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Supervisors:
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Abstract

Mixed-Scale Dense (MS-D) is a new convolutional neural network (CNN) architecture that
makes for an easier application of deep CNNs, using dense connections and dilated convolutions
instead of up- and downscaling. This ensures that all layers have the same size, which decreases
the amount of parameters and the size of the network. Currently it has only been used for
segmentation problems, where the objective is to obtain an image which clearly shows the
different objects in the input image. The goal of this thesis was to extend MS-D to make the
network useful for classification problems, where the objective is to predict to which of the
pre-defined classes the object in the image belongs to. This was done by implementing different
approaches and comparing them to well known classification algorithms on different datasets,
in order to explore the potential benefits for using such an approach. The first approach was
extending the original MS-D network with a mean operation over all pixel values and using
a softmax function. The second approach for extending MS-D to classification was using a
max pooling operation and three fully connected layers. It was shown that extending MS-D
to classification problems using the mean-pixel approach is promising for future research, as
this extension performed comparable to well-established classification networks, while using
less parameters.
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1 Introduction

In the field of computer vision, many neural networks for image-processing problems exist, and each
of them are designed for a specific kind of problem. Examples of such a problem is a segmentation
problem, where the result is a segmented image. Here, the aim is to separate different parts within
an image to increase visibility. There are many cases where segmentation can be used for real
life cases, for example the segmentation of cells in medical images. Another type of problem is a
classification problem, where the objective is to identify objects in an image and match them to
predefined classes.
Networks for image-processing are very powerful, but use a very large amount of connections,
trainable parameters and operations, which make them very computationally expensive. Mixed-scale
dense (MS-D) is a neural network that is able to find more detailed solutions for segmentation
problems in computer vision. This is achieved by using dilated convolutions and densely connected
feature maps. [PS17] However, at this moment MS-D only exists for segmentation problems, and
there is no version of MS-D for classification problems. It could be very useful if a version of MS-D
exists for classification problems, where the objective is not generating an image, but providing
probabilities for objects belonging to predefined classes. Classification has a lot of real life use
cases, for example automation of diagnostics, face recognition and natural language processing.
Prior research has shown that dense segmentation networks, like MS-D, have the ability to capture
detailed information in a more effective and efficient manner compared to other segmentation
networks [YK16], and that this feature is particularly useful for classification when there are limited
data samples, and small-case classes [NLZJ19]. This could potentially mean that for small amounts
of data and a limited amount of classes, an extended version of MS-D for classification might
perform better compared to classification networks that do not use dense connections and dilated
convolutions.

The goal of this research is to extend the MS-D network to classification problems, in order to
explore whether the advantages of MS-D in segmentation problems still uphold when applied to
classification problems. Therefore, this thesis has the following research questions:

1. How can the MS-D network be extended in order to be used for classification problems?
2. Does an extended version of the MS-D network for classification maintain its original advantages
in segmentation problems when applied to classification problems?
3. How does the performance of an extended MS-D network for classification problems compare to
the performance of other well-known classification networks?

In order to answer these questions, two different methods of extending the MS-D network for
classification will be used. The first method uses a mean operation on all pixel values of the
image and a softmax operation. The second method uses a max pooling operation and three fully
connected layers. In order to investigate the potential advantages that were discovered for the
segmentation version of the network, the classification MS-D will also be compared to to the classic
classification networks ResNet18 and LeNet5. Popular classification problem datasets with different
complexity (MNIST and Fashion MNIST) will be used to explore the capabilities of the extended
classification MS-D.
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This bachelor thesis is made for LIACS, and is supervised by Dr. D.M. Pelt. This chapter contains
the introduction; Section 2 includes important background information for the understanding of
(Deep)Convolutional Neural Networks, classification problems and the origins of the MS-D network;
Section 3 Describes previous research that has been done that investigates the usage of similar
segmentation networks for classification; Section 4 describes the different methods for extending
the MS-D network to classification problems; Section 5 describes the experiments for comparing
the different classification networks, and their outcome; Section 6 discusses the results and possible
future work; Section 7 summarizes the key takeaways.

2 Background

2.1 Classification

In computer vision, image processing means taking an image as an input and extracting information.
An image is defined as a set of pixels x ∈ Rm×n×c [PS17]. Here the image has m rows, n columns,
and c channels. The number of channels defines the the number of colour channels of an image.
The image that belongs to a single channel j of x is defined as xj. If the image is grayscale, it has
only one channel.
There are multiple types of image processing problems, one of these problems is called a classification
problem. Classification problems are used in many real-life applications such as object recognition
and medical diagnosis. These applications often require deep learning networks. Classification
models, or classifiers, have as objective to categorize object within an image x into predefined
classes C. Each image x in the dataset has a truth label y with y ∈ C. Here C is the set of possible
predefined classes. The classifier function f maps an input x to a predicted class p, notated as
p = f(x). The accuracy of a classifier is obtained by comparing p to y.

