

Fontana, R. M., Albuquerque, R., Luz, R., Moises, A. C., Malucelli, A., & Reinehr, S. (2018). Maturity

models for agile software development: What are they? In X. Larrucea, I. Santamaria, R. V.

O’Connor, & R. Messnarz (Eds.), Systems, software and services process improvement (pp. 3–14).

Springer.

Fontana, R. M., Fontana, I. M., da Rosa Garbuio, P. A., Reinehr, S., & Malucelli, A. (2014). Processes

versus people: How should agile software development maturity be defined? Journal of Systems

and Software, 97, 140–155. https://doi.org/10.1016/j.jss.2014.07.030

Fontana, R. M., Meyer, Jr., V., Reinehr, S., & Malucelli, A. (2015). Progressive outcomes: A framework

for maturing in agile software development. Journal of Systems and Software, 102, 88–108. https:

//doi.org/10.1016/j.jss.2014.12.032

Garzás, J., Pino, F. J., Piattini, M., & Fernández, C. M. (2013). A maturity model for the spanish

software industry based on iso standards. Computer Standards & Interfaces, 35(6), 616–628.

https://doi.org/10.1016/j.csi.2013.04.002

Giray, G. (2021). A software engineering perspective on engineering machine learning systems: State of

the art and challenges. Journal of Systems and Software, 180, Article 111031. https://doi.org/https:

//doi.org/10.1016/j.jss.2021.111031

Hazelwood, K., Bird, S., Brooks, D., Chintala, S., Diril, U., Dzhulgakov, D., Fawzy, M., Jia, B., Jia,

Y., Kalro, A., Law, J., Lee, K., Lu, J., Noordhuis, P., Smelyanskiy, M., Xiong, L., & Wang,

X. (2018). Applied machine learning at Facebook: A datacenter infrastructure perspective.

2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), 620–629.

https://doi.org/10.1109/HPCA.2018.00059

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research.

MIS Quarterly, 28(1), 75–105.

Humphrey, W. (1988). Characterizing the software process: A maturity framework. IEEE Software, 5(2),

73–79. https://doi.org/10.1109/52.2014

Ishikawa, F., & Yoshioka, N. (2019). How do engineers perceive difficulties in engineering of machine-

learning systems?: Questionnaire survey. 2019 IEEE/ACM Joint 7th International Workshop

on Conducting Empirical Studies in Industry (CESI) and 6th International Workshop on Software

Engineering Research and Industrial Practice (SER&IP), 2–9. https://doi.org/10.1109/CESSER-

IP.2019.00009

Jain, A., Patel, H., Nagalapatti, L., Gupta, N., Mehta, S., Guttula, S., Mujumdar, S., Afzal, S., Mittal

Sharma, R., & Munigala, V. (2020). Overview and importance of data quality for machine

learning. https://www.slideshare.net/HimaPatel2/overview-and-importance-of-data-quality-

for-machine-learning-tasks

JetBrains. (n.d.). CI/CD best practices. https://www.jetbrains.com/teamcity/ci-cd-guide/ci-cd-best-

practices/

72

https://doi.org/10.1016/j.jss.2014.07.030
https://doi.org/10.1016/j.jss.2014.12.032
https://doi.org/10.1016/j.jss.2014.12.032
https://doi.org/10.1016/j.csi.2013.04.002
https://doi.org/https://doi.org/10.1016/j.jss.2021.111031
https://doi.org/https://doi.org/10.1016/j.jss.2021.111031
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/52.2014
https://doi.org/10.1109/CESSER-IP.2019.00009
https://doi.org/10.1109/CESSER-IP.2019.00009
https://www.slideshare.net/HimaPatel2/overview-and-importance-of-data-quality-for-machine-learning-tasks
https://www.slideshare.net/HimaPatel2/overview-and-importance-of-data-quality-for-machine-learning-tasks
https://www.jetbrains.com/teamcity/ci-cd-guide/ci-cd-best-practices/
https://www.jetbrains.com/teamcity/ci-cd-guide/ci-cd-best-practices/

John, M. M., Olsson, H. H., & Bosch, J. (2021). Towards MLOps: A framework and maturity model.

In M. T. Baldassarre, G. Scanniello, & A. Skavhaug (Eds.), 2021 47th Euromicro Conference on

Software Engineering and Advanced Applications (SEAA) (pp. 1–8). IEEE. https://doi.org/10.1109/

SEAA53835.2021.00050

Liu, H., Eksmo, S., Risberg, J., & Hebig, R. (2020). Emerging and changing tasks in the development

process for machine learning systems, 125–134. https://doi.org/10.1145/3379177.3388905

Lwakatare, L. E., Raj, A., Bosch, J., Olsson, H. H., & Crnkovic, I. (2019). A taxonomy of software

engineering challenges for machine learning systems: An empirical investigation. In P. Kruchten,

S. Fraser, & F. Coallier (Eds.), Agile processes in software engineering and extreme programming

(pp. 227–243). Springer. https://doi.org/10.1109/ESEM.2019.8870157

Lwakatare, L. E., Raj, A., Crnkovic, I., Bosch, J., & Olsson, H. H. (2020). Large-scale machine learning

systems in real-world industrial settings: A review of challenges and solutions. Information and

Software Technology, 127, Article 106368. https://doi.org/10.1016/j.infsof.2020.106368

Maier, A. M., Moultrie, J., & Clarkson, P. J. (2012). Assessing organizational capabilities: Reviewing and

guiding the development of maturity grids. IEEE Transactions on Engineering Management, 59(1),

138–159. https://doi.org/10.1109/TEM.2010.2077289

Mateo-Casalı́, M. Á., Fraile, F., Boza, A., & Nazarenko, A. (2023). Maturity model for analysis of

machine learning operations in industry. In F. P. Garcı́a Márquez, I. Segovia Ramı́rez, P. J.

