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Abstract

Human-induced climate change will result in an increased amount of allergenic airborne pollen.
The allergenic properties of different plant species vary. Therefore, a correlation between
the amount and type of pollen in the air and the amount and severity of symptoms for hay
fever patients could prove relevant and be investigated. This paper attempts to maximize
performance on pollen classification using three different models: two convolutional neural
networks (ResNet and MobileNetV2) and one transformer model (Swin Transformer). The
data used for training and testing the models is processed in 3D form, which is unusual in
pollen classification; most other papers in this field use a 2D projection derived from the
original 3D data. The two convolutional neural networks outperform the transformer model
when the pre-trained models are deployed to the dataset. Accordingly, the three models were
edited to be able to process 3D data. The ResNet model yields a maximum accuracy of 98.9
percent, and the MobileNetV2 model, which is much quicker and more lightweight, yields a
maximum accuracy of 97.4 percent.
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1 Introduction

1.1 Biological and pathological background

Pollen grains are the male reproductive cells of seed plants. Pollen can be transported by insects or
other animals, or through air. A single pollen grain contains enough genetic information to create
a new plant [’Po21]. Humans may experience an allergenic reaction when exposed to airborne
pollen. This phenomenon is called hay fever (or allergic rhinitis). Different patients may experience
sensitivity to different pollen grains. While symptoms can be mild for some patients, by the number
of patients, hay fever is among the non-fatal diseases placing the greatest burden on public health
[SCH16]. Since different pollen species possess different allergenic properties, identifying which
species are present in the air tells a lot about the extent to which hay fever patients will experience
symptoms [LPC+23]. Pollen classification is an important task in various medical and biological
branches [BOT+20]. Previously, it was mainly done by hand and required trained experts. It is
a tedious and time-consuming process since the pollen grains of different plant species may show
only subtle morphological differences [LPC+23]. By utilizing machine learning and deep learning
techniques, the costs of pollen classification can be reduced and the need for a trained special-
ist can be eliminated. This is especially needed since climate change and increased urbanization
are expected to cause a rise in the concentration of allergenic pollen present in the air [DCNMO+20].

Two strains of the Urticaceae plant family, namely Urtica and Parietaria, produce morphologically
similar pollen grains. Even experts struggle to tell apart the pollen grains of the two strains. Only
the pollen of the species Urtica membranacea can be distinguished with relative ease.
However, there is a significant difference in allergenic properties between Urtica and Parietaria.
While hay fever patients notice little from the pollen grains of the Urtica strain, the Parietaria, a
strain more common in the Mediterranean, causes a severe allergic reaction. [CPIM18]. In this paper,
classification is performed between Urtica and Parietaria strains. A separation is made between
three groups: pollen from Parietaria Judaica (Pellitory of the Wall) and Parietaria Officinalis
(eastern Pellitory of the Wall), Urtica Dioica (common stinging nettle), and Urtica Urens (dwarf
stinging nettle) and lastly Urtica membranacea (large leafed nettle).

1.2 Literature Review

In 2024, Baokai Zu et.al published a paper on a Swintrainformer model’s performance on Pollen
classification [ZCL+24]. Here, the researchers proposed a new neural network for assigning images of
pollen to the correct species. The network was based on the Swin transformer network architecture.
This model type has been shown to outperform the classic convolutional neural networks on various
computer vision tasks, especially those dealing with sequential data [ZCL+24]. Zu et al. tested the
performance of their model on two separate data sets, one they made themselves, consisting of
many Chinese species of pollen, and one public dataset representative of the pollen of European
species. The data consisted of 2D microscopic pollen images in color, most of which were blurry. To
combat this issue of blurry data, the researchers first fed the data through a so-called Enhanced
Super-Resolution Transformer (ESRT), which improved the image’s resolution by applying shal-
low and deep feature extraction, followed by image reconstruction. The result of this step is a
high-resolution colored 2D image. This was also the shape in which the data was eventually fed
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into the Swin-transformer model. When using the models on pre-trained weight, they achieved
an accuracy score of 0.996 and an F-1 score of 0.9995 with their SwinT-ESRT model and 0.992
with a regular Swin-transformer model. These scores exceeded the ones of the other models used
in the experiment: ViT, F2T-ViT, Efficient-NetV2, ConvNeXt, ResNet-50, and ResNet-34 [ZCL+24].

