
Master Computer Science

A camera based Safety Assist System for bicycles

Name: Wytze P. Breukel
Student ID: 2991918

Date: 28/10/2023

Specialisation: Advanced Computing
and Systems

1st supervisor: Dr. E.M. Bakker
2nd supervisor: Prof.dr. M.S.K. Lew

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Contents

1 Introduction 6

2 Related work 7

3 Fundamentals 9
3.1 Precision and accuracy metrics for the vision model 10
3.2 Likert scale . 11

4 Baseline for the vision model: YOLOv5 11
4.1 YOLOv5 Supported Classes . 11
4.2 YOLOv5 pre-trained versions . 12
4.3 YOLOv5 Transfer Learning . 12

5 SAS Vision model 12
5.1 TensorRT . 13
5.2 Dataset . 13
5.3 Preliminary experiments . 14

5.3.1 Preliminary experiment: interference speed of the model 14
5.3.2 Preliminary experiment: Accuracy of the model 14
5.3.3 Preliminary experiment results . 14

5.4 SAS Training . 15
5.4.1 Training results . 15
5.4.2 Training results compared to the current state of the art 16
5.4.3 Training results compared to competitive approaches 17

5.5 Final YOLOv5 version . 18
5.6 Entity Tracker algorithm . 18

5.6.1 Entities . 18
5.6.2 Entity Validity Checker . 18
5.6.3 Entity Matching algorithm . 22
5.6.4 Cleanup of entities . 24
5.6.5 Comparing the Entity Tracker algorithm to the state of the art 24

6 Safety Assist System (SAS) Design and implementation 26
6.1 Comparison with other systems . 27

7 Experiment 1: User evaluation of the SAS 28
7.1 The route . 28

7.1.1 The participants . 29
7.2 The SAS User evaluation form . 30
7.3 Experiment protocol . 30
7.4 Results . 31

7.4.1 Characteristics of the participants . 31
7.5 User evaluation of the functioning of the SAS 32

8 Experiment 2: Real-life Performance Evaluation of the SAS 33
8.1 Results . 33

2

9 Conclusion 34

10 Future work 34

A Form questions 41
A.1 Questions before the experiment . 41
A.2 Questions after the experiment . 41

B In depth training results 42

C Disclaimer 43

D Jetson Nano Developer kit specifications 44

E Training desktop specifications 44

F Form questions results 45

G Experiment results 46

H Parameters of the SAS during Experiment 1 and 2 46

I Confusion matrix 47

3

Abstract

This paper describes and tests a novel camera-based active safety system for bicycles called
Safety Assist System (SAS). The goal of SAS is to warn cyclists about overtaking and/or
fast-approaching vehicles. There is currently little research into safety systems for bicycles
and none on the market that use cameras. The goal is to create an effective system that
is robust enough to be mounted on a bicycle. The SAS hardware consists of an embedded
GPU platform to which a RGB camera and haptic feedback actuators are connected. The
embedded system is capable of running the SAS vision model on a captured stream of images.
The SAS vision model consists of two parts: an object detection model based on YOLOv5,
fine-tuned with the KITTI dataset to recognise road users (cyclists, cars and pedestrians), and
an Entity Tracking algorithm which uses these detections to determine if the user needs to be
warned of the current traffic situation. If a warning is necessary the haptic actuators located
in the handlebars of the bicycle will vibrate. The vision model is shown to offer acceptable
performance compared to the state of the art on the KITTI dataset while keeping a low
interference speed. Experiments on the Entity Tracking algorithm exhibit performance below
the state of the art. To validate the SAS a prototype has been constructed and volunteers
have been asked to follow a predetermined route through real-life traffic situations. As far as
we know this is the first real-life experiment performed with a camera-based safety system
on a bicycle. The user experiments showed that SAS performs well at recognising dangerous
situations and is intuitive to use, but gives too many false positives to be useful in its current
form.

4

Acknowledgements

Firstly, I would like to thank my supervisor Dr. E.M. Bakker for his invaluable advice, large
amount of useful feedback, and interesting and entertaining conversations about teaching,
robotics, technology and other topics during our meetings. I am also extremely grateful to
my friends, parents and especially my girlfriend for supporting and motivating me during this
process. Special thanks to every participant who participated in the experiments, without
them I would not have been able to test the SAS in a real-life environment. The LIACS master
thesis support group led by Drs. A. Blank was also a big help by providing feedback and sharing
thesis tips with fellow master students. Furthermore, I would like to thank William Corsel for
providing tips to get YOLO and TensorRT correctly running on the Jetson Nano. Lastly, I
want to express my gratitude to my employer the University of Applied Sciences in Leiden for
being flexible and providing me with the time and space to work on this thesis.

5

1 Introduction

Using a bike for transport is extremely common in the Netherlands [1]. It has many health
benefits and the potential to reduce traffic congestion. However, it also comes with safety risks
because a cyclist is almost completely unprotected and more vulnerable to accidents compared
to, for example, a car [2]. Almost all bicycle accidents involve some sort of collision with
another vehicle. These accidents can be divided into several types with varying severity [3].
Research has shown that collisions with motorcycles are most common for cyclists, followed
by ones involving trucks [4]. If one of these accidents results in an ER admission the mortality
rate is 5.7% in the Netherlands [5].
In recent years there has been an increase in the usage of safety systems, which have as goal
to improve road safety and prevent accidents. Developing these systems is becoming a large
field of research. Right now there are several different systems available for vehicles such as
cars or motorbikes. However, there are very few systems on the market which can be used on
bicycles. These systems are run on embedded computers in vehicles and can either warn the
users of incoming danger or directly intervene. Some of these safety systems use techniques
like machine learning to detect danger after being trained on datasets of traffic situations [6].
The goal of this paper is to design and test a safety assist system for bicycles which will be
called the Safety Assist System (SAS). We hope that this system can have a positive effect
on the road safety of the users, by warning them of vehicles approaching from behind. It will
achieve this by using a camera to capture images of the traffic situation behind the user. These
images will be analysed for possible dangers and, if necessary, the SAS will warn the users via
haptic feedback.
Although there are simpler solutions for reducing the danger of vehicles approaching from
behind, i.e., a rearview mirror, SAS’s biggest advantage lies in the fact that it actively warns
the user. This means that user does not have to pay attention to have the SAS effectively
warn them.
The SAS uses a vision model that is created specifically for analysing traffic situations which
are dangerous for cyclists. It consists of two parts: a machine learning detection model based
on YOLOv5 and fine-tuned on vehicle detection, and an algorithm to determine if the current
traffic situation is dangerous for the user.
Since the SAS will be installed on a bicycle there are limitations on the amount of battery
power available. Also, the hardware used needs to be compact, lightweight and robust enough
to endure shocks encountered while cycling. As a consequence the computing power is limited.
And expensive and/or large sensors are not suitable. Therefore, we will be aiming to minimise
the complexity and the cost of the SAS. This means that there are no expensive sensors
used like Lidar. This brings some challenges in the area of accuracy and response time of the
warnings.
To evaluate the performance and the rider acceptance of the SAS a prototype has been
constructed and tested with volunteers. These volunteers have used the SAS in real-life traffic
situations and reported their experiences. They have also been asked about the ease of use
and their feelings when using the SAS.
This paper is structured as follows: Section 2 discusses the related work and the position
this paper takes relative to the field. Then Section 3 covers the fundamental metrics used to
evaluate the experiments in this paper. Section 4 discusses the baseline of the vision model:
YOLOv5. The vision model is then explained in detail in Section 5. The complete design of
the SAS is detailed in Section 6. This design is tested in Sections 7 and 8 which contain

6

experiments about the feeling of safety the SAS provides, and the performance of the SAS
in real-life scenarios respectively. Conclusions about the SAS can be found in Section 9, and
finally, ideas for future work are covered in Section 10.

2 Related work

Safety systems for bicycles There has been previous research into developing a safety system
for a bicycle. One approach uses custom laser and sonar sensors to detect cars approaching
from behind and the right-hand side of the bicycle while minimising the cost, size and weight
[7]. Other research looked into combining audio and video data to warn users of vehicles
approaching from behind [8]. Another approach uses radar to detect cars behind the cyclist
[9]. A different system using LIDAR focuses on having low-cost components [10]. However,
these approaches have only been tested in simulations or lab-controlled environments where
they performed well, although performance constraints were an issue. An approach that was
tested in the field used a smartphone to warn motorists if they are endangering the cyclist [11].
This approach focused even more on low-cost components by using a smartphone and an off-
the-shelf speaker. The prototype achieved a 95% accuracy in detecting vehicles approaching
from the left side. Compared to this prototype SAS is focusing on detecting vehicles which
are approaching from behind, furthermore, SAS will also be able to differentiate between cars
cyclists and pedestrians.

Safety systems for powered two-wheelers
The field of safety systems for Powered Two Wheelers (PTW) displays a lot of similarities
with bicycles and is therefore relevant to our research. In this field, there are two categories
of systems: one type of system aims to warn the rider (e.g. collision warning, curve warning),
and the other type directly controls the PTW to prevent danger (e.g. ABS). [6]. The SAS will
not be actively intervening to prevent danger to users, thus falling under the first category.
All the vision based systems desrcibed in [6] are detecting danger only to the front of the user
while the SAS will be detecting danger approaching from behind the user.

Autonomous driving
The field of autonomous driving is quite large and active, addressing various challenges such
as localization, perception and human-machine interfaces [12], which makes it interesting for
the development of safety assist systems. Earlier approaches to the problem of automated
driving were often modular in which the task was split up into different parts. For example,
separate research went into using a GPS and other sensors to perform vehicle localization
[13]. Other research looks into using LIDAR point clouds to perform 3D object detection to
recognise vehicles [14]. Recently there has been a switch to a more end-to-end approach to
address the entire task using deep learning methods [15]. Although these approaches are very
interesting they are often too complex to use for the SAS. Furthermore, automated responses
to dangerous situations are also not in scope for this paper.