Bernalte Sánchez, & A. Muñoz del Rı́o (Eds.), Iot and data science in engineering management

(pp. 321–328). Springer. https://doi.org/https://doi.org/10.1007/978-3-031-27915-7 57

Mettler, T. (2011). Maturity assessment models: A design science research approach. International Journal

of Society Systems Science, 3(1-2), 81–98. https://doi.org/10.1504/IJSSS.2011.038934

Nascimento, E. d. S., Ahmed, I., Oliveira, E., Palheta, M. P., Steinmacher, I., & Conte, T. (2019). Under-

standing development process of machine learning systems: Challenges and solutions. 2019

ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM),

1–6. https://doi.org/10.1109/ESEM.2019.8870157

Otto, L., Bley, K., & Harst, L. (2020). Designing and evaluating prescriptive maturity models: A design

science-oriented approach. In W. Guédria, H. A. Proper, J. Verelst, S. Hacks, F. Timm, K.

Sandkuhl, M. Fellmann, G. Serapiao, M. Payan, M. Komarov, S. Maltseva, S. Uskenbayeva,

D. Nazarov, D. Ge, M. Helfert, & L. Ehrlinger (Eds.), 2020 IEEE 22nd Conference on Business

Informatics (CBI) (pp. 40–47). IEEE. https://doi.org/10.1109/CBI49978.2020.10056

Overeem, B. (2014). 10 best practices for managing the product backlog. https://medium.com/the-

liberators/10-best-practices-for-managing-the-product-backlog-a3e5502cc9ff

Overeem, M., Mathijssen, M., & Jansen, S. (2022). API-m-FAMM: A focus area maturity model for API

Management. Information and Software Technology, 147, 106890. https://doi.org/10.1016/j.infsof.

2022.106890

73

https://doi.org/10.1109/SEAA53835.2021.00050
https://doi.org/10.1109/SEAA53835.2021.00050
https://doi.org/10.1145/3379177.3388905
https://doi.org/10.1109/ESEM.2019.8870157
https://doi.org/10.1016/j.infsof.2020.106368
https://doi.org/10.1109/TEM.2010.2077289
https://doi.org/https://doi.org/10.1007/978-3-031-27915-7_57
https://doi.org/10.1504/IJSSS.2011.038934
https://doi.org/10.1109/ESEM.2019.8870157
https://doi.org/10.1109/CBI49978.2020.10056
https://medium.com/the-liberators/10-best-practices-for-managing-the-product-backlog-a3e5502cc9ff
https://medium.com/the-liberators/10-best-practices-for-managing-the-product-backlog-a3e5502cc9ff
https://doi.org/10.1016/j.infsof.2022.106890
https://doi.org/10.1016/j.infsof.2022.106890

OWASP. (n.d.-a). About us. Retrieved November 10, 2023, from https://owaspsamm.org/about/

OWASP. (n.d.-b). Quick start guide for version 2.0. https://owaspsamm.org/guidance/quick-start-

guide/

OWASP. (n.d.-c). SAMM assessment. https://owaspsamm.org/assessment/

Pei, K., Cao, Y., Yang, J., & Jana, S. (2019). Deepxplore: Automated whitebox testing of deep learning

systems. Communications of the ACM, 62(11), 137–145. https://doi.org/10.1145/3361566

Petrinja, E., & Succi, G. (2012). Assessing the open source development processes using OMM. Advances

in Software Engineering, 2012, 1–17. https://doi.org/10.1155/2012/235392

Polyzotis, N., Roy, S., Whang, S. E., & Zinkevich, M. (2018). Data lifecycle challenges in production

machine learning: A survey. ACM SIGMOD Record, 47(2), 17–28. https://doi.org/10.1145/

3299887.3299891

Pöppelbuß, J., & Röglinger, M. (2011). What makes a useful maturity model? a framework of general

design principles for maturity models and its demonstration in business process management.

ECIS 2011 Proceedings, 1–13. https://aisel.aisnet.org/ecis2011/28/

Raeder, T., Stitelman, O., Dalessandro, B., Perlich, C., & Provost, F. (2012). Design principles of massive,

robust prediction systems. Proceedings of the 18th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 1357–1365. https://doi.org/10.1145/2339530.2339740

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software

engineering. Empirical Software Engineering, 14(2), 131–164. https://doi.org/10.1007/s10664-008-

9102-8

Salah, D., Paige, R., & Cairns, P. (2014). An evaluation template for expert review of maturity models. In

A. Jedlitschka, P. Kuvaja, M. Kuhrmann, T. Männistö, J. Münch, & M. Raatikainen (Eds.), Product-

focused software process improvement (pp. 318–321). Springer. https://doi.org/10.1007/978-3-319-

13835-0 31

SCAMPI Upgrade Team. (2011a). Appraisal Requirements for CMMI, Version 1.3. https://insights.sei.

cmu.edu/documents/866/2011 005 001 15383.pdf

SCAMPI Upgrade Team. (2011b). Standard CMMI Appraisal Method for Process Improvement (SCAMPI)

A, Version 1.3: Method definition document. https://insights.sei.cmu.edu/documents/1618/

2011 002 001 15311.pdf

Serban, A., Van der Blom, K., Hoos, H., & Visser, J. (2020). Adoption and effects of software engineering

best practices in machine learning. ESEM ’20: ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement, 1–12. https://doi.org/10.1145/3382494.3410681

Serban, A., Van der Blom, K., Hoos, H., & Visser, J. (2021). Practices for engineering trustworthy machine

learning applications. 2021 IEEE/ACM 1st Workshop on AI Engineering - Software Engineering for