In their paper Huang et al. compare the performance of a 3d swin-transformer model to other
state-of-the-art image classifiers: DINO, MoCo v3, MOBY and SiT on various tasks concerning
commonly used datasets containing 3D or sequential data. The 3d Swin-transformer model performs
better than all other models with a margin of 1,3 percent in the average accuracy. While this
paper does not concern pollen classification, interestingly, the researchers attribute this strong
performance of the 3D Swintranformer model to its ability to extract information from complex and
variable multiscale features in 3D data, which are also found in the dataset of this thesis [HDLG22].

The paper by Li et al. titled Analysis of automatic image classification methods for Urticaceae pollen
classification” discusses the efficiency of both machine learning and deep learning-based methods for
classifying Parietaria and Urtica pollen strains. In the paper, a comparison is made between deep
learning methods and machine learning methods on pollen classification [LPC+23]. The machine
learning methods required the researchers to manually select important features of the pollen before
they can be extracted from the individual pollen images. These features were selected based on the
observable biological differences between the plant species. The deep learning methods do not require
such feature selection. The image acquisition workflow consisted of taking the image of the pollen
cells from 20 different focal depths. Next, three different projections are created along the Z-axis:
the standard deviation projection, the minimum intensity projection, and the maximum intensity
projection. The three different projections were fed into the models as separate channels. The
deep learning methods generally outperformed the machine learning methods. The highest-scoring
deep-learning method was ResNet50 (0.994 accuracy on 10-fold cross-validation). This model was
closely followed by VGG19 (0.986 accuracy on tenfold cross-validation) and MobileNetV2 (0.985 on
tenfold cross-validation)[LPC+23].

The same Z-stack projection was used in the paper of Polling et al. from May 2021, where
the performance of several convolutional neural nets on classification was examined, using the
microscopic images of pollen, that could not be manually differentiated beyond the genus level
by specialists. Among the strongest performing models at the task were MobileNetV2 as well as
VGG19 (accuracies of respectively 98.30 and 98.45 on tenfold cross-validation)[PLC+21].

Daood, connected to the Florida Institute of Technology proposes several different methods of pollen
classification in his paper Pollen Grains Recognition Based on Computer Vision Methods. The
most successful method entails the combination of a convolutional neural network called VGG16
and a customized recurrent neural network for the classification of multi-focal images, represented
in a Z-stack. When combining this with transfer learning Daood achieved a perfect accuracy score
[Dao18]
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1.3 Data Handling

When looking at the papers described in subsection 1.2, it is clear that while several different pollen
datasets exist, there are some distinct ways in which the data is usually fed into the models. Most
commonly, the data is in 2D form. Some papers extract information from the 2D data by making
projections of the image or from the stack of images from different focal points (most commonly
MIN, MAX, and STD). In this paper, however, the raw stack of six frames is the input of the
model. There will be no pre-processing in the form of making projections. The idea behind this
is that minimal information is lost this way. Additionally, the sequence in which the stacks are
ordered may contain information that would be lost when compressing the stack into 2D form.

1.4 Overview

In this paper, the performance of two different convolutional neural networks and one transformer-
based network will be evaluated on the task of pollen classification. The classification made will
be between pollen grains of the species mentioned in 1.2. The data is treated as sequential data,
and after pre-processing, the Z-stack itself will be the input to the models, instead of a projection.
The Swintransformer model is known to be good at temporal or sequential data. The MobileNetV2
lends itself well for tasks requiring a lot of computational power, because of its small size and few
trainable parameters. K-fold cross-validation will be used for training and validation on the training
data. The model’s performance will be assessed based on its accuracy score on the test set.

