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Abstract

Approximately 70% of the human genome has a zebrafish ortholog. Besides their
genetic similarities, zebrafish also exhibit physiological similarities to humans, making
the zebrafish model very useful in many biomedical researches. Using three-dimensional
models of the zebrafish facilitates studies into spatial structure and morphology. To
obtain these 3D models the 2D serial section images of the model have to be stacked
on top of each other. During preparation of the sections the structural integrity in the
third dimension is compromised. To resolve this problem rigid image registration is
crucial. Four neural networks have been trained on the entire section images to find
the required rigid transformations. These networks have difficulty registering the entire
section images. So, there is room for improvement. We propose a novel approach of
training these networks on solely the edges of the section images instead. Both methods
are able to retrieve simulated transformations to a certain extend. However, our proposed
method demonstrates more accurate results. The trained models show stable qualities,
as application on a pre-aligned series does not result in deterioration of the 3D alignment.
Therefore, the proposed approach looks promising and might be interesting to continue
experimenting with non-rigid registration as well.
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1 Introduction

Model organisms such as mice, fruit flies and zebrafish are used to study the human body
genetically and physiologically. These three are considered popular model organisms due to
over 70% of the human genome shared and having a homolog for over 75% of disease causing
genes in humans. Besides sharing many genes with humans, these model organisms also show
remarkable anatomical and physiological similarities. Therefore, the model organisms are used
for research before application on humans [PN11, HCT+13].

To gain insights into the internal structures of model organisms, serial sectioning is applied.
Serial sectioning is the physical process of acquiring a series of thin layers from biological
tissue [Ver99]. The obtained slices allow detailed analysis within the object. However, the
information gained from the two-dimensional slices is limited to the tissue cutting plane.
Reconstruction of the three-dimensional model adds the possibility of studying spatial structure,
morphology and organization of the biological tissue in three-dimensional space. A reconstructed
three-dimensional model results in the combined information of both the internal and spatial
structures.

By layering the consecutive sections on top of each other, a three-dimensional reconstruction
of the model is created. However, during physically preparing the serial sections and scanning
the section images under the microscope the structural integrity of the object in the third
dimension can be compromised. Therefore, simply layering the section images on top of each
other will not result in a correctly aligned three-dimensional model. To resolve this problem,
image registration is essential [Ver96].

Image registration is the process of aligning two or more images of the same scene taken at
different times, from different sensors or different viewpoints [ZF03]. During the registration
process one of the images to be registered is used as a reference image. This reference image
will not be transformed during the registration. In case of aligning two images, this means one
image is used as reference on which the second image will be geometrically aligned. In case of
registering multiple images there are two options. The first option is to assign one reference
image on which all other images will be aligned. In case the images have a specified order, the
second option is to align them serially. When aligning serially, the images are registered using
the previous image in the dataset as reference.

Image registration can be divided into two approaches differing in the type of transformations
used, rigid and non-rigid registration [ZDGZ20]. Rigid registration is bound to using linear
transformations to modify the images. This entails the use of rotation and translation of the
images. In contrast, non-rigid image registration, also known as elastic/deformable registration,
allows for a non-uniform alignment of images, which consequently alters their shapes. This
method results in changes to the pixel-wise relationships within the images.

As mentioned, image registration is crucial for three-dimensional reconstruction of the model
using serial section images [Ver96]. When directly applying non-rigid image registration, the
possibly large differences between two scanned section images can cause unwanted deforma-
tions. Because of that, it is necessary to first apply rigid image registration to create an initial
alignment of the section images. Rigid image registration is a step in the alignment of serial
section images that can not be skipped. Therefore, this project will focus on rigid registration
of serial section images.
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Some approaches to rigid registration of serial section images have been developed over
time. The very first approach was to register the images by hand. However, the quality of
the alignment is largely impacted by the expertise of the clinician. A second approach to the
alignment task is the mechanical use of Chamfer matching. It optimizes the Chamfer distance
between two serial sections directly during scanning in the microscope [Bor88].

Convolutional neural networks (CNN’s) are known for their success in image classification.
Theses CNN’s are able to recognise and learn features in images allowing them to also learn
distinction between classes. The ability to learn images makes CNN’s not only successful in
image classification, but image recognition tasks in general. CNN’s have already shown to be
successful in multi-modal image registration. This entails registering two images of the same
object acquired with different imaging modalities. This shows that CNN’s are able to learn
the transformations in order to optimize the image alignment. Therefore, this research will
investigate CNN’s ability to learn to realign serial section images.

1.1 Research questions

In this research the performance of convolutional neural networks used for rigid image registration
on serial section images will be evaluated. Four CNN’s known for their success in image
recognition tasks are trained and evaluated. To simplify the problem en reduce the complexity,
the networks will be trained on lower resolution serial section images. The results obtained during
this research by training on the entire serial section images indicates room for improvement.
Therefore, we introduce an alternative approach to train the networks on solely the edges of the
serial section images instead. In order to evaluate the performance of the networks a measure
is created for determining the alignment quality. This study aims to compare both approaches
to training and thereby answer the following research questions:

RQ1: How well are convolutional neural networks able to register serial section
images?

RQ2: Does applying edge detection on data support neural networks during their
training?

RQ3: Can we establish a measure for image registration quality that corresponds
with the CNN operation?

1.2 Thesis overview

The objective of this study is to apply convolutional neural networks to register serial section
images. Moreover a measurement for the registration quality will be elaborated. The remainder
of this thesis is structured as follows.
In chapter 2 the serial section images used for training the networks will be elaborated.

Moreover, it addresses the networks and hardware used. A detailed explanation of the proposed
implementation is given in chapter 3. Next, chapter 4 focuses on the experiments and discusses
the obtained results to assess the performance of the networks. Lastly, in chapter 5 we answer
the research questions and discuss the outcome with regard to limitations and future possibilities.
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2 Material & methods

This section contains an overview of the datasets used during this project. Also the software,
neural networks and hardware that have been used will be further specified.

2.1 Zebrafish data

The zebrafish model has been introduced for the first time by Streisinger et al. [SWD+81]
in 1981 and is ever since used in many biomedical researches [CCL+21]. In particular human
genetic studies advanced with the help of the zebrafish model, due to approximately 70%
of human genes shared [HCT+13]. Although mice contain orthologs for 80% of the human
genome, zebrafish have certain characteristics making them more advantageous. They are able
to reproduce in large quantities and their transparent body allows in vivo imaging [SF02, LC07].
Because of these characteristics zebrafish are very useful in biomedical research.

(a) (b) (c)

Figure 1: The zebrafish data used during this project. (a) Example in the dataset of a
serial section image resulting from Light Microscopy. (b) The serial section image used as
start point to this project with dark background. Created from (a) by applying a Top-hat
operation in order to get rid of some noise/debris present in the image. (c) The three
dimensional model resulting from stacking one dataset of serial section images.

During this research three datasets are used for training and evaluation of the networks. The
datasets contain Light Microscopy serial section images of the head of 48 hour old zebrafish
models. These serial section images have a size of 300× 300 pixels. Figure 1a shows one of
the Light Microscopy serial section images in the dataset. Some of these images still contain
noise/debris in the image, which can cause problems during registration. To reduce this problem
a Top-hat transformation is executed. Furthermore, it is necessary the images contain a dark
background so they are inverted. The result as shown in figure 1b is the state in which the
images were received at the beginning of this research. This state is considered to be the
”entire serial section image” on which the networks will be trained. Figure 1c shows the 3D
model obtained after stacking the serial section images within a dataset.