SAS sensors
The most common sensor types used in existing safety systems are Radar, Lidar or stereo
cameras (or a combination of these sensors). For PTW stereo cameras seem to be the best
option to use due to the tilting nature of these types of vehicles [16]. A system which uses

7

stereo cameras is proposed in [17] where they are utilised for ABS on motorcycles. Another
example is [18], which is an automatic lane change assist system that utilises stereo cameras
combined with deep reinforcement learning to recognise vehicles. When the system detects a
dangerous situation during a lane change maneuver it issues a visual and haptic warning to
the user. This is a similar approach to the one the SAS will be taking. However [18] is reliant
on lane markings on the road and is only tested in simulations.
In [19] the authors propose a method for detecting objects in the blind spot of cars by using
cameras in combination with a Digital Signal Processor (DSP). This DSP transforms the 2D
images into 1D signal information and compares it to the information of previous images to
try and track approaching vehicles. It can do this with a 91% accuracy in varying weather
conditions. For PTWs, there have been studies focusing on using a Lidar setup complemented
by an Inertial Measurement Unit (IMU) for a Simultaneous Localization and Mapping (SLAM)
based approach. However, real-time object detection using Lidar remains a challenge for these
systems [20].
Another possible approach for designing a safety assist system for cyclists is the usage of a GPS
built into the cyclists’ smartphones. However, the authors found that at the time of research
the accuracy of the smartphones used was too low for safety applications [21]. The SAS is
constrained by cost and the need to be robust enough to be placed on a bicycle. Custom DSPs
or expensive sensors such as LIDAR are therefore not suitable. Instead, the SAS will be using
a mono RGB camera.

Rider acceptance of the SAS
When designing a safety system it is important to ensure that users want to use it. There
has been research into predicting and evaluating the acceptance of rider assistance systems
on motorcycles. It has shown that social norms and the interface design are significant factors
in predicting if users will use a rider assistance system [22]. Other factors that improve the
acceptance of rider assistance systems are how large the user perceives the risk of riding and
how little the task interferes with the riding itself [23]. Another study focusing on compar-
ing different types of interfaces concluded that users prefer a haptic interface which utilises
vibrations to notify users over a visual or audio interface [24]. Haptic feedback minimises dis-
tractions and can be built into the handle of a PTW [25]. In our SAS system haptic feedback
is built into the handlebars of the bicycle. There has also been research focusing on creating a
smart bike to support its rider both cognitively and physically, by helping the rider pass green
lights [26].

SAS related vision models
Visual Object detection has been a very active field of research these past decades with
impressive advances in the last decade due to the application of DNNs. For an embedded safety
system on a bicycle one requirement for a visual object detection DNN is extremely important:
It needs to be able to perform real-time interference on limited hardware. Dangerous road
users need to be detected quickly enough that the user has time to respond. This means
that most of the state-of-the-art object detection DNNs are not suitable. An example of one
lightweight (and thus scaleable) object detection DNN is EfficientNet [27], which uses a new
dimension scaling method to create a new family of neural nets. Another family of object
detection models that focuses on interference speed and small size is the You Only Look Once
(YOLO) family. Various versions of YOLO have been developed by different researchers [28].
The more recent variants include YOLOv4 [29] and YOLOv5 [30]. Each version improves on

8

the previous one in some aspect or adds extra features. One of the advantages of the YOLO
family is that they are easily re-trainable on different classes.
It was decided to use YOLOv5 for the SAS due to the low computational resources required,
the rapid interference speed and the support for re-training. The current model competitive
with the state-of-the-art in the YOLO family is YOLOv8 [31] [32] which is created by the same
developers [33] as YOLOv5. YOLOv8 has a mAP score which is 3% higher than YOLOv5 on
the MS COCO dataset [31]. And has been used for various tasks such as fire detection [34] or
detecting objects from the perspective of an unmanned aerial vehicle (UAV) [35]. Furthermore,
YOLOv8 has inbuilt object tracking support. However, at the start of this project YOLOv8
was not yet released.

Object tracking
Other sets of vision models are trained on the tracking of objects in videos, which is called
MOT (multiple object tracking). This field is widely researched and there are several different
approaches to solve the associated problems. Most of the research into MOT focuses on
tracking pedestrians [36]. Tracking cars is also a largely studied subfield in MOT, for example,
to solve problems like tracking traffic congestion [37].
One of the problems encountered when performing MOT is the occlusion of the to-be-tracked
object. There has been research that used YOLOv3 combined with an auxiliary tracker to
mitigate this problem during autonomous driving tasks [38]. Another paper [39] uses a Markov
decision process running on a Jetson TX2 embedded in a car to achieve real-time tracking of
other vehicles. To evaluate the performance of such models the MOT challenge is used. This
challenge consists of videos of crowded scenes combined with the ground truth to compare
models accurately with each other [40].
The computational resources required to implement these object tracking models and the goal
of the SAS to be as efficient and computationally light as possible result in these models being
unsuitable for usage in this paper.

SAS related datasets
To train, compare and test vision models on traffic-related images, various research benchmark
datasets have been created. One such dataset focuses on car pose estimation [41]. There are
also several datasets which are captured in real-life traffic situations. For example [42] is a
dataset captured in Málaga with stereo cameras and laser scanners. Another dataset [43]
contains stereo camera images taken at night in Oxford to help models make more accurate
predictions in dark environments. An additional dataset available for training and evaluation
vision models is the KITTI dataset with 200k 3D object annotations [44]. For the training of
the vision model in this paper the KITTI dataset has been selected for two reasons: It contains
a large amount of relevant annotated images, And its the widespread use in the literature for
training and evaluating state-of-the-art vision models for traffic-related tasks.

3 Fundamentals

This chapter discusses the metrics used in this paper to evaluate the data from the experiments.

9

3.1 Precision and accuracy metrics for the vision model

Several different metrics are used in the research literature to assess how well a vision model is
performing. In this section each metric used in this paper is discussed. All of these metrics are
calculated on the basis of three values: True Positives (TP), False Positives (FP) and False
Negatives (FN).

Precision =
TP

TP + FP

The goal of the precision metric is to determine how accurate all the detections of the model
are, it ranges from 0 to 1. Therefore, for each false detection which the model makes the
precision score will be lower [45].

Recall =
TP

TP + FN

Recall signifies how many True Positives the model misses. The more True Positives are not
detected, i.e., the higher the number of False Negatives, the lower the recall score. Once again
ranging between 0 and 1 [45].

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

The F1 score can be used to mitigate the drawbacks of both precision and recall scores. This
score is determined by using both the precision and the recall values. This results in a more
realistic representation of the performance of a model, especially if the model has a very high
precision score and low recall score or visa versa [45].
meanAP score A disadvantage of the F1 score is that it can only represent the performance
of a model at a single confidence threshold. The confidence threshold signifies how confi-
dent (expressed as a percentage) the model needs to be in a possible detection to mark it
as positive. This means that precision and recall vary based on the confidence threshold. If
the confidence threshold is high, the precision will increase but the recall will suffer because
detections which might have been correct are discarded. With a low confidence threshold, the
recall will increase and the precision will decrease. This happens because detections that the
model is less confident about will be marked as correct and these detections inevitably have
a higher chance of being incorrect. The advantage of the meanAP (mAP) [46] score is that
it can represent the performance of the model at different confidence thresholds. To calculate
the mAP first the Average Precision for each class has to be calculated:

AP =
∑
n

(Rn −Rn−1)Pn

Where:

Rn = Recall at nth confidence threshold
Pn = Precision at nth confidence threshold

Then the AP score of each class is added together and divided by the number of classes which
results in the mAP score.
A way to further specify the performance of a vision model with the mAP is to incorporate
different intersection over union (IoU) thresholds. The IoU signifies the percentage of the
detected bounding box for the object that needs to overlap with the ground truth bounding

10

box to be marked as correct. This is notated as a number after the mAP score. For example, a
mAP-50 means that the IoU needs to be equal to or larger than 50% to be marked as correct.

3.2 Likert scale

To assess the performance of the SAS prototype a user-evaluating experiment has been set
up. The user evaluations are done by using a Likert scale. This metric is chosen because it is
a standardized way to gather subjective feedback on the quality of products [47]. Specifically
a 7-point Likert scale will be used because various studies have shown that users prefer a
7-point scale because of, among other reasons, its greater granularity compared to a more
limited 5-point scale [48] [49]. When evaluating the SAS the users will be presented with a
statement about the functioning of the SAS and asked to choose one of the following options:

• Strongly disagree

• Disagree

• Somewhat disagree

• Neither agree nor disagree

• Somewhat agree

• Agree

• Strongly agree

4 Baseline for the vision model: YOLOv5

This chapter discusses the object detection model used in the SAS vision model: YOLOv5.
When starting this project, YOLOv5 was a competitive to the state-of-the-art vision model of
the YOLO family (You Only Look Once) [50]. After conducting a literature review, YOLOv5
was chosen because of its very competitive trade-off options on inference speed, size and
accuracy. Furthermore, it allows for effective transfer learning on new image classes.

4.1 YOLOv5 Supported Classes

YOLOv5 is trained on the COCO [51] dataset. This dataset is commonly used to train vision
models and contains 91 different object categories, 82 of these have more than 5,000 labelled
instances with a total of 2,500,000 instances spread over 328,000 images. Due to the traffic-
oriented nature of the SAS, most of the object categories in the COCO dataset that YOLOv5
can detect are irrelevant. However, person, bicycle, car, motorcycle and bus are useful classes
for the SAS and are part of the COCO dataset and therefore recognisable by the COCO
pre-trained YOLOv5 model.

11

4.2 YOLOv5 pre-trained versions

YOLOv5 offers a few different pre-trained versions differentiated by the amount of parame-
ters. Each version has a different trade-off between interference time and accuracy [50]. The
performance of these pre-trained versions on the COCO dataset as provided by the developers
of YOLOv5 can be found in Table 1. The SAS’s hardware implementation has limited compu-

Pre-trained version mAP 50 Speed (ms) Parameters (M)

YOLOv5n 45.7 6.3 1.9
YOLOv5n6 54.5 8.1 3.2
YOLOv5s 56.9 6.4 7.2
YOLOv5m 64.1 8.2 21.2

Table 1: Performance of the relevant pre-trained versions provided by the developers [30]
inference speed is measured on a Nvidia V100 tensor core GPU

tational resources but the inference must be performed in real-time. Therefore, the pre-trained
version used in the SAS needs to strike the right balance between accuracy and interference
speed. Experiments to determine the best pre-trained version can be found in Section 5.3.

4.3 YOLOv5 Transfer Learning

YOLOv5 also offers support for transfer learning with which the architecture of an existing
pre-trained version can be leveraged to help train for a similar but new task. This technique
has been used to train YOLOv5 on different classes not contained in the COCO dataset [52].
In the SAS vision model transfer learning is utilised to add a cyclist class to YOLOv5 and to
improve its accuracy in traffic scenarios.