2 Relevant Techniques and Models

2.1 Transfer Learning

Transfer learning is a technique widely used in computer vision where the starting point of training
a model for a specific task A is the model trained on a different task B. One takes the model trained
for task B and trains it on the existing training data for task A. The weights learned by training
on task B are transferred to the next task A, hence the name transfer learning. Since a model’s
performance is generally related to the amount and quality of training data available, transfer
learning can be of great aid when the available training data is small or of bad quality [Boond].
Two of the models discussed in this paper, namely MobileNetV2 and ResNet, are both tested when
trained from scratch and when pre-trained. Unfortunately, there were no pre-trained weights to
be found for the Swintransformer model. This model is therefore only tested when trained from
scratch. Both MobileNetV2 and ResNet are trained on the ImageNet dataset in this paper. The
ImageNet dataset contains over 14 million high-resolution labeled images with a wide variety of
classes. [DDS+09]

2.2 Tenfold cross-validation

K-fold cross-validation is a statistical method to assess a model’s performance on a task. Its goal is
to produce an accuracy measure that is reliable and robust. It does so by partitioning the data into
k different subsets of equal size, also called folds. The model is trained on all but one fold. The fold
not used for training is the validation set used for evaluating the model’s performance. This step is
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repeated k times until all folds are used exactly once as the validation set. The performance metric
is measured at each training round and averaged to compute the final metric value. The benefit of
k-fold cross-validation is that the performance metric is more reliable since it stabilizes the variance
of accuracy estimates stemming from differences in the training and testing data set [WY20]. When
dealing with real-world data sets, tenfold cross-validation is the recommended standard, as it strikes
a balance between computational efficiency and reliable performance metrics [Bernd]

2.3 Artificial neural networks

Artificial neural networks have taken the field of machine learning by storm, outperforming previous
machine learning models on various tasks, but in particular on natural language processing and
computer vision [ON15]. A great advantage of artificial neural networks is the possibility of
processing image data in its raw form, whereas more traditional machine learning techniques require
features to be extracted from the raw data before it can serve as input for a model. This is especially
useful when dealing with image data since it is often hard to extract standardized features from
images [LBH15].
While there is a wide variety in the design architecture of artificial neural networks, they all have
the same basic structure inspired by the biological brains of humans and other animals. Similar
to their biological counterparts, they consist of a large number of interconnected nodes that take
an input X, perform an operation F on it, and produce an output Y (similar to how a neuron
works)[IGMA18]. An ANN consists of an input layer and an output layer, with hidden layers in
between the two.

2.4 ANN depth

The number of neurons and layers, and how the neurons are interconnected are determinative of
the character of the network and the performance of the network on different tasks [ON15]. In
ANNs, low-order features are learned in shallow layers, and more high-order abstract features are
learned in deeper layers within the network. This makes deeper ANNs more suited for complex data
containing hierarchical features. Shallow nets on the other hand are a computationally inexpensive
and generally better choice when dealing with less complex data [LBH15].

2.5 Convolutional neural networks

Convolutional neural networks are a type of artificial neural network which, as the name prevails,
contain convolutional layers. The convolutional layer uses multiple learnable filters called kernels
that are usually small in size and always smaller than the input. For each kernel, a unique feature
is extracted from the input image, for example, edges or texture. Each kernel slides over the input
image horizontally and vertically, calculating the scalar product for each value in the kernel. This
is the convolutional operation. Each convolutional operation will result in a unique feature map, a
two-dimensional array representative of the strength of the specific feature in the input as detected
by the filter [IGMA18].
Apart from Convolutional layers, CNNs contain pooling layers and flattening layers for spatial
dimension reduction [IGMA18] [Shy21]. Lastly, Dense layers are characteristic of CNNs, which
contain fully connected layers and serve the purpose of finding relationships between different
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aggregated features. [DGY+19]
In 3D CNNs, designed for volumetric data and video data, the kernels in convolutional layers are
also in 3D shape. They slide over the input data across all three axes (x,y,z). The stride with which
they slide over the data can be adjusted independently from one another [SMB19]

2.6 Learning by CNNs

Learning by CNNs starts with forward propagation, where the training data is passed through the
network. This results in a prediction of what class the instances belong to. Since the training data
is labeled, the accuracy of the model can be assessed using a loss function, which measures the
distance between the predictions made by the model and the actual target label. (Li et al., 2014)
In this paper, the loss function used is the categorical cross-entropy loss function, which is well
suited for multi-class classification tasks [ZS18].
The next step in the learning process is adjusting the parameter so that the loss as calculated by
the loss function is minimized. To achieve this, the gradient of the loss function is calculated with
the back-propagation algorithm for each node. The optimizer then adjusts the weights and biases
in the model intending to minimize the loss function [Bacnd]. The optimizer used in this paper is
the Adam optimizer from the torch library.