Table 1 contains some information on the three datasets used. This entails the amount of
images per dataset and what datasets are used for training and during evaluation. Two of the
three datasets are used for training, the third is used to evaluate the trained networks. All three
datasets have already been aligned using a mechanical Chamfer matching method [Bor88].
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dataset #slices used for
1 52 training
2 99 training
3 125 evaluation

Table 1: Information of the three datasets used during this research.

2.2 Software

Python version 3.10.12 was used for the implementation. This allowed usage of several useful
libraries supported by Python. Such as the Pillow package, part of the Python Imaging Library
for reading images into arrays, and the scikit-image package for image processing. Moreover it
allows the use of Tensorflow to implement and train the convolutional neural networks. Besides
importing Python supported libraries, using Python allows usage of the Spatial Transformer.

2.2.1 Networks

Deep convolutional neural networks have proven to be capable of outstanding results in image
recognition tasks [PK17]. On top of that, they have also proven to be applicable for several
medical imaging purposes [SWS17, KK23]. Due to the success of deep CNN’s in medical image
recognition, three well known deep CNN’s are used during this project. In addition, a non-deep,
fully connected network has been implemented. To train these networks the Adam optimizer is
used for backpropagation of the gradients. The four implemented networks are stated below.

1. The VGG16 model is one of the two best performing VGG networks presented in the
”Very deep Convolutional Networks for Large-Scale Image Recognition” paper [Sim14].
The authors were able to create a much deeper network than achieved up until then. This
was due to the very small 3× 3 receptive field of their kernels used in every convolutional
layer. As shown in figure 2 the architecture of the network consists of 16 weighted layers,
13 convolutional and three dense layers. After each convolution block there is a max
pooling layer. The three fully connected layers with 4096, 4096 and 1000 features at the
end are followed by SoftMax activation.

Figure 2: The VGG16 architecture by [Sim14], containing 16 weighted layers (13 convolu-
tional and 3 dense layers).
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2. The VGG19 model is the other best performing VGG network made publically available
[Sim14]. As shown in figure 3, the structure is the same as for the VGG16 network
with one extra convolutional layer in the last three convolutional blocks. Resulting in 19
weighted layers in total, 16 convolutional and three dense layers. As in the VGG16 network,
there are max pooling layers after each convolutional block and SoftMax activation after
the three dense layers.

Figure 3: The VGG19 architecture by [Sim14], containing 19 weighted layers (16 convolu-
tional and 3 dense layers).

3. The last deep CNN implemented in this project is the ResNet50 model, a version of
the Residual Network presented in the ”Deep Residual Learning for Image Recognition”
paper [HZRS16]. To create even deeper networks than the VGG networks for example but
without a degrading accuracy, the authors proposed the use of a residual/identity block.
This means, skip connections are introduced such that the gradient can bypass layers in

Figure 4: The ResNet50 architecture by [HZRS16] containing fifty weighted layers.
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the network. In the top right of figure 4 such a residual learning block is visualised. The
middle of figure 4 shows the entire architecture with at the beginning a convolutional
block with a max pooling layer and in the end a global average pooling layer with one
dense layer. In between the two pooling layers several identity and projection blocks are
located. As mentioned the identity block skips convolutional layers by adding the input of
the block directly to the activation function at the end of the block. Within a projection
block the filter size is doubled and the first convolutional layer uses a 2× 2 stride. This
results in a different dimension compared to the input, meaning a skip connection is not
possible. To resolve this an extra 1× 1 convolution with the 2× 2 stride is applied to
the input. Ultimately, the network contains 12 identity blocks and four projection blocks,
resulting in a total of 50 weighted layers.

4. Lastly, a simpler fully convolutional network (FCN) is implemented, as presented in
the ”Learning Rigid Image Registration: Utilizing Convolutional Neural Networks for
Medical Image Registration” paper [SGS18]. The network contains an input for both
the reference image and the target image. The two images are concatenated over the
channel axis before entering a series of strided convolutions. Every convolutional layer
consists of seven 5× 5 kernels with ReLu activation and 2× 2 strides. The amount of
layers necessary depends on the size of the input images. This series of layers continues
until the output of the final layer has the correct dimension for the three transformation
parameters. As opposed to the other layers, the final layer contains three 3× 3 kernels
with 2× 2 strides and linear activation to allow for negative transformation values.

What stands out compared to the previous three deep networks, is the absence of pooling
layers in the fully convolutional network. The authors decided to leave the pooling layers
out due to their local shift invariance property. This means that small transformations
in the input feature map do not affect the output feature map. Since the goal of the
network is to align two images as accurately as possible, applying a pooling layer would
most likely result in higher errors.

2.2.2 Transformer

The Spatial Transformer module has been presented to create networks that are spatially
invariant to the input data [JSZ+15]. This means the module allows networks to make the
distinction between differently positioned and different texture or shape. For every input sample
separately the necessary transformation is determined during training for the greater task at
hand, making it a very dynamic mechanism.

The Transformer module consists of three main components, a localisation network followed
by a grid generator and lastly a differentiable sampler that produces the output feature map. An
overview of the Transformer module is shown in figure 5. The first component is the localisation
network, which outputs transformation parameters θ after the input feature map is subjected
to a series of hidden layers. The architecture of the localisation network may vary, it can be
a fully connected or convolutional network. It should however end with a regression layer to
output θ with the possibility of negative values.
With the generated transformation parameters θ a sampling grid can be generated. First a

standard grid G is created using normalised coordinates. Meaning in case of the x-coordinates
the far most left pixels are assigned −1 and the far most right pixels assigned 1 with gradually
increasing values in between. The same is done for the y-coordinates with the upper pixels
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Figure 5: The Spatial Transform Network architecture containing a localisation network,
grid generator and differentiable sampler to produce the output feature map. [JSZ+15]

assigned −1 and gradually increasing till 1 for the bottom pixels. Next the created grid is
multiplicated with the transformation matrix Aθ, resulting in the transformed sampling grid
Tθ(G).

Lastly a sampler will combine transformed sampling grid Tθ(G) with the input feature map
to create the output feature map. Each coordinate in Tθ(G) represents a location on the
input feature map. By using a sampling kernel at a location in the input map the value for
it’s corresponding location in the output map is determined. The sampling kernel can contain
any form of interpolation, as long as the gradients can be determined with respect to the
grid coordinates. This sampling technique results in the ability of back-propagation of the loss
gradients through the sampling grid, transformation parameters to the localisation network.

2.3 Hardware

For the computing tasks a CPU/GPU desktop was used. This desktop runs a Ubuntu operating
system on a ’Ryzen 7’ CPU with eight processor cores and 64GB RAM. The desktop has two
additional RTX 2080 GPU’s with 8GB memory each. Data preparation, as further explained in
section 3.1, is executed on the CPU, due to the memory needed for the training data. Both
training the networks and running the experiments was performed using the GPU’s to reduce
runtime. For each run a GPU is used. However, training the networks could still be altered for
distributed computing.

9



10



3 Implementation

The four networks as listed in section 2.2.1 will be trained and evaluated on their alignment of
serial section images. An important first step is to preprocess the data. The neural networks
can then be trained on the preprocessed data. After training the models are evaluated on their
ability to retrieve simulated transformations. Lastly the models are applied to try to improve
the alignment of the serial section images in the test set.

3.1 Data preparation

As mentioned in section 2.1, the datasets received at the beginning of this research contain
preprocessed serial section images with a dark background. These images are read into a
separate array for each dataset. From here the different approaches of training data separate.

3.1.1 Data variations

The neural networks are trained using three different approaches, visualized in figure 6.

1. The neural networks will be trained on the received serial section images. As shown in
figure 6a, this is the entire image containing all information within the object.