5 SAS Vision model

This section covers how the baseline YOLOv5 model, as described in Section 4, will be used
to create a vision model specifically for the SAS. In Figure 1 a high-level overview of the SAS
vision model is shown. This diagram describes the steps the vision model takes to assess if
the user needs to be warned. The SAS vision model consists of two parts: a trained YOLOv5n
model and the Entity Tracking algorithm. Both are described in more detail in the following
section.
The first step to create the trained YOLOv5 model is to pick the most suitable pre-trained
version offered by YOLOv5. For selecting the pre-trained version there are two important
metrics: the speed at which the model can handle a single frame on the hardware used by the
SAS, and the accuracy of the detections. These two metrics are mostly antagonistic to one
another since versions with a higher accuracy often take longer to process a single frame (see
Table 2).
To determine the best pre-trained version for the safety assist system two preliminary experi-
ments are performed: The first one focuses on the speed of the model (see Section 5.3.1) and
the second one on the accuracy of the predictions (see Section 5.3.2). Based on the results of
the preliminary experiments the most suitable pre-trained version is determined.
YOLOv5 is pre-trained on the COCO dataset [51]. However, this dataset does not include a
cyclist class, which is necessary for the functioning of the SAS. To solve this, and to improve

12

Figure 1: A high-level overview of the SAS vision model

the accuracy of the detections, YOLOv5 is fine-tuned on the following classes: cars, pedestrians
and cyclists. This is done by using the KITTI dataset [44].
Finally, to improve the speed of detection the trained model is optimised with TensorRT, which
is described in more detail in Section 5.1.
When the SAS vision model has detected a traffic user it tries to determine if this traffic user
poses a danger to the user of the SAS. In Section 5.6 we propose an Entity Tracker algorithm
that uses the output from the trained YOLOv5 model to create a record of relevant traffic
users behind the SAS user. It will then use this record to determine if the SAS user needs to
be warned via haptic feedback.

5.1 TensorRT

To maximise the performance of the vision model TensorRT is used. TensorRT is an SDK
developed by Nvidia which optimises the interference speed of a given trained neural network
[53] at the cost of a relatively small loss of accuracy.
Various steps are used to improve performance such as post-training quantization and Floating
Point 16 (FP16) optimizations. It supports the major machine learning frameworks, such as:
Pytorch, TensorFlow, ONNX and MatLab. A use case of TensorRT is optimising vision models
in embedded environments like the Jetson Nano used in the SAS. TensorRT is based on the
Nvidia CUDA parallel programming model therefore, it only functions on Nvidia GPUs.

5.2 Dataset

The well-known KITTI vision benchmark suite [44] has been used for both training and eval-
uating the performance of the SAS vision model i.e. YOLOv5.
This dataset is chosen because it consists of images taken while driving in a medium-sized
German city (Karlsruhe), which is comparable with the expected environment the Safety Assist
System will be operating. The dataset is annotated by humans, and contains three classes:
Pedestrians, Cyclists and Cars. Those are also the three classes the Safety Assist System needs
to recognise. The dataset consists of 7481 training images and 7518 test images.

13

However, since the KITTI dataset will be used for both training and evaluating the SAS vision
model, the entire dataset will be split into three parts: A training set which contains 80%
of the images, a validation set containing 10% of the images and a test set containing the
remaining 10% of the images. The splitting will be done by a custom Python script which
will ensure that the ratio of classes in the subsets is approximately the same as in the total
dataset.

5.3 Preliminary experiments

5.3.1 Preliminary experiment: interference speed of the model

The goal of this experiment is to measure the time it takes to perform interference on a single
image with each of the relevant available YOLOv5 pre-trained versions. This experiment has
been run on the hardware used in the SAS: the Jetson Nano (for specifications of the Jetson
Nano see Appendix D).
To perform the experiment the to be tested pre-trained version is loaded into Pytorch, which
is configured to use the GPU of the Jetson Nano. The model will then perform interference
on a test image 100 times while logging the time it takes to complete the interference in
milliseconds. All the results are collected and then summarised by using the median, which is
converted to the amount of Frames Per Second (FPS). The median is used, because the first
few results are significantly slower when using the GPU, so an average would skew the results.
This is probably because that the model has to be loaded into the GPU. However, since the
SAS runs in real time the warm-up phase has very little effect on the final implementation.
The results of this experiment can be found in Table 2.

5.3.2 Preliminary experiment: Accuracy of the model

The goal of this experiment is to determine the accuracy of the YOLOv5 pre-trained versions
in traffic situations.
The KITTI dataset (see Section 5.2) is used to compare the accuracy of each pre-trained
version. This dataset contains three classes pedestrians, cyclists and cars. Since YOLOv5 is
trained on the COCO dataset [51] (see Section 4), it does not contain a cyclists class (which
consists of both the bicycle and the rider). However, the KITTI dataset does have a cyclist
class. To mitigate this problem we used the bicycle class (which consists of just the bicycle)
in the COCO dataset as a stand-in the for cyclist class. This means that the accuracy on
the bicycle class will be very low since the ground truth of the KITTI dataset expects the
entire cyclist to be marked (bicycle + rider) while YOLOv5 will only mark the bicycle during
interference. However, since the goal of this preliminary experiment is to compare the YOLOv5
pre-trained versions with each other, only the relative scores are relevant. To evaluate the pre-
trained versions the validation python code from YOLOv5 repository [50] is used.
The results of this experiment can be found in Table 2.

5.3.3 Preliminary experiment results

The results of the preliminary experiments are listed in Table 2. The table shows that the
mAP50 scores of the different pre-trained versions are quite similar with a maximum difference
in accuracy of 0.035 between the slowest and the fastest pre-trained version. However, the

14

Model Person
mAP50

Bicycle
mAP50

Car
mAP50

All
classes
mAP50

FPS on
Jetson

YOLOv5n [30] 0.349 0.0178 0.603 0.323 14.52
YOLOv5n6 [30] 0.347 0.0116 0.583 0.314 14.08
YOLOv5s [30] 0.366 0.00658 0.627 0.333 7.56
YOLOv5m [30] 0.371 0.00707 0.638 0.339 3.62
YOLOv5n TensorRT [30] 0.333 0.0167 0.564 0.304 19.63
YOLOv5n6 TensorRT [30] 0.324 0.0133 0.541 0.293 19.75
YOLOv5s TensorRT [30] 0.368 0.0103 0.623 0.334 12.9
YOLOv5m TensorRT [30] 0.389 0.00916 0.604 0.334 7.07

Table 2: Comparison of performance of pre-trained versions ordered on the number of
parameters

slower pre-trained versions have a small advantage in accuracy compared to the faster ones as
expected.
However, the interference speed of the models varies significantly. It is also clear that converting
to TensorRT gives a significant speed boost while sacrificing very little accuracy. Therefore it
seems beneficial for the SAS to use a TensorRT version of YOLOv5.
Since the accuracy does not vary much between the models the deciding factor will be the FPS.
The two fastest models are YOLOv5n TensorRT and YOLOv5n6 TensorRT, which respectively
have 19.63 and 19.75 FPS. Comparing these two, the YOLOv5n has better accuracy so the
decision was made to continue with the YOLOv5n TensorRT although the difference is very
small.
To prevent any unforeseen accuracy drops, which may occur during training, YOLOv5s will
also be trained. This way there is an alternative model to switch to if during testing accuracy
has a more significant impact on the functioning of the SAS than expected. However, the main
focus will be on the YOLOv5n TensorRT.

5.4 SAS Training

To increase the accuracy of the YOLOv5 at recognising traffic users the model is retrained using
the KITTI dataset described in Section 5.2. To leverage the existing infrastructure of YOLOv5
we will be retraining from a pre-trained version, as recommended by the documentation [54].
To speed up the training process it is performed on a more powerful desktop machine than
the Jetson Nano, which has a higher amount of available RAM and better CPU and GPU
performance. Complete specifications of the desktop machine can be found in Appendix E. The
training code provided by the YOLOv5 repository [50] was used with the following parameters:
an image size of 640, a batch size of 16 and 100 epochs. The number of epochs was set at
100 because several trial runs had no significant improvement after the 100th epoch.

5.4.1 Training results

As seen in Table 3 the trained models are performing significantly better than YOLOv5 out
of the box (as seen in Table 2). This is to be expected because both models are evaluated

15

on a test set consisting of images from the KITTI dataset, but only our trained model is
trained on a train set consisting of images from the KITTI dataset. YOLOv5 which is trained
on the COCO dataset does not have this advantage. YOLOv5 has other disadvantages for
example, as described previously it is not trained to detect a cyclist class but uses a bicycle
class as a stand-in. Still, the significant improvements mean that the newly trained model
will perform better at recognising traffic users compared to the YOLOv5 out of the box. In
Table 4 a comparison per class shows that the models have the best accuracy when detecting
cars and the worst accuracy when detecting pedestrians. For more in-depth training results
see Appendix B. The YOLOv5s models have a slightly better accuracy score. However, since
interference speed is a crucial factor for the SAS we decided to continue with the YOLOv5n
TensorRT due to it scoring almost 10 FPS more than the YOLOv5s TensorRT model.

Model Precision Recall mAP50 mAp50-
95

FPS on
Jetson

YOLOv5n trained on KITTI[30] 0.912 0.793 0.883 0.582 12.45
YOLOv5n TensorRT trained on
KITTI[30]

0.883 0.797 0.875 0.567 17.43

YOLOv5s trained on KITTI [30] 0.925 0.867 0.925 0.66 5.24
YOLOv5s TensorRT trained on
KITTI [30]

0.94 0.857 0.922 0.647 7.46

Table 3: Performance of trained YOLOv5 models on all classes

Model Pedestrian
mAP50

Cyclist
mAP50

Car
mAP50

YOLOv5n trained on KITTI[30] 0.831 0.855 0.979
YOLOv5n TensorRT trained on KITTI[30] 0.823 0.84 0.964
YOLOv5s trained [30] 0.879 0.916 0.979
YOLOv5s TensorRT trained [30] 0.884 0.906 0.978

Table 4: Performance of trained YOLOv5 models per class

After training the model, a confusion matrix has been generated (see Appendix I). It seems that
the model is most likely to make a False Positive by classifying something in the background as
a car. The model also seems to struggle with determining the difference between a pedestrian
and the background.