2.2 Classification Networks

Deep learning classification networks often consist of multiple layers that have different functions.
Typically, the input layer receives the raw data, and the following layers have the objective to
extract features from this input using filters and convolutions. Convolutions apply a filter on the
image, which selects specific features on the image, while ignoring others. A network that uses
this method is often called a Convolutional Neural Network (CNN). Layer i produces a feature
map zi ∈ Rmi×ni×ci , which is passed on to the next layer. The features are extracted from the
input image of the previous layer zi−1, using a convolution. The final layer uses the feature map to
calculate a probability distribution over the predefined classes.

In a common CNN structure, each layer performs multiple operations on the input image zi−1

before passing on the feature map[PS17]. Each channel of the input is convolved with a filter after
which the different channel images are summed together. Then a constant value, called a bias, is
added. Finally, a nonlinear operation like ReLu [NH10] is applied to each pixel, making it able
to learn complicated functions. The mathematical notation for the output feature map zji for a
channel j is:
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zji = σ(gij(zi−1) + bij).

Here, σ is the nonlinear operation and bij ∈ R is the bias. gij(zi−1) convolves the channels of the
input with a filter and sums the pixels of the image, using the following formula:

gij(zi−1) =
∑ci−1

k=0 Chijk
zki−1.

Here, Chijkz
k
i−1

is the two dimensional convolution with filter hijk and image zki−1. Different alterna-

tives for convolutional layers exist, and layers can differ from each other. One of the alternatives
for a convolutional layer is a fully connected layer [SZ14]. Another alternative for a convolutional
layer is the use a softmax operation [RFB15] for classification. The function for softmax is as follows:

Softmax(xi) =
exp(xi)∑
j exp(xj)

Here xi is the value assigned to the item belonging to a class, and
∑

j exp(xj) is the sum of the
values that belong to the possible predefined classes C.
In order to achieve good results, the network has to train and optimize its parameters. The param-
eters determine the bias, the filters and the weight of the connections that exist between layers and
can therefore determine if a feature is useful or not. The optimization of these parameters is done
using a two-step plan called forward- and back propagation.
During the forward propagation step, the data is passed through the layers of the network, and
class predictions are made on the training set. Then the loss is calculated to measure how well these
predictions compare to the actual truth labels. One method to calculate this loss is Cross entropy
loss. [PyT24b][RFB15] It uses a softmax function to assign a probability for each of the possible
pre-defined classes in the range [0,1] of which all values sum to one. This results in a probability of
the image belonging to each one of the classes, represented as a tensor. The resulting tensor is then
used to calculate the loss with a cross entropy function. Cross entropy is a logarithmic loss function
for classification. For each image, this function compares the predicted class of the network to the
truth labels, and computes a loss function. This value should be as low as possible and is used
to update the weights in the network using backwards propagation. The cross entropy loss L for
multiple classes is as follows:

Cross entropy Loss(L(y, p)) = −
∑

i yi × log(pi)

Here, p is the probability distribution over classes, and y is the ground truth label vector, where
all classes are zero except the class with the true label. In the backward propagation step the
parameters of the network are adjusted in order to decrease the loss, using an optimization algorithm.
One commonly used optimization algorithm is the Adam algorithm [KB15]. Adam is short for
adaptive moment estimation, and combines the Adaptive Gradient Algorithm (AdaGrad), known
for improving performance in scenarios with a small amount of gradients, often used for natural
language and computer vision problems, with Root Mean Square Propagation (RMSProp), designed
to adapt effectively to dynamically changing problems [Bro21]. This unique combination makes
the Adam algorithm very popular for addressing both online and non-stationary problems. The
forward- and back propagation steps are repeated over multiple complete iterations of the training
dataset, called epochs.
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2.3 Segmentation and Deep Convolutional Neural Networks

Classification problems are not the only type of problem in the field of computer vision. Seg-
mentation problems have the objective to create a segmented image, where different components
are clearly shown by adding contrast or different colours to components. Instead of a probability
distribution, which is the case for classification networks, a segmentation network therefore has an
output image Rm×n×c → Rm′×n′×c′ [PS17]. The output has the same amount of rows and columns
as the original input image, but with different pixel values that indicate clearly which class a pixel
belongs to.

