&%) Universiteit
4] Leiden

Master Computer Science

Online Mutation Strategy Selection in Differential
Evolution through Deep Reinforcement Learning

Name: Marc Boel
Student ID: s2342456
Date: April 23, 2024

Specialisation: Artificial Intelligence

1st supervisor: Anna Kononova
2nd supervisor: Thomas Moerland
Daily supervisor: Diederick Vermetten
Daily supervisor: Jacob de Nobel

Master's Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University

Niels Bohrweg 1

2333 CA Leiden

The Netherlands

Abstract

Metaheuristics are essential tools to find (near-)optimal solutions to complex problems
in a reasonable amount of time. Research has shown that many of such metaheuristics are
highly sensitive to their parameter settings, making parameter tuning a critical but difficult
task. This led to the development of adaptive parameter selection strategies to automati-
cally tune the parameters. This thesis proposes a new variant of Differential Evolution, a
widely used and successful metaheuristic, which uses an artificial neural network to dynam-
ically select the optimal mutation operator and scaling factor for every individual in each
generation in an online fashion. Moreover, this variant allows for parallelisation, which can
significantly reduce computing time. The use of artificial neural networks in adaptive pa-
rameter selection is motivated by their ability to learn complex patterns and relationships
from data, making this technique well-suited for interpreting complex state spaces. The
neural network models are trained using deep reinforcement learning techniques. The DE
state is defined by 112 different features derived from the fitness landscape and the success
of the actions in previous generations. From these state features, the model chooses one
out of four mutation strategies and one out of two scaling factors, giving a total of eight
possible discrete actions. To evaluate the proposed algorithm, three models were trained
from scratch on the 24 continuous functions of the BBOB benchmark. These models were
then tested on the same functions and compared with a set of baselines: a random pol-
icy and, for every mutation strategy, a static policy that always selects the same strategy
for every individual. On average all three models manage to outperform all baselines, but
further analysis reveals significant variations in performance across different optimisation
problems. The average rewards indicate that the models learn to find better solutions for a
given problem every generation, but in some cases tend to make only small improvements.
A recommendation for future research is given to improve the robustness and performance
of this adaptive tuning method, making it more reliable and applicable to a wider range of
optimisation problems.

Contents
1 Introduction

2 Background

2.1 Differential Evolution o
2.1.1 Mutation Strategies
2.1.2 Crossover Strategies
2.1.3 Boundary constraint handling 0000

2.2 Reinforcement Learning L L o
2.2.1 Tabular @-Learning
2.2.2 Deep Q-Learning

3 Related Work

4 Methods
4.1 DE-DDQN e
4.2 State representationo
4.3 Reward function
4.4 Experiments. e
4.4.1 Training the models o
5 Results
5.1 Performance analysis Lo
5.2 Action analysis e
5.3 Reward analysis. L

6 Discussion & Conclusion
6.1 Future work e

© © 0o O Ut w

-
—

1 Introduction

In the context of optimisation, metaheuristics are a class of optimisation algorithms that are
designed to efficiently explore and find (near-)optimal solutions in complex search spaces. These
algorithms are designed to ‘solve’ difficult problems where little is known about the fitness land-
scape and the characteristics of the problem may vary wildly. These properties make these
algorithms useful in a wide range of applications, e.g. finance, transportation, engineering, biol-
ogy and medical research. For such problems often nothing or little is known about the fitness
landscape and with large search spaces and computationally expensive problems it is infeasible to
go over every single possible setting. Metaheuristics provide an approach to find good solutions
in an efficient and effective way by sampling a subset of solutions in the search space.

One class of metaheuristics is that of Evolutionary Algorithms (EAs), which, as its name
suggests, is inspired by biological evolution. Its settings, e.g. population size or selection strategy,
can greatly change the behaviour of the algorithm and thus the performance. Parameters control
the overall behaviour and settings of the DE algorithm, while operators govern the specific
mathematical operations used to evolve candidate solutions during the optimisation process. This
thesis focuses specifically on choosing the correct mutation strategy for Differential Evolution
(DE). In the original variant of DE, as introduced by Storn and Price [26], the settings are
set beforehand and not changed throughout the operation of the algorithm. Despite DE being
designed to be a robust method with easy and intuitive hyperparameters, further research has
shown that depending on the characteristic of the problem and the settings of the algorithm, the
results can vary wildly [23].

This thesis focuses on finding the optimal hyperparameters of a DE in an online fashion.
Online hyperparameter tuning changes the settings of the DE during the optimisation process.
This can either be done with a rule-based method or a more data-driven approach. Adaptive
Operator Selection (AOS) aims to select the settings in an online fashion by figuring out good
settings for the problem at hand. If this extra layer on top of the metaheuristic is able to find the
optimal settings for the given problem with the information it gained in all previous generations, it
should reduce the complexity for the researchers while also optimising the performance [16]. Such
a model would (partially) circumvent the need for researchers to find good settings themselves,
and also take advantage of potential performance gains that are lost when only having one setting
for the entire run.

In this thesis we propose a method to adaptively select the mutation operator and mutation
rate of each individual in every generation in DE using an artificial neural network, which is
trained using Reinforcement Learning, which has shown promise [25]. Deep reinforcement learn-
ing can, unlike tabular methods, approximate the expected rewards and generalise beyond the
trained behaviour [21] . This makes it capable of approximating continuous high-dimensional
environments. The goal is to create an algorithm that matches or outperforms variants of DE
without AOS while also reducing the complexity of manually setting the hyperparameters. Fur-
thermore, we place particular focus on on making the DE able to be parallelised, which was the
original intent of DE and is core in reducing computing time. We work exclusively on optimisa-
tion of the 24 single-objective continuous functions of the BBOB benchmark.

This thesis is partially based off the work of Sharma et al. [25], where a neural network is
used to select the mutation operators based on a list of 99 state features. Three reward functions
were tested, of which we use the most successful one. This thesis extends on this by also tuning
the mutation factor F' and by tweaking the state features such that the DE can be parallelised.

The new variant of DE proposed in this thesis manages to outperform all variants were the
mutation strategy is kept static on average. Further analysis showed that there are sometimes
large performance differences between the 24 BBOB functions. This algorithm shows promise,

but further research is needed to improve stability and performance to keep up with the state-
of-the-art.

This thesis is divided into sections as follows: Section 2 gives an explanation on the individual
components of both Differential Evolution and Reinforcement Learning. A summary of the
current state of research in DE along with some relevant related work is presented in Section 3.
A description of how DE and RL work together to form this algorithm, together with the methods
and setup for training the neural network are outlined in Section 4. The results from our testing
are presented and analysed in Section 5. In Section 6 these results are interpreted further and
the main findings are summarised. The conclusion includes a list of directions for future work.

2 Background

In this section an overview is given on Differential Evolution (Section 2.1) and Deep Reinforce-
ment Learning (Section 2.2).

2.1 Differential Evolution

DE [26] is a subclass of Evolutionary Algorithms (EAs), which are itself a subset from the field of
evolutionary computation. EAs are population-based optimisation algorithms that are inspired
by biological evolution. Before the functioning of DE is laid out, a short overview of optimisation
is given to give a better understanding of what we aim to achieve.

DEs are used to find (near-)optimal solutions for a given function, but there is no guarantee
that near-optimal solutions, or even solutions that could be considered good, are found. Typically,
these functions for which we want to find the optimum are black box functions, meaning that
nothing is known about the function and thus the fitness landscape beforehand.

Given a real-valued D-dimensional black-box function f:

f:RP SR, (1)
the optimisation problem can be described as, assuming minimisation:
Find #* | f(7*) < f(Z) V # € RP. (2)

Sometimes, typically in benchmarks, f(Z*) is known, while £* is not. To avoid confusion we can
write f(Z*) as simply f*.

A DE, as proposed by Storn and Price [26], works as follows. First, a population P of NP
random vectors & of size D is created:

P ={Z,&,...,Zxp} € [Ib,ub]” . 3)

Since for these functions nothing is known about the fitness landscape beforehand, the vectors
in the initial population are uniformly distributed over the entire search space [Ib, ub]?, where Ib
and ub are the lower and upper bounds of the search space respectively.

After the initial vector population is created, the algorithm loops over the following four steps
until either the optimum is reached (if the optimum value is known) or the evaluation budget is
depleted.

1. Mutation
2. Crossover
3. Evaluation
4

. Selection

To create new vectors, parent vectors are selected from the parent population. The weighted
difference between these vectors are used to create mutant vectors. There are many different
mutation operators that select and combine the parent vectors in various ways. After generating
NP mutant vectors, one for each individual in the population, the second step is crossover,
where trial vectors are created from the target vectors and the mutant vectors. The resulting
trial vectors are then evaluated and the population of the next generation is selected using paired
elitist selection between every pair of trial vector and corresponding target vector. Mutation and
crossover are explained in more detail in the next two sections.

2.1.1 Mutation Strategies

For the mutation step one mutant vector ¥; is created for every individual Z;. This results in
a set of mutant vectors which we note with the bold v. Traditionally, one mutation strategy is
chosen beforehand and not changed throughout the operation of the algorithm. For this thesis
we look at only the following four mutation operators:

“rand/1” :¥; = &, + F - (T, — Try) , (4)
“rand/2” :U; = &y + F - (Bry — Bpy + Ty — Try) (5)
“rand-to-best/2” U; = &y, + F - (Zpest — Try + Try — Try + Try — Try) (6)
“curr-to-rand /2" 0, = ¥ + F - (T, — & + Zpy — Try) (7)

where mutually different random indices rq,72,...,7; € {1,2,..., NP} \ i are selected uniformly
and Tpest 18 the member with the lowest objective value in the population. The difference vector
is scaled by the mutation rate control parameter F' > 0, but values of F' > 1 are rarely deemed
effective [22].

Because there are numerous possible combinations of difference vectors and base vectors for
the mutation strategy, each with their own advantages and disadvantages, it is difficult to find
the best strategy for a given function, even when more information about the fitness landscape
is known [17, 23].

2.1.2 Crossover Strategies

Crossover is a necessary step to increase the diversity of the mutant vectors. By mixing the
components of the mutant vectors v = v, 05, ..., Uyp with the components of the target vectors
X = ¥1, T, ..., Typ a new population of trial vectors U = i, o, ..., 4 yp is created. While a range
of mutation strategies are used in state-of-the-art implementations, two crossover strategies can
be considered the default, namely binomial crossover and exponential crossover [17, 20]. The
crossover rate control parameter CR € [0,1] determines the fraction of components that are
transferred from the mutant to the trial vector.

e Binomial crossover: For every vector u; the binomial crossover algorithm loops over every
component u; ; (j = 1,2,...,D). The probability of every component to be transferred
to the trial vector is set by CR. Also, for every vector a random index j,unq is chosen
which is used to ensure that always at least one component of every mutant vector will
be transferred to the trial population, even when CR = 0. Pseudocode of this crossover
operator is provided in Algorithm 1.