5.4.2 Training results compared to the current state of the art

At the start of the project, YOLOv5 was the most recently released YOLO model. However,
as mentioned in Section 2, during the research process various new versions of YOLO have
been released with as latest YOLOv8 [33]. To compare the performance of our trained model
to the state of the art we have trained a YOLOv8n model on the same dataset and with the
same parameters as our YOLO5n model. The results can be found in Table 5.
There seems to be a negligible difference between the two models with YOLOv5n even having
a 0.4% higher score when comparing the mAP50 all classes score. Therefore, we can conclude

16

Model mAP50
Pedestrian

mAP50
Cyclist

mAP50
Car

mAP50
All classes

YOLOv8n trained on KITTI [33] 0.814 0.861 0.962 0.879
YOLOv5n trained on KITTI[30] 0.831 0.855 0.979 0.883

Table 5: YOLOv8n trained compared to YOLOv5n Trained

that the improvements added to YOLOv8 compared to YOLOv5 are not beneficial for the
SAS.

5.4.3 Training results compared to competitive approaches

To compare the trained model to the current state of the art, two papers proposing a YOLO
model trained on the KITTI dataset have been selected. Each of these models has been
compared against our trained model.

model mAP50
pedestrian

mAP50
Car

mAP50
Cyclists

mAP50 All
classes

YOLOv5n TensorRT
trained on KITTI

0.823 0.964 0.84 0.876

The Application of Im-
proved YOLO V3 in Multi-
Scale Target Detection [55]

0.934 0.767 0.84 0.847

Table 6: Comparing the trained model to the paper The Application of Improved YOLO
V3 in Multi-Scale Target Detection [55]

The first paper [55] re-trains a YOLOv3 model on the KITTI dataset and improves the model
by adding extra convolution layers. When comparing their results (See Table 6) our model
performs better or equal in every class except pedestrians. Because the experiments conducted
in [55] were performed on different hardware the interference speed could not be compared.

model mAP50 All classes FPS on the Jetson Nano

YOLOv5n trained on KITTI 0.883 12.45
YOLOv5n TensorRT trained on KITTI 0.875 17.43
Edge YOLO [56] 0.821 9.7
Edge YOLO TensorRT [56] 0.726 25.5

Table 7: Comparing the trained model to the paper Edge YOLO: Real-Time Intelligent
Object Detection System Based on Edge-Cloud Cooperation in Autonomous Vehicles [56]

The second paper [56] proposes a modified version of YOLOv4 to create a new model called
Edge YOLO. Edge YOLO is trained on the KITTI dataset to be used in Edge computing and
utilises TensorRT to improve interference speed. Due to the fact that they used a Jetson Nano
as Edge node we can compare both the accuracy and the interference speed of the different
models. The results of this comparison can be seen in Table 7. Although the accuracy of the
detections is similar in both non-TensorRT versions of the different models, Edge YOLO has a
significant drop in accuracy of almost 10 % when converted to a TensorRT version. While our

17

trained YOLO versions had only a 1% drop. However, Edge YOLO does have a significantly
higher FPS score after utilising TensorRT: 25.5 vs. 17.43 on our trained YOLOv5 version.

5.5 Final YOLOv5 version

The SAS will be using a version of YOLOv5n which is optimised with TensorRT and trained on
the KITTI dataset to detect road users. YOLOv5n was chosen because it offers a good trade-
off between accuracy and interference speed. This interference speed is further improved by
using TensorRT, which has a relatively small impact on the accuracy. To improve the detection
accuracy in traffic situations it is trained on the KITTI dataset. When comparing the trained
model to the state-of-the-art and comparative approaches from the literature it performs with
comparable accuracy and interference speed.

5.6 Entity Tracker algorithm

The purpose of the Entity Tracker algorithm is to detect if a vehicle approaches the SAS user
from behind and to determine if this creates a dangerous situation for the user.
To achieve this, the Entity Tracker algorithm analyses the output from the custom-trained
YOLOv5 model described in Section 5.4. To effectively estimate if a road user approaches
from behind the SAS needs to be able to track the road user (called an entity in the algorithm)
between multiple frames. This is needed because to determine if an entity comes closer the
SAS uses the difference in size of the entity between frames as a reference. The SAS assumes
that if the size of an entity increases it is approaching.
The problem lies in the fact that the vision model works on a frame-per-frame basis so there
is no explicit connection between the entities detected in each frame. To solve this proposed
Entity Tracker algorithm tries to match the entities from the previous frames to the entities
of the current one. This matching process consists of three steps. First, the model will discard
any entity detections which are most likely false or not relevant to the SAS. It will then try to
match the detected entities in the previous frames to the newly detected entities. And, finally,
it will determine if the entity has come closer and might pose a threat to the SAS user. This
whole process is modelled in the diagram in Figure 2. Pseudo code describing the entire Entity
Tracker algorithm can be found in Algorithm 1. For a more detailed look at specifically the
Entity Matching algorithm see Algorithm 2.

5.6.1 Entities

Each bounding box and class ID combination found by the trained YOLOv5n vision model
is transformed into an entity in the form of a Python object. These entities contain the
information the Entity Tracker algorithm needs as properties. Table 8 contains all the properties
of an entity with a short description of its usage by the Entity Tracking algorithm. The pseudo-
code for creating entities is found in the function CreateEntitiy in Algorithm 1.

5.6.2 Entity Validity Checker

The purpose of the Entity Validity Checker is to filter out any false detections or non-dangerous
entities to prevent confusion for the SAS vision model.
During testing, it was noticed that the SAS reported a significant amount of False Positives
which were caused by entities that were wrongly detected or were in positions from which they

18

Figure 2: The Entity Tracker Algorithm

19

Algorithm 1 Entity Tracking algorithm

function EntityTrackingAlgorithm
Image← CaptureImageFromRGBCamera
BoundingboxesAndClassIDs← TrainedY OLOv5n(Image)
for <Every BoundingboxAndClassID in BoundingboxesAndClassIDs> do

Entities← CreateEntity(BoundingboxAndClassID)
end for
for <Every Entity in Entities> do

if CheckIfEntityIsV alid(Entity) then
V alidEntities← Entity

end if
end for
ApproachingEntities← EntityMatchingAlgorithm(V alidEntities)
for <Every ApproachingEntitiy in ApproachingEntities> do

WarnUser(ApproachingEntitiy)
end for

end function

function CreateEntitiy(BoundingBoxAndClassID)
Size, Position,DetectedClass,Height← BoundingBoxAndClassID
return Enitity ← Size, Position,DetectedClass,Height

end function

function CheckIfEntitityIsValid(Entity)
if Entity.Size < MinimumSizeForDetectedClass then

return False
end if
if Entity.Position outside right or left border then

return False
end if
if Entity.Width/Entity.Height > MaximumWidthHeightRatio then

return False
end if
return True

end function

posed no danger to the user. To filter out these entities several rules were created based on
footage made during testing. If an entity does not conform to all the rules it is discarded by
the Entity Tracking algorithm.
The first rule checks that each entity has a minimum width in pixels, this minimum differs for
each class. This rule serves two purposes: Firstly most of the False Positives the vision model
makes are very small, and secondly, if the entity detected is very far away it most likely does
not pose a threat to the SAS user.
The second rule the entity needs to conform to focuses on the position of the entity. During
testing parked cars gave a large number of False Positives, due to the vision model confusing
two cars parked next to each other as one moving car. See figure 3 for an example. To mitigate

20

Property name Description Used for:

position The last recorded position Used to match entities across
frames and check if the entity is
valid

id An unique number Used to identify entities in the
memory of the algorithm

size The width of an entity in pixels Used to detect if an entity is ap-
proaching and to check if an en-
tity is valid

amount of detections The number of times a specific en-
tity has been tracked

Used for logging

detected class The class in which the entity has
been classified.

Used to match entities across
frames and check if an entity is
valid

frames to live The number of frames the entity
can not be detected until it is re-
moved from the record

Used for matching entities

height The height of an entity in pixels Used to check if an entity is valid

Table 8: Proprieties of the entity

Figure 3: Parked cars that can confuse the SAS vision model

21

Figure 4: Problematic situation with sideways parked cars

this problem a rule is created that ensures that the detected entity is in a location from which
it could pose a threat to the user of the SAS.
Lastly, there was a problem with evaluating the cars which were parked sideways from the
perspective of the SAS. Because the SAS uses the width of an entity to determine if it
approaches the SAS or not, a sideways car which is half in view in the first frame will appear
”larger” in the subsequent frames. For an example see Figure 4. To solve this issue, each
detected entity’s width-by-height ratio needs to be below a threshold. This ensures that entities
with are very wide relative to their height will be discarded. These rules are implemented in
the CheckIfEntityIsValid function found in pseudo-code in Algorithm 1

5.6.3 Entity Matching algorithm

Figure 5: Schematic view of the working of the Entity Matching Algorithm

The purpose of the Entity Matching Algorithm is to build a record of all relevant entities
(entities as defined in Section 5.6.1) detected in the last few frames. The record should
represent the current traffic situation behind the SAS user. This record is constructed based
on the filtered output of the YOLOv5 vision model. The pseudo-code for this algorithm can
be found in Algorithm 2
For all the entities found in each new image, the algorithm tries to match each new entity to
an already existing entity in its record. If it cannot find a match it assumes that the entity is
new and adds it to the record. There are three steps in total to determine if a newly detected
entity is a match to an entity in the record.