2. The networks will be trained solely on the edges of the images. The entire serial section
images used in the previous approach are complex and very detailed. Therefore, the
neural networks could improve their training by simplifying the images. To retrieve the
edge data, first a Gaussian filter with default kernel size of 9× 9 is applied. This smooths
the image and will result in thicker edges instead of a 1-pixel wide edge. After applying
the filter, the Sobel edge detection algorithm is applied. The Sobel algorithm combines
the gradients in both the x- and y-direction to obtain only the edges of the object. The
resulting image is shown in figure 6b.

(a) (b) (c)

Figure 6: The three different variations of the serial section images the neural networks
will be trained on. (a) The standard received serial section image, referred to as the entire
image. (b) The serial section image after applying Sobel edge detection on figure 6a. (c)
The serial section image after removing all values lower than the acquired Otsu threshold
on figure 6b.
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3. The networks will be trained on the most important outlines of the serial section images.
The images resulting from the edge detection contain differences in intensity between the
edges, as some are softer edges than others. Assuming the edges with a lower intensity
contain less important information on the object’s structure, the networks might improve
by further simplifying the images. To remove the less important edges thresholding is
applied. Otsu’s method returns a threshold value that distinguishes the important edges
from the less informative ones. All intensity values below the threshold value are removed
from the image. This results in an image, as shown in figure 6c, containing only the most
informative outlines of the object.

3.1.2 Data extension

Since the goal is to learn a neural network to align two section images, a second so called
target image is necessary for the network to train. So for all images in the dataset a new target
image has to be generated. These targets can be created through two distinct approaches.

1. The first option is to simply generate random rigid transformations and apply these to
the images. This results in combinations of the reference image with a translated and/or
rotated target image. With this method both the reference as the target image contain
the same object and could therefore be perfectly realigned.

2. Target images will be retrieved from a window around the image in it’s original dataset
series. The ultimate goal is not only to align two of the same section images, but to align
two consecutive serial section images. These images will thus not contain the exact same
object. Therefore, it could be beneficial for the networks to train on such reference-target
image combinations. With an image located at index i and a window size of x, the
images within range [i− x : i+ x] will all be selected as target images. Because of this
method, the datasets had to be stored in separate arrays. As the received datasets were
already attempted to align, there are very few differences between the reference and
target images for the network to train on. Therefore, random rigid transformations are
also applied to these target images.

Both approaches to generate the target images apply random rigid transformations. A uniform
distribution of the random transformations can be used and will cause an equal amount of
smaller and larger transformations. However, assuming the series that eventually will have to
be aligned will only need small transformations, a normal distribution might be more suitable.
This will result in mostly smaller transformations, as expected is needed for prediction, and
some relatively larger transformations. These larger transformations are needed to challenge
the network not to overfit on the smaller transformations.
Depending on the approach used for generating the target images, there are either one

or 2x + 1 target images. This means a relatively small dataset for the network to train on.
Training on this will result in overfitting on the generated reference-target image combinations
and therefore poor results when predicting on unseen data. Even aligning the same reference
image to a new target image will cause trouble. To prevent overfitting on the generated
image combinations, multiple random rigid transformations are applied to generate more target
images for the same reference image. However, this only partly solves the problem. With these
generated datasets, the network will learn to align from always the same starting position,
most likely a centered object. To overcome this, also multiple random rigid transformations are
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applied to the reference image while the target image stays the same. Eventually this results in
a dataset containing multiple transformed target images combined with the same reference
image and multiple transformed reference images combined with the same target image.

Figure 7: Flow-chart of training the convolutional neural networks on the prepared serial
section image datasets.

3.2 Network training

Figure 7 shows a flow-chart of a training iteration of the convolutional neural networks on
the prepared serial section image datasets. Before the networks listed in section 2.2.1 can
actually start training, the architectures of the three deep CNN’s have to be slightly altered.
For image classification tasks these networks use one input image and 1000 output nodes with
softmax activation. However, as mentioned before and shown in figure 7, the network uses
the reference-target image combination as input. So the networks will have two input images
instead of one. Furthermore, three output nodes are implemented with linear activation to
allow both negative and positive predictions. The three output nodes, as shown in grey in
figure 7 and equation 1, will contain the predicted translation over the x-axis and y-axis and
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the rotation. Lastly, the amount of filters for each convolutional layer has been reduced by a
factor 4, due to memory limitations.

output = [rotation, x translation, y translation] (1)

The altered networks having the transformation values as output leads to an extra challenge.
Since the true transformation values are unknown, the predicted values can not be compared
to determine the loss value. Because the true prediction values do not exist, a manual training
step has been implemented instead of using the build-in model.fit() method. A gradient tape is
used to record the training iterations as shown in figure 7 and automatically differentiates to
retrieve the gradients that will be back propagated to the network.
The networks can be trained with an arbitrary batch size. A larger batch size will result

in a shorter training time, while a smaller batch size will provide more robust learning. To
simplify the explanation of a training iteration, a batch size of one is assumed. The first step in
a training iteration is to enter a reference-target image combination into the network. Based
on the input images, the network predicts the three transformation parameters. These three
values are converted to transformation matrix theta, as shown in equation 2. Using theta, the
reference image can be transformed.
The Spatial Transformer module is used to apply transformation matrix theta on the

reference image. Usage of the Spatial Transformer module allows the gradient tape to follow
the transformation and eventually determine the gradients. Resulting from the Transformer
module is the transformed reference image, hopefully better aligned to the target image. The
loss is then determined by measuring the similarity between the transformed reference image
and the target image. The similarity is calculated by either the mean squared error (mse) or the
normalised cross correlation (ncc) between the two images. Based on the loss the gradient tape
calculates the gradients for all trainable variables in the network. As indicated by the red line in
figure 7, the Adam optimizer applies the gradients with a certain learning rate to the network
for the next iteration. The steps as shown in figure 7 are executed for the entire training set.
For the network to learn how to align two input images, it is trained on the training set for
multiple iterations.

theta =

cos(output[0]) −sin(output[0]) output[1]
sin(output[0]) cos(output[0]) output[2]

0 0 1

 (2)

To prevent the network to get stuck in local optima, a simulated annealing technique is
applied on the learning rate of the Adam optimizer [BT93]. Three decreasing learning rates are
applied equally divided over the amount of iterations. This will result in smaller gradients in
the later stages of training compared to the earlier epochs and therefore a better convergence
of the network.

3.3 Network evaluation

Once the networks are trained, the models are tested on their accuracy in retrieving applied
transformations. Uniformly distributed random rigid transformations are applied to a new
unseen dataset by the model. For each image in the dataset one transformed target image is
generated. The model then tries to predict the applied transformation for each image in an
iterative fashion. As long as the similarity score between the predicted transformed image and
the target image improves compared to the previous prediction, the model will predict again in
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an attempt to come closer to the target image. As soon as the similarity score is worse than
the previous, the model continues with the next image in the dataset. These iterations are
executed for every image until the entire dataset is attempted to be aligned with it’s generated
target images. The similarity scores are calculated by both the mse and ncc. Whether the
similarity score improves, is based on the ncc-scores. Once the entire test set is attempted to
align, an average similarity score is calculated over the entire test set, to indicate the quality of
the network. In case of the models trained on the edges of the serial section images, Sobel edge
detection is first applied to the dataset before generating the transformed targets. This means,
the network will determine a prediction based on the edge-based reference and target image.
The predicted transformation is then executed on the entire, not edge-based, serial section
image to determine the similarity scores. This way, the quality of the edge-based models can
be compared to the standard models. The evaluation algorithm on the edge-based models is
shown in Algorithm 1.

