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Abstract

This thesis introduces a novel method for identifying cell cycle stages using deep learning, with
a focus on single-channel DNA staining in time-lapse microscopy. Utilizing a UNet architecture
with EfficientNet encoders, the research minimizes imaging complexity and data needs while
preserving high segmentation precision. Experimental validation confirmed the efficacy of
the model, attaining 93.72% average precision, 92.87% average recall, and 93.29%
average F1 score in classifying breast cancer cell phases. Although the study employs static
images, it underscores the potential for future enhancements by integrating temporal dynamics
using other deep learning models with hybrid transformer-CNN architectures. This work
contributes to cellular biology analysis by identifying single cells and classifying their cell cycle
phases using a single DNA staining method.
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1 Introduction

Understanding the intricacies of the cell cycle is crucial in the fields of biology and medicine, serving
as a foundation for deciphering the complex mechanisms of cellular growth, division, and repair. The
cell cycle plays a pivotal role in the maintenance of tissue homeostasis and the response to cellular
damage. Moreover, aberrations in the cell cycle are often linked to various diseases, particularly
cancer, where uncontrolled cell division leads to tumor growth and progression. Therefore, precise
analysis of the cell cycle is essential for developing targeted cancer therapies and improving our
understanding of oncogenesis.

Traditional methods for analyzing cell cycle phases, while effective, often demand extensive imaging
and data processing, presenting significant challenges in terms of efficiency and resource utilization.
Recent advances in light microscopy and automated algorithms for cell segmentation have paved
the way for more precise and high-throughput analysis of cells | , ]. In this thesis,
an innovative method is introduced that utilizes deep learning to boost the precision and efficiency
of identifying cell cycle phases. By employing advanced models commonly used in medical imaging,
this research simplifies the imaging process and significantly reduces the data requirements typically
associated with multi-channel imaging techniques. This shift not only streamlines the analytical
process but also opens new avenues for rapid, scalable, and more accessible cell cycle analysis,
positioning deep learning as a transformative tool in cellular biology.

1.1 Biological Background

Accurately identifying cell cycle phases is crucial for understanding cellular processes, particularly
in cancer research, where cell cycle dysregulation is a hallmark. The cell cycle is the series of
events that take place in a cell, leading to its division and replication. The main phases of the cell
cycle include G1 (cell growth), S (DNA synthesis), G2 (preparation for mitosis), and M (mitosis).
Accurate identification of these phases is critical for studies in cell biology and medicine, as it aids
in the understanding of cellular processes and disease states. Traditional methods for cell cycle
analysis have faced several challenges, primarily due to the complexity and resource-intensive nature
of the imaging and data processing required. These challenges include the need for extensive multi-
channel imaging, which is time-consuming and demands substantial computational resources for
image analysis.

In recent years, the development of fluorescence ubiquitination cell cycle indicators (FUCCI)
has provided a significant advancement in cell cycle analysis. FUCCI uses fluorescent proteins to
label different phases of the cell cycle, enabling precise tracking of cellular progression through
various stages. Cells express different fluorescent proteins during different phases of the cell cycle,
allowing researchers to dynamically track the cell cycle using fluorescence microscopy | ].
This method involves imaging through four separate channels, each representing a distinct cell
cycle phase, thus providing detailed insights into cell cycle dynamics | ]. However, despite its
effectiveness, FUCCI presents challenges such as the need for multi-channel imaging and the
extra effort required for staining.

The requirement for four-channel imaging significantly increases the complexity of the data ac-
quisition process, making it more challenging to implement in high-throughput settings | ].
This complexity often hinders the widespread application of FUCCI, especially in environments
with limited resources. Additionally, the multi-channel approach necessitates substantial imaging



and data processing resources, making it less accessible for high-throughput or resource-limited
settings | ]. This limitation can be a significant barrier in large-scale studies where efficiency
and resource management are critical.

To address these limitations, this research introduces an optimized method that leverages deep
learning to achieve comparable results using single-channel DINA staining in time-lapse
microscopy. By narrowing down from four channels to just one, the imaging process becomes
faster and more cost-effective, alleviating the extensive resource allocation typically required in
multi-channel fluorescence imaging. This simplification has profound implications for resource
allocation in research settings, making high-throughput analysis more accessible and less invasive
to cells. This can facilitate long-term studies and reduce the potential for phototoxicity and other
cellular stress responses associated with multi-channel imaging, thereby preserving cell viability
and integrity:.

The proposed method focuses on breast cancer cells, a critical research area due to their dynamic
nature and the importance of monitoring their evolution. By concentrating on breast cancer cells,
we can explore fundamental aspects of cell cycle dynamics and the mutations and behaviors
characteristic of cancer progression. This provides a unique opportunity to observe the onset and
development of cancerous traits at a cellular level, which is vital for developing targeted therapies.
Integrating deep learning into this process enhances the practical benefits. Convolutional
neural networks excel in extracting meaningful patterns from complex datasets, even those
limited to single-channel inputs. This capability ensures that, despite the reduced data complexity,
the accuracy and reliability of cell phase identification are maintained. The automated nature of
deep learning analysis also facilitates faster, more consistent results, enabling researchers to focus
on higher-level interpretations and applications of their data | ].

A key aspect of this research is the use of knowledge gained from FUCCI staining for ground
truth annotation. By leveraging the detailed cell cycle phase information provided by FUCCI, we
can train the deep learning models to accurately identify cell cycle phases using single-channel
DNA staining | ]. This hybrid approach combines the precision of FUCCI with the simplicity
and efficiency of single-channel imaging, providing a robust solution for cell cycle analysis.

The cell cycle phases are further explained as follows: The G1 phase (Gap 1) is the first
phase where the cell grows and synthesizes proteins necessary for DNA replication. The S phase
(Synthesis) involves DNA replication, resulting in the duplication of the cell’s genetic material.
The G2 phase (Gap 2) is the second gap phase where the cell continues to grow and prepares for
mitosis. Finally, the M phase (Mitosis) is where cell division occurs, divided into several stages
(prophase, metaphase, anaphase, and telophase) followed by cytokinesis, resulting in two daughter
cells. This understanding is visually represented in Figure 1, which illustrates the cell cycle phases
using a color-coded diagram.
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Figure 1: Illustration of the cell cycle phases using a color-coded diagram. The cycle is divided into
four main phases: G1 (red), S (green), G2 (green), and M (green), along with a transition point
marked as ’early S’ (yellow). This visual representation helps in understanding the progression of a
cell through its cycle, emphasizing the phases where specific cellular activities occur, such as DNA
replication in the S phase and cell division in the M phase.

This research not only streamlines the analytical process but also opens up new avenues for
rapid, scalable, and accessible cell cycle analysis. This innovative approach holds the potential to
revolutionize how we study cellular functions, offering a more efficient yet equally effective alternative
to traditional multi-channel methods. The single-channel vs. multi-channel imaging contrast
underscores the benefits of the former, which is less data-intensive and simpler in terms of both
acquisition and analysis, making it preferable for long-term studies or studies requiring reduced
computational resources. In contrast, multi-channel imaging, as used in FUCCI, provides detailed
insights by capturing different fluorescent signals that correspond to specific cell cycle phases, but it
is more complex and resource-intensive due to the need for sequential imaging and data processing
across multiple channels.