AI (WAIN), 97–100. https://doi.org/10.1109/WAIN52551.2021.00021

74

https://owaspsamm.org/about/
https://owaspsamm.org/guidance/quick-start-guide/
https://owaspsamm.org/guidance/quick-start-guide/
https://owaspsamm.org/assessment/
https://doi.org/10.1145/3361566
https://doi.org/10.1155/2012/235392
https://doi.org/10.1145/3299887.3299891
https://doi.org/10.1145/3299887.3299891
https://aisel.aisnet.org/ecis2011/28/
https://doi.org/10.1145/2339530.2339740
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-319-13835-0_31
https://doi.org/10.1007/978-3-319-13835-0_31
https://insights.sei.cmu.edu/documents/866/2011_005_001_15383.pdf
https://insights.sei.cmu.edu/documents/866/2011_005_001_15383.pdf
https://insights.sei.cmu.edu/documents/1618/2011_002_001_15311.pdf
https://insights.sei.cmu.edu/documents/1618/2011_002_001_15311.pdf
https://doi.org/10.1145/3382494.3410681
https://doi.org/10.1109/WAIN52551.2021.00021

Serban, A., Van der Blom, K., Hoos, H., & Visser, J. (2023a). Assign an owner to each feature and

document its rationale. https://se-ml.github.io/best practices/02-doc features/

Serban, A., Van der Blom, K., Hoos, H., & Visser, J. (2023b). Check that input data is complete, balanced

and well distributed. https://se-ml.github.io/best practices/01-input-data-complete/

Serban, A., Van der Blom, K., Hoos, H., & Visser, J. (2023c). Establish responsible ai values. https://se-

ml.github.io/best practices/06-code conduct/

Serban, A., Van der Blom, K., Hoos, H., & Visser, J. (2023d). Provide audit trails. https://se-ml.github.

io/best practices/04-audit trails/

Serban, A., Van der Blom, K., Hoos, H., & Visser, J. (2023e). Use continuous integration. https://se-

ml.github.io/best practices/03-cont-int/

Serban, A., Van der Blom, K., Hoos, H., & Visser, J. (2023f). Use sanity checks for all external data

sources. https://se-ml.github.io/best practices/01-sanity check/

Serban, A., Van der Blom, K., Hoos, H., & Visser, J. (2023g). Work against a shared backlog. https://se-

ml.github.io/best practices/05-use backlog/

Shahin, M., Ali Babar, M., & Zhu, L. (2017). Continuous integration, delivery and deployment: A

systematic review on approaches, tools, challenges and practices. IEEE Access, 5, 3909–3943.

https://doi.org/10.1109/ACCESS.2017.2685629

Sidky, A., Arthur, J., & Bohner, S. (2007). A disciplined approach to adopting agile practices: The

agile adoption framework. Innovations in Systems and Software Engineering, 3, 203–216. https:

//doi.org/10.1007/s11334-007-0026-z

Synopsys. (2022). Bsimm13: Foundations report 2022. https://www.synopsys.com/software-integrity/

engage/bsimm-web/bsimm13-foundations

The Free Software Foundation. (2023). What is free software? https://www.gnu.org/philosophy/free-

sw.html.en

Turetken, O., Stojanov, I., & Trienekens, J. J. M. (2017). Assessing the adoption level of scaled agile

development: A maturity model for scaled agile framework. Journal of Software: Evolution and

Process, 29(6), Article e1796. https://doi.org/10.1002/smr.1796

van Steenbergen, M., Bos, R., Brinkkemper, S., van de Weerd, I., & Bekkers, W. (2010). The design of

focus area maturity models. In J. L. Winter Robertand Zhao & S. Aier (Eds.), Global perspectives

on design science research (pp. 317–332). Springer. https://doi.org/10.1007/978-3-642-13335-0 22

Visual Paradigm. (n.d.). What is deep in product backlog? https://www.visual-paradigm.com/scrum/

what-is-deep-in-agile-product-backlog/

75

https://se-ml.github.io/best_practices/02-doc_features/
https://se-ml.github.io/best_practices/01-input-data-complete/
https://se-ml.github.io/best_practices/06-code_conduct/
https://se-ml.github.io/best_practices/06-code_conduct/
https://se-ml.github.io/best_practices/04-audit_trails/
https://se-ml.github.io/best_practices/04-audit_trails/
https://se-ml.github.io/best_practices/03-cont-int/
https://se-ml.github.io/best_practices/03-cont-int/
https://se-ml.github.io/best_practices/01-sanity_check/
https://se-ml.github.io/best_practices/05-use_backlog/
https://se-ml.github.io/best_practices/05-use_backlog/
https://doi.org/10.1109/ACCESS.2017.2685629
https://doi.org/10.1007/s11334-007-0026-z
https://doi.org/10.1007/s11334-007-0026-z
https://www.synopsys.com/software-integrity/engage/bsimm-web/bsimm13-foundations
https://www.synopsys.com/software-integrity/engage/bsimm-web/bsimm13-foundations
https://www.gnu.org/philosophy/free-sw.html.en
https://www.gnu.org/philosophy/free-sw.html.en
https://doi.org/10.1002/smr.1796
https://doi.org/10.1007/978-3-642-13335-0_22
https://www.visual-paradigm.com/scrum/what-is-deep-in-agile-product-backlog/
https://www.visual-paradigm.com/scrum/what-is-deep-in-agile-product-backlog/

Vom Brocke, J., Hevner, A., & Maedche, A. (2020). Introduction to design science research. In J. Vom

Brocke, A. Hevner, & A. Maedche (Eds.), Design science research. cases (pp. 1–13). Springer.

https://doi.org/10.1007/978-3-030-46781-4 1

Wan, Z., Xia, X., Lo, D., & Murphy, G. C. (2021). How does machine learning change software

development practices? IEEE Transactions on Software Engineering, 47(9), 1857–1871. https :

//doi.org/10.1109/TSE.2019.2937083

Washizaki, H., Uchida, H., Khomh, F., & Guéhéneuc, Y.-G. (2019). Studying software engineering

patterns for designing machine learning systems. 2019 10th International Workshop on Empirical

Software Engineering in Practice (IWESEP), 49–495. https://doi.org/10.1109/IWESEP49350.2019.