Algorithm 1 Evaluating trained models, retrieving random transformations

Input: unseen dataset eval data with image height and width, the Sobel edge detected
models sobel models and maximum number of iterations max iter

1: sobel data ← sobel edge(eval data, height, width)
2: transformations ← gen transformations()
3: targets ← transform data(sobel data, transformations)
4: for model in sobel models do
5: registrated imgs ← eval data.copy()
6: for x in range(len(eval data)) do
7: counter ← 0
8: repeats ← True
9: prev score ← sim score(eval data, targets)

10: while (repeats == True) and (counter < max iter) do
11: current img ← sobel edge(registrated imgs[x], height, width)
12: output ← model.predict(current img, targets[x])
13: theta ← gen matrix(output) (Eq.2)
14: transformed ← warp(registrated imgs[x], theta)
15: if sim score(transformed, targets[x]) > prev score then
16: repeats ← False
17: else
18: counter ← counter + 1
19: registrated imgs[x] ← transformed
20: prev score ← sim score(transformed, targets[x])
21: end if
22: end while
23: end for
24: final score ← sim score(registrated imgs, targets)
25: end for
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3.4 Three dimensional alignment

Assuming the trained models are able to improve the similarity scores during the evaluation, the
models will also be tested to align a test set of serial section images. To align a dataset of serial
section images the algorithm will start at the middle of the dataset. This image is most likely
to contain a large and centered object, so aligning towards this object is most likely to keep
the following objects within the image frame. Having selected the starting point, the algorithm
starts aligning outwards in both directions one image at a time. The previously registered image
is then used as target for the next image. Once the entire series is aligned, a score representing
the quality of the alignment is calculated. In case the quality of the alignment has improved
compared to the quality beforehand, the alignment process is repeated on the just aligned
test set. This keeps iterating until the quality does not improve anymore, assuming the best
alignment is achieved. The algorithm will also stop iterating when a fixed maximum number of
iterations is reached, assuming the model will not significantly improve any further.

As well as in section 3.3, the algorithm is slightly altered for the edge-based models. The edge-
based images of the test set are entered into the network, while the predicted transformations
are applied to the entire serial section images. This way the alignment quality of the edge-based
models can be compared to the standard models. Algorithm 2 shows an overview of the
alignment process using the edge-based models.

3.4.1 Alignment quality score

As mentioned above, a quality score of the 3D alignment of serial section images has to be
calculated. This quality score is similarly calculated as the similarity score used in section 3.3.
The similarity is determined between an image and it’s target. In case of determining the
alignment quality, the target is the next image in the series. So a similarity score, both mse
and ncc, is calculated for every adjoining pair of serial section images. An average of these
scores results in the overall quality score of the alignment. The lower the mse score the more
similar two images are, with two equal images having a mse score of zero. The ncc score on
the other hand is ranged between −1 and 1. With −1 representing the best possible similarity
and becoming worse the closer it comes to 1.

Figure 8: Three examples of images that will be considered as outliers. Left: too much
noise surrounding the object. Middle: some sort of contamination of the slide, will result
in a higher error. Right: an air bubble on the slide during scanning, results in missing data
compared to the previous and next image in the series.

A problem to this approach however, is the fact that some images in the series might contain
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flaws. Three examples are shown in figure 8. These flaws can cause the model to be unable to
correctly align these images and their two adjoining ones, resulting in worse similarity scores
and even alignment quality. However, these worse scores are not representative of the models
alignment abilities due to flaws in the data. Therefore, these similarity scores are considered
to be outliers and withheld from calculating the overall alignment quality. Determining which
similarity scores are considered outliers is not executed visually based on the serial section
images. This is determined based on the similarity scores. A threshold based on the distribution
of the similarity scores is calculated. Every score worse than the threshold are considered to be
outliers. Based on this, the outliers are assumed to contain flaws in their images.

Algorithm 2 Registration of serial image data

Input: unseen dataset reg data with image height and width, the Sobel edge detected
models sobel models and maximum number of iterations max iter

1: start idx ← int(len(reg data)/2)
2: for model in sobel models do
3: counter ← 0
4: repeats ← True
5: registrated imgs, prev registrated imgs ← reg data.copy()
6: prev loss, prev loss before outliers ← reg score(registrated imgs)
7: while (repeats == True) and (counter < max iter) do
8: edge data ← sobel edge(registrated imgs, height, width)
9: target ← edge data[start idx]

10: for x in range(start idx− 1,−1,−1) do
11: output ← model.predict(edge data[x], target)
12: theta ← gen matrix(output) (Eq.2)
13: registrated imgs[x] ← warp(registrated imgs[x], theta)
14: target ← warp(edge data[x], theta)
15: end for
16: target ← sobel edge(registrated imgs[start idx− 1], height, width)
17: for x in range(start idx, len(edge data) do
18: output ← model.predict(edge data[x], target)
19: theta ← gen matrix(output) (Eq.2)
20: registrated imgs[x] ← warp(registrated imgs[x], theta)
21: target ← warp(edge data[x], theta)
22: end for
23: loss, loss before outliers ← reg score(registrated imgs)
24: counter ← counter + 1
25: if loss < prev loss or loss before outliers < prev loss before outliers then
26: prev registrated imgs ← registrated imgs.copy()
27: prev loss, prev loss before outliers ← loss, loss before outliers
28: else
29: repeats ← False
30: end if
31: end while
32: save registrated imgs(prev registrated imgs,model)
33: end for
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4 Experiments & results

Several variations of models have been trained for 500 epochs in batches of size 50. The
descending learning rates used were 1e− 5, 5e− 6 and 1e− 6 respectively. Datasets 1&2 were
used for training the models. The VGG16, VGG19 and FCN network have been trained as
standard model and edge-based models with different settings. Due to longer training time,
the ResNet50 network has only be trained for it’s standard and edge-based model, no extra
settings have been experimented.

In general the trained models showed to converge over the 500 epochs, such as the edge-based
ResNet50 model shown in figure 9a. However, there is an exception, the learning curve of the
standard FCN model as shown in figure 9b. After 150 epochs only NaN results were reported
for both the training as the validation set. This can be caused by extreme network output
values from which the network is unable to recover.

(a) (b)

Figure 9: The learning curves of two trained models. (a) The learning curve of the edge-
based ResNet50 model. It shows convergence within the 500 epochs, but also a gap between
train and validation data. (b) The learning curve of the standard FCN model. It shows
no results after epoch 150, while in fact NaN results were returned. These are caused by
exploding gradients resulting in extreme network output values.

Dataset 3 will be used for experimentation. Tables 1 and 2 in appendix A show respectively
the results of the retrieval of random rigid transformations and the 3D alignment for all trained
models. In this chapter these two tables will be analysed and explained in parts.

The same random rigid transformations were applied to the test set for all models to retrieve.
These transformations resulted in an average mse-score of 1967.284 and −0.191 ncc-score.
As for the 3D alignment, the original test set had a quality mse-score of 836.119 without any
outliers present. The quality ncc-score beforehand was −0.697 and −0.712 with five outliers
removed.

4.1 Standard vs edge-based models

To get insight in the performance of CNN models on registration of serial section images the
standard models are compared against both edge-based models. For both the VGG16 and FCN
network the standard, edge-based and edge-based+threshold model have been trained. For the
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VGG19 and ResNet50 network only the standard and edge-based model have been trained. All
these models have been trained on data that generated the target images using the window
approach. Furthermore, they have been trained using the ncc loss function.