1.2 Challenges and Limitations

One of the principal challenges encountered in this research was the creation and preparation
of a suitable dataset for training the deep learning model, given the absence of readily available
ground truth data. This thesis will detail the customized workflow designed to annotate the dataset
automatically, leveraging existing biological knowledge and computational techniques to generate
reliable training data.

The challenge of training with a single-channel approach is particularly daunting due to the limited
information available compared to multi-channel methods. Single-channel images primarily provide
basic structural details, lacking the rich context multi-channel setups offer through additional
markers for different cell components or phases. This makes it significantly harder to distinguish
subtle features that are crucial for accurate cell cycle analysis, requiring sophisticated computational
techniques to extrapolate meaningful insights from less data.

Additional challenges include:

e Managing the Computational Demands: Training a sophisticated deep learning model
is computationally intensive. The research tackled this by optimizing the neural network



architecture to ensure it remains lightweight and efficient, thus maintaining scalability and
accessibility for various research contexts. Techniques such as transfer learning and network
pruning were explored to balance computational efficiency without compromising the model’s
performance.

e Addressing Model Biases and Variability: Ensuring the model performs consistently
across different imaging setups and experimental conditions is critical. This research imple-
mented robust validation strategies, using a diverse set of images from varied experimental
setups to tune the model. This approach helps mitigate potential biases and variability,
ensuring the model’s reliability and generalizability in real-world applications.

e Inherent Limitations of Single-Channel Imaging: The single-channel approach, while
beneficial for reducing complexity and computational load, inherently limits the detail and
type of cellular information that can be captured. This thesis explores the trade-offs involved,
discussing how certain cellular processes and components may be obscured or less distinct
without the color-coding typically provided by multi-channel fluorescence tags. Strategies to
overcome these limitations include enhancing image processing algorithms and integrating
contextual data analysis to infer missing details effectively.

These compounded challenges highlight the intricacy of developing an effective single-channel
analysis system for breast cancer cells. However, the methods developed here push the boundaries
of what is achievable with minimal data inputs, setting a foundation for future advancements in
automated cellular analysis.

1.3 Methodological Innovations

The methodological innovations of this thesis center around the use of a Unet model with a
pretrained backbone encoder for semantic segmentation, a novel approach in the context of
cell cycle analysis. The Unet model, a type of convolutional neural network developed primarily
for biomedical image segmentation | |, features a symmetric encoding and decoding path.
This architecture enhances localization precision in the image segmentation process. Utilizing a
pretrained backbone encoder within the Unet model improves its capability for feature extraction,
making it highly effective for the detailed tasks required in this research. For a detailed view of the
Unet architecture, refer to Figure 2.
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Figure 2: The Unet model architecture. Unet is a convolutional neural network designed for
biomedical image segmentation. It features a symmetric encoder-decoder structure, which enhances
localization precision and utilizes a pretrained backbone encoder to improve feature extraction
capabilities.

At the core of these innovations is deep learning, a subset of machine learning that involves
artificial neural networks learning from large amounts of data [LBH15]. In this thesis, deep learning
is applied to process and analyze medical images, enabling the automatic learning of optimal
features for tasks such as image classification and segmentation without the need for manual feature
extraction. By employing deep learning, we streamline the analytical process, reducing the necessity
for extensive manual annotation and multiple imaging channels, which are typically required in
traditional methods.

Semantic segmentation is a crucial technique used in this context. It classifies each pixel in an
image into a category or class label, segmenting the image into regions of interest [('PI<"14]. This
pixel-level classification provides a detailed understanding of the image content, which is essential
for identifying cell cycle phases from microscopy images. For an example of semantic segmentation
applied to cell microscopy, see Figure 3.



Figure 3: Semantic Segmentation of Microscopy Images: The figure illustrates the application of
semantic segmentation to microscopy images of cells, with each color representing a different phase
or structure. Red represents the G1 phase, green represents the S/G2/M phases, yellow indicates
the Early S phase, and blue is used for Hoechst staining, which highlights the DNA content of the
cells and is crucial for identifying all cell cycle phases, including the GO resting phase. Magenta
outlines the cell borders. This detailed pixel-level classification aids in precise analysis of cell cycle
phases and morphological features.

Integral to the Unet model is the use of a backbone encoder, a pre-trained network that acts
as the feature extraction portion of the model | |. In the Unet architecture, the backbone
encoder processes input images into a rich set of features before these features are used by the
remainder of the network to perform tasks such as segmentation. This is particularly beneficial
in medical image analysis, where high levels of detail and accuracy are required. The pretrained
backbone encoder significantly enhances feature extraction capabilities, thereby improving the
accuracy and efficiency of the segmentation and classification processes.

Another critical innovation is the approach to dataset annotation. Annotating a dataset involves
labeling images of cells with their corresponding cell cycle phases, a crucial step for training accurate
machine learning models. The absence of ground truth data necessitated the development of a unique
workflow to automate this process. This workflow combines predictions from preliminary models
with expert validation, ensuring high-quality training data. Automating the dataset annotation
process overcomes the challenge of lacking ground truth and ensures the production of robust,
reliable machine learning models.

These methodological innovations not only address the challenges of single-channel imaging but
also lay the foundation for future advancements in the field. By improving the efficiency and
accuracy of cell cycle phase identification, these methods can accelerate research in cellular biology,
cancer research, and drug development. The integration of deep learning techniques, semantic
segmentation, and advanced feature extraction capabilities represents a significant departure from
traditional techniques, offering a more efficient yet equally effective alternative to conventional
multi-channel methods.

1.4 Research Objectives

This thesis aims to significantly enhance the accuracy and efficiency of cell cycle phase identification
through a novel application of deep learning technology. The specific objectives are:



e To develop a Unet-based deep learning model with a pretrained backbone encoder capable
of performing semantic segmentation to accurately identify cells and classify them into the
correct cell cycle phases.

e To focus on cell cycle analysis using single-channel DNA staining, thereby streamlining the
process and reducing the complexity and data requirements traditionally associated with
multi-channel fluorescence microscopy.

e To demonstrate the practical utility of the model in real-world biological research settings,
highlighting its potential for broader applications in cellular biology and medical diagnostics.

1.5 Thesis overview

This master thesis, developed under the guidance of Lu Cao from the Leiden Institute of Advanced
Computer Science (LIACS) and Sylvia Le Dévédec from the Leiden Academic Center for Drug
Research (LACDR), delineates a novel pathway toward streamlining cell cycle analysis. The
manuscript is structured as follows: Section 1 provides an introduction to the challenges and
solutions presented in this thesis. Section 77 delves into the definitions crucial for understanding
this research project; Section 2 reviews the work related to this study, highlighting the gaps this
thesis aims to fill. In Section 3, we explain how the data has been obtained and prepared in order
to conduct the experiments in Section 4, which describes the experimental setup, and results,
underscoring the efficacy of the proposed approach; finally, Section 5 concludes the thesis with a
summary of findings and potential avenues for future research. This structure is designed to lead
the reader through a comprehensive examination of the innovative strategies for identifying cell
cycle phases using advanced deep learning techniques, highlighting a substantial contribution to
the field of time-lapse cell cycle analysis in computer vision and biology.