00017

Wieringa, R. J. (2014). Design science methodology for information systems and software engineering. Springer.

https://doi.org/10.1007/978-3-662-43839-8

Zhang, H., Cruz, L., & van Deursen, A. (2022). Code smells for machine learning applications. Proceedings

of the 1st International Conference on AI Engineering: Software Engineering for AI, 217–228. https:

//doi.org/10.1145/3522664.3528620

Zinkevich, M. (2021). Rules of machine learning: Best practices for ml engineering. https://developers.

google.com/machine-learning/guides/rules-of-ml

76

https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/TSE.2019.2937083
https://doi.org/10.1109/IWESEP49350.2019.00017
https://doi.org/10.1109/IWESEP49350.2019.00017
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1145/3522664.3528620
https://doi.org/10.1145/3522664.3528620
https://developers.google.com/machine-learning/guides/rules-of-ml
https://developers.google.com/machine-learning/guides/rules-of-ml

Appendix A

The domain representation

Table A.1: The domain representation. The representation (i.e. view) specifies the maturity progression of teams regarding the
practice domains represented by EC levels. The practices of each practice domain are divided across three EC levels. EC level 0,
which serves as the initial level, does not consist of practices and is thus omitted in this table.

DATA

Practice ID Practice adoption Adoption percentile

Engineering capability level 1 - Beginner

Write reusable scripts for data cleaning and merging. DAT1.1 85 75.0

Engineering capability level 2 - Intermediate

Ensure data labelling is performed in a strictly controlled process. DAT2.1 79 60.7

Make data sets available on shared infrastructure (private or public). DAT2.2 75 57.1

Engineering capability level 3 - Advanced

Use sanity checks for all external data sources. DAT3.1 47 14.3

Use privacy-preserving machine learning techniques. DAT3.2 - -

Test for social bias in training data. DAT3.3 - -

Check that input data is complete, balanced and well distributed. DAT3.4 48 17.9

Prevent discriminatory data attributes used as model features. DAT3.5 - -

77

Table A.1: The domain representation. The representation (i.e. view) specifies the maturity progression of teams regarding the
practice domains represented by EC levels. The practices of each practice domain are divided across three EC levels. EC level 0,
which serves as the initial level, does not consist of practices and is thus omitted in this table. (Continued)

TRAINING

Practice ID Practice adoption Adoption percentile

Engineering capability level 1 - Beginner

Share a clearly defined training objective within the team. TRAIN1.1 97 96.4

Capture the training objective in a metric that is easy to measure and

understand.
TRAIN1.2 102 100.0

Continuously measure model quality and performance. TRAIN1.3 96 91.1

Enable parallel training experiments. TRAIN1.4 96 91.1

Use versioning for data, model, configurations and training scripts. TRAIN1.5 95 83.9

Share status and outcomes of experiments within the team. TRAIN1.6 90 78.6

Engineering capability level 2 - Intermediate

Peer review training scripts. TRAIN2.1 66 46.4

Test all feature extraction code. TRAIN2.2 53 25.0

Automate hyper-parameter optimisation. TRAIN2.3 50 21.4

Automate configuration of algorithms or model structure. TRAIN2.4 - -

Engineering capability level 3 - Advanced

Assign an owner to each feature and document its rationale. TRAIN3.1 28 3.6

Actively remove or archive features that are not used. TRAIN3.2 37 7.1

Automate feature generation and selection. TRAIN3.3 - -

Assess and manage subgroup bias. TRAIN3.4 - -

Employ interpretable models when possible. TRAIN3.5 - -

CODING

Practice ID Practice adoption Adoption percentile

Engineering capability level 1 - Beginner

Use static analysis to check code quality. CODE1.1 60 39.3

Engineering capability level 2 - Intermediate

Run automated regression tests. CODE2.1 42 10.7

Assure application security. CODE2.2 - -

Engineering capability level 3 - Advanced

Use continuous integration. CODE3.1 - -

78

Table A.1: The domain representation. The representation (i.e. view) specifies the maturity progression of teams regarding the
practice domains represented by engineering capability levels. The practices of each practice domain are divided across three
engineering capability levels. Engineering capability level 0, which serves as the initial level, does not consist of practices and is
thus omitted in this table. (Continued)

DEPLOYMENT

Practice ID Practice adoption Adoption percentile

Engineering capability level 1 - Beginner

Continuously monitor the behaviour of deployed models. DEPLOY1.1 80 67.9

Engineering capability level 2 - Intermediate

Automate model deployment. DEPLOY2.1 68 50

Enable automatic roll backs for production models. DEPLOY2.2 72 53.6

Enable shadow deployment. DEPLOY2.3 54 30.4

Perform checks to detect skew between models. DEPLOY2.4 62 42.9

Log production predictions with the model’s version and input data. DEPLOY2.5 56 35.7

Engineering capability level 3 - Advanced

Provide audit trails. DEPLOY3.1 - -

TEAM

Practice ID Practice adoption Adoption percentile

Engineering capability level 1 - Beginner

Use a collaborative development platform. TEAM1.1 95 83.9

Engineering capability level 2 - Intermediate

Communicate, align, and collaborate with others. TEAM2.1 80 67.9

Work against a shared backlog. TEAM2.2 80 67.9

Engineering capability level 3 - Advanced

Decide trade-offs through defined team process. TEAM3.1 - -

GOVERNANCE

Practice ID Practice adoption Adoption percentile

Engineering capability level 1 - Beginner

Establish responsible AI values. GOVERN1.1 - -

Enforce fairness and privacy. GOVERN1.2 54 30.4

Engineering capability level 2 - Intermediate

Inform users on machine learning usage. GOVERN2.1 - -

Explain results and decisions to users. GOVERN2.2 - -

Provide safe channels to raise concerns. GOVERN2.3 - -

Engineering capability level 3 - Advanced

Perform risk assessments. GOVERN3.1 - -

Have your application audited. GOVERN3.2 - -

79

Appendix B

The maturity representation

Table B.1: The maturity representation. The representation presents the overall maturity progression of the development
processes of ML teams represented by maturity levels. Our maturity model defines six maturity levels. Each maturity level
comprises a set of EC levels of particular practice domains (except maturity level 1). The overall maturity of teams is considered
to start at maturity level 1 and, therefore, this level is omitted in this table.