¢ Exponential crossover: Exponential crossover is more akin to 1-point crossover in genetic
algorithms. First, an index j is randomly chosen. This represents the starting point of the
string of components that is transferred to the trial vector. CR sets the probability of every
next component to also be transferred. The first component is always transferred and if
the entire vector has been transferred the loop terminates. CR = 0 would result in just
one random component from each mutant vector being transferred to the trial population,
while CR = 1 would mean that the entire mutant population is transferred with all of its
components. Pseudocode of this crossover operator is provided in Algorithm 2.

Exponential crossover has the property that components that are far apart (in the order that
they are in the vector) are more likely to be disrupted, while the once that are adjacent are more
likely to stay together. This can either be an advantage or a disadvantage [31] and knowing
beforehand which is best to pick is not possible for black box functions. When benchmarking
DEs with exponential crossover it is important to keep this property in mind.

Algorithm 1 Binomial crossover

1: for i =1 to NP do

2 for j =1to D do

3 if U4(0,1) < CRV j = jrana then
4: Ui < Vi j

5: else

6: Uj 5 < Tij

7 end if

8 end for

9: end for

> Component is taken from mutant vector

> Component is kept from previous generation

Algorithm 2 Exponential crossover

Jj« u{1,D}

Ui £ Vij

J+7+1 mod D

L+1

while 2(0,1) < CR A L < D do
Ui j < Vij
j < j4+1 mod D
L+~ L+1

end while

,_.
=

> A random component index is chosen
> The first component is always transferred

> Length of transferred string is 1
> Stop once all components are transferred

2.1.3 Boundary constraint handling

For this project we are dealing with function with box constraints, which means there are lower
and upper limits for the components of the vectors. Vectors that lie outside the box do not have
valid solutions. This is called a wviolation. Kononova et al. [12] show that during an optimisation
run of DE; a large number of violations can occur. A Boundary Constrain Handling Method
(BCHM) has the task of correcting this violation in some way. The way a BCHM handles a
violation can have a large impact on the performance [2]. For this project we use the projection
method, which was used by the original version of DE [3]:

b
’UiJ‘ = ’LLb

Vi,j

if V5 < b
if V5 > ub (8)
otherwise

2.2 Reinforcement Learning

In the field of Reinforcement Learning (RL) we can model sequential decision problems as Markov
Decision Processes (MDPs). An MDP has the Markov property, meaning that the next state
depends solely on the current state and the actions that can be taken. It is defined as a 5-tuple
(8, A, To, Rayy) [21):

e S is the finite set of all legal states of the environment.
e A is the finite set of all actions in the environment.

e T,(s,s') is the transition function. It gives the probability that action a on current state
s will transition to next state s’. In our case, the environment has access to this function,
but the model does not.

e R,(s,s’) the reward the model receives after the model takes action a to make current state
s transition to next state s’

e ~ is the discount factor v € [0, 1], used to scale between favouring only immediate rewards
(v =0) or to treat all future rewards equally (y = 1).

The transition from the current state s and an action a to the next state s’ can either be
deterministic or stochastic. For a deterministic environment it is possible, with enough experience
and if the state space S is not too large, to know for any give state which action will result in
the most favourable next state and thus how to maximise the reward. Since we will use RL for
DE, which is stochastic, we will assume a stochastic environment for all examples.

An agent observes and interacts with an environment. After observing the state s the agent
will choose an action a from the action space A, which results in a change of the state to s’:
s — a — s'. The perceived ‘quality’ of the new state affects reward r the agent receives. Many
observation-action-reward-observation quadruples (s,a,r,s’) after each other form a trace 77,
where ¢ denotes the timestep of the start of the trace and n denotes the length of the trace:

n
T = {St» Aty Tty St41y -5 Stdns At4n, T't4n, St+n+1} . (9)

The cumulative reward of a trace is known as the return R(7:), not to be confused with the
reward function, which uses the same notation. From now on R refers to the return, unless
explicitly stated otherwise. The return is calculated using a discount factor v € [0, 1] [21]:

R(re) =ri+7-1ep1 +72 - rego + ...
o0
S
i=0

The function that picks the next action for a given state is the policy function 7(als), which
maps the state space S to a probability distribution over the action space p(A):

(10)

m: S —p(4). (11)

The goal is to find a policy that maximises the return from the initial state sg. We call such
a policy the optimal policy 7*.

2.2.1 Tabular Q-Learning

One way to achieve this is through tabular @-learning. To understand @-learning, we must
understand what @ represents, which can be derived from the state value V.

Because we are dealing with a stochastic environment, we want to optimise the policy 7 such
that the ezpected return for the start state is maximal. We define V7 (s) as:

V(8) = Ep(r) [R(72)[50 = 5]

= Ep(n)[Z’Yi “Tipilse = 8],
i=0

(12)

where E,;,) denotes the expected value over all possible traces, weighted by the probability that
each trace occurs.
The state-action value @) is quite similar to V', but the condition also includes the action:

Q" (s,a) = Epr) [R(74)|5t = 5,a; = a] . (13)

The relationship between V and @ is given by:

VT(s) =) m(als)Q"(s,a). (14)

acA

We want to find a policy where the state-action value is maximal for any given state:

7" = argmax V7 (s) = argmax Q" (s, a) . (15)
s ™
This shows that we can use the value functions to find 7*.

Tabular @-learning works by creating a table of all possible state-action combination of size
|S| x |A]. Actually calculating @) requires observing the reward of all possible traces. This adds
up very quickly, especially if you remember that both the transition to the next state and the
picking of the next action is not deterministic. This is why we estimate @ using the following
equation:

Q(s1,at) <= Q(s1,a¢) + afreyr +ymax Q(sit1,a) — Q(st, ar)] (16)

If all state-action pairs are visited infinitely often, this will converge to the optimal Q-values [27],
and thus the optimal policy. Just like tabular @-learning, because @ is updated using the greedy
action max, Q(s¢+1,a) instead of the behaviour policy’s action Q(s¢+1, at+1), we call this training
method off-policy.

To avoid getting stuck in local optima the policy must not always choose the greedy option,
which is to always choose the action with the highest @) for a given state. e-greedy is an approach
to make sure to explore a given fraction of the time. Instead of always choosing the action with
the highest @, the policy will choose a random action € € [0, 1] of the time. A variant of e-greedy
action selection starts with e = 1 and slowly explores less every step until € is (near) 0. This
way, the policy will only explore at first, and slowly move to exploiting more from the knowledge
that was gathered before.

2.2.2 Deep @Q-Learning

For continuous state spaces it is not possible to have a table of the Q)-values, since it would need
to be infinitely large. A solution is to divide the continuous state space into discrete bins, but this
either results in very many bins, or large bins. Instead, we can use a neural network which acts

similarly to how a table would. If we create a network with dim(S) input nodes and |A| output
nodes (for a discrete action space) we can map the state space to a probability distribution over
the action space, just as the policy does in Equation 11.

Instead of updating the @-values directly, we train the @-network by minimising a sequence
of loss functions. This loss function is the squared difference between predicted @-value and the
target Y:

Yi=r1+ ’YmgXQ(StJrha; 0:) (17)

where 6 are the parameters of the @-network.

Notice how this is the same target as seen in tabular Q-learning (Equation 16). This target
Y (our best guess of what the Q-value should be) together with the calculated @Q-value are used
to calculate the loss. This can then be used to update the model with backpropagation [7].

Challenges and solutions

Double DQN This target moves, which is one of the challenges with Deep Q-learning Networks
(DQNs). Each time the network parameters are updated, the next target Y; 41 will be different.
This moving target may cause the DQN to become unstable [33].

One of the solutions to this instability problem is to have the target move less frequently using
a Double DQN (DDQN) [33]. The introduces a second network with a second set of parameters
0~ for the target network. Every 7 steps the online network parameters 6 are copied to the
target network #~. The difference between the two target functions are minimal but can make
a large difference in performance and stability. If we first expand Equation 17 into Equation 18,
we can clearly see how minimal the changes are from DQN to DDQN:

VPN — 1+ 9Q (5141, arg max Q(sy41, a3 61); 61) (18)

VPPN = 1 +9Q(s141, arg max Q(ses1, a5 0,): 07) - (19)

This target YtDDQN is then used to update the online network. Because the target network is

not updated for every step, the target itself also does not move as much.

Experience replay Another technique to make deep @-learning more stable is break the
correlation between subsequent states. Since subsequent samples are strongly correlated, the
algorithm will tend to under-explore the state space. Also, after a while the network may forget
previous behaviour since it has not seen certain parts of the state space for a while.

Ezxperience replay is a technique that aims to circumvent these problems and thus prevent
getting stuck in local minima by introducing a replay buffer. This buffer is filled with the last NV
experiences (St, as,Tt, St41). Every training step, the algorithm randomly selects from the replay
buffer instead of using the last sample. Because this ensures that the states are seen in random
order, the correlation between each step is reduced, and the older samples are still visited after
some time such that they are not ‘forgotten’, which improves coverage [21]. This effectively adds
a form of supervised learning.

10

3 Related Work

While DE was designed with ease of use in mind [26], research has shown that its hyperparameters
can greatly influence its performance [23]. By know, it is well known that different variants of DE
can perform very differently depending on the characteristics of the problem that is being solved
and that its settings are highly interdependent. Mezura-Montes et al. [17] test eight variants on
DE to find that while “best/1/bin” performed best overall, being the only variant to solve the
unimodal and nonseparable problem in their testing, “rand/2/dir” performed slightly better on
multimodal and nonseparable problems.

The ‘No Free Lunch’ theorem states that “if an algorithm does particularly well on average
for one class of problems then it must do worse on average over the remaining problems.” [35]. In
other words, averaged across all possible problems, any two algorithms will perform identically.
This however goes both ways, so it also means that finding the best performing algorithm for each
problem can potentially greatly increase the overall performance over the average. On black-box
optimisation, this is by definition not possible beforehand. Any algorithm that attempts to tweak
its internal setting online to increase performance, will still inevitably ‘fail’ on some problems.
It is however important to keep in mind that the subset of problems we come across in practice
is of course infinitely smaller than all problems.

While the original paper for DE considers the algorithm easy to set up [26], this algorithm
had a large amount of research into its settings and parameters. Pant et al. [20] cover 283 papers
to give an extended summary of DE. They show how improvements on the original version of DE
have been made by researching aspects like population generation, mutation schemes, crossover
schemes, variation in parameters and hybridised variants. Hybridisation in metaheuristic is a
practice in which a metaheuristic is combined with one or more other optimisation techniques.

At first, research into parameter settings was about finding settings that work well in gen-
eral [6, 14, 24, 37]. Adaptively tuning parameters of DE during a run has been an active research
topic for since its suggestion in 2005 by Teo [32], where the population size is changed throughout
the run. This idea has since been developed further resulting in state-of-the-art methods that
improve over the original version of DE [36, 30, 34].

The field of deep reinforcement learning is very active and relatively new. In 2013 DeepMind
developed a deep learning model that could successfully learn to play Atari 2600 games from high-
dimensional sensory input using reinforcement learning [18]. Van Hasselt et al. [33] then show
that DQNs have a tendency to substantially overestimate @)-values, even in best-case scenarios.
Tabular Double @-Learning was introduced a few years prior to combat these issues for the
tabular Q-learning. Van Hasselt et al. [33] showed that these principles can be adapted to DQN,
creating Double DQN, or DDQN. This led to more stable and reliable learning.