22

Algorithm 2 Entity Matching Algorithm

function EntitityMatchingAlgorithm(DetectedEntitities)
for <Every detected entity> do

Pairs← FindEntityPairs(DetectedEntitities)
end for
BestMatches← FindBestMatches(Pairs)
for <Every match in best matches> do

if EntitySizeIncrease ≥MinimumSizeIncrease then
return Entity

end if
end for
CleanUpEntitiesInRecord()

end function

function FindEntityPairs(DetectedEntity)
for <Every entity in the record> do

if DetectedEntity position matches with EntityInRecord then
pairs← (DetectedEntity, EntityInRecord)

end if
end for
return pairs

end function

function FindBestMatches(pairs)
for <Every unique entity in the pairs> do

for <Every Pair that entity is part of> do
if Pair is the Pair with the least distance between the entities then

BestMatches← Pair
Pair.EntityInRecord← Pair.DetectedEntity

end if
end for

end for
return BestMatches

end function

function CleanUpEntitiesInRecord()
for <Every Entity in the record> do

Entity.frames to live− 1
if Entity.frames to live = 0 then

Remove Entity from the Record

end if
end for

end function

First, the algorithm makes entity pairs. Each entity pair consists of an entity detected in
the current frame and one detected in the record; This represents a possible match, but not

23

necessarily the best one. To determine which entities, if any, will form a pair, each detected
entity will be compared to each entity in the record. If the position of the two entities does
not differ more than a certain threshold and the entity class is identical it is considered a
possible match. This means that the same entity can be part of different pairs. Pedestrians
and cyclists can be paired together, this is supported because the trained YOLOv5n vision
model sometimes confuses the two. The pseudo-code for this process can be found in the
Function FindEntityPairs in Algorithm 2.
After all the pairs are made the algorithm will determine which of the possible entity pairs is the
best match. To determine this the following procedure is used: For each already existing entity
in the record, all pairs (which represent possible matches) which contain this specific entity
are collected in a subset. From this subset, the pair of entities with the smallest difference in
position is selected as the best match. The pseudo-code for this process can be found in the
Function FindBestMatches in Algorithm 2.
When an entity in the record is matched to a newly detected entity, the properties in the record
are updated with the properties of the newly detected matched entity. After each entity in
the record has been matched to a newly detected entity any detected entities which have not
been matched are added to the record. This indicates that these are new entities that were
previously not known in the record. Because they are now included in the record they might
be matched when processing the next image.
The algorithm will then check every match and determine if the entity got closer since the
last time it was detected. It does this by comparing the size in the record with the detected
size. If the detected size has increased by a certain threshold it is considered approaching and
the Entity Matching algorithm will signify that a warning should be given to the SAS user. A
schematic view of this process with an example can be seen in Figure 5.

5.6.4 Cleanup of entities

To prevent the record from being filled with entities every time an image has been processed
a clean-up step will be run. The pseudo-code for the clean-up step can be found in Algorithm
2. In this function, entities which have not been seen for 5 subsequent frames are removed.
The SAS assumes that these entities are not in view anymore and therefore not relevant. For
example, a car might have taken a turn which took it out of view. Therefore, it can not pose
a threat to the user. The grace period of five frames is chosen because an entity might still
be present but not detected in every frame. This might happen because it is occluded by an
obstacle or because the YOLOv5 vision model did not detect it (i.e., a false negative). With
this approach, the entity remains in the record if it is rediscovered within a maximum of 5
frames.

5.6.5 Comparing the Entity Tracker algorithm to the state of the art

To compare the proposed Entity Tracker Algorithm to the current state of the art, we used the
YOLOv8 entity tracking functionality [33]. This is a new feature introduced in the YOLO family
which enables YOLOv8 to track any object it can detect between frames. To compare the Entity
Tracker Algorithm and YOLOv8, three videos captured during Experiment 1 (found in Section
7) will be evaluated by the YOLOv8 entity tracking functionality. The results of YOLOv8 are
compared to the logs made by the SAS Entity Tracking algorithm during Experiment 1. Only
entities which pose a possible danger to the user (approaching from behind to overtake the
user) are evaluated. Furthermore, to ensure that the comparison is fair, the filtering steps

24

described in the Entity Validity checker (see Section 5.6.2) are also performed on the results
of the YOLOv8 tracking algorithm. Note that none of the volunteers during Experiment 1
encountered a dangerous situation with a pedestrian so no comparison was possible for tracking
pedestrians.

Tracking model cars cyclists

SAS Entity Tracker algorithm 64 72
YOLOv8 Tracking functionality [33] 153 46

Table 9: The total number of frames dangerous traffic users were tracked

The results can be found in Table 9, which shows how many frames of the same traffic user
each of the methods tracked. YOLOv8 can track cars for far more frames than the Entity
Tracking Algorithm. However, the Entity Tracker algorithm performs somewhat better on cy-
clists.

Qualitative analysis
A qualitative comparison of YOLOv8 and the SAS Entity Tracking algorithm is also performed
on the videos of Experiment 1. Analysis shows that YOLOv8 generally keeps track of overtak-
ing traffic users. While the Entity Tracking algorithm loses track of the same traffic user two
or three times. An example of a takeover manoeuvre with the results of both methods can be
found in Figure 6. Shown in the figure is that YOLOv8 consistently tracks the car with the
same ID, while the logs for the Entity Tracking algorithm assign the same car three different
IDs during the entire manoeuvre. In conclusion, based on this qualitative analysis YOLOv8 has
less difficulty tracking cars and cyclists during takeover manoeuvres compared to the Entity
Tracking Algorithm.

Figure 6: Frames of a video showing the tracking of YOLOV8 (bounding boxes displayed
in orange, with a tracking ID) and the SAS Entity Tracking algorithm (bounding boxes
displayed in blue without tracking ID).

25

Conclusion
Based on qualitative and quantitative analysis YOLOv8 is a more consistent and reliable tracker
than the Entity Tracker algorithm. A small nuance is that in the quantitative analysis, the SAS
Entity Tracker algorithm performed somewhat better in tracking cyclists. In the qualitative
analysis, YOLOv8 loses track of a traffic user less often compared to SAS Entity Tracker
algorithm. Furthermore, despite the Entity Tracker algorithm tracking more consecutive frames
for cyclists it loses track and assigns a new ID to the same cyclist much more often than
YOLOv8.

6 Safety Assist System (SAS) Design and implemen-

tation

The SAS consist of 4 components: the RGB camera, the SAS vision model software, the
actuators and the computation hardware.
The RGB camera observes the environment behind the user and continuously captures images
for the SAS vision model which it uses to determine if the current traffic situation is dangerous.
The actuators provide a warning to the user if there is danger detected. The hardware provides
a platform to connect these components and run the SAS vision model. Figure 7 shows a
schematic display of the physical components of the SAS.

Figure 7: Schematic model of the SAS

Computation Hardware All the necessary computation is done in real-time on a Jetson Nano.
For the specification see appendix D. The Jetson Nano is a small computer that is designed
to run neural network applications for tasks like image classification or object detection. It is
also optimised to run in a 5 or 10 watt configuration. In this project the 10 watt configuration
is used to maximise performance at the cost of the lifetime of the battery. When used in the
SAS the Jetson Nano is powered by a 7.2 V 2000 mAh battery. The voltage of this battery is
converted to 5 V, to satisfy the required supply voltage of the Jetson Nano.
Sensor A video camera will be used as a sensor. This video camera is mounted on the back
of the bicycle in such a way that it can observe behind the rider. For the specifications of the
camera see Table 10.
Actuators To alert the user to dangerous situations two haptic actuators are used. These haptic
actuators are attached to the handlebars of the bicycle. Since each handlebar has an actuator,

26

Model name Logitech C270 HD Webcam
Resolution 720p

fps 30
Diagonal field of view 55°

Table 10: Specifications of the camera [57]

Figure 8: Prototype of the SAS

the SAS can give warnings for dangerous situations both to the right and left of the user. The
type of haptic actuator used is the VM 0610 A 3.0 vibration motor. In the SAS these vibration
motors will run at their maximum voltage, which results in approximately 10,000 RPM when
used to warn for danger [58]. To ensure the safety of the SAS user, the cables of the actuators
are attached to the frame and any exposed metal is insulated.
A picture of the final prototype can be found in Figure 8.

6.1 Comparison with other systems

A comparison with the SAS and similar systems found in literature is shown in Table 11. The
main difference between the SAS and the other systems is that the SAS can detect and respond
to cars, bicycles and pedestrians while the other systems only focus on detecting and warning
cars. One other large difference is that none of these systems except the SAS have been tested
in real-life situations. They have only been tested in a lab or in simulated conditions, which

27

makes it difficult to compare the performance directly. None of these systems uses object
detection on images to track road users except the SAS.

Name Sensor
type

Area
covered

Type of
vehicles
tracked

Notification
system

SAS Video Behind the
user

Cars,
cyclists

and pedes-
trians

Haptic

The Cyber-Physical Bike: A
Step Towards Safer Green
Transportation [8]

Video and
audio

Behind the
user

Cars None

”A Novel Collision Avoid-
ance System for a Bicycle”
[7]

Laser and
sonar

Behind
and to the
left of the

user

Cars Audio and
visual

”Close vehicle warning for
bicyclists based on FMCW
radar” [9]

Sonar Behind the
user

Cars Cellphone
of the user

Development of a Low-Cost
LIDAR System for Bicycles
[10]

Lidar and
Camera

Behind the
user

Cars None

CycleGuard: A
Smartphone-based As-
sistive Tool for Cyclist
Safety Using Acoustic
Ranging [11]

Acoustic Left of the
user

Cars Audio

Table 11: Comparison between the SAS and similar systems

7 Experiment 1: User evaluation of the SAS

In this experiment, a prototype implementation of the Safety Assist System (SAS), is eval-
uated in a real-world environment. This first experiment consisted of participants cycling a
predetermined path through Leiden (a medium-sized city in the Netherlands with a variety of
different traffic situations such as busy roads and cycling lanes). Afterwards, they were asked
to fill in an evaluation form about their experiences with the SAS. The goal of this user eval-
uation experiment was to answer two questions: Does the Active Safety Assist System make
the participants feel safer during their cycling and is the system intuitive to use?

7.1 The route

The route the participants cycled is displayed in Figure 9. This route was selected to have a
variety of road types and traffic activity. Before starting the experiment the participant was
provided with a printed version of the route. They were then given time to study the route

28

and were given the opportunity to ask questions if they were uncertain about any aspect of
the experiment.

Figure 9: The route the participants took, divided into three categories

The route consisted of various traffic situations divided into three categories:

• Busy road: this category consists of roads with cycling lanes next to car lanes in which
the cars have a speed limit of up to 50 kilometres.

• Residential area: this category consists of neighbourhoods with a maximum speed of 15
kilometres and no cycling lanes, There is also a high concentration of parked cars in
these neighbourhoods.

• Cycling lanes: this category consists of only cycling lanes and no adjacent car lane.

7.1.1 The participants

To enlist the help of participants several people from the local area were asked to participate.
Since the experiment involved a unique piece of hardware and necessary personal instruction,
we did not had the capacity to handle a large amount of participants. As the experiment took
place in real-life traffic there was a small risk of traffic accidents involved, which are always
present when cycling. To minimize this risk, each participant needed to fulfil the following
requirements.

• The participant is between 18 and 65 years old.

• The participant has experience with cycling and is comfortable riding a bike in traffic.