4.1.1 Evaluation

Table 2 shows the results of retrieving the applied random rigid transformations by the four
networks trained on the entire section, edge-based and edge-based+threshold images. Compared
to the scores mentioned above after the random transformations, all trained models show
better scores after registration. With as worst result still an mse-score of 526.423 and −0.741
ncc-score. While the best result improves up to a mse-score of 266.560 and −0.862 ncc-score.
In both cases these scores are before removing outliers.

data model mse mse-outliers outliers ncc ncc-outliers outliers

standard VGG16 407.498 398.023 1 -0.789 -0.805 4
edge-based VGG16 377.094 369.412 1 -0.799 -0.804 1
+ threshold VGG16 462.202 462.202 0 -0.766 -0.804 7

standard VGG19 425.856 425.856 0 -0.786 -0.799 3
edge-based VGG19 526.423 526.423 0 -0.741 -0.754 3

standard Resnet50 499.102 499.102 0 -0.752 -0.763 2
edge-based ResNet50 378.059 378.059 0 -0.794 -0.808 3

standard FCN NaN NaN - NaN NaN -
edge-based FCN 266.560 159.961 12 -0.862 -0.927 16
+ threshold FCN 319.128 281.217 4 -0.817 -0.867 10

Table 2: Similarity scores of the standard, edge-based and edge-based+threshold models
after registration of random rigid transformations. This table is a subsection of table 10.
Both mse and ncc scores after registration of simulated transformations are shown, both
with and without outliers. Before registration the dataset had a mse-score of 1967.284 and
−0.191 ncc-score. Bold scores are the best results for that network.

Four aspects stand out from the results in table 2. First are the Not a Number (NaN) results
for the standard FCN model. When inspecting the training data as shown in learning curve 9b,
NaN results also occurred from the epoch where the learning rates are lowered for the first
time, and onward. As explained above, these NaN results can occur due to exploding gradients
causing extreme network output values.

The second notable aspect is the fact that only the VGG19 network shows better evaluation
scores for the standard model. While both the VGG16 and ResNet50 network have a better
performing edge-based model. This indicates that a smaller VGG network architecture works
better on the images with less information compared to the deeper VGG architectures. While
the ResNet50 network has even more layers than the VGG19 network, the use of residual blocks
seems to help the network to deal with the less informative images.

Thirdly, removing the edges with an intensity below the Otsu threshold from the edge-based
images does not seem to improve the model for both the VGG16 and FCN network. In both
cases worse scores are achieved compared to the edge-based models without the threshold.
This indicates that by applying the threshold on the edge data too much information is lost for
a accurate registration.
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Lastly the amount of outliers for the FCN models stands out compared to the other models.
This suggests that for the FCN models most similarity scores are close to a very good mse or
ncc score with the outliers being significantly worse, but no results in between. While the results
of other models are most likely more spread out. Inspecting the histograms of the edge-based
FCN and edge-based VGG16 models, with 16&1 outlier in ncc score respectively, in figure 10
these suggestions are confirmed. The FCN model has a similar worst similarity score as the
VGG16 model, however less scores in the middle.

Figure 10: Histograms of the ncc similarity scores resulting from the registration of random
rigid transformations by two edge-based models. Left: edge-based FCN model, similarity
scores resulted in 16 outliers being removed, due to high amount of similarity scores close
to −1.0. Right: edge-based VGG16 model, similarity scores resulted in only one outlier
being removed, due to a more spread out distribution of the similarity scores.

4.1.2 3D alignment

All trained models were able to retrieve the simulated transformations to a certain extend. To
assess the ability of CNN’s to align serial section images, the models are evaluated on dataset
3. As mentioned in section 2.1, this dataset has already been aligned by a mechanical chamfer
matching approach. This experiment will show if the CNN models are able to maintain the
alignment or might even be able to slightly improve the quality. Table 3 shows the results of
the four networks trained on the entire section, edge-based and edge-based+threshold images.

What mainly stands out from the results is the different directions the mse and ncc quality
scores progressed compared to the quality beforehand. When assessing the alignment quality
of the models based on the ncc scores all models were able to more or less maintain the
alignment executed with the Chamfer method, showing similar quality scores. After removing
outliers, the standard VGG16 and VGG19 models even recorded a slight improvement. On the
other hand, when assessing the alignment quality based on the mse scores the standard and
both edge-based models were able to further improve the original alignment. This difference
between the mse and ncc quality might be caused by the interpolation happening during the
transformation. The interpolation can cause the mse scores to improve but has no impact on
the correlation between the intensity values. Therefore this also will not impact the ncc quality.
When comparing the standard model with the edge-based models, the VGG19 network

shows to perform better trained on the entire section images. This corresponds with the results
reported in the previous section. As for the VGG16 and ResNet50 networks, the standard
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data model mse mse-outliers outliers ncc ncc-outliers outliers

standard VGG16 747.465 723.050 2 -0.690 -0.719 10
edge-based VGG16 744.892 722.233 2 -0.687 -0.712 8
+ threshold VGG16 762.703 728.895 3 -0.684 -0.712 7

standard VGG19 733.365 709.262 2 -0.690 -0.718 10
edge-based VGG19 765.193 727.296 5 -0.676 -0.687 3

standard Resnet50 811.957 750.427 7 -0.663 -0.683 7
edge-based ResNet50 790.255 753.050 4 -0.672 -0.691 6

standard FCN NaN NaN - NaN NaN -
edge-based FCN 796.780 768.088 2 -0.669 -0.689 6
+ threshold FCN 799.768 725.562 7 -0.664 -0.694 9

Table 3: 3D alignment quality scores of the standard, edge-based and edge-based+threshold
models. This table is a subsection of table 11. Both mse and ncc quality scores after
alignment of the serial section images in the test set are shown, both with and without
outliers. Before alignment the test set had a mse quality score of 836.119 without any
outliers present. The ncc quality score beforehand was −0.697 and −0.712 with five outliers
removed. Bold scores are the best results for that network.

and edge-based model show very similar quality scores, neither model clearly shows a better
performance. As all models were able to maintain but not improve the original alignment,
no difference in performance between the standard and edge-based models is visible in these
results.

There is however a difference in performance quality between the networks. The difference
in quality is not visible in table 3, but comes to light when visually inspecting the alignment.
Figure 11 shows a cross-section along the y-axis of the alignments created by the edge-based
VGG16, VGG19 and ResNet50 models from left to right. Even though all three models showed
relatively similar quality scores and amount of outliers, a clear difference in how the network
handles the outliers is visible in figure 11. The edge-based VGG16 model on the left image
showed unable to correctly align outlier images, causing the following section images also to
fall out of the alignment. Both the edge-based VGG19 and ResNet50 models however, will see
the same images as outliers based on their similarity scores, but are still able to properly align
them.

Figure 11: Cross-section images along the y-axis of the alignments created by the edge-
based VGG16, VGG19 and ResNet50 models from left to right. The edge-based VGG16
model on the left shows shifts in the alignment caused by outlier images. While on the
other hand both the edge-based VGG19 and ResNet50 models were able to properly align
these outlier images.
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model loss function mse mse-outliers outliers ncc ncc-outliers outliers

VGG16 ncc 377.094 369.412 1 -0.799 -0.804 1
VGG16 mse 298.616 298.616 0 -0.839 -0.855 4

VGG19 ncc 526.423 526.423 0 -0.741 -0.754 3
VGG19 mse 366.074 366.074 0 -0.809 -0.822 3

FCN ncc 266.560 159.961 12 -0.862 -0.927 16
FCN mse 469.017 469.017 0 -0.764 -0.784 4

Table 4: Average similarity scores after registration of random rigid transformed section
images by the edge-based models trained with mse and ncc loss function. Furthermore,
these models were trained on data that generated target images using the window approach.
This table is a subsection of table 10. Mse and ncc similarity scores after registration of
random rigid transformations are shown, both with and without outliers. Before registration
the dataset had an overall mse-score of 1967.284 and −0.191 ncc-score. Bold scores are
the best results for that network.