The typical CNN described in section 2.2 is often used for simple tasks. A deep convolutional
neural network (DCNN) is able to model complicated functions, by capturing features at different
scales. This is often used for segmentation problems, by first downscaling and then upscaling the
dimensions of feature maps. This concept is called Hierarchical Feature Extraction and is extremely
useful as it combines low level information with complex high-level patterns.

Figure 1: Structure of Deep Convolutional Neural Network U-Net, containing layers of different
sizes and skip-connections. Source: Daan M. Pelt and James A. Sethian (2017)

One existing problem with DCNNs is that all layers have a different scale, making it only possible
to learn from the previous layer. This is partly solved by adding skip-connections between layers
that have the same size. A standard structure of a DCNN network called U-Net can be found in
figure 1. Another problem is that the depth (amount of layers) of the network. DCNNs consist of
millions of parameters that have to be trained. All connection between layers and layers themselves
have different parameters, like size, biases, filters and weights. The large amount of parameters
make it likely that training gets stuck in a local minimum, or over-fitting on the training data,
which means that the networks has trained too much on the training data. This makes the network
less capable of making the correct class predictions on new data. These parameters affect training
time and increase the likelihood of over-fitting the network, because they exaggerates patterns that
are found in the training data that might not exists in new datasets. [Bal22]
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2.4 Max pooling and Fully Connected Layers

Even though DCNNs have their limitations, they are still some of the most efficient and popular
networks to date. Examples of popular DCNNs and CNNs are VGG, LeNet5, Unet and ResNet18.
VGG [SZ14] uses a structure in which the raw data is downsized multiple times using Maxpooling
operations [Nan23] after each layer. Max pooling operations reduce the size of an input, while
maintaining the most significant features and removing invariances. It uses a pooling window
(kernel) and finds the most important value within that window, which is then passed on to the
output image. An example of this process is shown in figure 2 [NMRW22].

Figure 2: Example of a max pooling operation with a 2x2 kernel and a stride of 2. Source: R.
Nirthika, S. Manivannan, A. Ramanan, and R. Wang. ”Pooling in convolutional neural networks
for medical image analysis: a survey and an empirical study”

The amount of reduction in size is determined by the stride of the Max-Pooling operation. For VGG
this is a small amount per convolutional layer. The formula of the Max-Pooling operation is as follows:

MaxPooling(X)i,j,k = max
m,n

Xi∗sx+m,j∗sy+n,k

Here, X is the input, (i,j) are the indices of the output, k is the channel index, sx and sy are the
stride values in the horizontal and vertical directions, respectively. m and n are indices for the
pooling window. After the convolutional layers, the information of the obtained feature maps are
combined in multiple fully connected layers, in which all input nodes are connected to all output
nodes, which is not done in regular convolutional layers [Unz22][SZ14].

2.5 Mixed-Scale Dense networks

The disadvantage of large amounts of parameters in DCNNs that were discussed in section 2.3 are
partly solved by Mixed-Scale Dense (MS-D) Networks [PS17]. This network use dilated convolutions
instead of regular convolutions with up- and downscaling operations to capture features at different
scales. A dilated convolution uses a dilated filter that is nonzero only at distances that are a
multiple of pixels from the center. The dilation factor determines the distances between these
pixels, as shown in figure 3 [DW20]. Dilated convolutions can capture additional features compared
to DCNNs that use the traditional scaling approach[YK16]. The gaps in the filter ensure that
large-scale information about the image becomes available faster compared to traditional methods.
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Figure 3: A representation of the difference between a normal 3x3 convolution and a Dilated
convolution with a dilation factor of 2. Source: Jinglong Du and Lulu Wang. ”Brain mri super-
resolution using 3d dilated convolu- tional encoder–decoder network”

The change in approach compared to traditional DCNNs has an additional advantage. The scale of
the different layers is not altered and therefore all input and output images have the same width
and height. Because of this, there is no restriction to using only the output of the previous layer
and layers of the same size. This means that all previous feature maps {z0, ..., zi−1} can be densely
connected instead of only those of the previous last layer, which is a problem that classic DCNNs
can only partly solve with skip connections. This results in the following change for the output
layer computation of zji :

zji = σ(gij({z0, ..., zi−1}) + bij),

with gij({z0, ..., zi−1}) =
∑i−1

l=0

∑cl−1

k=0 Dhijkl,sijz
k
l
.