2.7 Resnet

The ResNet architecture, short for residual network, is a deep CNN characterized by the residual
layers in the network. Residual connections skip over a convolutional layer and are directly connected
to the next layer [XFZ23]. These connections help mitigate the vanishing gradient problem common
in deep neural networks [BK23]. Resnet architecture-based networks have been a staple in the field
of computer vision, especially in tasks concerning the classification of medical and biological images
[XFZ23].

2.8 MobilenetV2

MobileNetV2 offers a more lightweight solution to classification tasks than ResNet Models. The
model contains depth-wise convolutional layers and linear bottleneck layers, which contain signifi-
cantly fewer nodes than the predeceasing layer. This reduces the number of parameters needed
for training, making the model more lightweight. Another characteristic of MobileNetV2 are its
inverted residual layers, which first expand the input tensor to a multiple of nodes, then perform
convolutional operations on it and finally bring it back to a lower dimension [SHZ+19].

2.9 Swintransformer

The last model discussed in this paper is not a convolutional neural network but a vision transformer
model. It works by the concept of shifted windows, meaning the image is processed by dividing it
into non-overlapping windows, which are fed into the network and then deeper in the layers, are
merged again together for the network to process the global information in the image [HDLG22].
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3 Methodology

3.1 Flowchart overview

Figure 1: An overview of the methodology of this paper in a flowchart

The elements of the methodology are described in the following paragraphs:

1. Loading the data 3.5

2. label mapping 3.6

3. Data preprocessing: Shuffle images 3.5

4. Data preprocessing: Crop images from the
sharpest frame 3.7

5. Data preprocessing: add padding 3.8

6. Split data 3.9

7. 10-fold cross-validation 3.9

8. Data Augmentation: vertical flip, horizon-
tal flip 3.10

9. train model 3.11

10. adjust parameters 3.11

11. final model evaluation 3.12

3.2 Hardware used

Since the training and testing of the model on the data is too computationally demanding for
the laptop available during this research (HP Z-book G7 mobile workstation, processor: Intel(R)

6



Core(TM) i7-10750H CPU @ 2.60GHz, 2592 MHz, 6 core(’s), 12 logistic processor(s) ), the super-
computing facilities provided by the Universiteit Leiden were used. The ALICE high-performing
computer cluster is available for students and employees of both the medical and science faculties
and can be accessed through an SSH port. Both CPU and GPU nodes are made available. For this
research, the so-called GPU-long nodes were used, consisting of two NVIDIA A100 tensor core
GPUs. Each one is good for 40GB of memory.[ALInd].

3.3 Software libaries

UseSoftware library name Version Use
tiffile 2024.2.12 Opening and reading tiff-files
Pickle-mixin 1.0.2 Making objects suitable for conversion to pickle file
Pickleshare 0.7.5 Making, reading, and writing to pickle files
Scikit-learn 1.4.2 Open-source machine learning library for python
Imutils 0.5.4 Provides convenience functions for image processing
Numpy 1.24.3 Package for scientific computing. Provides support for a

large collection of mathematical functions
Matplotlib 3.8.0 Library for data visualization
Tdmq 4.64.1 Library providing message queue system
Torch 2.3.1 Open source machine learning library, primarily focused

on tasks of computer vision and natural language pro-
cessing

Torchvision 1.5.1 Library for image transformation
Torchsummary 1.5.1 Library for providing concise summaries of pytorch mod-

els
Opency-python 4.9.0.80 Library for computer vision functions. Used in this paper

for finding the sharpest layer in the image stack.