4.2 Hyperparameters

Besides comparing the standard models with the edge-based models, some additional settings
on the edge-based models have been experimented with. For example varying the loss function,
adding kernel regularization and two different approaches to generating the target images. Due
to longer training time no additional settings have been experimented for the ResNet50 network.
Additional settings will only be experimented for the VGG16, VGG19 and FCN networks.

4.2.1 ncc vs mse

Firstly, two different variants of loss function used during training are tested. In table 4 the
average similarity scores after registering the random rigid transformed section images are
shown for the edge-based models trained with either mse or ncc loss. Furthermore, these
models have been trained on data that generated the target images using the window approach.
For both the VGG16 and VGG19 model training with the mse loss function results in better
similarity scores than training with the ncc loss function. In case of the FCN model however,
the opposite is the case. What does stand out for the FCN model, is the fact that the usage of
mse loss during training results in significantly less outliers.

The quality of aligning the test set by edge-based models trained with either mse or ncc
loss, as shown in table 5, does not extend the trend shown in table 4. The VGG16 network
shows better results when trained using the ncc loss function, while the FCN networks seem to
perform better when trained with the mse loss function. As for the VGG19 network, neither
loss function is clearly outperforming the other. Instead, training with the mse loss function
results in better mse quality scores and training with the ncc loss function results in better ncc
quality scores.

Considering the improvement of mse quality scores is caused by the interpolation during the
transformation, the use of neither loss function during training results in an improved alignment.
On the other hand, also neither loss function causes the alignment to deteriorate. Combining
the results from tables 4 & 5, no conclusion can be drawn on which loss function is best used
to train the models.
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model loss function mse mse-outliers outliers ncc ncc-outliers outliers

VGG16 ncc 744.892 722.233 2 -0.687 -0.712 8
VGG16 mse 763.388 738.288 2 -0.677 -0.706 9

VGG19 ncc 765.193 727.296 5 -0.676 -0.687 3
VGG19 mse 687.868 663.266 2 -0.666 -0.683 5

FCN ncc 796.780 768.088 2 -0.669 -0.689 6
FCN mse 773.634 746.498 3 -0.686 -0.704 6

Table 5: 3D alignment quality scores of the edge-based models trained with mse and ncc
loss function. Both these models were trained with target images generated using the
window approach. This table is a subsection of table 11. Mse and ncc quality scores after
alignment of the serial section images in the test set are shown, both with and without
outliers. Before alignment by the models the test set had a quality mse-score of 836.119
without any outliers present. The quality ncc-score beforehand was −0.697 and −0.712
with five outliers removed. Bold scores are the best results for that network.

4.2.2 Regularization

Secondly was experimented with adding regularization to each convolutional layer in the
networks. Regularization is used to generalize the data and therefore reduce overfitting of the
model. This should help the model to perform better on unseen data. In this experiment L1, L2
and L1L2 combined regularization were compared to the models without regularization. The
models evaluated in the previous experiments were all trained without regularization.

model regularization mse mse-outliers outliers ncc ncc-outliers outliers

VGG16 L1 349.916 349.916 0 -0.812 -0.816 1
VGG16 L2 353.513 333.636 3 -0.811 -0.820 2
VGG16 L1L2 382.302 382.302 0 -0.805 -0.812 2
VGG16 None 377.094 369.412 1 -0.799 -0.804 1

VGG19 L1 392.482 384.833 1 -0.801 -0.801 0
VGG19 L2 400.690 400.690 0 -0.806 -0.814 3
VGG19 L1L2 398.804 398.804 0 -0.801 -0.806 1
VGG19 None 526.423 526.423 0 -0.741 -0.754 3

FCN L1 299.893 257.198 5 -0.848 -0.902 14
FCN L2 641.235 641.235 0 -0.676 -0.676 0
FCN L1L2 604.204 604.204 0 -0.682 -0.682 0
FCN None 266.560 159.961 12 -0.862 -0.927 16

Table 6: Average similarity scores after registration of random rigid transformed section
images by the edge-based models trained with L1, L2, L1L2 or no regularization added to
the convolutional layers. These models were all trained on target images generated using
the window approach and using the ncc loss function. This table is a subsection of table 10.
Mse and ncc similarity scores after registration of random rigid transformations are shown,
both with and without outliers. Before registration the dataset had an overall mse-score of
1967.284 and −0.191 ncc-score. Bold scores are the best results for that network.

In table 6 the average similarity scores after registering the random rigid transformed section
images are shown for the edge-based models trained with four variations of regularization.
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Furthermore, these models have been trained using the ncc loss function and with target images
generated by the window approach. The results show that adding regularization does improve
the results for the VGG16 and VGG19 models. For both networks the L1 regularized network
shows the best similarity scores, but closely followed by the L2 regularization. As for the FCN
network, without any regularization shows the best results closely followed by L1 regularization.
Applying L2 and L1L2-combined regularization however does not turn out as successful as
intended, resulting in the worst scores in this table.

model regularization mse mse-outliers outliers ncc ncc-outliers outliers

VGG16 L1 753.161 727.397 2 -0.686 -0.717 10
VGG16 L2 695.575 672.545 2 -0.671 -0.684 4
VGG16 L1L2 750.501 727.731 2 -0.680 -0.709 9
VGG16 None 744.892 722.233 2 -0.687 -0.712 8

VGG19 L1 756.840 734.404 2 -0.685 -0.718 12
VGG19 L2 700.378 679.178 2 -0.676 -0.693 5
VGG19 L1L2 652.853 625.942 2 -0.669 -0.690 7
VGG19 None 765.193 727.296 5 -0.676 -0.687 3

FCN L1 827.918 806.719 2 -0.653 -0.687 12
FCN L2 778.123 748.265 2 -0.672 -0.700 9
FCN L1L2 779.634 720.755 5 -0.687 -0.712 7
FCN None 796.780 768.088 2 -0.669 -0.689 6

Table 7: 3D alignment quality scores of the edge-based models trained with L1, L2, L1L2
or no regularization added to the convolutional layers. All models were trained using the
ncc loss function and with target images generated by the window approach. This table is
a subsection of table 11. Mse and ncc scores after alignment of the serial section images
in the test set are shown, both with and without outliers. Before alignment the test set
had a quality mse-score of 836.119 without any outliers present. The quality ncc-score
beforehand was −0.697 and −0.712 with five outliers removed. Bold scores are the best
results for that network.

As for these models’ results on 3D alignment of the test set, see table 7, they do not seem
to show whether applying any form of regularization improves the model. As was the case for
the previous two experiments, the mse quality scores for all models improve on the quality
beforehand while the ncc scores become slightly worse. Foccussing on the ncc scores and it’s
amount of outliers, no patterns of the models with regularization performing better than the
models without are visible. As for the mse scores, two models stand out. VGG16 with L2
regularization and VGG19 with L1L2-combined regularization show better alignment quality
scores than the models without added regularization. However, as these two models did not
stand out for the ncc scores and in table 6, these mse results might not be that meaningful.