A schematic representation of the network, showing the dense connections of MS-D can be found in
Figure 4. The dense connections also result in a decrease of parameters in the network compared
to networks where each layer requires different values, which can be very useful as it makes the
network less problem specific and complex. This makes it easier to use the network on new problems,
since it requires less fine-tuning. Previous research has also shown that for MS-D networks, the
class accuracy tends to be higher than some DCNNs, especially with a small amount of parameters.
Another benefit of MS-D is that for different choices of dilations the performance of MS-D networks
is similar, which makes it less difficult to fine-tune [PS17].
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Figure 4: Schematic of the MS-D network. Source: Daan M. Pelt and James A. Sethian(2017)

3 Related Work

Previous research has been done to explore the extension from segmentation to classification of the
DeepLab network[NLZJ19]. This network was originally designed for semantic segmentation tasks
and was evaluated using datasets that contain multiple classes within a single image. First, the
network extracts spatial features, followed by classification using a Support-Vector Machine (SVM)
algorithm.
DeepLab uses dilated convolutions, a technique similar to MS-D. However, unlike MS-D, DeepLab
uses separate layers for these convolutions, which are not all interconnected. It extracts features at
four different rates, which are then combined and passed through a softmax function.
When classified with an SVM, this network outperforms traditional methods and existing deep
learning-based networks for this kind of problem. This is mostly the case for small-scale classes with
limited samples. This improvement can be attributed to the network’s ability to preserve detailed
information early in the process without resizing, resulting in better class separation.

Another interesting research regarding the use of dense networks for classification problems was
done for the MSDNet network [Tsa19], which is not to be mistaken from the MS-D network
that is used in this paper. The difference is that MSDNet is a Multi-Scale Dense network and
MS-D is a mixed-Scale network. MSDNet does not use dilated convolutions, and uses two down-
sampling convolutions in each layer. MS-D is more densely connected, because all feature maps
have the same size. However, since MSDNet is still somewhat densely connected and is used for
classification specifically, it is still interesting to view the results of this research. MSDNet uses
multiple intermediate classifiers between layers to check if the classification confidence at that point
in the network exceeds a certain threshold. If this is the case, the network can be stopped, to save
resources. Each classifier has two down-sampling convolutional layers with 128 dimensional 3×3
filters, followed by a 2×2 average pooling layer and a final fully connected linear layer. The MSDNet
research shows that networks that use dense connections outperform networks that do not. It is
also shown that the intermediate classifiers work better when using dense networks, compared to
implementing them in other networks like ResNet. For this reason it might be useful to implement
some of the classification methods in the extended classification version of MS-D.
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4 Methods

4.1 Method 1: Mean Pixel Value and Softmax

After exploring the background of DCNNs and the MS-D network and investigating the related work
regarding the extension of networks from segmentation to classification problems, two methods are
used for extending the original MS-D network. The first method for extending the MS-D network
from segmentation to classification is to apply a mean operation to the pixel values on each image
of the output layer, after the original segmentation of MS-D has finished. The mean operation
[PyT24a] returns the mean value of all elements in the input tensor, which in this case are all
pixels in the image. In contrast to the original version of MS-D, this version will not use dilated
convolutions, but normal 3x3 convolutions without dilation. The reason for this is that dilated
convolutions are mostly useful for very large images, since the method is good for capturing context
at a large scale. However, the experiments of this research will use datasets with relatively small
images, which removes the need for dilated convolutions. The details of the used datasets will be
further explained in section 5.1. The simple MS-D implementation is still densely connected, and
feature maps remain the same size. This ensures that the potential advantages of using MS-D for
classification can still be explored
After the MS-D section of the network, the output layer contains the same amount of images as
the amount of possible classes. Then, a softmax function is applied and cross entropy loss is used
to calculate the loss. After multiple epochs, the class with the highest softmax probability will be
assigned to the original image. An overview of the structure of this extension can be found in figure 5.

Figure 5: Schematic of the extended MS-D network for classification using a mean and softmax
function, where the amount of predetermined classes(c) is equal to 5.
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4.2 Method 2: Max-pooling and Fully Connected Layers

The second method that is explored takes inspiration from the popular VGG network that was
previously mentioned in section 2.3. The VGG network uses multiple Max-Pooling operations after
each convolutional layer that decreases the size of feature maps with a pre-determined amount of
pixels (stride). Then multiple fully connected layers are used to combine the obtained information
of the feature maps. For this extension Max-Pooling and fully connected layers are implemented.
However, instead of performing multiple max-pooling operations, the original MS-D network without
dilated convolutions is used. A single large max-pooling operation is applied in order to pass the
obtained feature map to the fully connected layers. The large Max-Pooling operation reduces the
image size to a size of 1x1, by simply setting the stride of the operation to the size of the original
image. After the fully connected layers f1, f2 and f3, the obtained logits are passed to a softmax
operation, resulting in the final prediction of the network. The first two fully connected layers have
4096 channels, which is the same amount in the original VGG16 Network [SZ14]. The final layer
has as many channels as there are possible classes. A structural overview of this extension can be
seen in figure 6.