Combining RL and DEs has been an active research topic for the last five years. Li et al. [13]
use a (Q-table to select the mutation strategy to develop a version of DE suited for multi-objective
optimisation. With only 9 states and 3 actions, there were only 27 @Q-values. The states were
encoded from the ranking based on the two conditions, and individuals get rewards based on if
they move to a better state. In [10] a small Q-table with only 2 states and 3 actions is used.
The offspring is either better than its parent, in which case the reward is 1, or not, in which case
the reward is 0. The three actions determined if the mutation factor F' is either decreased or
increased by 0.1, or if it should stay the same. Tan et al. [29] use a Q-table to select one of 4
mutation strategies based of 4 states.

In [4] a dataset was generated by optimising functions from the BBOB with different param-
eters of DE and then using a neural network to find patterns between the DE parameters and
the performance. It was shown that there is strong interdependence between the parameters.

Tan et al. [28] implement a Deep Q-Network to pick one out of three mutation strategies

11

based of a state vector with four fitness landscape features. These features are calculated from
e.g. correlation between fitness values and distances between individuals and the distance to the
best individual in the population. Rewards are given based on the amount of individuals that
improve over their parents.

This thesis is most similar to the work of Sharma et al. [25], where a larger network is used to
select the mutation operators based on a list of 99 state features. Three reward functions were
tested, of which we use the most successful one. This thesis extends on this by also tuning the
mutation factor F' and by tweaking the state features such that the DE can be parallelised.

12

4 Methods

This section describes the methods used for the experiments. First, an explanation on how DE
and RL are combined to create a new algorithm (Section 4.1). Sections 4.2 and 4.3 describe the
state representation the reward function respectively, which are heavily based on the work by
Sharma et al. [25]. Section 4.4 gives a detailed description of the experiments.

All source code is written in Python and is available on GitHub!, along with checkpoints of
the trained models, additional plots and code for recreating the figures.

4.1 DE-DDQN

Figure 1 gives us an overview of the algorithm. Mutation takes the latest generation X and
creates a population of mutant vectors V. X and v are then combined in the Crossover phase
which generates the population of trial vectors d. This is then evaluated to produce f(i). The
Selection phase compares f(ud) with the previous generation to produce the next generation. If
either the evaluation budget is depleted or the optimum is found, the algorithm terminates, else
it will pass the function values to the mutation strategy selector.

The function values and positions of the individuals in the past generations are used to create
a state vector § which gives the Neural Network the information it needs to compute the vector of
Q-values, Q, which represents the expected cumulative reward for every mutation strategy. This
is a two-dimensional table of the Q-value for every action, for every individual in the generation.
For every individual the action with the maximum @-value is given to the Mutation phase.

From the ‘point-of-view’ of the model, the DE is the environment from which states are
observed. This means that for every step in this environment (a generation) we need to make
multiple decisions (choose NP mutation strategies based on NP state vectors). In other words,
for every step in the environment the model takes NP steps training the model. Because of this,
we need to use a slightly tweaked version of DDQN which supports this situation.

4.2 State representation

The state function must produce a state feature vector for every individual in the population
that gives the neural network the information it needs to pick the optimal mutation strategy.
These feature can be computed only from the information that is known: the positions of the
individuals, their fitness values and information from previous generations. Ideally the state
feature encompasses everything that is needed to find the optimal action.

The exact fitness landscape is of course unknown, but we can give the model statistics that
were gathered from previous generations, e.g. the normalised relative fitness or standard deviation
of the fitness. The relative positions of the individuals is also taken into account, since the model
will decide the mutation strategy for each individual separately. For example, the distance
between randomly selected individuals or the distance to the best individual so far could give
the model insight about whether that individual is exploring of exploiting.

The performance of the mutation strategies in previous generations of a run can also be used
as hints as to which will perform well later on.

Thttps://github.com/Marcaroni8/MSS-DE-DRL

13

https://github.com/Marcaroni8/MSS-DE-DRL
https://github.com/Marcaroni8/MSS-DE-DRL

Mutation
X,V .
a
Start Crossover
Action Selection
u
Initialise . ¢
. Evaluation
Population %
Neural Network
f(d)
g
Selection
State Function
X
Terminate? -
no %, f(X)
yes l
‘ Stop ’

Figure 1: Diagram of the proposed algorithm. When the algorithm starts, the population X is
initialised and evaluated f(X). For the first generation, all individuals go through the selection
phase. If the termination requirements are met, the algorithm stops. The rightmost three boxes
represent the added functionality to a traditional DE. The current population is used together
with an memory of previous generation to calculate the state features s. The model uses the
state features to produce a vector of Q-values for every action for every individual Q . The action
with the highest Q-value is selected for every action. The parent population X and the actions @
are used to produce the mutation vectors v, after which crossover produces the trial vectors u.
This loop continues until the termination requirements are met.

14

Every generation the following values are stored for every individual: the action (mutation
strategy) that was used, if and how much the new individual improved over its parent, if and
how much the new individual improved over the best individual from the parent generation and
if it’s better than the median fitness of the parent generation:

1. OMy = f(%;) — f(u;)
2. OM5 = f(fbest) - f(ﬁ7)
3. OMs3 = median(f()) — f(i;),

where f(Z;) is the fitness of the parent, f(i;) is the fitness of the offspring, f(Zpest) is the fitness
of the best individual in the parent population and median(f(Z)) is the median fitness of the
parent population. OM,, (g, k, st) gives the value of metric m for generation g, for individual k
and mutation strategy st. Since the information from the most recent generations of the run
are most useful, we only store the last gen = 10 generations. No information of previous runs is
stored.

With these values we can compute the number of successful application of each mutation
strategy, just as the sum of fitness improvements for each of the four fitness improvements that
were stored. Lastly, we can also look at just the current and previous generations and note the
difference in improvement.

Sharma et al. [25] use an extra set of state features based on a window. In their implementa-
tion of DE every individual goes through the mutation, crossover and selection step one at a time.
This does not alter how the DE finds solutions in any way, but it does make the code much slower
to run. Computing the individuals one by one makes it possible to choose the mutation operator
one at a time, and thus also make decisions based on previously handled individuals from the
current generation. For this project we chose to compute the whole generation at once to allow
parallelisation, which makes the code run much more efficiently, especially for larger populations,
but at the drawback of making it impossible to put this potentially useful information into the
state features.

15

Index

Feature

Notes

(&)
Z;\zl N;'Z 7fbsf

1 F i The best-so-far individual is the best
individual in the population fisf =
[(@pest) = ming(f(z)). fuwss is the
worst-so-far fitness up to this step
within a single run.

2 %’W o(-) calculates the standard deviation
and ¢™?* is the standard deviation
when half of the population has fitness
fwst and the other half has fi¢

3 % FE™* is the maximum number of func-
tion evaluations per run, and FE™® —¢
gives the remaining number of evalua-
tions at step ¢.

4 % stagcount is the stagnation counter,
i.e. the number of function evaluations
(steps) without improving fis¢

5-9 %,Vj € T1,T2,73,T4,T5 dist(-) is the Euclidean distance be-
tween two solutions; dist™?* is the max-
imum distance possible, calculated be-
tween the lower and upper bounds of
the decision space; r1,72,73,74,75 are
random indexes.

dist(fi,f os)
10 Wit
11-15 HEIZIED fj € ry,ra,mg,ma, s
S(&i) = f (Tvest)
16 Fwst— fost
uce For each st and m € 1,2,3 and nor-
gen N, '““(g,st) . .
17-40 g=1 Nt (g,50) malised over all operators; gen is the
maximum number of recent generations
oo . succ tot
41-64 S0, S0 OM (g ust) e ecasstul g’ts? el t'<g, o
- SN (g,51) are successful and total applications o
! st according to OM,, at generation g.
OMPSt (gen,st)— OMPt (gen—1,st) est . .
65-88 O (ger =T, 51) | N*o" (gen57)— N'o% (gen—T.50)] OMJS,L (g, st) is the maximum value of
OM,, (g, k, st)
89-112 9 OMPt (g, st)

g=1 m

Table 1: List of the state features. Based on DE-DDQN [25].

16

4.3 Reward function

The reward is used during training by the neural network to gauge how well previous actions
did. Generally, the reward must be high when an action did what we wanted (make large steps
towards the optimum), and low if it did not (no or very small improvement). We want the neural
network to select the mutation strategies that lead to optimum the quickest, and the way it gets
there does not matter as much. This is why rare but big steps towards the optimum can be
preferable over many small steps. It is thus important to set up the reward function such that it
encourages picking the mutation strategies that lead to finding the global optimum the quickest.
The reward is calculated for every individual in the population in every generation, since actions
are chosen for every individual every generation. This is then stored together with the state,
action and next state.

Sharma et al. [25] test three different reward functions. These functions use the parent Z;
and offspring u; and the best fitness so far fist and optimal fitness f*:

R1 = max{f(z;) — f(u;),0} (20)
10 if f(’l_fl) < fbsf
R2=41 elseif f(u;) < f(&:) (21)

0 otherwise
f(@) — f(u;)
f(idi) — [~

It was concluded that the model learned to pick the mutation operator best with reward function
R2 (Equation 21). For this reason we will use reward function R2 for this project. This function
is generalised for all fitness function, i.e. the offset and scale of the function does not affect the
reward function. The function returns 0 if the individual did not improve, 1 if it improved over its
parent and 10 if it improved over the best so far solution. This way improvements are rewarded
more if they find a better solution than has been found so far.

R3 = max{ ,0} (22)

4.4 Experiments

For the experiments we use 4 mutation operators (Equation 4-7) and 2 mutation rates [0.3,0.8].
This gives 8 possible mutation strategies. Table 2 lists the settings of the DE. The values that
are adaptive are noted within [brackets].

To assess the performance we use the benchmark suite BBOB (Black-Box Optimisation
Benchmarking) [5], from the COCO (COmparing Continuous Optimizer) platform and which
contains 24 noiseless functions. BBOB has the feature to create multiple different variations
(instances) of its functions by applying transformation methods to the base forms of the 24 func-
tions, which acts as a form of data augmentation. These transformations rotate and translate
the function, while keeping the ‘shape’ of the fitness landscape intact. For the models to be able
to generalise, it is important to train and test on multiple instances [15].

The evaluation budget is 10* and for simplicity we only use functions with dimensionality
D = 10. We train the models on random instances of this set of 24 functions and set the target
fitness 1078 above the optimal fitness:

ftarget = f* + 10_8 (23)

17

On difficult multimodal functions DEs can converge prematurely on a local optimum and
stagnate. If the DE does not manage to escape the local optimum a large fraction of the budget
can be wasted. COCO encourages restarts [9] to improve the chances of the algorithm finding a
better solution. A restart resets the internal state of the algorithm, possibly using information
from the previous attempt to tweak internal parameters, like population size, to improve perfor-
mance. For this project we use independent restarts that do not change any parameters [1, 8].