2 Related Work

2.1 Deep Learning models in biomedical image analysis

Deep learning has revolutionized the field of biomedical image analysis, providing tools for more
accurate and efficient processing of complex datasets. Various deep learning-based algorithms
have been developed for 2D and 3D cell segmentation, offering significant improvements over
traditional methods. For instance, Al-Kofahi et al. | ] presented a single-channel whole-cell
segmentation algorithm that combines deep learning with watershed-based segmentation, achieving
high accuracy in diverse microscopy conditions. Buggenthin et al. | ] utilized deep learning
for the prospective identification of hematopoietic stem cells in large-scale single-cell imaging data,
demonstrating the potential of these techniques in high-throughput biological applications.

2.2 Understanding the U-Net Architecture

The U-Net architecture, originally developed for biomedical image segmentation, represents a
milestone in deep learning applications in the medical field. Its design is fundamentally a convolu-
tional network that excels at tasks requiring precise localization, a common requirement in medical
image analysis, especially in microscopic images | ]. The architecture is characterized by its
symmetric shape, which includes a contracting path to capture context and a symmetric expanding
path that enables precise localization. This structure is particularly well-suited for medical image
processing, where the detailed segmentation of intricate structures is crucial.

2.3 Encoder-Decoder Configurations

Moving beyond the basic U-Net architecture, the choice of the encoder, or the backbone, significantly
impacts the network’s performance, computational efficiency, and parameter efficiency. The encoder’s
primary role is to downsample the input image and create a set of feature maps that encapsulate
the input’s essential information, which the decoder then uses to construct the output segmentation
map.

e ResNet represents a profound shift in the architecture of deep neural networks. Introduced
to tackle the vanishing gradient problem, ResNet incorporates ”skip connections” or ”shortcut
connections” that allow gradients to flow through the network without diminishing as they
pass through numerous layers. This is accomplished by connecting the input of a set of layers
directly to their output, which facilitates the training of much deeper networks by essentially
allowing layers to learn residual functions with reference to the layer inputs instead of learning
unreferenced functions | ]. The ResNet architecture is depicted in Figure 4.
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Figure 4: Schematic diagram of the ResNet architecture. Image from [Dev21].

The figure illustrates the sequential arrangement of convolutional blocks at varying depths.
The architecture starts with an initial convolutional layer followed by a maximum pooling
layer. This is followed by four main stages (cfg[0] to cfg[3] blocks), each containing a variable
number of blocks with 3x3 and 1x1 convolutions. The stages are configured to progressively
increase the number of filters while reducing the spatial dimensions of feature maps. Residual
connections (skip connections) are depicted as dashed lines, enabling direct data flow from
one layer to another across the blocks. The diagram shows configurations for different ResNet
variants, detailing the number of layers (50, 101, 152) with corresponding block configurations
shown at the top right.

EfficientNet stands out due to its systematic scaling of networks, which uses a compound
coefficient to uniformly scale network width, depth, and resolution in a principled way. The
architecture is based on a baseline model that is scaled up to obtain a family of models that
achieve a better trade-off between latency and accuracy [11L19]. The EfficientNet scaling
methods are illustrated in Figure 5.
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Figure 5: Illustration of scaling methods in EfficientNet. Image from original paper [11.19].

Panel (a) shows the baseline configuration with standard layer width, depth, and resolution.
Panel (b) depicts width scaling, where the network’s width (number of channels) is increased,
enhancing the model’s capacity without altering layer depths or input resolution. Panel (c)
illustrates depth scaling by increasing the number of layers, potentially improving feature



extraction capabilities. Panel (d) shows resolution scaling where the input resolution is
increased, enhancing the model’s ability to recognize finer details. Panel (e) represents
the compound scaling method, a combination of increasing depth, width, and resolution
proportionally, which balances the network’s computational efficiency with performance across
different dimensions.

VGG (Visual Geometry Group) architecture is noteworthy for its simplicity, primarily
utilizing small 3x3 convolutional filters throughout the entire network, which are stacked in
increasing depth. Despite its architectural simplicity, VGG has shown a remarkable capacity
for feature extraction. Its design involves successive convolutional layers that increase in
depth, followed by max-pooling layers, which help in reducing spatial dimensions and focusing
on the most relevant features | ]. The VGG network architecture is detailed in Figure 6.
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Figure 6: Diagram of the VGG network architecture. Image from | ].

The architecture consists of a sequence of convolutional layers, primarily using 3x3 con-
volutional filters, highlighted by the different colors representing each stage. The network
begins with two convolutional layers with 64 filters each, followed by a max pooling layer,
continuing this pattern with increasing filter counts. Each block is color-coded: orange for
64 filters, red for 128, purple for 256, green for 512, and blue for fully connected layers. The
progression through deeper layers with more filters increases the network’s capacity to capture
more complex features, culminating in three fully connected layers that lead to the final
classification output. The architecture is known for its simplicity and depth, which allows it
to capture detailed texture information critical to many visual recognition tasks.

Inception architecture introduces an innovative approach by incorporating heterogeneous
convolutional kernels within the same network layer. This design allows the model to capture
information at various scales simultaneously, which optimizes computational resource usage
and increases the network’s ability to handle diverse image content [ ]. The Inception
V4 architecture module is shown in Figure 7.
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This diagram highlights the innovative use of multiple convolutional filter sizes and concate-
nation points to capture information at varying scales within a single network layer. The
module starts with a typical 299x299x3 input, processed through successive convolutional
layers of varying filter sizes (1x1, 3x3) and strides to reduce dimensionality and increase depth,
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depicted as different stages in blue. Each path uses convolutional layers to extract features
at different granularities, which are then concatenated into a single output feature map,
enhancing the network’s ability to capture complex patterns without significantly increasing
computational cost. Notable components include max pooling and strides for dimensionality
reduction and multiple "filter concat” steps where the outputs of various convolutions are
combined, showcasing the modular and scalable nature of the Inception architecture. The
notation "V” (e.g., 96 V, 32 stride 2 V) denotes the use of valid padding in convolutional
layers, meaning no padding is added to the input and the output size is reduced, which helps
in maintaining the spatial resolution while increasing the depth of the network.

2.4 Balancing Computational Requirements and Performance in En-
coder Selection

The selection of an encoder within the U-Net architecture is not merely a technical choice but a
strategic decision that balances computational requirements with performance. This balance is
especially critical in environments where resources are constrained. Efficiency is paramount in such
settings, as the computational cost of processing and segmenting medical images directly impacts
the practicality and scalability of medical imaging solutions. Each encoder brings a unique set of
capabilities and trade-offs that need to be carefully considered.