Figure 6: Schematic of the extended MS-D network for classification using a maxpool operation
and three fully connected layers.

5 Experiments

5.1 Setup

The extended MS-D algorithms for classification were implemented in Python using PyTorch
version 2.0.1 [PyT23]. The tests were run on PCs at LIACS, which contain a NVIDIA GeForce
GTX 1050 Ti GPU, running CUDA version 12.2. For the backward propagation of the network, the
Adam algorithm is used. Two different datasets are used for the experiments, MNIST [LCB10] and
FashionMNIST[XRV17]. MNIST is a very simple dataset containing 60000 28x28 grayscale images
of handwritten digits, as seen in figure 7. It contains 10 classes and is often used as a benchmark
for classification networks. FashionMNIST contains 60000 detailed 28x28 grayscale images of pieces
of clothing, as seen in figure 8.
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The images of both datasets have the same size, which makes it is less complicated to implement
them both in the same code. The detailed images will show how well the extended MS-D networks
perform on more complicated datasets, compared to other network architectures.

All tests are conducted using a train set, a validation set and a test set of the original data. The
train set contains 70 percent of the dataset (42000 images), and the test and validation set will
both contain 15 percent of the dataset (9000) images. The test set will only be used to compare the
performance of the different algorithms, while the validation set is used to find the best parameters
of the algorithms. The different sets are produced by applying a train-test split with a fixed random
seed, which will ensure reproducability. This is because all images in the test set will be exactly
the same during each experiment. However, all tests are conducted three times and averaged in
order to insure reliability, since the images are being fed into the network at random, which leads
to slightly different results. For the experiments, two metrics are used. The first metric is class
accuracy, which is a percentage of the amount of images that are classified correctly in the test or
validation set. Class accuracy is a good way to measure the performance of the network, since it is
the main objective of a classification network to correctly classify as many images as possible. The
second metric is the average loss, which is another good way to quantify the difference between
the predicted class and its true label. The average loss is obtained by using the cross entropy loss
function [Ala23]. A lower average loss means that the network is better at making good predictions
on the dataset.

Figure 7: Example of images within the MNIST dataset. Figure 8: Example of images within the Fashion
MNIST dataset.
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5.2 MS-D classification experiments

The first experiment is to find the best parameters for each of the extended classification MS-D
versions, so that it can be compared to more well known classification algorithms. First, the depth
is varied and tested with ten epochs, and the version with the lowest loss and highest average
accuracy on the validation set is kept. Then, the network is fine tuned by varying the amount
of epochs. This results in the versions of the MS-D networks with the best performance on the
validation set.

5.2.1 MNIST

The results of the experiment for the MNIST dataset can be found in table 1. It shows that the
mean-pixel version needs a much larger depth to create reasonable results, compared to the maxpool
version. At a depth of 200, the network starts to get very large and takes a long time to finish
training. The version of mean-pixel with a depth of 250 has a slightly worse accuracy and has a
lower loss compared to the version with a depth of 200. This shows that networks with a depth of
over 200 start to over-fit on the training data. Due to hardware restrictions it is impossible to test
the network beyond a depth of 250, and the training of the network takes a long time, even after a
depth of 150. Therefore future experiments on the mean-pixel version of MS-D will be conducted
with a depth of 200.
The maxpool version of the MS-D classification network performs much better than the mean-pixel
version at smaller depths. At a depth of 50, the network already outperforms the mean-pixel version
in both accuracy and average loss. This could be because the network in itself contains more layers
and is more balanced with fully connected layers to combine information. Since the depth of the
network affects the time to run the network, the smaller depth of the maxpool network is a large
advantage. The experiments with a depth of 100, 125 and 150 yield a similar loss, and varying class
accuracy’s that all lie in the same range. Therefore the maxpool MS-D version with a depth of 100
will be used in the future, since it has the lowest loss.