Maturity representation

Practice ID Practice adoption Adoption percentile

Maturity level 2 - Basic

Share a clearly defined training objective within the team. TRAIN1.1 97 96.4

Capture the training objective in a metric that is easy to measure and understand. TRAIN1.2 102 100.0

Use a collaborative development platform. TEAM1.1 95 83.9

Write reusable scripts for data cleaning and merging. DAT1.1 85 75.0

Continuously measure model quality and performance. TRAIN1.3 96 91.1

Share status and outcomes of experiments within the team. TRAIN1.6 90 78.6

Use versioning for data, model, configurations and training scripts. TRAIN1.5 95 83.9

Enable parallel training experiments. TRAIN1.4 96 91.1

Maturity level 3 - Progressed

Ensure data labelling is performed in a strictly controlled process. DAT2.1 79 60.7

Continuously monitor the behaviour of deployed models. DEPLOY1.1 80 67.9

Communicate, align, and collaborate with others. TEAM2.1 80 67.9

Work against a shared backlog. TEAM2.2 80 67.9

Make data sets available on shared infrastructure (private or public). DAT2.2 75 57.1

Maturity level 4 - Optimised

Automate model deployment. DEPLOY2.1 68 50.0

Enable automatic roll backs for production models. DEPLOY2.2 72 53.6

Enable shadow deployment. DEPLOY2.3 54 30.4

Perform checks to detect skew between models. DEPLOY2.4 62 42.9

Log production predictions with the model’s version and input data. DEPLOY2.5 56 35.7

Automate hyper-parameter optimisation. TRAIN2.3 50 21.4

Automate configuration of algorithms or model structure. TRAIN2.4 - -

Use static analysis to check code quality. CODE1.1 60 39.9

Peer review training scripts. TRAIN2.1 66 46.6

Test all feature extraction code. TRAIN2.2 53 25.0

80

Table B.1: The maturity representation. The representation presents the overall maturity progression of the development
processes of ML teams represented by maturity levels. Our maturity model defines six maturity levels. Each maturity level
comprises a set of EC levels of particular practice domains (except maturity level 1). The overall maturity of teams is considered
to start at maturity level 1 and, therefore, this level is omitted in this table. (Continued)

Practice ID Practice adoption Adoption percentile

Establish responsible AI values. GOVERN1.1 - -

Enforce fairness and privacy. GOVERN1.2 54 30.4

Maturity level 5 - Proactively optimised

Use sanity checks for all external data sources. DAT3.1 47 14.7

Run automated regression tests. CODE2.1 42 10.7

Assure application security. CODE2.2 - -

Use privacy-preserving machine learning techniques. DAT3.2 - -

Test for social bias in training data. DAT3.3 - -

Check that input data is complete, balanced and well distributed. DAT3.4 48 17.9

Inform users on machine learning usage. GOVERN2.1 - -

Explain results and decisions to users. GOVERN2.2 - -

Provide safe channels to raise concerns. GOVERN2.3 - -

Prevent discriminatory data attributes used as model features. DAT3.5 - -

Maturity level 6 - Perfected

Use continuous integration. CODE3.1 - -

Assign an owner to each feature and document its rationale. TRAIN3.1 28 3.6

Actively remove or archive features that are not used. TRAIN3.2 37 7.1

Automate feature generation and selection. TRAIN3.3 - -

Assess and manage subgroup bias. TRAIN3.4 - -

Employ interpretable models when possible. TRAIN3.5 - -

Decide trade-offs through defined team process. TEAM3.1 - -

Perform risk assessments. GOVERN3.1 - -

Provide audit trails. DEPLOY3.1 - -

Have your application audited. GOVERN3.2 - -

81

Appendix C

The application guide

Table C.1: The application guide. The application guide aims to support ML teams in applying our maturity model. The guide
describes the application of the maturity model as a process of five steps. Each step is decomposed into a number of components,
which provide more information on that step. These components are based on the components of the steps in the quick start
guide of SAMM.

1 Plan and prepare the assessment
Purpose Align the team on the assessment initiative

Activities

1.1 Determine assessment scope – Determine which aspects of the development process should be covered in the assessment.
In case a team is involved in the development of several ML-based software systems, a team should determine which
development process is going to be assessed (e.g. process related to particular project or software system).

1.2 Determine assessment objective(s) – Determine as a team the objective(s) to be achieved as a result of the assessment.
1.3 Set assessment date – Plan as a team the date on which the assessment will be conducted.
1.4 Identify development artifacts – Identify which development artifacts could be useful for the assessment.

Resources • Framework report

Practices
• Involve all members of the team in the assessment initiative.
• Ensure that maturity assessment framework (i.e. maturity model) is understood within the team.
• Evaluate the practices within maturity assessment framework before the assessment.

2 Conduct the assessment
Purpose Determine and understand the current maturity of the development process

Activities

2.1 Select framework representation(s) – Determine which representation(s) to use for the assessment. The maturity framework
consists of two representations: the domain and maturity representations. For an assessment, the domain representation, the
maturity representation or both representations could be used. The domain representation focuses on the maturity regarding
the practice domains while the maturity representation focuses on the overall maturity of the development process.