4.2.3 Window vs transformed

In section 3.1.2 two approaches to generating the target images were explained. The first using
random rigid transformations of the reference image, resulting in a transformed version of
the same object. The second approach also applies random rigid transformations, but on all
images within a window around the reference image. Therefore multiple targets are generated,
containing a transformed slightly different object. Both approaches have been tested with
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edge-based models trained using the mse loss function and no regularization added to the
network.

model data shape mse mse-outliers outliers ncc ncc-outliers outliers

VGG16 window 298.616 298.616 0 -0.839 -0.855 4
VGG16 transformed 565.056 555.352 1 -0.746 -0.759 3

VGG19 window 366.074 366.074 0 -0.809 -0.822 3
VGG19 transformed 582.355 568.470 1 -0.692 -0.709 3

FCN window 469.017 469.017 0 -0.764 -0.784 4
FCN transformed 741.645 741.645 0 -0.617 -0.617 0

Table 8: Average similarity scores after registration of random rigid transformed section
images by the edge-based models trained with either the transformed reference image
or window approach to generating the target images. Both models were trained without
regularization added and using the mse loss function. This table is a subsection of table 10.
Mse and ncc similarity scores after registration of random rigid transformations are shown,
both with and without outliers. Before registration the dataset had an overall mse-score of
1967.284 and −0.191 ncc-score. Bold scores are the best results for that network.

Table 8 shows the average similarity scores after registering the random rigid transformed
section images for the edge-based models with the transformed reference image and window
approach to generating the target images. The models using the window approach are better
able to register the random transformed section images, showing better similarity scores for
all three networks. This is against expectations as the transformed reference image approach
would allow the network to exactly retrieve the applied transformations during training, as the
reference and target object are the same. With the window approach on the other hand, there
will always be an error because the objects are different. However, with the reference image
also being within the window this technique might benefit from both approaches, resulting in
more generalization and therefore better results.

model data shape mse mse-outliers outliers ncc ncc-outliers outliers

VGG16 window 763.388 738.288 2 -0.677 -0.706 9
VGG16 transformed 806.144 766.249 4 -0.665 -0.684 5

VGG19 window 687.868 663.266 2 -0.666 -0.683 5
VGG19 transformed 718.201 689.300 2 -0.711 -0.729 5

FCN window 773.634 746.498 3 -0.686 -0.704 6
FCN transformed 657.590 636.344 2 -0.739 -0.758 8

Table 9: 3D alignment quality scores of the edge-based models trained with either the
transformed reference image or window approach to generating the target images. Both
models were trained without regularization added and using the mse loss function. This
table is a subsection of table 11. Mse and ncc scores after alignment of the serial section
images in the test set are shown, both with and without outliers. Before alignment the test
set had a quality mse-score of 836.119 without any outliers present. The quality ncc-score
beforehand was −0.697 and −0.712 with five outliers removed. Bold scores are the best
results for that network.
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As for the quality of the alignment executed by these models, shown in table 9, there is
no approach clearly outperforming the other over all three networks. The window approach
shows better quality of alignment for the VGG16 network and the VGG19 network, if solely
focusing on the mse scores. The transformed reference image approach shows better quality of
alignment for the VGG19 network when focusing on the ncc scores and for the FCN network.
Furthermore, it stands out that the transformed reference image approach for the VGG19 and
FCN model are the first models able to improve quality of the original alignment based on the
ncc scores. As the ncc similarity scores of these two models in table 8 were unable to exceed
−0.7, this improved alignment quality is unexpected. On top of that, the mse quality scores
from these two models have been achieved by other models seen in the previous experiments
(ex. VGG19 with L1L2 regularization in table 7), however their ncc quality scores did not
improve. To better understand this difference in results, an alternative quality measure might
be needed.
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5 Conclusion & Discussion

In this final section the findings from this research will be summarized and used to answer the
research questions stated in chapter 1. Within the discussion section the conclusions drawn
will be discussed with regard to challenges and limitations encountered throughout the project.
Lastly, possible future work as continuation of this research will be suggested.

5.1 Conclusion

During this research the performance of convolutional neural networks used for rigid image
registration on serial section images has been evaluated. Four CNN’s known for their success
in image recognition tasks have been trained on either the entire serial section images or solely
the edges. Several variation of models have been trained and experimented in order to evaluate
their performance. Based on these results as shown in chapter 4, the stated research questions
can be answered.

1. How well are convolutional neural networks able to register serial section
images?
The CNN models have shown to be able to register a random rigid transformed section
image to it’s original reference image. Although, the models are able to align the two
images only up to a certain extend and not exactly realign the two. Considering the
models did not deteriorate the alignment already executed using the Chamfer method,
it seems the networks were able to learn when nearly no transformation is necessary.
This indicates convolutional neural networks show great potential but leave room for
improvement.

2. Does applying edge detection on data support neural networks during their
training?
In order to state whether applying edge detection on data significantly supports neural
networks during their training statistical analysis is necessary. This analysis can not be
executed over our results, as three networks showed results for both approaches on only
one test set. To be able to perform the statistical analysis, experiments on more datasets
will have to be performed. However, based on the results shown in table 2, the edge-based
models do look promising.

3. Can we establish a measure for image registration quality that corresponds
with the CNN operation?
The results show that the proposed measure using an average of pairwise similarity scores
contains some flaws. The measure is very useful to evaluate the registration of two
images, such as during the experiment of retrieving the random rigid transformations.
However, the measure was misleading in case of the 3D alignment of the serial section
images. As the measure solely focuses on the pairwise similarity, the global alignment
could be bad due to outlier images. Therefore, the measure is not recommended for the
quality assessment of 3D alignment of serial section images.

5.2 Discussion

As stated in the conclusion, the performance of convolutional neural networks used for rigid
registration of serial section images left room for improvement. However, during this research
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multiple challenges were faced that could have prevented a better performance.

Firstly, NaN values occurred on multiple occasions during this project. Not only the standard
FCN model resulted in NaN scores, but during training also some variations of the VGG16 and
VGG19 reported NaN values. As mentioned in section 4, these NaN values can occur due to
extreme network output values. These extreme values are caused by vanishing or exploding
gradients, a notorious problem with neural networks [BSF94, GB10]. This problem can be
resolved by adding Batch Normalization layers to the network. Applying Batch Normalization
also works as a regularizer and allows the use of higher learning rates [IS15]. This corresponds
with the experiences during this research, as the relatively small learning rates ultimately used
during training are based on the many NaN occurrences with higher learning rates. As the
possibly vanishing gradients would cause the network to stop learning, application of Batch
Normalization might improve the training of these three networks. This could eventually result
in better performance of the network on rigid image registration. Lastly, Batch Normalization
results in quicker convergence as 14 times less epochs are needed to reach the same accuracy
[IS15], meaning the training process would take far less time.

Secondly, the CNN models would improve by training on more datasets. Currently the models
are trained on only two datasets causing overfitting and lack of performance on unseen data.
Upon inspecting the learning curves of the models the overfitting becomes clear. First is the
fact that there is a significant gap between the training data scores and validation scores, as
is visible in figure 9a. This showcases the difficulty with unseen data. Secondly, the learning
curves of the VGG networks show great fluctuation between epochs. Training on more different
datasets will cause generalization and therefore a smoother learning curve and better results
on unseen data.

Furthermore, the results showed the CNN models were unable to improve the quality of
alignment. As the test set is already aligned with a previous approach, there will be very few
images that need any extra rigid transformation. Not every image in the dataset will need
as many iterations as others. By realigning the entire dataset as long the quality improves,
two things can happen that limits the ultimate alignment quality. Either a perfect registration
between two section images becomes worse by continuing or a registration is not further
improved where needed as the overall quality did not improve. Therefore, it might be beneficial
to apply an approach where the images are registered one by one instead of per series.