Depth CA mean-pixel AL mean-pixel CA maxpool AL maxpool
50 94.19 0.2217 96.90 0.0809
100 96.00 0.1231 98.50 0.0460
125 - - 98.29 0.0462
150 98.17 0.0582 98.75 0.0464
200 98.65 0.0411 - -
250 98.63 0.0377 - -

Table 1: The depth of the mean-pixel and maxpool version of MS-D, compared to the average class
accuracy (CA) on the validation set and the average loss (AL) after training the network for 10
epochs on the MNIST dataset. Results for depths that are not relevant for finding the best version
of the network are indicated with ”-”.
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5.2.2 Fashion MNIST

The extended MS-D methods for classification are tested on Fashion on MNIST, in order to find if
MS-D is problem specific and to see how the networks perform on more complex data compared to
the MNIST dataset.

Depth CA mean-pixel AL mean-pixel CA maxpool AL maxpool
100 87.24 0.2206 86.98 0.2842
150 88.11 0.3317 89.28 0.2583
200 88.34 0.2973 87.77 0.2665
250 89.15 0.2617 - -

Table 2: The depth of the mean-pixel and maxpool version of MS-D, compared to the average class
accuracy (CA) on the validation set and the average loss (AL) after training the network for 10
epochs on the Fashion MNIST dataset. Results for depths that are not relevant for finding the best
version of the network are indicated with ”-”.

The performance of the extended networks on the more complex dataset Fashion MNIST can be
found in table 2. The results show that a larger depth is needed in order to achieve reasonable
results for both extended versions. The average Loss is much larger on the Fashion MNIST dataset
compared to the average loss on the MNIST dataset, since the Fashion dataset is more complex
and has a difficult function to learn. This can also be observed for the average class accuracy of
both extensions, which is ten percent lower, compared to the accuracy on the MNIST dataset. Both
extensions have the best performance when the depth is 50 higher than on the MNIST dataset.
For the mean-pixel MS-D, this means that a depth of 250 is the best option. Due to hardware
constraints, this is the highest possible depth that can be tested. It is possible that an even higher
depth would be more optimal. The maxpool MS-D extension needs a depth of 150. For a higher
depth, this network starts overfitting, resulting is a lower class accuracy.

5.3 Comparison to other algorithms

After the optimal depth for the two extensions is found, the best versions of each classification
MS-D extension are compared to the well known classification algorithms ResNet and LeNet5. This
is done to set a good benchmark for the evaluation of the performance. Also, a comparison is made
between the algorithms to find how much data they need to produced reasonable results. This
is done by gradually decreasing the size of the train set. Because of this, the epochs are smaller.
To counter this, for each network and training set percentage, the optimal amount of epochs is
used, which can be found outputting the accuracy after each epoch and picking the epoch with the
highest accuracy. Then, for that amount of epochs the experiment is run twice, in order to have
three accuracy’s that can be averaged for more valid results. As a final experiment, the amount
of parameters of each model are compared to their average class accuracy, since the Mean-Pixel
MS-D version uses a lot less parameters, compared to other DCNNs.
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5.3.1 MNIST

Table 3 shows that there is no significant difference between the different algorithms for the MNIST
dataset at training set percentages from 20 to 100. When looking at figure 9 it is clearly shown that
at very small amounts of training data, Maxpool MSD significantly underperforms. Mean-Pixel
MSD performs the best at this amount of data.ResNet18 performs the best at the largest amount
of training data, but at lower amounts of data Mean-Pixel MSD has a higher average class accuracy.
It is important to keep in mind that MNIST contains around 60,000 images, which makes it an
unusually large dataset. Most datasets contain a smaller amount of images, in which case the use
of the Mean-Pixel MSD network could be benefical. Maxpool MSD and LeNet5 have roughly the
same performance at each training set percentage. However, figure 10 shows that the average class
accuracy’s do not differ a lot between algorithms, showing no significant difference in performance
as the training set percentage decreases.

Method TSP = 1 TSP = 20 TSP = 40 TSP = 60 TSP = 80 TSP = 100
mean-pixel MS-D 89.15 (75) 98.21 (40) 98.43 (20) 98.59 (15) 98.62 (10) 98.75 (10)
maxpool MS-D 83.79 (75) 97.72 (25) 97.97 (20) 98.08 (20) 98.32 (20) 98.60 (10)
ResNet18 88.38 (155) 98.10 (25) 98.27 (10) 98.44 (10) 98.56 (10) 98.91 (10)
LeNet5 88.74 (175) 97.63 (30) 97.97 (25) 98.22 (20) 98.37 (20) 98.72 (10)

Table 3: The average class accuracy on the test set of different classification networks on the MNIST
dataset, using different training set percentages(TSP). The amount of epochs used is indicated
between brackets.
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Figure 9: Graph showing the average class accuracy on the test set of different classification networks
on the MNIST dataset, using different training set percentages.
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Figure 10: Graph showing the average class accuracy on the test set of different classification
networks on the MNIST dataset, using different training set percentages. The figure is zoomed in
on higher training set percentages in order to visualize relevant data.