The criteria for the algorithm to restart must make sure the algorithm does not restart
prematurely and prevent the algorithm from converging on the actual global optimum, while
also not too late and waste resources. In [38], a range of stopping criteria were examined. We
adopt the strategy named Diff:

true if f(xworst) - fbest <&

. (24)
false otherwise

converged = {

£ is recommended to be set one order of magnitude smaller than the target precision (Equa-
tion 4.4) [38], so we use £ = 1077.

DE parameters Parameter value
Population size (NP) | 100
Evaluation budget | 10*
Mutation operator | [rand/1, rand/2, rand-to-best/2, curr-to-rand/2]
Mutation factor (F) | [0.3,0.8]
Crossover operator | Binomial
Crossover rate (CR) | 0.9
Selection strategy | Paired elitist
BCHM | Projection (Equation 8)

Table 2: The DE settings. The adaptive values are noted within [brackets].

4.4.1 Training the models

To assess the performance we train three separate models from scratch. Each model is trained
for 10* episodes (entire runs of DE until termination), which means there are ~10° generations,
depending on the average length of an episode. Before training starts, the buffer is filled with
experiences by picking random actions. Then the e-greedy policy takes over, where the explo-
ration factor starts off at ¢ = 1.0 and decays to 0.075. The replay buffer fits 106 experiences
and is filled using FIFO. This means that with NP = 100 the entire buffer is refreshed every
10* generations or ~10? episodes. The target network is refreshed every 7 = 10 episodes. All
settings for the model are listed in Table 3. For this project, minimal tweaking of the model’s
hyperparameters was done since it was deemed mostly out of scope, and most settings we based
on the work by Sharma et al. [25]. Most notably the nodes per layer is increased to make the
network more capable of understanding the complex state space and 7 was increased to make
the target more stable.

18

General model parameters

Parameter value

Model type

Hidden layers

Nodes per layer

Activation function

State features history (gen)

Double Deep Q-Network

4

1024

Rectified Linear Unit (ReLU) [19]
10

Training parameters

Parameter value

Training algorithm
Learning Rate

Batch size

Target network update 7
Training policy

Adam [11]

0.001

512

Every 10 episodes
e-greedy with e decay

Exploration factor ¢ | 1.0 — 0.075
Decay factor | 0.9995 per individual ~ 0.95 per generation
Discount rate v | 0.95

105 experiences ~ 10? episodes
10 episodes

Parameter value

Greedy

Replay buffer size
Train time

Testing parameters
Online policy

Table 3: Hyperparameters of DDQN models.

5 Results

The three trained models are tested for 20 runs on 5 instances of each function, resulting in
100 runs per function, and 2400 runs in total. These models are simply named model 1, model
2 and model 3. We first analyse the performance of the mutation strategy selection models by
comparing how fast they reach a set of targets in Section 5.1. To give more insight on what
decision the models are making, the actions were analysed in Section 5.2. Lastly, to give a bit
more insight into why the performance differs per function and per model the average reward is
analysed in Section 5.3.

To improve readability and avoid confusion, when a mutation strategy is italicised, we are
talking about a constant policy using that mutation strategy. If they are bold, we are talking
about the strategy or action itself.

5.1 Performance analysis

Since the time in which the DE finds the final target or the error when the budget is depleted tell
only parts of the complete story, we set a range of targets. By setting 51 targets spaced uniformly
on the logarithmic scale [10~%,10?] from the global minimum, we can note for each run if, and
when, a target is hit. We can than plot for every generation how many of these targets have been
hit. Averaging these plots for the total of 2400 runs shows us how many targets are hit at each
point of the optimisation progress. We can do this for the 8 constant policies, a random policy
and the three models.

Figure 2 shows the plot of the Empirical Cumulative Distribution Function (ECDF) of the
average over all 24 BBOB functions. The three dotted lines show the performance when each
of the three trained models were selecting the mutation strategies respectively. The coloured
solid lines show the performance without any online mutation selection, and the black line shows
the performance when the mutation strategies are selected at random. Data from before 100

19

evaluations can not be collected, since that is the amount of function evaluations used for a single
generation, i.e. NP = 100. Keep in mind that for all ECDF plots, the y-axis scales with the lines
to improve readability.

average over all functions

0.25 randl 0.3
—— randl1 0.8 I’
rand2 0.3 <
4
—— rand2 0.8 pgd
0.20 A A
rand_to_best2 0.3 ’,‘; AT
=z —— rand_to_best2 0.8 ‘,:s:/
2 current_to_randl 0.3 ‘,’::lr’
© 0.154 —— current_to_rand1 0.8 o
S = o
hel —— random 2
o o
p —=- modell _‘:_"'r
.© —_——— -]
T 0.10 model2 =
© —== model3
[
0.05 A
0.00 T
102 103 104

No. function evaluations

Figure 2: ECDF of average fraction of targets hit of 100 runs over 5 instances, averaged over all
24 functions. The three models refer to the variants of DE using a model to choose the mutation
strategies. random is DE with a random policy (choosing a mutation strategy at random for
every individual every generation), and the eight mutation strategies refer to the variants using
constant policies.

To give better insight into what is happening for each function separately we can look at
Figures 3-5, which show ECDF plots for all 24 functions. If we for instance look at the black
line in the plot for f1, the Sphere function, we can see that when selecting mutation strategies
at random will cause the DE to hit on average ~10% of the targets after 10 generations (10°
function evaluations for NP = 100) and ~60% when the budget is depleted. The average fraction
of targets each policy hits at the end of all runs can be found in Table 4.

We can use the trapezoidal rule to calculate the Area Under the Curve (AUC) of the ECDF
plots, giving us a single figure to measure the performance for each algorithm, which we see in
Table 5. If the DE hits most targets quickly, the AUC of the ECDF will be high. If few targets
are found, or if the targets are found only at the end, the value will be low. AUC is calculated
with log, for the z-axis.

In Figure 2 we can see that on average, all three models perform better than when choosing
the mutation strategies randomly. The mutation strategy rand1 0.3 manages to overtake model
3 before the budget is depleted, because it seems to plateau about halfway through the runs on
average.

If we then look at Figures 3-5 we see that the performance differences between the three
models is much bigger for different functions. On f1, which is the easiest problem in the BBOB
benchmark. Model 1 and 2 almost always find the optimum before the budget is depleted, while
all other variants struggle. This does mean that the neural networks are capable of improving
over the constant or random variants given the state features.

20

For f2 we see again that the differences in performance is large. Note that the variants for
which we do not see the lines in the plots, none of the 51 targets are ever hit before evaluation
budget is depleted. The reason why much fewer targets are hit in this function than on f1 is
the much higher conditioning?®. With fixed value targets but higher function values much fewer
targets are hit.

While for most functions at least one of the models is, sometimes minimally, better than the
variants with constant or random mutation strategies, for others the models all fail completely.
f5, the linear slope, has all three models performing significantly worse the rand! 0.3, with even
a random strategy beating out two of the models.

On some functions, e.g. f6, f8 and f14, the models seem to find reach targets very quickly, but
at some point struggle to find any more. The is also why sometimes the models have a higher
AUC (Table 5), while reaching a smaller fraction of the targets when the budget is depleted
(Table 4).

On both f16 and f23 all variants seem to perform almost identically. These two functions
are highly rugged, repetitive and multimodal. Because of the little global structure it is difficult
to find the basin of the global optimum, so with many local optima with nearly identical fitness
value, most runs get stuck at the same error.

2If the ratio of steepest slope to flattest slope is high, the function is said to have high conditioning.

21

1 Sphere

10 — 2 Ellipsoid
randl 0.3 "’," randl 0.3
/ 1 .
— rand10.8 b 0351 — rand10.8
05 rand2 0.3 ‘:‘,' rand2 0.3
- —— rand2 0.8 ’,fJA 0.30 1 — rand2 0.8
. rand_to_best2 0.3 ‘:',’ rand_to_best2 0.3
z —— rand_to_best2 0.8 e z 0.25 4 — rand_to_best2 0.8
g 0.6 1 current_to_rand1 0.3 Jr::‘ g ’ current_to_rand1 0.3
g —— current_to_rand1 0.8 ::J‘ g —— current_to_rand1 0.8
:C:) —— random I;‘r‘ £0209 — random
_— o)
< modell ‘:9 < === modell
5 0.4 4 === model2 o = 0.154 —-—- model2
& --- model3 = E —=- model3
0.10 4
0.2 4
0.05 4
0.0 ™ 0.00 ™
102 103 10* 10? 10°
No. function evaluations No. function evaluations
3 Rastrigin 4 BuecheRastrigin
randl 0.3 rand1 0.3
0.074 —— rand1 0.8 0.07 4 — rand1 0.8
rand2 0.3 rand2 0.3
0.06 4 —— rand2 0.8 0.06 4 — rand20.8
rand_to_best2 0.3 rand_to_best2 0.3
H 0.05] — rand_to_best2 0.8 £ 0054 — rand_to_best2 0.8
27 current_to_randl 0.3 2 current_to_rand1 0.3
o —— current_to_rand1 0.8 = —— current_to_rand1 0.8
£0.049 — random £0.044 — random
2 ——- modell c -=- modell
£ 0.03{ --- model2 £ 0.03{ ~=- modei2
© —=- model3 © —=- model3
& fre
0.02 4 0.02
0.01+4 0.01 4
-
0.00 —_— 0.00
102 10
No. function evaluations No. function evaluations
5 LinearSlope)
0.64 6 AttractiveSector
: rand1 0.3
—— rand1 0.8 rand1 0.3
rand2 0.3 01754 — randlos
0.5 4 rand2 0.3
—— rand2 0.8 — rand2 0.8
o ra"g—to—zesg g: 01501 rand_to_best2 0.3
< 0.4 1 rana_to_bes o3 2 —— rand_to_best2 0.8
*g current_to_rand1 0. 8 01257 current_to_rand1 0.3
& —— current_to_rand1 0.8 g —— current_to_rand1 0.8
% 034~ random £ 0.100 1 — random
< === modell g modell
] -==- model2 2 0.0751 model2
2024777 model3 © ——- model3
s
0.050 1
[e s s B o e~ e L
0.025 1
0.0 0.000 “"“r:J
T X
10? 10° 10° 102
No. function evaluations No. function evaluations
7 StepEllipsoid 8 Rosenbrock
0.6 randl 0.3 randl1 0.3
—— randl1 0.8 —— rand1 0.8
rand2 0.3 012 rand2 0.3
0.51 —— rand2 0.8 —— rand2 0.8
» rand_to_best2 0.3 0.10 1 rand_to_best2 0.3
'_E —— rand_to_best2 0.8 z —— rand_to_best2 0.8
2 0.4 4 current_to_rand1 0.3 g current_to_rand1 0.3
g —— current_to_rand1 0.8 g 0.08 1 —— current_to_rand1 0.8
:c_: 03 —— random ped —— random
271 -==- modell 2
< < 0.061 modell
i === model2 2 model2
E 02477 model3 < —-== model3
: * 0.04 1
0.14 0.02
0.0 T 0.00
102 103 104 102
No. function evaluations No. function evaluations

Figure 3: ECDF of average fraction of targets hit of 100 runs over 5 instances for f1 — f8. The
three models refer to the variants of DE using a model to choose the mutation strategies. random
is DE with a random policy (choosing a mutation strategy at random for every individual every
generation), and the eight mutation strategies refer to the variants using constant policies.