ResNet is known for its deep network capabilities facilitated by residual learning, allowing it to
handle more complex models and larger datasets effectively. It is suitable for situations where the
depth of feature extraction is crucial and there is a modest allowance for computational resource
usage. Its robustness makes it ideal for high-stakes medical imaging tasks where error margins
are minimal. EfficientNet, on the other hand, is particularly designed for efficiency. It uses a
compound scaling method that systematically adjusts network depth, width, and resolution, which
can be finely tuned to match hardware constraints without significantly sacrificing performance. Its
ability to deliver high accuracy with a lower computational and memory footprint makes it a prime
candidate for applications where efficiency is critical.

The VGG model, despite having a higher parameter count that implies greater computational
demand, benefits from its architecture that captures fine-grained details in images. In settings where
image detail is more critical than computational efficiency, such as detailed diagnostic imaging
in well-resourced labs, the depth and simplicity of VGG offer significant advantages. Lastly, the
Inception model, with its mixed convolutional kernel sizes, is adept at handling images of varying
scales and complexities. It provides a good balance between detail recognition and computational
efficiency, making it well-suited for tasks where images contain diverse features that vary greatly in
size, such as pathological analysis or analyzing cellular structures under different magnifications.
In this subsection, the focus shifts from a broad comparison of technical specifications to an emphasis
on how these specifications translate into real-world application efficiencies. By prioritizing efficiency
alongside performance, this analysis aids in selecting the most appropriate encoder that aligns
with the specific constraints and requirements of biological image processing tasks. This strategic
approach ensures that the deployment of U-Net-based models is not only theoretically effective but
also practically feasible and resource-conscious.
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3 Methodology

This section details the acquisition and processing of the dataset used in this study, including the
development of ground truth annotations essential for training our model. We will also outline the
preparatory steps taken before conducting the experiments discussed in Section 4.

3.1 Dataset Acquisition

The dataset was acquired from an experiment conducted to facilitate imaging for ground truth,
alongside the use of compounds to induce cell cycle arrest. The experiment was performed by
Xuesong Wang on January 31, 2024.

3.1.1 Reagents and Materials

The materials used for the experiment included:

e Phosphate-buffered saline (PBS).

Trypsine for detaching cells.

RPMI 1640 culture medium enhanced with L-glutamine, 25mM Hepes, and supplemented
with 10% fetal calf serum (FCS) and penicillin-streptomycin (pen/strep).

Dimethyl sulfoxide (DMSO).

Culture-treated, flat-bottom 96-well plates.

e Counting slides for cell quantification.

3.1.2 Experimental Details

The cell lines utilized were Hs578t W'T and Hsb78t FUCCI, with passage numbers of 5 and 13,
respectively, both exhibiting 90% confluence in T25 flasks. The seeding density was set to 6,000
cells per well.

3.1.3 Protocol

Day 1 - Preparation and Cell Seeding

The experiment commenced with the preparation of collagen at a concentration of 20 pg/ml. This
solution was added to each well of the 96-well plate and incubated for one hour. Following the
incubation, the wells were washed three times with PBS, with the last wash left in the wells until
further use.

Cells were then washed with 5 mL of PBS, detached using 0.5 mL of trypsine, and incubated
at 37°C under a 5% CO2 atmosphere. Post detachment, cells were suspended in 2 mL of culture
medium, centrifuged at 1000 rpm for 5 minutes, and the supernatant was discarded. The pellet
was resuspended in 0.5 mL of medium, and cells were counted using a 10 pul. sample of the cell
suspension.
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The cell suspensions were then diluted to achieve a density of 6,000 cells per well. A total of 100 pL
of this cell mix was plated in each well and incubated for 24 hours at 37°C in a 5% CO2 environment.
The outer wells of the plate were filled with 100 pL of PBS to minimize evaporation.

Day 2 - Staining and Compound Treatment

On the following day, cells were stained using Hoechst and Annexin V. Hoechst was diluted 1:5000,
and Annexin V was diluted 1:2000 in the medium. After removing the previous day’s medium, 50
nL of Hoechst was added to each well and incubated for one hour at 37°C.

Post-Hoechst staining, various compound dilutions were prepared in a deep-well plate either with
medium or Annexin V solution. The Hoechst stain was then removed from each well, and 100 pL
of these compounds were added per well. The treatments included DMSO control, Nocodazole (100
ng/ml), Palbociclib (10 pM), Flavopiridol (1 pM), Bosutinib (1 1M), and Cisplatin (1 pg/ml), each
designed to induce specific cell cycle arrests or effects such as apoptosis.

3.1.4 Imaging Setup

The imaging was performed using an ImageXpress system with a 20x objective lens. Four different
channels were used:

e Channel wl: DAPI for Hoechst stain detection (GO phase).

e Channel w2: FITC for visualization of Geminin-GFP (S/G2/M phase).
e Channel w3: Texas Red for Cdt1-RFP imaging (G1 phase).

e Channel w4: Cy5 for Annexin V (apoptosis).

Images were captured every 20 minutes over a cycle of 70 intervals, providing a comprehensive
dataset for subsequent deep learning model training. This detailed temporal-spatial imaging allowed
for the precise tracking of cell cycle progression and effects of the treatment compounds, which was
crucial for developing robust ground-truth data for the experiment.

3.2 Preparation of Ground Truth Data

The preparation of ground truth data begins with the pre-processing of fluorescent microscopy
images, captured using three distinct channels: blue (DAPI), green (Geminin-GFP), and red
(Cdt1-RFP). Each image set undergoes a normalization process to enhance contrast and ensure
consistent intensity scales, crucial for addressing variability in lighting conditions and staining
intensities.

Following normalization, the Cellpose model, a machine learning tool specifically designed for
cell segmentation in microscopy images, is employed to identify individual cells within the images.
This automated segmentation process is key to distinguishing individual cellular boundaries and
structures. To enhance the accuracy of this segmentation, manual corrections are integrated when
needed, allowing for refined segmentation that accurately captures cellular morphologies (see Figure
9).

Post-segmentation, the images often contain residual noise and artifacts, which could potentially
interfere with model training. To address this, a series of morphological operations, including
erosion, dilation, and the removal of small objects, are applied. These operations are essential for
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refining the segmentation masks, smoothing the edges of larger cells, and eliminating irrelevant
small artifacts, ensuring that the masks accurately represent the true cell structures.

With clean segmentation masks in hand, the procedure moves to feature extraction. This step
involves adjusting the segmentation masks to accurately delineate essential cellular features, a
critical process for downstream tasks such as phenotype classification and quantification of
expression levels.

Once individual features have been extracted, the next step involves integrating the segmentation
masks from the various channels. This integration is vital for experiments requiring the analysis of
cell cycle stages or specific cellular conditions indicated by the presence of multiple fluorescent
markers.

Finally, the processed images and their corresponding masks are meticulously organized and saved.
This structured data organization ensures that each image and mask is correctly tagged and indexed
according to the experimental conditions and time points, facilitating easy access and management
during the training phase of the machine learning model.

These comprehensive pre-processing steps are designed to prepare the image data meticulously for
robust analysis and model training, laying a solid foundation for accurate and reliable experimental
results.
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Figure 9: Flow diagram illustrating the pre-processing steps for image data used in the study.
The diagram shows the sequential processes from image loading and normalization, through cell
segmentation, noise reduction, and feature extraction, to the final organization and storage of
processed images.