The amount of parameters for the optimal version of each algorithm are compared to their accuracy.
As shown in figure 11, LeNet5 and Mean-Pixel MS-D use significantly less parameters compared
to ResNet18 and Maxpool MS-D. Fully connected layers use a significant amount of parameters
especially if the network contains a lot of layers, because all input and output nodes are connected.
This is especially the case for Maxpool-MS-D, since it requires a depth of at least 100 layers to
produce reasonable results. The amount of parameters can affect training time and computational
requirements. ResNet18 uses a very large amount of parameters, but has a much smaller training
time compared to both the MS-D networks. This could be because ResNet18 has been optimized in
a lot of ways and the MS-D networks have not. ResNet18 has a higher accuracy than LeNet5 and
Mean-Pixel MS-D. However, both LeNet5 and Mean-Pixel MS-D appear to have a good balance
between the amount of parameters and accuracy, resulting in high class accuracy’s and in the case
of LeNet5 a very fast training time. This is not the case for Mean-Pixel MS-D, since it has not
been optimized yet.

14



105 106 107

98.6

98.65

98.7

98.75

98.8

98.85

98.9
98.91

98.72
98.75

98.6

Amount of Parameters

A
cc
u
ra
cy

ResNet18
LeNet5

Mean-Pixel MS-D
Maxpool MS-D

Figure 11: Scatter plot of the amount Model parameters for each of the compared networks,
compared to their class accuracy on the MNIST dataset

5.3.2 Fashion MNIST

For the complex Fashion MNIST dataset, it would be expected that more epochs are needed in
order to learn the more complicated function. However, as can be seen in table 4, this is not the
case for both MS-D extensions. ResNet18 and LeNet5 do need more epochs to produce reasonable
results. When comparing the FashionMNIST dataset results to the MNIST dataset results in table
3, the class accuracy is approximately 8 percent worse for all training set percentages. For the
very small training set percentage of 1 percent, seen in figure 12, the maxpool MS-D extension
performs worse compared to the other tested networks, as was the case for the MNIST dataset. On
this dataset, mean-pixel MS-D performs slightly worse than ResNet18 for the smallest training
set percentage. However, in figure 13, it is clearly shown that for the percentages of 20, 40, 60
and 80 the network either outperforms or performs comparably to ResNet18 and LeNet 5. This
suggests that the network is able to achieve performance comparable to those of these better-known
classification networks. This is not the case for the maxpool MS-D extension, since the results show
that the network performs the worst on almost all training set percentages.

Method TSP = 1 TSP = 20 TSP = 40 TSP = 60 TSP = 80 TSP = 100
mean-pixel MS-D 76.90 (75) 87.98 (40) 89.48 (15) 89.96 (15) 89.97 (15) 89.97 (10)
maxpool MS-D 70.83 (55) 86.34 (25) 87.90 (25) 88.32 (15) 89.20 (15) 89.53 (10)
ResNet18 77.54 (185) 88.03 (65) 88.54 (45) 89.07 (40) 90.14 (35) 90.78 (10)
LeNet5 75.29 (170) 86.39 (70) 89.01 (50) 89.46 (45) 89.47 (20) 89.48 (20)

Table 4: The average class accuracy on the test set of different classification networks on the Fashion
MNIST dataset, using different training set percentages (TSP). The amount of epochs used is
indicated between brackets.
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Figure 12: Graph showing the average class accuracy on the test set of different classification
networks on the Fashion MNIST dataset, using different training set percentages.
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Figure 13: Graph showing the average class accuracy on the test set of different classification
networks on the Fashion MNIST dataset, using different training set percentages. The figure is
zoomed in on higher training set percentages in order to visualize relevant data.
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Figure 14 shows the amount of used parameters for each network compared to their accuracy, when
using the entire training set. Here it is shown that for more complicated datasets like Fashion
MNIST, the use of the maxpool MS-D extension is also not beneficial. It has a class accuracy
that is similar to that of LeNet5, while using more than a hundred times more parameters. The
mean-pixel extension has a good performance, while using approximately 40 times less parameters
compared to ResNet, and 6 times more parameters compared to LeNet5, which has a class accuracy
that is much lower. This suggests that the mean-pixel MS-D extension has a good balance between
the performance on class accuracy and the amount of used parameters.
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Figure 14: Scatter plot of the amount of parameters for each of the compared networks, compared
to their class accuracy on the Fashion MNIST dataset
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6 Discussion and Further Research

Extended MS-D networks for classification show promising results, since the class accuracy of the
mean-pixel extension is similar to the ResNet18 network that was used in the experiments. On
smaller training sets, this network performed better than all tested networks on the simple MNIST
dataset. For the more complex Fashion MNIST dataset this is less the case, since the mean-pixel
MS-D network only outperforms ResNet18 when using 40 and 60 percent of the training data.