29

• The participant has some familiarity with Leiden so they are not too mentally distracted
by following the predetermined route.

• The participant is aware of the relevant traffic laws in the Netherlands.

• The participant is able to bike safely on the bicycle made available for the experiment.

• The participant does not have any health issues which could interfere with safely using
a bicycle.

A total of 7 participants used the SAS during the experiment, and each of them fulfilled the
requirements listed above.

7.2 The SAS User evaluation form

In Experiment 1 the participants had to fill in two forms: The pre-experiment form and the
post-experiment form. The pre-experiment form asked the participants asked about how safe
they normally feel when cycling, this was done so there is a baseline to compare their answers
after cycling with the SAS.
Immediately after Experiment 1, the participants were asked to fill in the post-experiment
form. The post-experiment form consisted of ten questions, which asked about their experi-
ences using the SAS while cycling. Both the pre- and post-experiment forms contained several
identical questions to test the reliability. Since we expected most of our participants to be
Dutch-speaking, the questions were provided in Dutch. An English form was available if the
participants preferred it. The complete list of questions can be found in Appendix A. The
closed questions were answered by giving a rating on a 7-point Likert scale (for more informa-
tion see Section 3.2). The goal was to rate several aspects of the Safety Assist System such as
reliability and the feeling of safety. The survey finished with a set of open questions to collect
general feedback.

7.3 Experiment protocol

For every run of the experiment the following protocol was followed to ensure the safety of
the participant and the correctness of the experiment.

1. The instructor checks with the participant if each of the safety requirements for a
participant as described in Section 7.1.1 are fulfilled.

2. The instructor explains to the participant how the SAS works.

3. The participant gets the opportunity to inspect the bicycle used in the experiment and
to test if they can ride the bicycle safely.

4. The instructor demonstrates the function of the haptic feedback actuators by letting the
participant experience them at their maximum intensity.

5. The instructor explains the route described in Section 7.1 and gives the participant a
printed copy to study.

6. The instructor allows the participant to ask questions about the experiment.

30

7. The participant fills in the pre-experiment form in which they will answer questions about
their usual feeling of safety when cycling (See Section 7.2) and confirm that the steps
described in this protocol were followed (For the full text of this statement see appendix
C).

8. The instructor starts the SAS and the participant starts following the route.

9. After completing the route the participant fills in the post-experiment form. (See Section
7.2)

The values of the parameters of the SAS vision model used in the experiment can be found
in Appendix H.

7.4 Results

In this Section the answers to the most relevant questions from the pre- and post-experiment
forms are analysed and discussed. An overview of all the questions and the answers of the
participants are provided in Appendix F.

7.4.1 Characteristics of the participants

Some of the questions in the form focused on the characteristics of the participants, this was
done to put their answers about the SAS into context.

Age range Participants in age range

18-30 4
30-40 1
40-50 0
50-65 2

Table 12: The age ranges of the participants

Table 12 shows that the age of the participants is spread over three age ranges 18-30, 30-40
and 50-65, with most of the participants being between 18-30 years old. It is beneficial for
the experiment to have a spread of age ranges. Ideally, we would have liked to have had more
older participants, because they might be an interesting target audience for systems like the
SAS which have the goal of increasing road safety.
Figure 10 depicts the answers of the participants when asked if they feel safe while cycling
in the city. All the participants agreed or strongly agreed with this statement. This indicates
that they have confidence in their safety while cycling in their daily life. The questions about
different types of environments to cycle in were answered similarly. All the participants also
answered that they were experienced cyclists, as can be seen in Figure 11. The majority of
the participants also indicated that they were not interested in a tool which would warn them
of dangerous situations. These results imply that the participants might not be the target
audience for the SAS.

31

Figure 10: Responses on how safe the par-
ticipants feel while cycling in the city

Figure 11: Responses on asking the partici-
pants if they are experienced cyclists

Figure 12: Responses on the feeling of safety
experienced while using the SAS

Figure 13: Responses on how intuitive the
SAS felt

7.5 User evaluation of the functioning of the SAS

The main question of Experiment 1 is if the SAS provides an increased feeling of safety in
comparison to cycling without. Looking at the results in Figure 12, most of the participants
disagreed with this statement.
To further assess the performance of the SAS in real-life scenarios two more questions were
asked about the warnings given during the experiment: One if they were relevant and two if
they were correct. As seen in Figure 14 most of the participants either disagreed or somewhat
disagreed with the statement that the warnings were relevant to the current traffic situation.
Furthermore, participants found that the SAS gave false warnings during cycling as seen in

Figure 14: Responses on if the SAS gave rel-
evant warnings

Figure 15: Responses on if the SAS did not
gave false warnings during cycling

32

Figure 15. Also, none of the users stated that they would personally use the SAS for themselves
if given the option as seen in Appendix A. The high number of false warnings combined with
the already high confidence in their cycling capabilities explains why the participants mostly
disagreed that the SAS increased their feeling of safety during their cycling experience.
To assess if the haptic feedback is intuitive to the participants, they were asked how intuitive
the SAS felt when cycling. As shown in figure 13 the majority of the participants did feel that
the SAS felt intuitive to use. We can therefore assume that haptic feedback is an intuitive way
to warn of danger. This is in agreement with the findings of [24].

8 Experiment 2: Real-life Performance Evaluation of

the SAS

The goal of experiment 2 is to calculate the precision, recall and F1 score achieved by the SAS
during experiment 1. These values will be calculated by manually watching the footage taken
during the experiment, and then comparing it with the logs. This data will give an objective
estimation of the performance of the SAS to compare to the subjective experiences of the
volunteers.

8.1 Results

The amount of True and False Positives and the amount of True and False Negatives can be
found in Appendix G. The recall, precision and F1 score can be found in Table 13. Each time
the SAS correctly warned the user of a dangerous situation it is counted as a True Positive,
if the SAS failed to do so it is counted as a False Negative. When the SAS gave a warning
but there was no dangerous situation it is counted as a False Positive. And when the SAS
did detect road users but correctly decided that they posed no danger it is counted as a True
Negative. In this context a dangerous situation is defined as a road user who is approaching
the SAS user from behind intending to overtake the SAS user.

Road type Recall Precision F1 score

All road types 0.74 0.19 0.30
Busy Road 0.80 0.40 0.53

Residential Area 0.71 0.07 0.12
Cycling Lane 0.7 0.5 0.58

Table 13: Performance of the SAS during the experiment

The performance of the SAS is displayed in Figure 13. Overall the recall is quite high but the
precision is very low which contributes to an F1 score of 0.3. When splitting the results per
road type as described in Section 7.1 it is clear that the residential area poses the highest
difficulty to the SAS. The extremely low precision drags down the F1 score to around 0.13.
This is mainly caused by the high number of parked cars in residential areas which generate a
large number of False Positives. When encountering two parked cards next to each other the
SAS often falsely classifies the cars as a single approaching car. The low score indicates that
the steps taken in the Entity Validity Checker as described in Section 5.6.2 are insufficient to
solve this problem. In comparison to the residential area, the cycling lanes have a higher F1

33

score. This is probably caused because the cycling lane is a relatively quiet part of the route
with a low number of parked cars and other traffic users which decreases the opportunity for
False Positives.

9 Conclusion

The goal of this paper is to design and test a Safety Assist System for bicycles, called the
SAS. This system aims to be as efficient as possible to decrease cost and complexity. After
performing a literature review it was decided that the SAS would consist of a RGB camera
setup connected to a custom-made vision model which gives warnings through haptic feedback
in the handlebars of the bicycle.
To develop the custom vision model YOLOv5n (a pre-trained version of YOLOv5) was used as
a starting point due to its rapid interference speed and support for transfer learning. YOLOv5n
was then fine-tuned on the KITTI dataset to significantly improve its performance in recognis-
ing cars, pedestrians and cyclists in traffic situations compared to the base model. The other
part of the custom vision model is the SAS Entity Tracking algorithm which is developed to
keep track of traffic users between frames and to assess if they pose a threat to the user.
Compared to the state of the art the SAS is unique in that it provides a camera-based safety
system that is tested in real-life scenarios. Its object recognition is comparable to the state of
the art. However, its Entity Tracking algorithm performs below the currently available solutions.
To test the SAS a prototype was constructed consisting of a Jetson Nano, a webcam and
two haptic actuators. After several test rides and iterations to the SAS vision model, seven
volunteers were asked to cycle a predetermined route with the SAS and were asked questions
about their experiences.
The majority of the users did not experience an increased feeling of safety while using the SAS,
mostly because due to its high rate of False Positives. This conclusion was reinforced by the
manual evaluation of the logs of the SAS, which showed a very low precision score, especially
in residential areas. However, most participants did find the haptic feedback intuitive. And the
recall score of the warnings was significantly better than the precision.
This leads us to conclude that although the SAS has a high recall score and is intuitive to use
it is not yet ready for use in real-life scenarios. This will be the case until the SAS vision model
is improved in such a way that the large amount of False Positives is significantly decreased.

10 Future work

The SAS can be improved and or expanded upon in several different ways, this section suggests
several new approaches.
Hardware When designing the SAS the goal was to make it as efficient as possible. However,
this approach limited the hardware which could be used. For example, a standard webcam was
used to provide images to the vision model. This webcam is not designed to capture rapidly
moving objects or deal with the lighting in an outside environment. Testing the SAS with, for
example, a global shutter camera might give better performance at the trade-off that these
cameras are more expensive. Furthermore, the hardware used in the SAS, the Jetson Nano, is
limited in computational power compared to more expensive or more current hardware. If the
SAS has more computational power available it can run more accurate vision models while not
sacrificing the interference speed.