2.2 Evaluate practices and assign adoption degrees – Determine the current adoption of the practices within the development
process (e.g. based on development artifacts). For each practice, assign the extent to which the practice is adopted. Within the
maturity framework, four adoption degrees are distinguished: not at all, partially, mostly and completely. Some practices
within the framework (i.e. DAT2.1, DAT3.1, DAT3.2, DAT3.3, DAT3.5, TRAIN2.2, TRAIN3.1, TRAIN3.2, TRAIN3.3, TRAIN3.4
and GOVERN1.2) are not applicable to all development processes. Teams for which these practices are not applicable, should
exclude these practices from the assessment.

2.3 Determine achieved maturity – Determine the achieved level(s) based on the assignment of the practice degrees. For a
particular level to be achieved, the adoption degree of all applicable practices under that particular level and all lower levels
(if any) should be at least mostly. In case the interactive workbook is used for the assessment, the obtained level(s) is/are
automatically generated and shown on the “Assessment report” spreadsheet.

Resources
• Interactive workbook
• Practice cards
• Development process artifacts (e.g. source code and notes)

Practices
• Ensure that all practices are understood in detail.
• Assign adoption degrees to practices based on development artifacts as much as possible.
• Reach consensus within the team on adoption degrees of practices.

82

Table C.1: The application guide. The application guide aims to support ML teams in applying our maturity model. The guide
describes the application of the maturity model as a process of five steps. Each step is decomposed into a number of components,
which provide more information on that step. These components are based on the components of the steps in the quick start
guide of SAMM. (Continued)

3 Set maturity target(s)
Purpose Define targets regarding the maturity of the development process in order to guide its improvement.

Activities

3.1 Determine desired level(s) – Determine which level(s) the team desires to achieve. In case the domain representation is used,
the desired engineering capability level for one or more domains should be defined. In case the maturity representation is
used, the desired overall maturity of the development process should be defined. If both representations are used for an
assessment, desired engineering capability levels, the overall maturity level or a combination of both can be defined.

3.2 Identify required practices for set target(s) – identify which practices need to be adopted or of which practices the adoption
degree needs to be improved in order to achieve set target(s).

Resources • Interactive workbook

Practices • Ensure that set maturity target(s) is/are achievable and reasonable.

4 Plan process improvement
Purpose Create a roadmap which supports the accomplishment of the set maturity target(s).

Activities

4.1 Determine number of phases and their duration – Determine in how many phases the set maturity target(s) should be
achieved. Besides, the duration of each phase should be specified.

4.2 Set adoption degree targets for identified practices – Determine for all identified practices the adoption degrees the team
desires to achieve at the end of the improvement initiative.

4.3 Identify required improvement activities for achieving adoption degree targets – Determine what is needed in order to
accomplish the desired adoption degrees of the identified practices in activity 3.2

4.4 Define the phases – Distribute the identified practices over the phases. Determine for each phase the set of practices to work
on (a practice could be worked on during multiple phases). Besides, determine for each practice per phase the adoption
degree that needs to be achieved at the end of that phase.

Resources • Interactive workbook

Practices

• Ensure that set adoption degrees of are achievable and reasonable.
• Balance the number of practices over the phases.
• Focus first on practices of lower levels and then on higher level practices.
• Take dependencies between practices into account.
• Take the adoption scores (i.e. practice adoption and adoption percentile) into account.

5 Execute process improvement plan
Purpose Improve process according to created roadmap.

Activities 5.1 Implement improvements – Improve the adoption of the identified practices according to the created roadmap.

Resources -

Practices -

83

Appendix D

The practice cards

Table D.1: The practice cards. The practice cards provide detailed information on practices, such as their purposes and
perceived effects. Furthermore, the practice cards contain assessment criteria. The practice cards aims to reduce the subjectivity
of assessments by assessment criteria, which assist ML teams in determining their degree of adoption of the practices. If all
assessment criteria of a particular practice are met, the practice should be considered to be completely adopted. In case none of
the defined criteria are satisfied, that practice should be considered to be not adopted at all.

DAT3.1 Use sanity checks for all external data sources

Description
Data from external sources needs to be checked on correctness and completeness in order to verify its quality.
Errors in data could introduce development issues or could lead to inaccurate ML models.

Purpose Prevent the processing of incorrect or incomplete data.

Effect -

Assessment
criteria

• Columns are selected explicitly and their data types are checked (Serban et al., 2023f; Zhang et al., 2022).

• The data is checked for missing values (Jain et al., 2020; Serban et al., 2023f).

• Correlations between columns (i.e. features) are checked.

• The data is checked for class imbalance (Jain et al., 2020).

• The data is checked for noisy labels (e.g. incorrect labelled instances; Jain et al., 2020).

• The data is checked for duplicates (Jain et al., 2020)

Related
practices

DAT1.1, DAT3.4

DAT3.4 Check that input data is complete, balanced and well distributed

Description
The (input) data for ML models continuously evolves. Therefore, the distributions, the completeness and the
balance of the data need to be checked continuously in order to prevent issues from its evolution.

Purpose Prevent the processing of incorrect or incomplete data.

Effect -

Assessment
criteria
(Serban et al.,
2023b)

• The cardinality of features are continuously checked (i.e. whether features still have the right number of
unique values).

• The distribution of the (input) data is continuously checked if it is shifted (prevents under- and overrepre-
sentations).

• Data dependencies (e.g. dependencies between features) are all known (i.e. no hidden dependencies).

• A dashboard (or an another visualisation approach) is used to monitor the quality of the data.

• An alert system is present to inform the team about unusual events.