22

9 RosenbrockRotated 10 EllipsoidRotated
rand1 0.3 0.074 rand1 0.3
01214 — rand1 0.8 — rand1 0.8 s
rand2 0.3 0.06 4 rand2 0.3 ,r'
—— rand2 0.8 —— rand2 0.8]
0104 rand_to_best2 0.3 rand_to_best2 0.3 3
£ —— rand_to_best2 0.8 £ 0.059 — rand_to_best2 0.8 i
£ 0.081 current_to_rand1 0.3 £ current_to_rand1 0.3 H
g —— current_to_rand1 0.8 g 0.04 4 — current_to_rand1 0.8 H
pad —— random hed —— random i
2 0.06 - modell 2 === modell {
-% -=-- model2 -% 0.031 ——- model2 J
o —-=- model3 o —-=- model3 1
0.04 0.024 I,f)
s !
r '
0.024 0.01 1] 7
J)_,
)
0.00 + 0.00 + — + = ,
10 10 10 10
No. function evaluations No. function evaluations
11 Discus 12 BentCigar
randl 0.3 randl1 0.3
0.30 1 — rand1 0.8 rg 0.204 — rand10.8 ',/
rand2 0.3 ',‘ rand2 0.3 !
0251 rand2 0.8 I —— rand2 0.8 A
: rand_to_best2 0.3 I rand_to_best2 0.3 1"]
E —— rand_to_best2 0.8 il £ 0.154 — rand_to_best2 0.8 ' l"
£ 0.201 current_to_randl 0.3 ,f' 2 current_to_randl 0.3 [
g —— current_to_rand1 0.8 rr' g —— current_to_rand1 0.8 H l/
s —— random i y < —— random I|' i
< 0.151 === modell < 0.10 4 === modell ! {
S —— S —— |
5 model2 5 model2 H ;
© —=- model3 © —=- model3 HA
% 0.101 v || I
|
0.05 1 o
0.054 il
1, 2
R
g
0.00 -+ = . 0.00 -+ — =, N
10 10 10 10 10 10
No. function evaluations No. function evaluations
13 SharpRidge 14 DifferentPowers
0.6 q
rand1 0.3 rand1-0.3
4
020 — randl 0.8 — rand10.8 s
-20 1 rand2 0.3 z
05 051 — raniz08
rand_to_best2 0.3 . rand_to_best2 0.3
£ 0.15 — rand_to_best2 0.8 <04l rand_to_best2 0.8
2 current_to_rand1 0.3 g current_to_rand1 0.3
& —— current_to_rand1 0.8 2 —— current_to_rand1 0.8
g —— random % 0.3 — random
< 0104 ~~- modell < --- modell
2 --- model2 'é mogeE
o —-=- model3 ® .24 —=- model
fis £ 0.
0.05
0.1+
0.00 T 0.0 T
102 103 102 10° 104
No. function evaluations No. function evaluations
15 RastriginRotated 16 Weierstrass
randl 0.3
0.06 1 — rand1 0.8
rand2 0.3 0.10 1
—— rand2 0.8
0.05 rand_to_best2 0.3
£ —— rand_to_best2 0.8 £ 0.084 randl 0.3
£ 0.04 current_to_randl 0.3 2 —— rand1 0.8
g —— current_to_randl 0.8 g rand2 0.3
bed — random = 0.06 —— rand2 0.8
IS) IS)
c 0.037 - modell c rand_to_best2 0.3
-% model2 }‘93‘ —— rand_to_best2 0.8
o 002" model3 £0.04+ current_to_randl 0.3
: —— current_to_rand1 0.8
—— random
0.01 0.02 4 === modell
model2
= --- model3
0.00 — 0.00 :
102 10° 104
No. function evaluations

102
No. function evaluations

Figure 4: ECDF of average fraction of targets hit of 100 runs over 5 instances for f9 — f16. The
three models refer to the variants of DE using a model to choose the mutation strategies. random
is DE with a random policy (choosing a mutation strategy at random for every individual every

generation), and the eight mutation strategies refer to the variants using constant policies.

23

17 Schaffers10

0.5 1 randl 0.3
—— rand1 0.8
rand2 0.3
04l rand2 0.8
rand_to_best2 0.3
£ —— rand_to_best2 0.8
2 current_to_randl 0.3
E 0.3 1" —— current_to_rand1 0.8
= —— random
2 === modell
% 024 - model2
© —-==- model3
fie
0.1
0.0 T
102 103 104
No. function evaluations
19 GriewankRosenbrock
0.175 1
0.150
2
< randl1 0.3
8 01257 rand1 0.8 1
= rand2 0.3
..‘g 0.100 + rand2 0.8
c rand_to_best2 0.3
‘§ 0.075 4 —— rand_to_best2 0.8
2 current_to_randl 0.3
0.050 1 —— current_to_randl 0.8
—— random
—-=-- modell
0.025 1 -=-- model2
—=- model3
0.000 T
102 10° 104
No. function evaluations
21 Gallagher101
randl 0.3
—— rand1 0.8
0.4 4 rand2 0.3
—— rand2 0.8
rand_to_best2 0.3
£ —— rand_to_best2 0.8
2 0.31 current_to_randl 0.3
g —— current_to_rand1 0.8
s —— random
2 modell
-% model2
E model3
0.14
0.0 T
102 103 104
No. function evaluations
23 Katsuura
0.200
0.175 1
0.150
z randl 0.3
£ 0.125 4 — rand1 0.8
e rand2 0.3
% 0.1004 — rand20.8
c rand_to_best2 0.3
’% 00754 rand_to_best2 0.8
2 current_to_rand1 0.3
—— current_to_randl 0.8
00501 random
—=- modell
0.025 1 -~ model2
—-=- model3
0.000 T
102 10° 104

Figure 5: ECDF of average fraction of targets hit of 100 runs over 5 instances for f17 — f24. The
three models refer to the variants of DE using a model to choose the mutation strategies. random
is DE with a random policy (choosing a mutation strategy at random for every individual every

No. function evaluations

it

Fraction of targets hit

Fraction of targets hit

Fraction of targets hit

Fraction of targets h

18 Schaffers1000

randl1 0.3
0357 — rand10.8
rand2 0.3
0.304 —— rand2 0.8
rand_to_best2 0.3
0254 rand_to_best2 0.8
current_to_rand1 0.3
—— current_to_rand1 0.8
0.20 1" — random
=== modell
0.15 4 === model2
=== model3
0.10 4
0.05
0.00 ™
102 10° 10*
No. function evaluations
20 Schwefel
0.200 A
randl 0.3
01754 randl 0.8
: rand2 0.3
—— rand2 0.8
0.150 1 rand_to_best2 0.3
—— rand_to_best2 0.8 I
0.125 4 current_to_randl 0.3 £
—— current_to_rand1 0.8 I
0.100 4 — random]
T oo :
00751 __. model3 il
0.050 4 =9
il
=
0.025 1 |
-
0.000 4
102
No. function evaluations
22 Gallagher21
randl 0.3
—— randl 0.8 ',——“
rand2 0.3 gl
0207 — rand2 0.8
rand_to_best2 0.3
—— rand_to_best2 0.8
0.15 4 current_to_randl 0.3 l‘:‘l;"
—— current_to_rand1 0.8 el
—— random _I:‘,'l A
—-=- modell ;}-‘
0.10 1 --- model2 ==
—-=- model3
0.05 4
0.00 T
102 10° 104
No. function evaluations
24 LunacekBiRastrigin
0.05 4 randl 0.3
—— rand1 0.8
rand2 0.3
—— rand2 0.8
0.04 7 rand_to_best2 0.3
—— rand_to_best2 0.8
current_to_rand1 0.3
0.03 4 — current_to_rand1 0.8
—— random
modell
0.02 1 model2
—-=- model3
0.01 4
0.00 e

103

No. function evaluations

generation), and the eight mutation strategies refer to the variants using constant policies.

24

°1é

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 avg
randl 0.3 | 0.694 0.346 0.063 0.062 0.447 0.164 0.366 0.126 0.120 0.011 0.148 0.026 0.150 0.514 0.056 0.105 0.340 0.258 0.164 0.179 0.423 0.187 0.185 0.042 | 0.216
randl 0.8 | 0.225 0.000 0.036 0.021 0.557 0.074 0.122 0.002 0.000 0.000 0.035 0.000 0.002 0.226 0.029 0.105 0.175 0.121 0.139 0.159 0.130 0.168 0.185 0.021 | 0.105
rand2 0.3 | 0.551 0.249 0.054 0.050 0.399 0.181 0.278 0.121 0.118 0.002 0.166 0.000 0.110 0.450 0.049 0.105 0.280 0.210 0.160 0.177 0.243 0.18 0.183 0.040 | 0.182
rand2 0.8 | 0.142 0.000 0.020 0.000 0.239 0.038 0.069 0.000 0.000 0.000 0.018 0.000 0.000 0.164 0.016 0.105 0.150 0.099 0.126 0.018 0.091 0.117 0.185 0.002 | 0.067
rand-to-best2 0.3 | 0.349 0.017 0.060 0.054 0.105 0.081 0.210 0.089 0.108 0.003 0.079 0.035 0.052 0.314 0.055 0.106 0.295 0.238 0.168 0.184 0.227 0.163 0.185 0.047 | 0.134
rand-to-best2 0.8 | 0.156 0.000 0.022 0.004 0.204 0.041 0.083 0.000 0.000 0.000 0.024 0.000 0.000 0.174 0.019 0.106 0.154 0.102 0.131 0.103 0.105 0.110 0.18 0.008 | 0.072
current-to-randl 0.3 | 0.137 0.000 0.028 0.013 0.021 0.033 0.110 0.008 0.098 0.000 0.081 0.000 0.000 0.179 0.026 0.108 0.209 0.166 0.180 0.176 0.220 0.168 0.185 0.043 | 0.091
current-to-randl 0.8 | 0.287 0.027 0.041 0.028 0.245 0.090 0.150 0.029 0.007 0.000 0.050 0.000 0.017 0.274 0.038 0.105 0.188 0.134 0.146 0.169 0.129 0.178 0.188 0.023 | 0.106
random | 0.597 0.260 0.057 0.046 0.309 0.163 0.309 0.120 0.118 0.004 0.165 0.000 0.137 0482 0.049 0.105 0293 0.224 0.160 0.176 0.270 0.185 0.183 0.040 | 0.185
modell | 0.992 0.178 0.068 0.061 0.207 0.104 0369 0.122 0.120 0.006 0.141 = 0.205 0.192 0.529 0.057 0.107 0.352 0.273 0.166 0.179 0.345 0.182 0.184 0.043 | 0.216
model2 | 0.979 0.338 0.058 0.049 0.349 0.167 0525 0.126 0.120 0.024 0.175 0.171 0.210 0.566 0.051 0.106 0.358 0.258 0.163 0.177 0.392 0.193 0.184 0.042 | 0.241
model3 | 0.328 0.069 0.070 0.071 0.110 0.151 0.582 0.119 0.118 0.066 0.301 0.043 0.056 0.422 0.060 0.107 0.479 0.350 0.168 0.183 0.435 0.226 0.185 0.049 | 0.198