3.3 Image Augmentation

In the development of robust machine learning models for medical imaging, particularly those
involved in image segmentation tasks like cell cycle phase detection, data augmentation plays a
crucial role in enhancing model performance by artificially increasing the diversity of training data.
This section outlines the specific augmentation techniques employed in our study to preprocess the
dataset and prepare it for effective training of our U-Net models with various EfficientNet encoders.
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Augmentation Techniques and Implementation The data augmentation pipeline was im-
plemented using the albumentations library, a powerful tool for performing transformations in a
manner that is both efficient and tailored for computer vision tasks. The choice of augmentations
was strategically selected to simulate realistic variations that could occur in medical images, thereby
improving the model’s ability to generalize across unseen data during the testing phase.

The following transformations were applied to both the input images and their corresponding
segmentation masks:

1. Rotation:

e Limit: 180 degrees
e Probability: Applied to every image (p=1)
e This transformation rotates the images and their masks up to 180 degrees, covering all

possible orientations. Such rotations are crucial for medical images, where orientation
can vary significantly.

2. Elastic Transformation:

e Alpha: 1

e Sigma: 50

e Alpha Affine: 50
e Probability: 0.5

e Elastic transformations introduce realistic deformations that mimic the variability in
shape and size of biological structures in biological imaging, such as cell deformations
under different microscopic settings.

3. Piecewise Affine:

e Probability: 0.5

e This transformation applies local affine transformations to different parts of the image.
It is particularly useful for modeling the non-rigid nature of biological tissues and their
variability in different samples.

By augmenting the dataset offline and saving the transformed images and masks, the training
process becomes significantly more efficient. It eliminates the need for on-the-fly augmentation
during each epoch, thus reducing computational overhead and allowing the model to train faster.
This tailored augmentation setup, by effectively increasing the size and diversity of our training
dataset, is expected to lead to improved model robustness and accuracy, making it better suited for
practical deployment in medical image analysis.

With our dataset now meticulously prepared and annotated, we have laid solid groundwork for the
advanced stages of our research. The refined data is ready to be utilized for training the model,
ensuring that we have a robust system for the experimental validations ahead. The following section,
4, will detail how this trained model is applied and tested, demonstrating the effectiveness of our
approaches and discussing the outcomes of our experiments.
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4 Experiments

The experiments were conducted using a high-performance computing setup to ensure efficient
training and evaluation of the model. The computational resources utilized included an Intel Core
i7-12700 processor, 48GB of RAM, and an Nvidia RTX 3080 GPU with 10GB of VRAM. This
setup facilitated rapid data processing and model training, enabling the handling of large datasets
and complex computations required for accurate semantic segmentation.

4.1 Introduction to Evaluation Metrics for Semantic Segmentation
Model

In evaluating the performance of a UNet model for multiclass semantic segmentation, particularly for
segmenting and classifying cells from microscopy images, it is essential to use a set of comprehensive
and robust metrics. The following metrics have been chosen for their effectiveness in assessing
segmentation quality: Intersection over Union (IoU), Dice Score, Precision, Recall, and F1 Score.
Each metric provides unique insights into different aspects of the model’s performance. Below are
detailed explanations and formulas for each metric.

4.1.1 Intersection over Union (IoU)

The Intersection over Union, also known as the Jaccard Index, measures the overlap between the
predicted segmentation and the ground truth. It is defined as the ratio of the intersection of the
predicted and ground truth masks to their union. The IoU for a single class is given by:

|AN B

1
|AU B| (1)
where A is the set of predicted pixels, and B is the set of ground truth pixels.

IoU =

4.1.2 Dice Score

The Dice Score, also known as the Sgrensen-Dice coefficient, is a measure of similarity between two
samples. It is particularly useful for imbalanced datasets as it gives more weight to the correctly
predicted pixels. The Dice Score for a single class is calculated as:

_ 2[ANnB|

Dice = 2
= T+ 1B @)

where A and B are defined as above.

4.1.3 Precision

Precision measures the accuracy of the positive predictions, i.e., the proportion of true positive
pixels among all pixels predicted as positive. It is calculated as:

TP
Precision — ———
recision = o (3)

where T'P is the number of true positive pixels and F'P is the number of false positive pixels.
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4.1.4 Recall

Recall, also known as Sensitivity or True Positive Rate, measures the proportion of actual positives
that are correctly identified by the model. It is defined as:
TP
Recall = ———— 4
T TPYFEN (4)

where F'N is the number of false negative pixels.

4.1.5 F1 Score

The F1 Score is the harmonic mean of Precision and Recall, providing a balance between the two.
It is particularly useful when there is an uneven class distribution. The F'1 Score is calculated as:

Pl 2 - Precision - Recall (5)

Precision + Recall

4.2 Encoder comparison

In the quest to optimize the performance of the U-Net architecture for segmenting cell cycle phases,
we conducted experiments with several pre-trained backbone encoders, as discussed in the section
2.3. Here, we provide a detailed comparison of these models based on various performance metrics.

4.2.1 Experimental Setup:

Each encoder variant of the U-Net was trained under identical conditions to ensure that differences
in performance metrics are attributable solely to the encoder’s capabilities. The metrics chosen
for comparison include Average Intersection over Union (Avg IOU), Dice Coefficient (Avg Dice),
Precision (Avg Precision), and Recall (Avg Recall). These metrics provide a comprehensive view of
model performance, particularly in the context of semantic segmentation tasks where the accuracy
of boundary delineation is crucial.

4.2.2 Results

The comparative performance of the models is summarized in the table below:

Model Avg IOU Avg Dice Avg Precision Avg Recall
EfficientNet-B5 0.656 0.780 0.772 0.748
ResNet50 0.536 0.673 0.673 0.643
VGG19-BN 0.516 0.652 0.661 0.618
Xception 0.585 0.721 0.717 0.683

Table 1: Comparison of UNET Models with Different pre-trained Encoders
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4.2.3 Model Performance Evaluation

The results indicate a clear performance advantage for the U-Net model utilizing the EfficientNet-
B5 encoder, which consistently outperforms the other models across all metrics. Specifically, it
achieves the highest Avg IOU of 0.656 and an Avg Dice of 0.780, suggesting its superior capability
in capturing the most relevant features for accurate segmentation. The high precision (0.772) and
recall (0.748) further confirm its effectiveness in not only identifying the relevant areas but also in
minimizing false positives and false negatives, which are critical aspects in medical image analysis.
ResNet50, VGG19-BN, and Xception models also show commendable performance but are less
effective compared to EfficientNet-B5. The relatively lower scores in IOU and Dice metrics for these
models highlight potential areas for improvement, particularly in terms of feature extraction and
boundary delineation.

The empirical evidence supports the conclusion that the choice of encoder significantly impacts the
performance of semantic segmentation models. The EfficientNet-B5 encoder, with its balanced
architecture that emphasizes both depth and width, proved to be the most effective in our
experiments. It not only enhances the U-Net’s ability to accurately segment complex images
but also ensures robustness across varied conditions. This finding underscores the importance
of selecting appropriate encoder architectures for specific tasks in medical image processing and
suggests potential paths for further research and development in this domain.