Related
practices

DAT3.1, DAT3.3, DEPLOY2.4

84

Table D.1: The practice cards. The practice cards provide detailed information on practices, such as their purposes and
perceived effects. Furthermore, the practice cards contain assessment criteria. The practice cards aims to reduce the subjectivity
of assessments by assessment criteria, which assist ML teams in determining their degree of adoption of the practices. If all
assessment criteria of a particular practice are met, the practice should be considered to be completely adopted. In case none of
the defined criteria are satisfied, that practice should be considered to be not adopted at all. (Continued)

TRAIN3.1 Assign an owner to each feature and document its rationale

Description
In case a ML-based software system incorporates many data attributes (i.e. features), it could be hard to
understand all features and have a good overview of them. Each feature should, therefore, be assigned to a
team member, which serves as the owner of that feature, and be documented.

Purpose Easier comprehension of the created features which in turn improves their maintainablity.

Effect Quality

Assessment
criteria

• Each feature is assigned to an owner (Serban et al., 2023a).

• For each feature, a detailed description, its origin and expected benefit (i.e. rationale) are documented
(Serban et al., 2023a; Zinkevich, 2021).

• In case a feature owner leaves, information and feature ownership is transferred to another member of the
team (Serban et al., 2023a; Zinkevich, 2021).

Related
practices

TRAIN3.2

CODE3.1 Use continuous integration

Description
In order to detect potential issues early due to changes in code, code changes can be integrated frequently into
a shared repository and verified with automated software builds and tests.

Purpose Detect potential issues (e.g. bugs, errors, code quality issues) due to code changes as early as possible.

Effect Agility and quality

Assessment
criteria

• Code quality tests are implemented into the continuous integration (CI) pipeline (Serban et al., 2023e).

• Software security tests are implemented into the CI pipeline (JetBrains, n.d.).

• Automated regression tests are implemented into the CI pipeline (Serban et al., 2023e).

• A branching strategy is defined and shared across the team (Shahin et al., 2017).

• Building and test time are kept as small as possible, for example by decomposing large changes into smaller
ones, making commits as early and frequently as possible (e.g. once per day) or prioritising tests (JetBrains,
n.d.; Shahin et al., 2017).

• Build failures are fixed as early as possible and are considered to be the responsibility of the entire team
(JetBrains, n.d.).

• Team members are aware of the state of the system and made code changes, for example by close communi-
cation and collaboration among team members (JetBrains, n.d.; Shahin et al., 2017).

Related
practices

CODE1.1, CODE2.1

85

Table D.1: The practice cards. The practice cards provide detailed information on practices, such as their purposes and
perceived effects. Furthermore, the practice cards contain assessment criteria. The practice cards aims to reduce the subjectivity
of assessments by assessment criteria, which assist ML teams in determining their degree of adoption of the practices. If all
assessment criteria of a particular practice are met, the practice should be considered to be completely adopted. In case none of
the defined criteria are satisfied, that practice should be considered to be not adopted at all. (Continued)

DEPLOY3.1 Provide audit trails

Description

As the usage of ML could have impact on social and ethical aspects, there are calls for regulation and auditing
ML-based software systems. In order to make ML model behaviour traceable, auditable and regulatable, teams
should provide audit trails. An audit trail is a collection of records related to the development process and the
behaviour of the model.

Purpose Enable and support audits of developed software systems by making the behaviour of ML models traceable.

Effect -

Assessment
criteria

• A strategy for auditing is defined and implemented in the development process (e.g. a sequence of steps for
documentation are defined; Serban et al., 2023d).

• Audit trails should cover each stage of the development process (trails about the data and the model are
included as well; About ML, 2021; Serban et al., 2023d).

• It is defined and documented how a system could be used and misused and whom could be potentially
impacted (About ML, 2021).

• Some audit reports are generated automatically (Serban et al., 2023d).

• Audit trails are shared internally and externally (About ML, 2021).

Related
practices

DEPLOY2.5, TRAIN3.5, GOVERN3.2

TEAM2.2 Work against a shared backlog

Description

The backlog is a ordered list of several tasks (i.e. work items) related to the project and the system (e.g. features
and bugs). Although the entire team takes part in creating the backlog, the backlog is maintained by the
product owner. In case a team wants to work on particular tasks, these tasks are removed from the backlog and
put on a planning board. The backlog needs to be shared within the team and with external stakeholders.

Purpose
Support communication about work items and their content, priority and status within the team and with
external stakeholders.

Effect Effectiveness and traceability

Assessment
criteria

• The creation of the backlog is considered a team effort (B. Overeem, 2014).

• The backlog meets the DEEP (i.e. detailed, emergent, estimated and prioritised) acronmy (B. Overeem, 2014;
Visual Paradigm, n.d.).

• The workitems on the backlog are ordered based on more aspects than priority and value (e.g. risk and
dependency; B. Overeem, 2014).

• The backlog is kept manageable as only work items are added that will be executed (B. Overeem, 2014).

• Backlog management is supported by a tool. (e.g. Microsoft planner and Teamwork; Aston, 2022; B. Overeem,
2014; Serban et al., 2023g).

• The backlog is shared within with external stakeholders (B. Overeem, 2014; Serban et al., 2023g).

• The backlog is easy accessible for each team member (B. Overeem, 2014).

Related
practices

TEAM2.1

86

Table D.1: The practice cards. The practice cards provide detailed information on practices, such as their purposes and
perceived effects. Furthermore, the practice cards contain assessment criteria. The practice cards aims to reduce the subjectivity
of assessments by assessment criteria, which assist ML teams in determining their degree of adoption of the practices. If all
assessment criteria of a particular practice are met, the practice should be considered to be completely adopted. In case none of
the defined criteria are satisfied, that practice should be considered to be not adopted at all. (Continued)

GOVERN1.1 Establish responsible AI values

Description
In order to prevent negative impact of the use of ML and ensure responsible use, the team and external
stakeholders should establish and all share the same values regarding responsible use of ML regarding aspects
as privacy, fairness and security.