34

Vision model Several improvements of the vision model are possible, but we expect that
training the vision model on a more specific data set might give the largest performance
improvement. The current iteration is trained on the KITTI dataset[44]. Although the use of
this dataset has significantly improved the detection of traffic users it is not a perfect fit for
training of the SAS. This is mostly because it contains traffic users in different orientations.
However, the SAS is only interested in detecting approaching traffic users. Therefore, it needs
to only recognise the front of traffic users, recognising the sides and the back of traffic users is
not necessary and can even lead to False Positives. A dataset which contains only front-facing
traffic users would be more useful. Also, the SAS currently struggles to recognise less common
traffic users such as children on small bikes or unusually small cars. Adding examples of these
traffic users to the dataset would be an improvement. To take this even further it would be
interesting to develop a dataset which only contains dangerous situations. This way instead
of using object detection to determine a dangerous situation the vision model can be trained
to directly recognise dangerous situations. However, this would require a completely different
design of the vision model and training process. When using this different vision model other
sensors e.g. LIDAR might also be included in this system. This approach is reminiscent of the
current approaches in automated driving [15]. Another improvement may be to upgrade the
Entity Tracking capabilities of the SAS. As seen in Section 5.6.5, the SAS performs worse at
Entity Tracking than some other available methods. Implementing these methods in the SAS
vision model might reduce the number of false warnings. However, more recent hardware may
be required to run these methods.
Other directions At the moment the SAS can only detect dangers from behind the user. It
might be beneficial to also give warnings from the side or the front. An example would be the
research done to detect danger from the side with sonar [7].
Experiment The experiment was executed with seven participants. This is a small number and
to improve the validity of the experiment more participants should be used. Also, the route
was relatively short due to power requirements and to simplify following it for the participants.
Testing the SAS with a larger route would give more accurate results. However, we would first
recommend improving the SAS further since the results of the experiments show that it is not
effective in its current state.

35

References

[1] M. Stoffers, “Cycling as heritage: representing the history of cycling in the netherlands,”
The journal of transport history, vol. 33, no. 1, pp. 92–114, 2012.

[2] J. Vanparijs, L. Int Panis, R. Meeusen, and B. De Geus, “Exposure measurement in bicycle
safety analysis: A review of the literature,” Accident; analysis and prevention, vol. 84, pp.
9–19, 08 2015.

[3] J. Duan, R. Li, L. Hou, W. Wang, G. Li, S. Li, B. Cheng, and H. Gao, “Driver braking
behavior analysis to improve autonomous emergency braking systems in typical chinese
vehicle-bicycle conflicts,” Accident; analysis and prevention, vol. 108, pp. 74–82, 08 2017.

[4] Z. Yang, Z. Yang, J. Smith, and B. A. P. Robert, “Risk analysis of bicycle accidents: A
bayesian approach,” Reliability Engineering & System Safety, vol. 209, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0951832021000284

[5] L. de Guerre, S. Sadiqi, L. Leenen, C. Oner, and S. Gaalen, “Injuries related to bicycle
accidents: an epidemiological study in the netherlands,” European Journal of Trauma and
Emergency Surgery, vol. 46, 04 2020.

[6] G. Savino, R. Lot, M. Massaro, M. Rizzi, I. Symeonidis, S. Will, and J. Brown,
“Active safety systems for powered two-wheelers: A systematic review,” Traffic Injury
Prevention, vol. 21, no. 1, pp. 78–86, 2020, pMID: 31914321. [Online]. Available:
https://doi.org/10.1080/15389588.2019.1700408

[7] W. Jeon and R. Rajamani, “A novel collision avoidance system for bicycles,” in 2016
American Control Conference (ACC), 2016, pp. 3474–3479.

[8] S. Smaldone, C. Tonde, V. K. Ananthanarayanan, A. Elgammal, and L. Iftode, “The
cyber-physical bike: A step towards safer green transportation,” in Proceedings of the
12th Workshop on Mobile Computing Systems and Applications, ser. HotMobile ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p. 56–61. [Online].
Available: https://doi.org/10.1145/2184489.2184502

[9] T. Krejci and M. Mandlik, “Close vehicle warning for bicyclists based on fmcw radar,”
in 2017 27th International Conference Radioelektronika (RADIOELEKTRONIKA), 2017,
pp. 1–5.

[10] I. Blankenau, D. Zolotor, M. Choate, A. Jorns, Q. Homann, and C. Depcik, “Development
of a low-cost lidar system for bicycles,” SAE Technical Paper, 04 2018.

[11] W. Jin, S. Murali, Y. Cho, H. Zhu, T. Li, R. Panik, A. Rimu, S. Deb, K. Watkins,
X. Yuan, and M. Li, “Cycleguard: A smartphone-based assistive tool for cyclist safety
using acoustic ranging,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 5, pp. 1–30, 12 2021.

[12] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of autonomous driving:
Common practices and emerging technologies,” IEEE Access, vol. 8, pp. 58 443–58 469,
2020.

36

[13] F. Zhang, H. Stähle, G. Chen, C. C. C. Simon, C. Buckl, and A. Knoll, “A sensor fusion
approach for localization with cumulative error elimination,” in 2012 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), 2012,
pp. 1–6.

[14] Y. Yan, Y. Mao, and B. Li, “Second: Sparsely embedded convolutional detection,”
Sensors, vol. 18, no. 10, 2018. [Online]. Available: https://www.mdpi.com/1424-
8220/18/10/3337

[15] R. McAllister, Y. Gal, A. Kendall, M. Van Der Wilk, A. Shah, R. Cipolla, and A. Weller,
“Concrete problems for autonomous vehicle safety: Advantages of bayesian deep learn-
ing,” in Proceedings of the Twenty-Sixth International Joint Conference on Artificial In-
telligence. International Joint Conferences on Artificial Intelligence Organization, 2017.

[16] G. Gil, G. Savino, S. Piantini, and M. Pierini, “Is stereo vision a suitable remote sensing
approach for motorcycle safety? an analysis of lidar, radar, and machine vision technologies
subjected to the dynamics of a tilting vehicle,” in 7th Transport Research Arena TRA
2018 (TRA 2018), 04 2018.

[17] G. Gil, G. Savino, S. Piantini, and M. Pierini “Motorcycles that see: Multifocal stereo
vision sensor for advanced safety systems in tilting vehicles,” Sensors (Basel, Switzerland),
vol. 18, 01 2018.

[18] M. Kirjanov, P. Grzyb, J. Hoffmann, and A. Ozman, “Advanced driver assistance systems
for motorcycles: Concept of a lane change assist,” 25th International Technical Conference
on the Enhanced Safety of Vehicles (ESV)), 10 2017.

[19] C. Chen and Y. Chen, “Real-time approaching vehicle detection in blind-spot area,” in
2009 12th International IEEE Conference on Intelligent Transportation Systems, 2009,
pp. 1–6.

[20] S. Muro, I. Yoshida, M. Hashimoto, and K. Takahashi, “Moving-object detection and
tracking by scanning lidar mounted on motorcycle based on dynamic background sub-
traction,” Artificial Life and Robotics, vol. 26, 08 2021.

[21] M. Liebner, F. Klanner, and C. Stiller, “Active safety for vulnerable road users based on
smartphone position data,” in 2013 IEEE Intelligent Vehicles Symposium (IV), 2013, pp.
256–261.

[22] V. HUTH and C. GELAU, “Predicting the acceptance of advanced rider assistance
systems,” Accident Analysis and Prevention, vol. 50, pp. pp.578–586, Jan. 2013.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-00910238

[23] V. Beanland, M. Lenné, E. Fuessl, M. Oberlader, S. Joshi, T. Bellet, A. Banet, L. Rößger,
L. Leden, I. Spyropoulou, G. Yannis, H. Roebroeck, J. Carvalhais, and G. Underwood,
“Acceptability of rider assistive systems for powered two-wheelers,” Transportation Re-
search Part F: Traffic Psychology and Behaviour, vol. 19, p. 63–76, 07 2013.

[24] K. Touliou, D. Margaritis, P. Spanidis, S. Nikolaou, and E. Bekiaris, “Evaluation of rider’s
support systems in power two wheelers (ptws),” SIIV-5th International Congress - Sus-
tainability of Road Infrastructures 2012, 7 2013.

37

[25] N. Baldanzini, G. Bencini, and M. Pierini, “Design and preliminary testing of an haptic
handle for powered two wheelers,” European Transport Research Review, vol. 3, pp. 1–9,
06 2011.

[26] J. Andres, T. Kari, J. von Kaenel, and F. F. Mueller, “”co-riding with my ebike to get
green lights”,” in Proceedings of the 2019 on Designing Interactive Systems Conference,
ser. DIS ’19. New York, NY, USA: Association for Computing Machinery, 2019, p.
1251–1263. [Online]. Available: https://doi.org/10.1145/3322276.3322307

[27] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural net-
works,” in International conference on machine learning. PMLR, 2019, pp. 6105–6114.

[28] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm developments,”
Procedia Computer Science, vol. 199, pp. 1066–1073, 2022, the 8th International
Conference on Information Technology and Quantitative Management (ITQM 2020
& 2021): Developing Global Digital Economy after COVID-19. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050922001363

[29] A. Bochkovskiy, C.-Y. Wang, and H.-y. Liao, “Yolov4: Optimal speed and accuracy of
object detection,” arXiv preprint arXiv:2004.10934, 04 2020.

[30] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,” arXiv
preprint arXiv:2107.08430, 2021.

[31] J. Terven and D. Cordova-Esparza, “A comprehensive review of yolo: From yolov1 and
beyond,” 2023.

[32] M. Hussain, “Yolo-v1 to yolo-v8, the rise of yolo and its complementary nature toward
digital manufacturing and industrial defect detection,” Machines, vol. 11, no. 7, p. 677,
2023.

[33] Ultralytics, “Yolov8,” Available at https://github.com/ultralytics/ultralytics (2023-09-
24).

[34] F. M. Talaat and H. ZainEldin, “An improved fire detection approach based on yolo-v8
for smart cities,” Neural Computing and Applications, vol. 35, no. 28, pp. 20 939–20 954,
2023.

[35] Y. Li, Q. Fan, H. Huang, Z. Han, and Q. Gu, “A modified yolov8 detection network for
uav aerial image recognition,” Drones, vol. 7, no. 5, p. 304, 2023.

[36] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim, “Multiple object tracking:
A literature review,” Artificial Intelligence, vol. 293, p. 103448, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0004370220301958

[37] D. M. Jiménez-Bravo, Álvaro Lozano Murciego, A. Sales Mendes, H. Sánchez San
Blás, and J. Bajo, “Multi-object tracking in traffic environments: A systematic
literature review,” Neurocomputing, vol. 494, pp. 43–55, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231222004672

[38] K. Wang and M. Liu, “Yolov3-mt: A yolov3 using multi-target tracking for vehicle visual
detection,” Applied Intelligence, vol. 52, 01 2022.