Table 1: Software libraries used in this paper

3.4 Data

This dataset is the same as the data used in the paper of Li et al [LPC+23], but then with the
difference that the data is kept in its 3D form, namely as a stack of images taken of the pollen from
different focal planes. The data is not projected into 2D form, like in the paper of Li et al., where
the 3D images of the dataset were compressed by Z-stack projection, which utilizes the standard
deviation, the minimum intensity, and extended Focus for each pixel, which were treated like three
different channels when fed into the models. While the 3D data contains more information about
the depicted pollen grain (every 1.8 µm of the grain is captured, and of course, the sequential order
of the stacks also contains information), it does make training the model more computationally
expensive [LZW14].
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3.5 Preprocessing Pipeline

After the data was loaded from the directory, it was shuffled with a set seed (21). This is done to
ensure reproducibility, since it leads to the randomization being consistent across different runs.
Subsequently, the data was pre-processed as described in this paragraph. This was done to make
the data compatible with the model and to stimulate the learning by the models.

3.6 Label mapping

Since the pollen grains of Parietaria Judaica and Parietaria Officinalis are treated as one class, and
the same is true for Urtica Urens and Urtica membranacea the labels of the instances belonging to
these classes need to be concatenated into two respective classes. Next, the now three classes are
converted to a numerical format (0,1,2)

3.7 Sharpest frame selection and frame cropping

Next, the sharpest frame is selected from the Z-stack using the cv canny filter. The six frames
surrounding this sharpest frame serve as the input of the models. The reasoning behind this
method is that the sharpest frames will contain the most information about the pollen grain.
Including the other frames in the input will waste computational resources and may even add noise,
decreasing the model’s performance. The sharpest subset is found with the use of the so-called
CannyEdgeDetection of the OpenCV library, a popular edge detection algorithm. It is a multistage
algorithm, which starts with smoothing the image by sliding a 5x5 Gaussian kernel filter over the
image. This is done to reduce the noise in the image. Next, a Sobel filter is put over the image, in
horizontal (Gx) and vertical G(y) directions. The magnitude and direction/angle are then computed
as follows:

Edge Gradient(G) =
√
G2

x +G2
y (1)

Angle(θ) = tan−1

(
Gy

Gx

)
(2)

The next step is non-maximum suppression, which entails checking for each pixel whether the pixel
is a minimum or a maximum in its gradient direction. When this is not the case, the pixel is set to
zero. With double thresholding, edges are identified as strong (above the high threshold) or weak
(between the low and high threshold). Pixels that fall below the strong threshold are considered
non-edges. In this paper, a value of 100 is used as the low threshold, and 300 as the strong.
The final step is Hysteresis, where only the weak edges connected to strong edges are retained,
while others are discarded [Kal15]
The frame with the most edges is considered the sharpest frame. This is the frame around which
the other frames are taken. The six surrounding frames are then selected, if not out of the images’
range. If the sharpest frame is too close to the perimeters of the image, the range is shifted to the
opposing side of the image, to keep the number of frames at six.
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3.8 Padding and cropping

Since the models only take input images of size 224 x 224 x 6 (height, width, depth)and the images
in the dataset differ in size, they need to be cropped or extended to these target dimensions. Images
that are too small are provided with padding. Pixels are added to the image and assigned the mean
grayscale value of that image. The choice for the mean value instead of zero padding stems from
the desire to add as little extra information to the image as possible. This goal is also the reason for
using padding in general and not simply zooming in on the smaller images. The size of the pollen
grain information that can be used by the models during the classification.
Images whose dimensions exceed those expected by the models are cropped. The target height and
width are deliberately chosen to be greater than those of the majority of the original images of the
dataset to prevent loss of information from cropping.

3.9 Splitting into folds

The next step in the preprocessing of the data is to split the data into a training, validation, and
test set. The test set is the first to be separated from the training and validation set. 10 percent of
the data is kept aside for this purpose. The custom class ‘dataloaders’ contains the code where the
data division is made. At every fold, a new training and validation split is made with a set seed,
to prevent data leakage and for reproducibility 3.5. The training data is then processed further
with data augmentation while the validation set is not. The train/validation ratio is 9 to 1. The
split is performed with the help of Pytorch’s Datasets class. These datasets are then wrapped into
instances of the class Dataloader that will further handle the data augmentation as described in
the paragraph below 3.10.