Purpose Operate according to the same shared values regarding responsbile AI.

Effect

Assessment
criteria
(Serban et al.,
2023c)

• The team and all external stakeholders adhere to a particular framework for responsible AI (i.e. code of
conduct).

• The responsible AI framework and corresponding objectives are suitable for/tailored to the situation of
team or the entire organisation.

Related
practices

GOVERN1.2

87

Appendix E

The interview guide

Introduction

First of all, thank you for making some time for this interview. My name is Ceyhan Deve and I am a

master’s student ICT in Business and the Public Sector at the Leiden university. During this interview, I

would like to get your opinion and feedback on the initial version of the maturity model that I created

for my master’s thesis. The created maturity model aims to support and guide ML teams in improving

their development processes.

This interview consists of two main parts. The first part is about the application of the maturity model,

while the second part focuses on the content of the model. At the end of this interview, I would like

you to fill in a short questionnaire in which you are asked to give your final opinion about the model

by rating the model on a set of criteria.

Your answers during this interview and questionnaire will be used to suggest refinements for the

maturity model. Your answers will be anonymised and can not be traced back to you. In order to be

able to analyse the answers in detail after the interview, I would like to record the interview. Is that

okay with you? The recording will not be shared with anyone and will be deleted after the research is

finished. Do you have any questions until now?

General

1. Can you tell me something about the organisation and the department you are in?

2. What are your role(s) within the team?

3. How large is your team?

4. How much experience does your team have in the development of ML-based software systems?

5. What kind of ML-based software system(s) do you develop as a team?

6. What kind of data does your team use for the development of the software systems?

88

The application of the maturity model

7. How easy was it to understand the content of the maturity model?

8. Was it easy to asses the maturity of your development process with the use of maturity model?

9. Are there any components of the model which you did not use during the assessment?

10. Do you think that your obtained assessment results represent the maturity of your development

process adequately?

11. How useful do you find the maturity model for the assessment and improve of your development

process?

12. Are you going to use the obtained insights into your process during the assessment to improve

your development process?

The content of the maturity model

13. Do you think the practice domains covers all relevant aspects of the development process of

ML-based software systems?

14. Are you familiar with all practices within the maturity model?

15. Do you perceive the distinction between the domain and maturity representation within the

maturity model as useful?

16. Within the domain representation, do you think the practices per domain are logically and

correctly assigned to the defined levels?

17. Do you find that the defined maturity levels within the maturity representation describe a logical

progression of the maturity of development process of ML-based software systems?

18. Do you think each maturity level within the maturity representation is logically and correctly

composed of practice domain levels?

19. Do you think the labels and the descriptions of the defined levels within the model represent the

content of each level (i.e. practices within each level) correctly?

20. Are there any elements that you miss in the maturity model?

These were all my questions. Do you have any other suggestions or remarks?

In order to conclude this case study, would (one of) you please fill in the questionnaire?

Thank you for participating!

89

Appendix F

The questionnaire

Q1. On a scale of 1-to-5, how complete do you think the maturity model is? 1 being very incomplete

and 5 being very complete.

○ 1

○ 2

○ 3

○ 4

○ 5

Q2. Could you motivate your answer to the previous question?

Q3. On a scale of 1-to-5, how easy was it to understand the maturity model? 1 being very difficult and

5 being very easy.

○ 1

○ 2

○ 3

○ 4

○ 5

90

Q4. Could you motivate your answer to the previous question?

Q5. On a scale of 1-to-5, how easy was it to use the maturity model? 1 being very difficult and 5 being

very easy.

○ 1

○ 2

○ 3

○ 4

○ 5

Q6. Could you motivate your answer to the previous question?

Q7. On a scale of 1-to-5, how correct do you think the content of maturity model is? 1 being very

incorrect and 5 being very correct.

○ 1

○ 2

○ 3

○ 4

○ 5

91

Q8. Could you motivate your answer to the previous question?

Q9. On a scale of 1-to-5, how useful do you think the maturity model is for the assessment and

improvement of the development processes of ML teams? 1 being very useless and 5 being very useful.

○ 1

○ 2

○ 3

○ 4

○ 5

Q10. Could you motivate your answer to the previous question?

Q11. On a scale of 1-to-5, how likely do you think is it that ML teams would use the maturity model in

practice for the assessment and improvement of their development processes? 1 being very unlikely

and 5 being very likely.

○ 1

○ 2

○ 3

○ 4

○ 5

92

Q12. Could you motivate your answer to the previous question?

93

	Introduction
	Research problem
	Research question
	Methodology
	Outline

	Background
	Differences and challenges in ML
	Maturity models
	Engineering best practices in ML

	Design science
	The paradigm
	Design science framework
	Goals and problems
	Design cycle
	Problem investigation
	Treatment design
	Treatment validation

	Maturity models for software engineering
	Traditional software development models
	Agile software development models
	Software security models
	FLOSS development models
	Comparison of maturity models

	Design approaches
	Approaches for general models
	Approaches for specific models
	Common development phases

	Model development
	The scoping of the model
	The construction of the model
	The dataset
	The creation of a data pool
	The adoption of the practices
	The structure of the model
	The creation of the domain representation
	The creation of the maturity representation
	The application of the model
	Consistent and objective assessments
	The design decisions

	Model validation
	Case study design
	Results
	The participants
	The interviews
	The questionnaire
	Requirement satisfaction
	Model refinements

	Discussion
	The maturity model
	The model validation
	The knowledge questions

	Conclusion
	References
	The domain representation
	The maturity representation
	The application guide
	The practice cards
	The interview guide
	The questionnaire