Table 4: The average fraction of targets hit when the budget is depleted for each function, including the overall average in the last column avg. For each column
the highest fraction of targets hit is bold and coloured in grey. The three models refer to the variants of DE using a model to choose the mutation strategies.
random is DE with a random policy (choosing a mutation strategy at random for every individual every generation), and the eight mutation strategies refer to the
variants using constant policies.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 avg
randl 0.3 | 0.368 0.056 0.037 0.028 0.196 0.075 0.175 0.048 0.048 0.001 0.072 0.001 0.035 0.389 0.033 0.173 0.332 0.217 0.254 0.155 0.239 0.182 0.334 0.028 | 0.145
randl 0.8 | 0.196 0.000 0.014 0.004 0.224 0.027 0.073 0.000 0.000 0.000 0.019 0.000 0.000 0.255 0.012 0.174 0.264 0.153 0.224 0.062 0.124 0.124 0.335 0.007 | 0.096
rand2 0.3 | 0.319 0.034 0.031 0.021 0.186 0.066 0.146 0.036 0.032 0.000 0.061 0.000 0.021 0.357 0.028 0.172 0.309 0.195 0.247 0.140 0.177 0.169 0.330 0.023 | 0.129
rand2 0.8 | 0.154 0.000 0.006 0.000 0.155 0.013 0.043 0.000 0.000 0.000 0.011 0.000 0.000 0.226 0.004 0.174 0.249 0.138 0.210 0.002 0.108 0.098 0.336 0.000 | 0.080
rand-to-best2 0.3 | 0.344 0.006 0.043 0.027 0.094 0.062 0.178 0.047 0.062 0.001 0.061 0.004 0.022 0366 0.039 0.172 0.342 0.232 0.268 0.200 0.234 0.182 0.334 0.039 | 0.140
rand-to-best2 0.8 | 0.168 0.000 0.008 0.000 0.165 0.016 0.058 0.000 0.000 0.000 0.012 0.000 0.000 0.239 0.005 0.173 0.256 0.145 0.215 0.018 0.122 0.107 0.335 0.001 | 0.085
current-to-randl 0.3 | 0.199 0.000 0.016 0.006 0.032 0.026 0.107 0.003 0.069 0.000 0.072 0.000 0.000 0.281 0.017 0.173 0.296 0.187 0.280 0.201 0.195 0.164 0.331 0.037 | 0.112
current-to-randl 0.8 | 0.220 0.001 0.019 0.007 0.142 0.035 0.088 0.003 0.000 0.000 0.023 0.000 0.001 0278 0.016 0.173 0.271 0.160 0.231 0.089 0.134 0.136 0.334 0.010 | 0.099
random | 0.341 0.035 0.033 0.019 0.171 0.060 0.163 0.041 0.041 0.000 0.062 0.000 0.029 0.368 0.030 0.176 0.317 0.200 0.252 0.155 0.186 0.165 0.331 0.027 | 0.133
modell | 0.597 0.060 0.047 0.029 0.150 0.085 0.218 0.080 0.085 0.001 0.083 0.044 0.087 0.494 0.043 0.175 0.357 0.239 0271 0.203 0.251 0.187 0.333 0.038 | 0.173
model2 | 0.566 0.091 0.043 0.029 0.196 0.108 0.257 0.077 0.082 0.001 0.072 0.029 0.084 0.494 0.039 0175 0.376 0.245 0.267 0.201 0329 0.210 0.334 0.036 | 0.181
model3 | 0.318 0.021 0.047 0.039 0.104 0.107 0.315 0.064 0.081 0.014 0.145 0.008 0.023 0425 0.042 0.175 0.412 0.282 0.271 0.200 0.347 0.228 0.333 0.041 | 0.168

Table 5: AUC of ECDF plots from Figures 3-5 of targets hit when the budget is depleted for each function, including the overall average in the last column avg.
For each column the highest fraction value is bold and coloured in grey. The three models refer to the variants of DE using a model to choose the mutation
strategies. random is DE with a random policy (choosing a mutation strategy at random for every individual every generation), and the eight mutation strategies
refer to the variants using constant policies.

5.2 Action analysis

To try and understand why the trained models perform differently on each function and from
each other, we can analyse the actions that were taken for each model on each function. The
actions taken by models 1, 2 and & are noted in Tables 6, 7 and 8 respectively.

rand2 0.8 and rand-to-best2 0.8 are performing the worst of all eight mutation strategies
(Tables 4-5), which explains why the first is chosen < 0.0% of the time by all three models, and
why the latter is only chosen by model 3 1.9% of the time. Interestingly, while rand1 0.3 is
chosen often for model 1 and model 3, model 2 practically never chooses that mutation strategy.
While all three models perform better on average than picking a constant model (Figure 2), there
are big differences in the mutation strategies that they pick, which explains why the differences
in performance are large on each function (Figures 3-5).

To give a better understanding on what is happening during a run, we can plot the actions
that were taken together with the error fp.ss — f*. If the error goes up, which normally can
not happen for paired elitist selection, the population has converged and has restarted (see
Section 4.4). Figures 6-8 show on the left for single runs on f1 the actions taken for each
generation with the left y-axis showing the actions per generation, together with the error on the
right y-axis. On the right the Q-value is plotted for the individual that had the lowest function
value at the end of the run that is plotted on the left. Eight lines are visible; one per action.
For Figures 9-11 two representative runs were picked for each model to give more insight. More
figures can be found in the GitHub repository.

Although model 1 and 2 perform similarly on f1 (Figure 3), Figures 6-8 show how their
strategies are very different. Model 1 shows very consistent behaviour and switches strategies
just a few times at an almost stable interval, while model 2 switches mutation strategies much
more often. Model 3 struggles much more, especially after the first 20 generations. Models 1
and 2 are apparently both able to use the state features to pick mutation strategies that lead
to finding the optimum quicker, while model 3 does not. It is interesting to note that all three
models make little use of mutation strategy rand1 0.3, even though it performs best out of all
variants with constant mutation strategies.

In the plots on the right in Figures 6-8 we see that the @)-values are often very close together,
meaning that the model at that point does not expect there to be much difference between the
future rewards for the actions from that state. Secondly, the Q-values tend to oscillate up and
down, meaning that the model constantly get more or less confident about how much reward it
expects. The reward is analysed further in Section 5.3.

Figure 9 shows the plot for model 1’s actions on f3 and f12. Firstly, for f3 we see that
the model outperforms all constant variants, even though the model picks almost only randl
0.3. This shows that changing the strategy only a few times in the beginning can make an
improvement over a constant strategy, albeit not much. For f12 model 1 performed the best
out of all variants, with 6 out of the 8 constant mutation strategies failing to hit any target
on all 100 runs. BentCigar is a difficult function, because it is non-separable and very highly
conditioned. There is only one single optimum, but it is difficult for a DE to get close to it.
Again, by combining just three mutation strategies, model I is able to hit on average over a fifth
of the targets.

As we see in Figure 10, for f6 model 2 seems to switch mutation strategy every few genera-
tions. While not ending with the highest fractions of targets hit, the AUC of the ECDF is the
highest for model 2 (Table 5). On f14 model 2 was able to surpass model 1 with the average
fractions hit about half-way through the runs. In Figure 10 we see how the model decides to
only pick rand2 0.3 after 60 generations.

26

Model 8 managed to outperform all other variants on f4. In Figure 11 switches between
just two actions; rand1 0.3 and rand-to-best2 0.3. rand! 0.3 outperformed all other variants
(Figure 3), but rand-to-best2 0.3 actually performed somewhat worse. By combining these
two actions model 3 is able to find a slight performance improvement. On f7 model 3 vastly
outperformed all other methods, especially when looking at AUC (Table 5). Again, we see the
model only switching strategy occasionally. This function has lower conditioning, and plateaus
with a gradient of zero, meaning it is easy for the DE to get stuck even though the function is
unimodal.

These results show that the models each tends to stick with their subset of 3-4 actions, which
explain why each model performs differently on the different functions. They each tend to prefer
different actions, which happen to do well in some cases, but do worse in others.

27

1 Sphere

100

Best individual in Sphere

14

12

| [
randl1 0.3
rand1 0.8
rand2 0.3 —

actions per generation

rand2 0.8
rand_to_best2 0.3
rand_to_best2 0.8

current_to_randl 0.3 \

current_to_randl 0.8
I I I

30 40 0

generation

10 20 30 40 50 60 70
generation

Figure 6: Left: Actions taken and error per generation for single runs on f1 for model 1. Right:
Q-values of each action per generation for the individual with the lowest error after termination.

100 1 Sphere Best individual in Sphere
T T T
16 —— rand1 0.3 b
—— rand10.8
— rand2 0.3
14 R — rand2 0.8 1
c —— rand_to_best2 0.3
S R — rand_to_best2 0.8
g 12 —— current_to_rand1 0.3 |
S = —— current_to_rand1 0.8
o o
1= o
g £ 10] A %
2
°
E 8 ! v \ A
; W\ d
4
30 40 0 10 20 30 40 50 60 70

generation

generation

Figure 7: Left: Actions taken and error per generation for single runs on f1 for model 2. Right:
@-values of each action per generation for the individual with the lowest error after termination.

100 1 Sphere Best individual in Sphere
14 .
10° 1 ‘\ A
W A
5 10 N N
H 102 \I N
g
g N 8 ¥ |
5 § ©
s 1074 61 — randl10.3
s —— rand1 0.8 L
g 44 — rand203
© — rand2 0.8 \
10-6 —— rand_to_best2 0.3 \ A
27 —— rand_to_best2 0.8 N
——— current_to_rand1 0.3
0+ —— current_to_randl 0.8
1078 I {
0 20 40 60 80 0 20 40 60 80
generation generation

Figure 8: Left: Actions taken and error per generation for single runs on f1 for model 3. Right:
Q-values of each action per generation for the individual with the lowest error after termination.

28

3 Rastrigin 12 BentCigar

100 100
10?
10°
10° 100
c c
8 2
H K 10?
g 1072 2
I3 o @ o
o g o 100 8
g @ g @
w w
5 107* 5 1072
i i
® ®
107
106
10°¢
108 108

0 20 40 60 80 0 20 40 60 80
generation generation

Figure 9: Actions taken and error per generation for single runs on f3 and f12 for model 1.