4.3 Finding best EfficientNet model

Given the constraints of computational resources, this subsection narrows down the scope of our
investigation to three specific variants of the EfficientNet family: EfficientNet-B4, B5, and B6.
These models were selected based on their computational efficiency and expected performance
levels, offering a balanced view of the capabilities within the upper-middle range of the EfficientNet
series. This focused comparison will help us determine the best encoder for our U-Net architecture
while managing the practical limitations of our available hardware and software infrastructure.
The choice to explore EfficientNet-B4, B5, and BG6 is strategic, as these models incrementally increase
in complexity and capacity, potentially providing enhanced accuracy and detail in segmentation
tasks without excessively straining our computational limits. By examining these specific encoders,
we aim to capture a broad spectrum of performance metrics while remaining within the operable
bounds of our system’s capabilities.

This investigation will follow a structured approach, employing the same metrics previously
used—Average Intersection over Union (Avg IOU), Dice Coefficient (Avg Dice), Precision (Avg
Precision), and Recall (Avg Recall). This consistency will ensure comparability with prior ex-
periments, allowing for an accurate assessment of each model’s strengths and weaknesses in the
context of segmenting cell cycle phases. The findings from this comparative analysis will not only
determine the most suitable EfficientNet encoder for our current needs but also inform future
resource allocation and model selection strategies in biological image analysis projects.

4.3.1 Comparison of Model Performances

This section compares the performance of two models, EfficientNet-B5 and EfficientNet-B6, across
various metrics at both the pixel-level and instance-level. The pixel-level metrics evaluate the models’
ability to accurately segment images at a granular level, focusing on the precision of individual pixel
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classification. In contrast, the instance-level metrics assess the models’ performance in accurately
identifying and counting distinct cells as whole entities. These metrics provide comprehensive
insight into the models’” ability to segment and classify different phases of cell images.

Average Pixel-level Metrics

‘ Metric ‘ EfficientNet-B4 ‘ EfficientNet-B5 ‘ EfficientNet-B6 ‘
‘ Segmentation ‘
ToU 96.76 96.80 96.80

Dice 98.35 98.37 98.37
Precision 98.24 98.23 98.23
Recall 08.46 98.52 98.52
‘ Cell Classification ‘
TIoU 61.87 62.44 62.42

Dice 76.42 76.55 76.42
Precision 73.11 73.53 72.88

Recall 72.27 73.35 73.40
‘ Borders ‘
ToU 55.30 55.87 55.07

Dice 71.01 71.48 70.82
Precision 74.42 75.00 75.40
Recall 67.99 68.36 66.86

Table 2: Comparison of EfficientNet-B4, B5, and B6 Performance Across Different Classes

The cell classification and border metrics are relatively lower compared to the general segmentation
metrics. There are two main factors contributing to these lower values.

First, in some cases, the model is able to predict in some cases the cell shape more accurately
than the original ground truth (GT) annotations used to extract these metrics. Since the predicted
shapes differ from the GT annotations, there is less overlap, resulting in lower values for the metrics.
Second, the inherent difficulty of the tasks impacts performance. Extracting meaningful features
for detailed classification from a single grayscale image is challenging. Additionally, the dataset
used is unbalanced, increasing the impact of underrepresented classes on performance.

For the cell border task, which involves identifying a 1-pixel line to separate touching cells, the
performance is relatively lower. However, even though it’s not perfect or close to perfection, the
model’s performance is sufficient to separate the cells and identify them as distinct instances. The
border will be refined later with post-processing to enhance accuracy.
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Average Count-based Metrics

‘ Metric ‘ EfficientNet-B4 ‘ EfficientNet-B5 ‘ EfficientNet-B6 ‘
G1 Phase (Red)

Precision 96.11 94.96 94.42
Recall 96.69 97.48 97.71
F1 Score 96.12 95.93 95.76

| S/G2/M Phases (Green)
Precision 97.97 98.31 98.47
Recall 97.70 97.60 97.10
F1 Score 97.75 97.88 97.69

| Early S Phase (Yellow) |
Precision 57.20 57.67 56.37
Recall 47.89 50.03 50.38
F1 Score 47.87 48.64 48.90

| Hoechst (Blue) |
Precision 95.09 96.17 94.40
Recall 98.65 98.16 98.96
F1 Score 96.72 97.04 96.50

Table 3: Comparison of average count-based metrics for cell phase identification using EfficientNet-
B4, B5, and B6 models. Metrics are reported as percentages to reflect accuracy in classification
across different cell phases, each represented by a unique color.

4.3.2 Comparison of Model Efficiency

In this section, we compare the model efficiency in terms of the number of parameters, training
duration, number of epochs needed for convergence, and inference times for the EfficientNet-B4,
B5, and B6 models. These models vary significantly in complexity and computational demands, as
reflected in their parameter count, training times, and epochs to convergence. The inference times,
crucial for real-time applications, have yet to be determined and will be updated accordingly.

Model | Parameters (M) | Training Time (h) | Epochs to Converge | Inference Time (img/s)
EfficientNet-B4 17M 8.75 35 56.89
EfficientNet-B5 28M 12.65 40 51.57
EfficientNet-B6 40M 45.6 30 42.97

Table 4: Comparison of model size, training, epochs to convergence, and inference time for Effi-
cientNet encoders

The stopping criteria for the epochs is determined by monitoring the validation dice score, specifically
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stopping the training if there has been no improvement over 5 consecutive epochs. This adaptive
training approach ensures that each model is optimized without unnecessary computational expense.
This table provides a snapshot of each model’s computational footprint and operational efficiency,
pivotal for choosing the appropriate model for specific applications in medical image analysis or
other fields requiring image processing.

4.3.3 Performance evaluation

Based on the detailed comparison of the three models—EfficientNet-B4, EfficientNet-B5, and
EfficientNet-B6—across pixel-level, count-based metrics, and model efficiency, the following conclu-
sions can be drawn:

Pixel-level Metrics

e Segmentation Performance:

— IoU and Dice: EfficientNet-B5 and B6 showed identical performance, both slightly
outperforming EfficientNet-B4. EfficientNet-B5 and B6 both achieved an IoU of 96.80
and a Dice score of 98.37, indicating their superior capability in segmentation tasks.

— Precision and Recall: EfficientNet-B5 and B6 excelled in Recall, achieving 98.52,
marginally higher than EfficientNet-B4’s 98.46. EfficientNet-B4 had a slight edge in
Precision at 98.24 compared to 98.23 for both B5 and B6.

e Cell Classification Performance:

— IoU and Dice: EfficientNet-B5 marginally outperformed the other models with an IoU
of 62.44 and a Dice score of 76.55. EfficientNet-B4 lagged slightly behind.

— Precision and Recall: EfficientNet-B5 had the highest Precision at 73.53, while
EfficientNet-B6 had the highest Recall at 73.40.

e Borders Performance:

— IoU and Dice: EfficientNet-B5 again showed the best performance with an IoU of 55.87
and a Dice score of 71.48. EfficientNet-B6 had the lowest scores here.