3.10 Data augmentation

Firstly, all gray-scale values in the image are normalized between (−1, 1). This is done to pre-
vent single, outlier features from becoming too dominant in the image. Additionally, deep neural
networks tend to show better performance and accelerated convergence when input scales are
normalized.[PTK+20]. Normalizing to (−1, 1) is particularly beneficial because it centers the data
around zero, promoting a more stable gradient flow and faster convergence during training when
using a ReLu activation function.The hyper-parameter ‘augthreshold’ is decisive in the amount of
data augmentation performed on the training data set. The threshold is set to a number between 0
and 1. For each image in the training set, a random number between 0 and 1 is generated. If the
new number is higher than the threshold, a copy of the image is used for data augmentation. A
high augmentation threshold will lead to little data augmentation, and vice versa.

The data augmentation is performed by vertically and horizontally flipping the images to increase
the diversity of the training dataset. The main idea behind this is to improve the generalization
process of the model and reduce over-fitting. Data augmentation is particularly valuable when
dealing with little training data since new data points are artificially created [Artnd]. The reasoning
behind only performing horizontal and vertical flips was that other operations like rotation might
add non-existent information to the images or result in a loss of information, like the pixels needed
to fill in the corners of the image after rotation.
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3.11 Training and Validation

Once an augmented training set and a validation set are acquired the model is trained. The function
‘getmodel’ initializes the model architecture for each fold. The model is then transferred to the
GPU to reduce training time.

The training loop consists of 30 epochs for each fold. The training data is fed into the model in
batches, which aids efficiency and structured learning. The learning by the model takes place as
described in paragraph 2.6 (forward pass, loss computation, backward pass, and parameter update
per epoch). After the parameter update, the model generated by the epochs training is evaluated
on the validation set. The ‘evaluate()’ method calculates the accuracy, loss, and F1 score of the
model on the training and validation set. If the models’ accuracy on the validation set is the highest
of the current fold yet, the models’ parameters are saved into a ‘. pth’ file using the ‘savecheckpoint’
method. Additionally, the training and validation metrics are saved to a pickle file.

The training loop is finished when for each fold, a model, trained and validated on all epochs is
saved.

3.12 Testing

Once the model with the highest validation accuracy is saved for each fold, the testing can begin.
In the ‘datalaoders’ class a distinct division was made between data for training and validation and
the final test data. It is important for the test data to not be seen before by the model, to achieve
a reliable accuracy score. This is ensured by the ‘testmodel’ function which will return an error
message if instances from the test data set are found in the training or validation data. When data
leakage is ruled out, the models are tested on the unseen test data. The accuracy on the test set is
taken for all the folds models and averaged, resulting in a robust and reliable metric.

3.13 Plotting

Finally, the results are plotted. The average train and validation loss are computed for each epoch
overall folds, after which they are plotted in a graph. The graph is saved. The average and best
accuracy on the test data of the models overall folds is added to the graphs’ titles.

3.14 Code Adaptation

Since this thesis is the continuation of a previous student’s work, a significant amount of the
code used for this thesis was re-used from her prvious work. This is mainly the case for the code
containing the preprocessing and data augmentation of the image data. This student’s work can be
found in the bibliography at [Seb23].
Additionally, there was a collaboration with fellow student Tijs Konijn, also mainly on the code
concerning the data pre-processing.

Lastly, the building of the MobileNetv2 model was done with another author’s implementation
of a 3D version of MobileNetV2 as a guideline. The implementation authors’ model was made to
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exactly match the original 2d models’ architecture as described in the developer’s paper [HZC+17],
except in 3D.
The implementation of this model can be found in an open-source project available on GitHub
kopuklu2019mobilenet. The original code was developed by Okan Köpüklü and can be found at his
public GitHub Repository. The code used for this project has a different structure of classes and
functions as well as different naming but shows similarities in layer configuration since both codes
eventually result in the same model, namely a 3D version of [HZC+17].

4 Results

In the section below, the results for the three models are discussed. By adjusting the hyper-parameter
settings, the goal was to maximize the accuracy of the models on the test dataset.