6 AttractiveSector 14 DifferentPowers
100 100
104
10°
10?
c c
S 2 10-2
® o 5
$ 10 § 60
I3 . 5 .
> s > s
g 1072 & g e ®
@ 2 40
S 5
K 10-4 i
10°°
107
1078 1078

0 20 40 60 80 0 20 40
generation generation

60 80

Figure 10: Actions taken and error per generation for single runs on f6 and f14 for model 2.

4 BuecheRastrigin 7 StepEllipsoid

100 100 .,
102 10
100 100

c <

S S

2 2

8 e

2 102 g 60 1072

g 5 g 5

5 5 g 5

é’ 1074 é 40 10-*

3 3

3 3
10-6 10-6
107 107

0 20 40 60 80 0 10 20
generation generation

30 40

Figure 11: Actions taken and error per generation for single runs on f4 and f7 for model 3.

29

1 2 3 4 5 6 7 8 9

rand10.3 6.9% 22.9% [EYIRE] 23.8% 22.7%EER3A 24.7% 24.3% 0 IRE] 26.0% 25.7% 31.4% 96.2% 88.5% 89.9% 27.2% 22.7% 89.3% [58.2%
rand1 0.8 01% 0.0% 0.0% 0.0% 00% 00% 00% 01% 00% 00% 0.0% 00% 01% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0.0% 0.0%| 0.0%
rand2 0.3 0.0% 0.0% 0.0% 0.0%
rand2 0.8 0.0% 0.0% 0.0% 0.0%| 0.0%

rand_to_best2 0.3 5.9% 4.2%[EF 29.3% 8.7%FEAENTY 3.3% 1.6% 33.7% 345% 30.1% 6.0% 1.1% 3.4% 3.2% 3.3% 7.4% 12.6% 315% 1.6% 4.8%| 21.0%
rand_to_best20.8 | 0.0% 0.0% 00% 00% 00% 00% 00% 0.0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0.0% 0.0%
current_to_rand10.3 | 16.9% 23.3% 6.1% 9.1% 19.5%[ENI7] 18.8% 23.5% 22.7%38.6% 3.7%[40.2% 39.7% 38.5% 5.8% 2.7% 81% 6.8% 4.8% 6.9%[TRLA458% 2.8% 5.9%|20.7%
current_to_rand10.8 | 0.0% 0.0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0.0% 00% 00% 00% 00% 00% 00% 0.0%| 0.0%

Table 6: For each function the percentage each action (mutation strategy) was chosen by model I plus the percentage over all 24 functions.

0¢

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24| Total
rand1 0.3 03% 02% 0.1% 0.1% 0.1% 0.1% 00% 02% 0.1% 00% 00% 02% 0.1% 02% 00% 00% 00% 00% 00% 0.1% 0.1% 0.1% 0.0% 0.0%| 0.1%
rand1 0.8 2.0% 4.6% 50% 59% 47% 52% 9.1% 50% 4.8% 10.4% 6.6% 4.8% 4.9% 62% 53% 13.6% 11.3% 12.2% 4.0% 3.3% 3.8% 4.9% 14.2% 8.6%| 6.7%
rand2 0.3 8.1% 12.7% IR 10.8% 11.5%[HEA 11.5% 9.1% |FEOIEREY 32.1% 24.7% 31.9% AR v B IR 12.2% 13.9% SR
rand2 0.8 0.0% 0.0% 0.0% 0.0%

rand_to_best2 0.3 [EHOZRCER/) 10.0% 12.1% QASEZANRVES 22.9% PN sEl 13.2% 4.5% 34.7% 41.7% 39.4% 9.6% 4.2% 28.4% 21.7% 7.3% 10.8% iy elalZ] 3.9% 9.5%(31.3%
rand_to_best2 0.8 36% 35% 18% 15% 18% 3.0% 1.1% 4.4% 28% 04% 05% 45% 35% 24% 11% 03% 05% 04% 03% 12% 25% 23% 0.3% 0.8%| 1.9%

current_to_rand10.3 | 21.8% 19.7% 4.2% 5.5% 11.2% 17.3% 9.7% 21.2% 22.9% 3.7% 1.5% 22.8% 24.7% 19.2% 4.0% 09% 83% 57% 23% 4.5% 25.0% 22.5% 1.0% 3.4%|11.7%
current_to_rand10.8 | 0.2% 0.7% 0.5% 04% 0.2% 10% 06% 09% 0.7% 04% 0.2% 08% 0.4% 06% 0.5% 0.1% 0.3% 03% 02% 06% 06% 02% 0.1% 0.1%| 0.4%

Table 7: For each function the percentage each action (mutation strategy) was chosen by model 2 plus the percentage over all 24 functions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24| Total
rand1 0.3 10.0% 9.5% 41.9% 43.6% 10.0% 10.2% 10.4% 10.2% 10.3% 21.3% 28.8% 11.4% 10.6% 13.7%43.5% 23.6% 20.6% 26.2% 43.1% 44.7% 10.1% 10.6% 23.1% 28.9%| 21.7%
rand1 0.8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 00% 0.0% 0.0% 0.0% 00% 0.0% 00% 00% 0.0% 0.0% 00% 0.0% 0.0% 00% 0.0% 0.0% 0.0%
rand2 0.3 1.5% 0.7% 0.9% 0.5% 02% 09% 1.2% 14% 13% 0.6% 06% 12% 1.6% 16% 0.8% 03% 09% 0.7% 0.8% 09% 02% 0.8% 0.4% 0.5% 0.9%
rand2 0.8 0.0%| 0.0%

[CUC IR0 v R I 5 B33 53079 5204% 52.4% 51.3% 68.5% 81.7% [54.4% W.SWY 77.0% 69.7% NIy 4916% 51.0% 76.0% 77.2% 71.6%53:3% 76.3% 67.5%
rand_to_best2 0.8 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

current_to_rand1 0.3 | 46.2% 36.0% 4.7% 3.6% 38.1% 20.4% 6.6% 33.9% 43.0% 1.1% 0.8% 40.9% 44.8% 352% 4.6% 0.1% 13% 15% 28% 7.4% 84% 24.0% 02% 2.8%|17.1%
current_to_rand10.8 | 0.4% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0% 00% 0.0% 0.0% 00% 0.0% 03% 00% 0.0% 0.0% 00% 0.0% 0.0% 00% 0.0% 0.1% 0.0% 0.3% 0.1%

Table 8: For each function the percentage each action (mutation strategy) was chosen by model 3 plus the percentage over all 24 functions.

5.3 Reward analysis

To see why each model sticks with only a subset of actions, we can analyse the rewards that
were given. The rewards were logged during testing for every individual so that we can see if and
how much the models actually improved on what they were directly trained for. For constant
and random policies that do not use the model, the rewards are also logged, just as if the model
were to choose that action. In Table 9 we see per function the average reward for each model,
together with the average reward for the constant and random strategies to compare. The last
column is the average over all functions. All averages are given as the average per individual,
not the average of the sum of rewards per generation. The reward function is explained in more
detail in Section 4.3.

This table show some large differences with Tables 4 & 5. On f1 model 1 and 2 perform
much better than model 3, having a higher average fraction of targets hit and a higher AUC,
while the differences in average reward are much smaller. This explains why model 3 expects a
large future reward for the first half of the run (Figure 8 Right). The reward function does not
depend on the size of the improvement, so many small improvements are awarded just as much
as many big improvements. As long as the line in Figure 8 Left is decreasing, the cumulative
reward goes up.

This may also explain why for some functions the AUC of the ECDF plots is highest for most
of the models (Table 5), while the other variants have a higher fraction of targets hit when the
budget is depleted (Table 4). The reward function encourages improvements, no matter how
small or big they are. This gives us a higher AUC.

The differences are just as big for the DE variants with constant and random mutation
strategies. On f10, current-to-rand1 0.3 fails to hit any targets, but it got the highest average
reward out of all strategies. This again suggests that this variant makes many small improvements
instead of trying to reach the global optimum as quickly as possible. It is however interesting
to note that all models performed better than current-to-randi 0.3 on f10, despite achieving a
lower average reward.

31

48

1 2 3 4 5 [7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 avg
randl 0.3 | 0.474 0484 0.141 0.162 0.508 0.438 0277 0414 0404 0.244 0206 0.377 0.372 0365 0.131 0.048 0.282 0.246 0.094 0.146 0.334 0422 0.046 0.111 | 0.280

randl 0.8 | 0.157 0225 0.119 0.115 0.304 0.140 0.116 0.129 0.102 0.091 0.059 0.140 0.147 0.143 0.108 0.047 0.101 0.100 0.076 0.117 0.080 0.125 0.046 0.082 | 0.119

rand2 0.3 | 0.377 0.399 0.134 0.148 0448 0316 0.211 0312 0.288 0.184 0.153 0.289 0.291 0.306 0.125 0.047 0.217 0.192 0.090 0.137 0.187 0.313 0.046 0.107 | 0.222

rand2 0.8 | 0.098 0.158 0.099 0.080 0.188 0.104 0.086 0.086 0.073 0.079 0.053 0.093 0.103 0.096 0.088 0.046 0.076 0.079 0.061 0.076 0.053 0.081 0.046 0.056 | 0.086
rand-to-best2 0.3 | 0.570 0.558 0.130 0.155 0.550 0.528 0335 0.520 0.536 0.300 0.233 0.533 0.539 0.539 0.121 0.048 0.258 0.246 0.089 0.151 0.494 0.514 0.046 0.105 | 0.338
rand-to-best2 0.8 | 0.104 0.168 0.096 0.082 0.178 0.106 0.091 0.091 0.076 0.079 0.057 0.096 0.106 0.099 0.089 0.046 0.074 0.077 0.064 0.086 0.062 0.075 0.047 0.060 | 0.088
current-to-randl 0.3 | 0.564 0.546 ~0.154 0.157 0.521 0.540 0.330 0.542 0.566 ~0.492 0.275 0.557 0.562 0.556 ~0.144 0.048 0.186 0.194 0.096 0.173 0.142 0.265 0.047 0.110 | 0.324
current-to-randl 0.8 | 0.200 0.260 0.123 0.127 0.303 0.161 0.139 0.155 0.124 0.105 0.068 0.172 0.174 0.181 0.115 0.047 0.116 0.113 0.079 0.132 0.077 0.144 0.046 0.090 | 0.136
random | 0.363 0.375 0.129 0.144 0369 0.310 0.217 0.312 0.298 0.192 0.153 0.295 0.292 0.304 0.121 0.046 0.216 0.196 0.087 0.127 0.188 0.290 0.047 0.100 | 0.215

modell | 0.729 0.698 0.135 0.167 0.704 0.617 0325 0.652 0.663 0.350 0.223 0.525 0.528 0.496 0.123 0.048 0.292 0.258 0.087 0.135 0.302 0.502 0.047 0.104 | 0.359

model2 | 0.703 0.693 0.124 0.143 0.722 0.675 0.271 0.664 0.683 0.211 0.160 0.441 0.480 0.440 0.116 0.047 0.275 0.226 0.082 0.119 0.604 0.616 0.047 0.098 | 0.357
model3 | 0.720 0.720 0.145 0.165 0.689 0.708 0.430 0.705 0.711 0.343 0.291 0.681 0.683 0.627 0.131 0.048 0.396 0.325 0.090 0.155 0.599 0.671 0.046 0.107 | 0.423

Table 9: Average reward per individual for all functions, including the total average in the last column. For each function, the variant with the highest average
reward is bold and coloured in grey. The three models refer to the variants of DE using a model to choose the mutation strategies. random is DE with a random
policy (choosing a mutation strategy at random for every individual every generation), and the eight mutation strategies refer to the variants using constant policies.