— Precision and Recall: EfficientNet-B6 excelled in Precision (75.40) but had lower
Recall (66.86) compared to the others. EfficientNet-B5 balanced well with the highest
Recall (68.36).

Count-based Metrics

e G1 Phase (Red):

— EfficientNet-B4 had the highest Precision (96.11) and F1 Score (96.12), while EfficientNet-
B6 had the best Recall (97.71).

e S/G2/M Phases (Green):

— EfficientNet-B6 led in Precision (98.47) but lagged slightly in Recall (97.10). EfficientNet-
B5 balanced well with the highest F1 Score (97.88).
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e Early S Phase (Yellow):

— EfficientNet-B5 showed the best overall performance with highest Precision (57.67),
Recall (50.03), and F1 Score (48.64).

e Hoechst (Blue):

— EfficientNet-B5 achieved the highest F1 Score (97.04), though EfficientNet-B6 had the
best Recall (98.96).

Model Efficiency

e Parameters and Training Time:

— EfficientNet-B4, being the least complex with 17M parameters, trained the fastest in
8.75 hours.

— EfficientNet-B6, the most complex model with 40M parameters, had a significantly
longer training time (45.6 hours).

e Epochs to Converge:

— EfficientNet-B6 converged the fastest at 30 epochs, despite its complexity. EfficientNet-B4
and Bb5 required 35 and 40 epochs, respectively.

e Inference Time:

— EfficientNet-B4 demonstrated the highest inference speed (56.89 images/second), making
it the most suitable for real-time applications.

— EfficientNet-B5 and B6 processed fewer images per second (51.57 and 42.97 respectively),
reflecting their higher computational demands.

Final Model Choice:

Based on the comparison, EfficientNet-B5 is selected as the final model choice. Although EfficientNet-
B4 is more efficient in terms of training time and inference speed, EfficientNet-B5 strikes the best
balance between performance and efficiency. It consistently showed the best performance across
various pixel-level and count-based metrics, indicating its superior capability in segmentation and
classification tasks. Moreover, EfficientNet-B5’s reasonable training time and inference speed make
it a practical choice for applications that require a balance of high accuracy and computational
efficiency. Therefore, EfficientNet-B5 is recommended as the optimal model for high-performance
tasks in medical image analysis and other image processing applications.

4.4 FEvaluation of segmentation model

In this section, we delve into the detailed evaluation of our segmentation model’s performance using
the EfficientNet-B5 encoder, which has shown promising results in our previous experiments. We
present the segmentation results for six different samples, each demonstrating the model’s ability
to accurately predict cell boundaries. The evaluation metrics used include precision, recall, and F1
score, providing a comprehensive assessment of the model’s effectiveness in segmenting cell images.
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The segmentation results are depicted through images, showing the input image, the model’s
prediction with borders, and the ground truth. These visualizations highlight the differences
between the model’s predictions and the actual cell boundaries, offering insights into the areas
where the model excels and where improvements are needed. The corresponding metrics for each
sample are tabulated to quantify the model’s performance and facilitate a detailed comparison.

Figure 13: Sample 4 Figure 14: Sample 5 Figure 15: Sample 6

Figure 16: Segmentation results for various samples.

Sample ‘ Precision ‘ Recall ‘ F1 Score

98.14 91.09 93.33
99.41 98.18 98.75
83.07 81.95 82.50
97.98 96.72 97.23
84.70 97.00 87.25
99.02 97.39 98.14

S U= W N

Table 5: Metrics for segmentation results of various samples.

The presented results demonstrate that the EfficientNet-B5 based segmentation model performs
robustly across various samples, achieving 93.72% average precision, 92.87% average recall,
and 93.29% average F1 score. Notably, in samples 2 and 6, the model achieved exceptionally
high precision and F'1 scores, indicating its capability to accurately delineate cell boundaries with
minimal false positives.

Interestingly, in some cases, such as sample 5, the model’s predictions appear to be more accurate
than the ground truth, capturing finer details of the cell shapes that the ground truth might have
missed. This phenomenon can lead to slightly lower recall metrics, but it does not necessarily imply
that the model is underperforming. Instead, it underscores the model’s potential to provide more
precise and reliable cell segmentation, which is crucial for downstream analysis in medical imaging.
Overall, the results confirm the efficacy of the EfficientNet-B5 encoder in enhancing the U-Net
architecture for cell segmentation tasks. The high performance across different metrics and samples
validates the model’s robustness and suggests that it is well-suited for practical applications in
medical image analysis, where accurate segmentation is paramount. Future work could focus on
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further refining the model to address any remaining discrepancies and exploring its application to
other segmentation tasks within the medical domain.

4.5 Case study

In this subsection, we present a detailed analysis of the experiments conducted to compare the
effects of five different treatments on cell lines. The focus of this study is to observe the changes
in the number of cells per cell cycle phase, allowing us to understand how different treatments
influence cell behavior, specifically pushing cells into different phases of the cell cycle.

4.5.1 Experimental Setup

For this study, we used the cell line Hs578t_W'T, and subjected it to five different treatments:
nocodazole, cisplatin, bosutinib, flavopiridol, and palbociclib. The images were collected and
processed to count the number of cells in different phases of the cell cycle, namely G1 Phase,
S/G2/M Phase, Early S, and Hoechst. The results were visualized using stacked bar charts to
represent the cell count over time for each treatment and cell line combination.

4.5.2 Results and Analysis

The following subsections provide an overview of the findings for each treatment.

e Nocodazole is known to disrupt microtubule polymerization, effectively arresting cells in
the M phase. The graph shows a significant reduce in the number of cells in the Hoechst/GO0
phase and arresting cells into the S/G2/M phase, indicating that nocodazole effectively halts
cell division, pushing a large number of cells into mitotic arrest.
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Figure 17: Nocodazole treatment on WT cells.

e Cisplatin is a chemotherapy drug that causes DNA crosslinking, leading to apoptosis. The
graph indicates an increase in the number of cells in the G1 and S/G2/M phases, suggesting
cisplatin provoques cell activation phase swtiching over time.
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Figure 18: Cisplatin treatment on WT cells.

e Bosutinib is a tyrosine kinase inhibitor that targets Ber-Abl. The graph shows a substantial
number of cells accumulating in the Hoechst/GO phase, indicating that bosutinib may cause
a blockade in the cell activation preventing them to evolve properly into the cell cycle phases.
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Figure 19: Bosutinib treatment on WT cells.

e Flavopiridol is a broad-spectrum cyclin-dependent kinase (CDK) inhibitor. The graph
shows an increase in cells in the and G1 phase and reduce S/G2/M phase, suggesting that
flavopiridol effectively inhibits CDK activity, preventing progression through the cell cycle
and leading to cell cycle arrest at multiple points.

e Palbociclib specifically inhibits CDK4 and CDKG6, preventing the transition from the G1
to the S phase. The graph indicates a significant accumulation of cells in the G1 phase,
confirming that palbociclib effectively blocks cell cycle progression at this checkpoint.
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Figure 20: Flavopiridol treatment on WT cells.
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Figure 21: Palbociclib treatment on W'T cells.