38

[39] Y. Zou, W. Zhang, W. Weng, and Z. Meng, “Multi-vehicle tracking via real-time
detection probes and a markov decision process policy,” Sensors, vol. 19, no. 6, 2019.
[Online]. Available: https://www.mdpi.com/1424-8220/19/6/1309

[40] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers, I. Reid, S. Roth, K. Schindler,
and L. Leal-Taixé, “Mot20: A benchmark for multi object tracking in crowded scenes,”
4thBMTT MOT Challenge Workshop at the Computer Vision and Pattern Recognition
Conference (CVPR) 2019, 2020.

[41] G. Gil, G. Savino, and M. Pierini, “First stereo video dataset with ground truth for
remote car pose estimation using satellite markers,” in Tenth International Conference
on Machine Vision (ICMV 2017), 04 2018, p. 36.

[42] J.-L. Blanco-Claraco, F. Ángel Moreno-Dueñas, and J. González-Jiménez, “The málaga
urban dataset: High-rate stereo and lidar in a realistic urban scenario,” The International
Journal of Robotics Research, vol. 33, no. 2, pp. 207–214, 2014. [Online]. Available:
https://doi.org/10.1177/0278364913507326

[43] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000 km: The oxford
robotcar dataset,” The International Journal of Robotics Research, vol. 36, no. 1, pp.
3–15, 2017. [Online]. Available: https://doi.org/10.1177/0278364916679498

[44] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision
benchmark suite,” in Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[45] R. Bonnin, Machine Learning for Developers. Birmingham, UK: Packt Publishing, 2017.

[46] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B. da Silva, “A comparative
analysis of object detection metrics with a companion open-source toolkit,” Electronics,
vol. 10, no. 3, 2021. [Online]. Available: https://www.mdpi.com/2079-9292/10/3/279

[47] A. Joshi, S. Kale, S. Chandel, and D. Pal, “Likert scale: Explored and explained,” British
Journal of Applied Science & Technology, vol. 7, pp. 396–403, 01 2015.

[48] K. Finstad, “Response interpolation and scale sensitivity: Evidence against 5-point scales,”
J. Usability Studies, vol. 5, no. 3, p. 104–110, may 2010.

[49] H. Taherdoost, “What is the best response scale for survey and questionnaire design;
review of different lengths of rating scale / attitude scale / likert scale,” International
Journal of Academic Research in Management, vol. 8, no. 1, pp. 1–10, 06 2019.

[50] Ultralytics, “Yolov5 github page.” [Online]. Available: https://github.com/ultralytics
/yolov5 (2023-07-02)

[51] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects
in context,” CoRR, vol. abs/1405.0312, 2014. [Online]. Available: http://arxiv.org/
abs/1405.0312

39

[52] N. Al-Qubaydhi, A. Alenezi, T. Alanazi, A. Senyor, N. Alanezi, B. Alotaibi, M. Alotaibi,
A. Razaque, A. A. Abdelhamid, and A. Alotaibi, “Detection of unauthorized unmanned
aerial vehicles using yolov5 and transfer learning,” Electronics, vol. 11, no. 17, 2022.
[Online]. Available: https://www.mdpi.com/2079-9292/11/17/2669

[53] Nivida, “Nvidia tensorrt.” [Online]. Available: https://developer.nvidia.com/tensorrt
(2023-06-26)

[54] Ultralytics, “Train custom data.” [Online]. Available: https://github.com/ultralytics/
yolov5/wiki/Train-Custom-Data (2023-09-22)

[55] M. Ju, H. Luo, Z. Wang, B. Hui, and Z. Chang, “The application of improved yolo v3 in
multi-scale target detection,” Applied Sciences, vol. 9, no. 18, 2019. [Online]. Available:
https://www.mdpi.com/2076-3417/9/18/3775

[56] S. Liang, H. Wu, L. Zhen, Q. Hua, S. Garg, G. Kaddoum, M. M. Hassan, and K. Yu, “Edge
yolo: Real-time intelligent object detection system based on edge-cloud cooperation in
autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 12, pp. 25 345–25 360, 2022.

[57] Logitech, “C270 hd webcam.” [Online]. Available: https://www.logitech.com/en-
us/products/webcams/c270-hd-webcam.960-000694.html (023-06-26)

[58] EKULIT, “Vm-0610a3.0 vibration motor.” [Online]. Available: https://www.ekulit.com/
products/vibration-motors/vm-0610a3-0 (2023-06-26)

[59] Nivida, “Jetson nano developer kit.” [Online]. Available: https://developer.nvidia.com/
embedded/jetson-nano-developer-kit (2023-06-26)

40

A Form questions

A.1 Questions before the experiment

• I am an experienced cyclist. (Answered by a 7 point Likert scale)

• I feel safe when cycling in the city (Answered by a 7 point Likert scale)

• I feel safe when cycling out of town. (Answered by a 7 point Likert scale)

• I feel safe when cycling on roads without cycling lanes. (Answered by a 7 point Likert
scale)

• I feel safe when cycling on a cycling lane. (Answered by a 7 point Likert scale)

• I would like a tool that during cycling gives warnings in potentially dangerous traffic
situations. (Answered by a 7 point Likert scale)

A.2 Questions after the experiment

• I feel safe when cycling in the city. (Answered by a 7 point Likert scale)

• I feel safe when cycling on roads without cycling lanes. (Answered by a 7 point Likert
scale)

• I feel safe when cycling on a cycling lane. (Answered by a 7 point Likert scale)

• I would like a tool that during cycling gives warnings in potentially dangerous traffic
situations. (Answered by a 7 point Likert scale)

• The product (The SAS) provided a feeling of safety compared to cycling without it.
(Answered by a 7 point Likert scale)

• The warnings the product (The SAS) gave were relevant for the traffic situation. (An-
swered by a 7 point Likert scale)

• The product (The SAS) did not gave false warnings during cycling. (Answered by a 7
point Likert scale)

• The product (The SAS) felt intuitive to use. (Answered by a 7 point Likert scale)

• I would use the product (The SAS) myself. (Answered by a 7 point Likert scale)

• Would you recommend the product (The SAS) for other road users? If yes then to
whom? (Open question)

41

B In depth training results

Model Precision Recall mAP50 mAp50-95

YOLOv5n trained on KITTI [30] 0.888 0.714 0.831 0.451
YOLOV5n TensorRT trained on KITTI[30] 0.851 0.737 0.823 0.446

YOLOv5s trained on KITTI [30] 0.893 0.804 0.879 0.516
YOLOv5sTensorRT trained on KITTI [30] 0.927 0.797 0.884 0.509

Table 14: Results of the pedestrian class with the trained YOLOv5 models

Model Precision Recall mAP50 mAp50-95

YOLOv5n trained on KITTI [30] 0.942 0.902 0.963 0.743
YOLOv5n TensorRT trained on KITTI [30] 0.921 0.919 0.964 0.723

YOLOv5s trained on KITTI [30] 0.945 0.945 0.979 0.82
YOLOv5sTensorRT trained on KITTI [30] 0.952 0.942 0.978 0.792

Table 15: Results of the car class with the trained YOLOv5 models

Model Precision Recall mAP50 mAp50-95

YOLOv5n trained on KITTI [30] 0.908 0.762 0.855 0.551
YOLOv5n TensorRT trained on KITTI[30] 0.877 0.737 0.84 0.533

YOLOv5s trained on KITTI [30] 0.935 0.852 0.916 0.643
YOLOv5sTensorRT trained on KITTI [30] 0.941 0.830 0.906 0.639

Table 16: Results of the cyclist class with the trained YOLOv5 models

42

C Disclaimer

I hereby declare that I have inspected the bicycle and can safely ride it during the experiment.
I also have been demonstrated how the SAS will warn me of incoming danger. I understand
that for this experiment I need to cycle in a city environment and am solely responsible for
driving safely and adhering to all the relevant traffic laws. I confirm that I fulfill the safety
requirements specified to me. Furthermore I know that I can stop the experiment at any time,
and understand that the equipment can be discarded if it would have any negative impact
on my safety. I also declare that I know the route and have had the opportunity to ask any
questions about the experiment or the functionality of the SAS that I might have.

43

D Jetson Nano Developer kit specifications

Full name Jetson Nano Developer Kit
GPU 128-core Maxwell
CPU Quad-core ARM A57 @ 1.43 GHz

Memory 4 GB 64-bit LPDDR4 25.6 GB/s

Table 17: Specifications of the Jetson Nano [59]

E Training desktop specifications

GPU NVIDIA GeForce RTX 3060 TI
CPU AMD Ryzen 7 5800X3D 8-core @ 3.4GHz

Memory 32 GB 2 x 64-bit DDR4
OS Windows 11

Table 18: Specifications of the training desktop

44

F Form questions results

Statement Strongly
disagree

Disagree Some-
what
disagree

Neither
agree
nor
disagree

Some-
what
agree

Agree Strongly
agree

I am an experienced
cyclist

0 0 0 0 0 2 5

I feel safe when cycling
in the city

0 0 0 0 1 1 5

I feel safe when cycling
on roads without cy-
cling lanes

0 0 0 0 1 1 5

I feel safe when cycling
on a cycling lane

0 0 1 0 1 1 4

I would like a tool
that during cycling
gives warnings in
potentially dangerous
traffic situations.

1 2 1 1 1 0 1

The product (The
SAS) provided a feel-
ing of safety compared
to cycling without it.

0 3 1 1 2 0 0

The warnings the
product (The SAS)
gave were relevant for
the traffic situation.

0 4 2 0 0 1 0

The product (The
SAS) did not gave
false warnings during
cycling.

3 4 0 0 0 0 0

The product (The
SAS) felt intuitive to
use.

0 1 1 0 2 2 1

I would use the prod-
uct (The SAS) myself.

1 5 1 0 0 0 0

Table 19: Results from the form

45

G Experiment results

Area False positives False negatives True positives True negatives

Busy road 12 2 8 1200
Residential area 69 2 5 1852
Cycling lane 7 3 7 421
All areas 88 7 20 3473

Table 20: True/False Positives and True/False Negatives during the experiment

H Parameters of the SAS during Experiment 1 and

2

Parameter Value

Maximum position difference to match two entities 20 pixels
Minimum size increase to signify approaching 10 pixels

Minimum entity size for car 100 pixels
Minimum entity size for pedestrian 70 pixels
Minimum entity size for cyclist 70 pixels

Left border 250 pixels
Right border 1050 pixels

Maximum size width ratio 1.75 pixels

Table 21: Values of parameters of the SAS vision model during Experiment 1 and 2

46

I Confusion matrix

Figure 16: Confusion matrix after training

47