6 Discussion & Conclusion

Analysis of the results reveals that, on average, all three models outperform both random and
constant variants. Notably, significant performance variations are observed across different func-
tions. While on some functions a model may do very well, on other functions it may sometimes
even perform worse than a random policy.

These differences in performance can be explained when looking at the actions that are taken.
Firstly, each model tend to mostly stick with a subset of three or four actions. We saw that some
mutation strategies perform better than others, so it is to be expected that some actions are
picked more. This subset of actions is different for each model. Secondly, where one model might
choose to stick with one a single mutation strategy for most of the run, another model may switch
strategy seemingly every generation. Lastly, while one may expect the models to pick one or
more strategies that perform well when the DE settings are static, testing shows that sometimes
the models find ways to combine strategies that perform bad on their own, but outperform all
other variants when ‘combined’.

The reason why each model tends to stick with its own subset of actions may be for of
a number of reasons. The state features include a lot of information on how the mutation
strategies performed on previous generations. If at the start of training one or two strategies
happen to do very well, the model may learn to use those strategies at the start of every run.
These adequate performing strategies are then only ‘encouraged’ by the state features. The model
may make more informed decisions when given more information in the state vector about the
fitness landscape. Secondly, we saw that slight changes in strategy may greatly alter the overall
performance. This may make it difficult for the neural network to get out of a local optimum.
Further research with separate sets of training functions and testing functions could show how
well the model can generalise on unseen functions.

Lastly, we show that the performance when looking at the ECDF plots can differ greatly
from the values that are rewarded to the model. This means that in some cases the model is
encouraged to pick a mutation strategy that we in reality might find suboptimal, and vice versa.
This could explain why some actions are chosen by the model that do not well in general. These
mutation strategies may tend improve over the optimum, but only in minimal steps.

Despite these difficulties, we show the models are often capable of improving over the constant
and random variants, sometimes by little, sometimes more. Hence, this implies that the models
have the capacity to identify patterns within the state features, and use this to pick the mutation
strategies that increase performance. A multitude of facets that could be improved have been
identified, which are outlined in the next section.

6.1 Future work

Analysis of the results show a multitude of facets that could benefit from improvement. Future
work can improve the stability of the models, help the models generalise better on a wider set
of problems and increase the overall performance. This work can be divided into four subjects:

e State The state feature set for this thesis is based on the work of Sharma et al. [25]. Of
our 112 state features, only 16 give information of the fitness landscape. As outlined in
Section 3, other research use very different state features, often more focused on the fitness
landscape. State features that use information from all fitness values from the entire run
instead of just the previous generation could also benefit the performance.

e Reward As outlined in Section 4.3, it is key to use a reward function that encourages
what we want the model to do. Our findings indicate that there is in some cases a dis-

33

parity between our objectives and the behaviours we incentivise. A reward function that
encourages big improvements more than small ones could improve the performance, but it
is important to have it generalise well, especially on function with high conditioning. Sec-
ondly, having more sparse rewards can encourage getting to big milestones quicker, instead
of trying to get as much reward as possible every generation.

Model Since we are working with a very large and complex state space, The model
could benefit from a larger neural network. For this project, minimal tweaking was done
since it was deemed out of scope, and most settings we based on the work by Sharma et
al. [25]. We expect that a more comprehensive tuning of the hyperparameter values will
result in a notable improvement in the model’s performance. In addition, since deep RL is
a very active research topic, a more modern reinforcement learning algorithm could show
improved results.

Actions For this thesis we have the model choose out of eight actions. For future research
this number can be increased further by adding more operators and factors, and adding
other parameters, e.g. crossover operator, crossover rate and/or population size. A redesign
of the model would make it possible to use continuous actions for the scaling factor and
crossover rate, giving the model even more control over the DE.

34

References

[1]

[10]

[11]

[12]

[13]

[14]

Anne Auger and Nikolaus Hansen. A restart cma evolution strategy with increasing popula-
tion size. In 2005 IEEE congress on evolutionary computation, volume 2, pages 1769-1776.
IEEE, 2005.

Rick Boks, Anna V Kononova, and Hao Wang. Quantifying the impact of boundary con-
straint handling methods on differential evolution. In Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion, pages 1199-1207, 2021.

Janez Brest, Sao Greiner, Borko Boskovic, Marjan Mernik, and Viljem Zumer. Self-adapting
control parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEFE transactions on evolutionary computation, 10(6):646—657, 2006.

Manu Centeno-Telleria, Ekaitz Zulueta, Unai Fernandez-Gamiz, Daniel Teso-Fz-Betono,
and Adridan Teso-Fz-Betonio. Differential evolution optimal parameters tuning with artificial
neural network. Mathematics, 9(4):427, 2021.

Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter black-box
optimization benchmarking 2009: Presentation of the noiseless functions. Technical report,
Citeseer, 2010.

Roger Gamperle, Sibylle D Miiller, and Petros Koumoutsakos. A parameter study for differ-
ential evolution. Advances in intelligent systems, fuzzy systems, evolutionary computation,
10(10):293-298, 2002.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Nikolaus Hansen. Benchmarking a bi-population cma-es on the bbob-2009 function testbed.
In Proceedings of the 11th annual conference companion on genetic and evolutionary com-
putation conference: late breaking papers, pages 2389-2396, 2009.

Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea TuSar, and Dimo Brock-
hoff. Coco: A platform for comparing continuous optimizers in a black-box setting. Opti-
mization Methods and Software, 36(1):114-144, 2021.

Zhenzhen Hu, Wenyin Gong, and Shuijia Li. Reinforcement learning-based differential evo-
lution for parameters extraction of photovoltaic models. Energy Reports, 7:916-928, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiw:1412.6980, 2014.

Anna V Kononova, Fabio Caraffini, and Thomas Béck. Differential evolution outside the
box. Information Sciences, 581:587-604, 2021.

Zhihui Li, Li Shi, Caitong Yue, Zhigang Shang, and Boyang Qu. Differential evolution
based on reinforcement learning with fitness ranking for solving multimodal multiobjective
problems. Swarm and Evolutionary Computation, 49:234-244, 2019.

Junhong Liu. On setting the control parameter of the differential evolution method. In
Proceedings of the 8th international conference on soft computing (MENDEL 2002), pages
11-18, 2002.

35

http://www.deeplearningbook.org

[15]

[18]

[19]

Fu Xing Long, Diederick Vermetten, Bas van Stein, and Anna V Kononova. Bbob instance
analysis: Landscape properties and algorithm performance across problem instances. In In-
ternational Conference on the Applications of Evolutionary Computation (Part of EvoStar),
pages 380-395. Springer, 2023.

Jorge Maturana and Frédéric Saubion. A compass to guide genetic algorithms. In Interna-
tional conference on parallel problem solving from nature, pages 256—265. Springer, 2008.

Efrin Mezura-Montes, Jestis Velazquez-Reyes, and Carlos A Coello Coello. A comparative
study of differential evolution variants for global optimization. In Proceedings of the Sth
annual conference on Genetic and evolutionary computation, pages 485—492, 2006.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiw:1312.5602, 2013.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-
10), pages 807-814, 2010.

Millie Pant, Hira Zaheer, Laura Garcia-Hernandez, Ajith Abraham, et al. Differential evolu-
tion: A review of more than two decades of research. Engineering Applications of Artificial
Intelligence, 90:103479, 2020.

Aske Plaat. Deep reinforcement learning, volume 10. Springer, 2022.

Kenneth Price, Rainer M Storn, and Jouni A Lampinen. Differential evolution: a practical
approach to global optimization. Springer Science & Business Media, 2006.

Kanchan Rajwar, Kusum Deep, and Swagatam Das. An exhaustive review of the metaheuris-
tic algorithms for search and optimization: Taxonomy, applications, and open challenges.
Artificial Intelligence Review, 56(11):13187-13257, 2023.

Jani Ronkkonen, Saku Kukkonen, and Kenneth V Price. Real-parameter optimization with
differential evolution. In 2005 IEEFE congress on evolutionary computation, volume 1, pages
506-513. IEEE, 2005.

Mudita Sharma, Alexandros Komninos, Manuel Lépez-Ibanez, and Dimitar Kazakov. Deep
reinforcement learning based parameter control in differential evolution. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 709-717, 2019.

Rainer Storn and Kenneth Price. Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces. Journal of global optimization, 11:341-359, 1997.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

Zhiping Tan and Kangshun Li. Differential evolution with mixed mutation strategy based
on deep reinforcement learning. Applied Soft Computing, 111:107678, 2021.

Zhiping Tan, Yu Tang, Kangshun Li, Huasheng Huang, and Shaoming Luo. Differential
evolution with hybrid parameters and mutation strategies based on reinforcement learning.
Swarm and Evolutionary Computation, 75:101194, 2022.

36

[30]

Ryoji Tanabe and Alex Fukunaga. Success-history based parameter adaptation for differ-
ential evolution. In 2018 IEEE congress on evolutionary computation, pages 71-78. IEEE,
2013.

Ryoji Tanabe and Alex Fukunaga. Reevaluating exponential crossover in differential evolu-
tion. In International Conference on Parallel Problem Solving from Nature, pages 201-210.
Springer, 2014.

Jason Teo. Differential evolution with self-adaptive populations. In International Conference
on Knowledge-Based and Intelligent Information and Engineering Systems, pages 1284—
1290. Springer, 2005.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
g-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Xinxin Wang, Chengjun Li, Jiarui Zhu, and Qinxue Meng. L-shade-e: Ensemble of two
differential evolution algorithms originating from l-shade. Information Sciences, 552:201—
219, 2021.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67-82, 1997.

Jinggiao Zhang and Arthur C Sanderson. Jade: adaptive differential evolution with optional
external archive. IEEE Transactions on evolutionary computation, 13(5):945-958, 2009.

Karin Zielinski and Rainer Laur. Constrained single-objective optimization using differential
evolution. In 2006 IEEE International Conference on Evolutionary Computation, pages
223-230. IEEE, 2006.

Karin Zielinski and Rainer Laur. Stopping criteria for differential evolution in constrained
single-objective optimization. In Advances in differential evolution, pages 111-138. Springer,
2008.

37

	Introduction
	Background
	Differential Evolution
	Mutation Strategies
	Crossover Strategies
	Boundary constraint handling

	Reinforcement Learning
	Tabular Q-Learning
	Deep Q-Learning

	Related Work
	Methods
	DE-DDQN
	State representation
	Reward function
	Experiments
	Training the models

	Results
	Performance analysis
	Action analysis
	Reward analysis

	Discussion & Conclusion
	Future work