From these experiments, we can draw several key conclusions regarding the effects of different

treatments on cell cycle progression:

e Nocodazole and cisplatin primarily induce cell cycle arrest in the M and G1 phases,

respectively.

e Bosutinib causes a blockade in the Hoechst/GO phase, suggesting its effect on the G1

transition.

e Flavopiridol and palbociclib both act as CDK inhibitors, with palbociclib showing broader
inhibition across multiple phases, while Flavopiridol specifically targets the G1/S transition.

These findings highlight the diverse mechanisms through which different treatments can affect
cell cycle progression, providing valuable insights into their potential therapeutic applications and

effects on cell behavior.
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5 Conclusions and Further Research

This thesis has introduced and thoroughly explored an innovative approach to cell cycle phase
identification using deep learning techniques, with a focus on single-channel DNA staining in time-
lapse microscopy. The research aimed to streamline the imaging process, reduce data requirements,
and maintain high accuracy in segmenting and classifying cell cycle phases, particularly in breast
cancer cells.

5.1 Summary of Findings

The use of single-channel DN A staining significantly reduces the complexity and cost associated
with traditional multi-channel fluorescence imaging. This simplification has profound implications
for resource allocation in research settings, making high-throughput analysis more accessible and
less invasive to cells. By facilitating long-term studies and reducing the potential for photo toxicity
and other cellular stress responses associated with multi-channel imaging, this method helps preserve
cell viability and integrity.

Building on this simplified imaging approach, the application of deep learning models, partic-
ularly the UNet model with various pre-trained backbone encoders (EfficientNet-B4, B5, and
B6), demonstrated that deep learning can effectively handle the reduced data complexity while
maintaining high segmentation accuracy. Among these models, EfficientNet-B5 provided the best
balance between performance and computational efficiency, consistently outperforming others in
various metrics. This finding highlights the potential of deep learning to revolutionize cell cycle
studies by automating and enhancing the accuracy of phase identification.

Experimental validation further confirmed the model’s effectiveness in classifying cells into their
correct cell cycle phases. The EfficientNet-B5 based UNet model demonstrated high precision,
recall, and F1 scores, underscoring its robustness in practical applications. Detailed segmentation
results and metrics validated the model’s accuracy in delineating cell boundaries, which is crucial
for understanding cellular behavior, disease progression, and therapeutic effects. However, some
limitations were observed in cell classification and border metrics. These lower values are due to two
main factors: the model sometimes predicts cell shapes more accurately than the original ground
truth (GT) annotations, leading to less overlap and consequently lower metric values, and the
inherent difficulty of extracting detailed features from single grayscale images, combined with an
unbalanced dataset, impacts overall performance. Despite these challenges, the model effectively
separates touching cells, with post-processing steps available to refine border accuracy further.
Innovative methodological contributions played a significant role in achieving these results. The
integration of automated dataset annotation, advanced augmentation techniques, and
strategic selection of encoder architectures not only addressed the challenges of single-channel
imaging but also laid the groundwork for future advancements. By improving the efficiency and
accuracy of cell cycle phase identification, these methods have the potential to accelerate research in
cellular biology, cancer research, and drug development. This holistic approach, combining simplified
imaging with powerful computational techniques, marks a significant step forward in the field.
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5.2 Considerations and Limitations

While this thesis demonstrates that good results can be achieved with the proposed approach,
there is room for improvement. The current methodology uses static images without accounting for
motion, which limits the model’s ability to capture dynamic features of cell behavior over time. The
nature of cell phase classification heavily depends on tracking cell movements and understanding
temporal dynamics, which are crucial for accurate classification. Biologists need to observe how
cells move over time in time-lapse sequences to make precise classifications. Accurate tracking of
cell movements can reveal critical insights into cell division, migration, and interactions, which are
essential for understanding developmental biology, cancer metastasis, and tissue regeneration.

5.3 Future Research Directions

Future work should focus on creating a dataset with equal representation of all classes to enhance cell
classification results. Incorporating smaller datasets where cells are exposed to different treatments
will increase the model’s ability to generalize to new scenarios. These improvements will likely
lead to more accurate and reliable cell classification and better model performance in diverse
experimental conditions.

Another important direction involves integrating temporal features by employing a mix of
transformer-CNN architectures. Transformers can capture long-range dependencies and temporal
patterns, significantly enhancing the performance and reliability of the model. This approach will
allow the model to consider cell movements and changes over time, providing a more holistic view
of cell cycle phases. Understanding temporal dynamics is crucial for identifying transient phases
and events in the cell cycle, such as mitotic entry and exit, which are critical for accurate phase
classification and understanding cellular responses to treatments.

While this study focused on breast cancer cells, the methodology can be extended to other cell
types and conditions. Future research could explore the application of this approach to various
cellular contexts, enhancing its utility in broader biological and medical research. Applying these
techniques to different cell lines and tissues can help uncover cell type-specific behaviors and
responses, aiding in personalized medicine and targeted therapies.

Additionally, combining the single-channel deep learning approach with other imaging modalities
could provide a more comprehensive understanding of cellular processes. Future work could integrate
data from different imaging techniques to enhance the model’s accuracy and applicability. Multi-
modal imaging can provide complementary information about cellular structure, function, and
molecular composition, offering a more detailed and nuanced understanding of cell biology and
disease mechanisms.

Given the high inference speed and accuracy of the EfficientNet-B5 based model, further research
could focus on developing real-time analysis tools. These tools could be instrumental in dynamic
monitoring and analysis of cell cycles in live-cell imaging experiments. Real-time analysis can enable
immediate feedback and adjustments during experiments, improving experimental efficiency and
facilitating the study of rapid cellular responses to stimuli.

Continued efforts to optimize the computational efficiency of deep learning models, particularly
in resource-constrained environments, will be crucial. Exploring lightweight architectures and
efficient training techniques can further reduce computational demands while maintaining high
performance. Enhancing computational efficiency is essential for deploying these models in routine
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laboratory settings and clinical diagnostics, where computational resources may be limited.
Finally, the potential clinical applications of this approach are significant. Future research could
investigate the integration of this methodology into diagnostic workflows, potentially aiding in the
early detection and monitoring of cancer and other diseases at the cellular level. Accurate and
efficient cell cycle phase identification can improve the precision of diagnostic tests and enable
the timely identification of pathological changes, supporting early intervention and personalized
treatment strategies.

5.4 Final Remarks

In conclusion, this thesis has successfully demonstrated the feasibility and effectiveness of using
deep learning for cell cycle phase identification with single-channel DNA staining in time-lapse
microscopy. The approach offers a streamlined, efficient, and accurate alternative to traditional
methods, with broad implications for research and clinical practice. By advancing the integration
of deep learning in biological imaging, this work contributes to the ongoing efforts to harness Al
for transformative insights in cellular biology and medicine. Future advancements, particularly
in incorporating temporal dynamics through transformer-CNN architectures, hold the promise
of further enhancing the robustness and applicability of this innovative approach. This research
lays the groundwork for more comprehensive and dynamic studies of cell behavior, ultimately
contributing to a deeper understanding of cellular processes and the development of more effective
treatments for various diseases.
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