Lastly, the intensity values of the edge-based images shown in figures 6b & 6c are enhanced
for visibility in this thesis. These values were actually hardly visible, but this was not noticed
until creating the figure for this paper. During this research the pyplot module in the Matplotlib
library was used for visualization of the images. However, pyplot displays the images ranged on
the intensities present in the image and not between 0 and 255. Resulting in the supposition the
edge detection resulted in high intensity values for the edges. The actual low intensity values
might cause inaccurate similarity scores, as the similarity between zero and a low intensity might
be higher than between zero and a higher intensity from the original image. This inaccurate
score might push a model in the wrong direction as it has the idea it comes closer to the
original image, while this is not the case. Also with regard to the interpolation during the
transformation, the difference between object and background becomes less clear. Regardless
of the low intensity values, the edge-based models were still able to get representative scores
during evaluation and for some networks outperform the base model. Scaling the detected edges
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to a higher intensity range before training might improve the edge-based models. Assuming
this does result in an improvement, removing the less informative edges based on a threshold
might also become more relevant.

5.3 Future work

During the preparation of the edge-based section images a Gaussian filter with default kernel
size of 9 × 9 is applied to create thicker edges. In future work it would be interesting to
experiment with the kernel size of the Gaussian filter. This way can be tested what kind of
impact the thickness of the edges have on the performance of the neural networks.

Additionally, during this research the models were trained on a low and fixed resolution.
An interesting next step would be to experiment with higher resolutions. Investigate whether
these results with lower resolution directly translate to images with higher resolutions. To
accommodate this, a tool to either up- or downscale images to the required resolution might
be beneficial. Continuing this, it would be interesting to investigate the accuracy of predicting
on a down-scaled image while applying the transformation on the original scale.

Furthermore, this research focused on rigid image registration of serial section images.
However, rigid registration is not able to correct for any flexible deformations applied on the
2D sections during preparation. To get an even more accurate overall alignment, non-rigid
image registration can be applied. It would be interesting to explore if training on solely the
edge data has the same impact on non-rigid registration as it did on rigid registration of serial
section images.

Finally, the results showed that our proposed quality measure is not able to provide a good
score on the quality of the overall alignment. The measure is not able to take shifts caused by
outliers in to account. Therefore, in future research it would be beneficial to create a quality
measure based on the overall alignment in addition to the pairwise quality score.
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A Appendix

data model loss function regularization data shape mse mse-outliers outliers ncc ncc-outliers outliers

standard VGG16 ncc None window 407.498 398.023 1 -0.789 -0.805 4
edge-based VGG16 ncc L1 window 349.916 349.916 0 -0.812 -0.816 1
edge-based VGG16 ncc L2 window 353.513 333.636 3 -0.811 -0.820 2
edge-based VGG16 ncc L1L2 window 382.302 382.302 0 -0.805 -0.812 2
edge-based VGG16 ncc None window 377.094 369.412 1 -0.799 -0.804 1
+ threshold VGG16 ncc None window 462.202 462.202 0 -0.766 -0.804 7
edge-based VGG16 mse None window 298.616 298.616 0 -0.839 -0.855 4
edge-based VGG16 mse None transformed 565.056 555.352 1 -0.746 -0.759 3

standard VGG19 ncc None window 425.856 425.856 0 -0.786 -0.799 3
edge-based VGG19 ncc L1 window 392.482 384.833 1 -0.801 -0.801 0
edge-based VGG19 ncc L2 window 400.690 400.690 0 -0.806 -0.814 3
edge-based VGG19 ncc L1L2 window 398.804 398.804 0 -0.801 -0.806 1
edge-based VGG19 ncc None window 526.423 526.423 0 -0.741 -0.754 3
edge-based VGG19 mse None window 366.074 366.074 0 -0.809 -0.822 3
edge-based VGG19 mse None transformed 582.355 568.470 1 -0.692 -0.709 3

standard Resnet50 ncc None window 499.102 499.102 0 -0.752 -0.763 2
edge-based ResNet50 ncc None window 378.059 378.059 0 -0.794 -0.808 3

standard FCN ncc None window NaN NaN - NaN NaN -
edge-based FCN ncc L1 window 299.893 257.198 5 -0.848 -0.902 14
edge-based FCN ncc L2 window 641.235 641.235 0 -0.676 -0.676 0
edge-based FCN ncc L1L2 window 604.204 604.204 0 -0.682 -0.682 0
edge-based FCN ncc None window 266.560 159.961 12 -0.862 -0.927 16
+ threshold FCN ncc None window 319.128 281.217 4 -0.817 -0.867 10
edge-based FCN mse None window 469.017 469.017 0 -0.764 -0.784 4
edge-based FCN mse None transformed 741.645 741.645 0 -0.617 -0.617 0

Table 10: Evaluation of all trained networks, accuracy in retrieval of simulated transfor-
mations. All models had the same random rigid transformations, resulting in an average
similarity mse-score of 1967.284 and ncc-score of −0.191. Resulting mse and ncc scores
achieved after registration are shown, both with and without outliers. Scores in bold are
the best results of that particular model. The green coloured cells are the overall best
scores.
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data model loss function regularization data shape mse mse-outliers outliers ncc ncc-outliers outliers

standard VGG16 ncc None window 747.465 723.050 2 -0.690 -0.719 10
edge-base VGG16 ncc L1 window 753.161 727.397 2 -0.686 -0.717 10
edge-base VGG16 ncc L2 window 695.575 672.545 2 -0.671 -0.684 4
edge-base VGG16 ncc L1L2 window 750.501 727.731 2 -0.680 -0.709 9
edge-base VGG16 ncc None window 744.892 722.233 2 -0.687 -0.712 8
+ threshold VGG16 ncc None window 762.703 728.895 3 -0.684 -0.712 7
edge-base VGG16 mse None window 763.388 738.288 2 -0.677 -0.706 9
edge-base VGG16 mse None transformed 806.144 766.249 4 -0.665 -0.684 5

standard VGG19 ncc None window 733.365 709.262 2 -0.690 -0.718 10
edge-base VGG19 ncc L1 window 756.840 734.404 2 -0.685 -0.718 12
edge-base VGG19 ncc L2 window 700.378 679.178 2 -0.676 -0.693 5
edge-base VGG19 ncc L1L2 window 652.853 625.942 2 -0.669 -0.690 7
edge-base VGG19 ncc None window 765.193 727.296 5 -0.676 -0.687 3
edge-base VGG19 mse None window 687.868 663.266 2 -0.666 -0.683 5
edge-base VGG19 mse None transformed 718.201 689.300 2 -0.711 -0.729 5

standard Resnet50 ncc None window 811.957 750.427 7 -0.663 -0.683 7
edge-base ResNet50 ncc None window 790.255 753.050 4 -0.672 -0.691 6

standard FCN ncc None window NaN NaN - NaN NaN -
edge-base FCN ncc L1 window 827.918 806.719 2 -0.653 -0.687 12
edge-base FCN ncc L2 window 778.123 748.265 2 -0.672 -0.700 9
edge-base FCN ncc L1L2 window 779.634 720.755 5 -0.687 -0.712 7
edge-base FCN ncc None window 796.780 768.088 2 -0.669 -0.689 6
+ threshold FCN ncc None window 799.768 725.562 7 -0.664 -0.694 9
edge-base FCN mse None window 773.634 746.498 3 -0.686 -0.704 6
edge-base FCN mse None transformed 657.590 636.344 2 -0.739 -0.758 8

Table 11: 3D alignment performed by all trained models. Before alignment the test data
series had a quality mse-score of 836.119 without any outliers present. The ncc-score
beforehand was −0.697 and −0.712 with five outliers removed. Both ncc and mse quality
scores before and after eliminating outliers are shown. Scores in bold are the best results
of that particular model. The green coloured cells are the overall best scores.
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