In general, the mean-pixel extension performs similar compared to the more well known ResNet18
and LeNet5 networks. However, as of yet, there are some downsides to the usage of the extended
MS-D networks. The largest issue is that the extended versions of MS-D are not very efficient.
Training the networks takes a large amount of time compared to the other networks that were
tested in this research. Optimization and fine-tuning of the code and the network could solve this
issue, which would help in the research of other potential benefits of using MS-D for classification.
The Maxpool extension of MS-D does not work well compared to the mean-pixel extension because
the amount of parameters is too high. The fully connected layers are very large and have a large
amount of parameters, which over-complicates the network. The advantage of the original MS-D
for segmentation was that the network has a relatively small size, and that it is densely connected.
Adding fully connected layers removes this advantage, which is clear when looking at the results in
table 9 and 12. Other methods to improve the classification extension could be found. One possible
method for extension of the MS-D network would be to add intermediate classifiers, like in the
MSDNet which was mentioned in section 3. This could decrease training and execution time of the
network. Since ResNet18 was able to outperform the mean-pixel MS-D extension for large amounts
of data, it could be a good idea to explore how some parts of this architecture could be tranferred
to the MS-D extension. ResNet18 uses skip connections, in order bypass layers that decrease the
networks performance [Ban22]. Investigating whether this change in approach could benefit with
performance of the extended MS-D network could be interesting.

Another subject that could be researched is the use of dilated convolutions. In this research the
images were too small to make dilated convolutions useful, however it is possible to implement
these convolutions in the extended MS-D versions. A dataset with larger and more detailed images
would be a good fit for such a research. The dilated convolutions have proven to be very efficient
for the original MS-D network for segmentation, so it would be interesting to see if the advantages
on segmentation problems translate to classification problems.
Another issue during this research were the hardware constraints. Due to the size of the GPU
storage, a network with a depth over 250 was impossible to test, and large networks of the extended
MS-D versions have a very long execution time for depths over 100, due to forced small batch sizes.
With better hardware or more data-efficient implementation of the network, networks with a higher
depth could be explored, which could be very useful for datasets that are more complicated than
the Fashion MNIST dataset.
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7 Conclusions

In this thesis two methods for the extension of Mixed-Scale Dense (MS-D) CNNs for classification
were explored. MS-D has been proven to be able to achieve good results with less parameters
and layers compared to traditional networks, due to the use of dilated convolutions and dense
connections. MS-D only existed for segmentation problems, where the result is an image, and not
for classification problems.

First, research was done in order to find how the original MS-D network could be extended for
solving classification problems. The first method for the extension uses a mean operation on the
pixels of the image, with a softmax operation after the final layer of the network. The second
extension uses a max-pooling operation, where the size of the image is reduced to the size of a
single pixel, before passing through three fully connected layers, taking inspiration from the VGG16
network.

Secondly, it was researched whether the extended versions of the MS-D network for classification
maintain the advantages of the original MS-D network, when applied to classification problems.
Finally, the performance of the extended MS-D networks was compared to the performance of
other well-known classification networks, by comparing their class accuracy and amount of used
parameters. On a simple dataset, the mean-pixel MS-D extension does about as well as better-known
classification networks, while using less parameters. When the training set is smaller and less data
is available, it has slightly better results. This suggests that the advantages of using less parameters
and dense connections that were found for the original MS-D network for segmentation slightly
translate to classification problems. For the Maxpool MS-D extension this is not the case, since it
performs the worst out of all tested networks. On a more complex dataset, the mean-pixel extension
performs slightly worse, but shows similar results compared to the more well-known classification
networks. The maxpool MS-D extension performs even worse on this dataset. The use of fully
connected layers over-complicates the network, resulting in less accurate predictions and too many
parameters.

The mean-pixel extension of MS-D for classification shows promising results for future research,
since it performs comparably to well-known classification networks, while using less parameters.
The network needs optimizing and the performance of other extensions could be investigated. Other
datasets could be tested, in order to find whether dilated convolutions would contribute to an
extended MS-D network for classification. For future research, it is noteworthy that the original
benefits of the MS-D network should remain intact, since they have shown to have large impact on
the performance of the network.
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