4.1 Baseline ResNet3D

The baseline model used in this paper is ResNet 3D. Optimal parameter settings were obtained
from previous work [Seb23], with an exception for the number of frames, which was set to 6. The
settings are the following:

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold 0.5

number of frame 6
batch size training 16
batch size validation 16

Table 2: hyper-parameter settings on the ResNet 3D model

11
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 best model (ResNet3D_best_fold_4.pth), best accracy: 0.98, best loss 0.059, best F1: 0.98 

Figure 2: Average training and validation loss, F1-score and accuracy over all folds per epoch for
the ResNet3D model trained from scratch with hyper-parameter settings 2

metric Accuracy F1-score Loss
average value 0.972 0.972 0.074

Table 3: average performance metrics on the test set for the ResNet3D model trained from scratch
with hyper-parameter settings 2

pre-trained ResNet 3D Using the same hyper-parameter settings as 2, the pre-trained ResNet
3D yielded the following results:
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Figure 3: Average training and validation loss, F1-score and accuracy over all folds per epoch for
the pre-trained ResNet3D model with hyper-parameter settings 2
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metric Accuracy F1-score Loss
average value 0.984 0.984 0.067

Table 4: average performance metrics on the test set for the pre-trained ResNet3D model with
hyper-parameter settings 2
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4.2 Swintranformer 3D

For the specific type of Swintranformer researched in this paper, no pre-trained weights were found
online. Therefore, only the Swintransformer 3D trained from scratch is discussed.

First run The starting point for finding the optimal settings for the 3D Swintransformer model
were those found to be optimal for the ResNet3D model. The hyper-parameters for the number of
attention heads and window size were set to default.

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold 0.5

number of frame 6
batch size training 16
batch size validation 16
number of heads [3, 6, 12, 24]
Window size [8,7,7]

Table 5: hyper parameter settings on the Swintranformer 3D models first run
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Results for CustomSwintransformer3d 
 average acc: 0.9307339449541283 

 best model (CustomSwintransformer3d_best_fold_0.pth), best accracy: 0.942, best loss 0.204, best F1: 0.942 

Figure 4: Average training and validation loss, F1-score and accuracy over all folds per epoch for
the Swintransformer 3D model trained from scratch

metric Accuracy F1-score Loss
average value 0.931 0.924 0.224

Table 6: average performance metrics on the test set for the Swintranformer 3D model trained from
scratch
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Augmentation threshold The effect of adjusting the augmentation threshold was examined,
using the following hyper parameter settings:

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold [0.1, 0.2, 0.5, 0.7]

number of frames 6
batch size training 16
batch size validation 16
number of heads [3, 6, 12, 24]
Window size [8,7,7]

Table 7: hyper parameter settings on the Swintranformer 3D model for adjusting the augmentation
threshold

augmentation threshold 0.1 0.2 0.5 0.7
Mean accuracy 0.931 0.823 0.931 0.919

Table 8: Mean accuracy scores for different augmentation threshold values

The best setting for the augmentation threshold is 0.5. The performance of the model on settings
7 and augmentation threshold 0.5 is depicted in 4 The worst setting found for the augmentation
threshold was 0.7. The performance graph for these settings can be found in Appendix 1 8:

Training batch size The effect of adjusting the training batch size was examined, using the
following hyper-parameter settings:

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold 0.2

number of frames 6
batch size training [16, 20, 50, 70]
batch size validation 16
number of heads [3, 6, 12, 24]
Window size [8,7,7]

Table 9: hyper-parameter settings on the Swintranformer 3D model for adjusting the training batch
size

yielding the following results:
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Training batch size 16 20 50 70
Mean accurracy 0.823 0.930 0.933 0.931

Table 10: Mean accuracies for different training batch sizes

The best setting for training batch size is 50. The performance graph of this setting can be found
in Appendix 9
The worst setting found was 16. The performance graph for these settings can be found in appendix
10

Validation batch size The effect of adjusting the validation batch size was examined, using the
following hyper parameter settings: yielding the following results:

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold 0.2

number of frames 6
batch size training 20
batch size validation [16, 20, 50, 70]
number of heads [3, 6, 12, 24]
Window size [8,7,7]

Table 11: hyper parameter settings on the Swintranformer 3D model for adjusting the validation
batch size

validation batch size 16 20 50 70
Mean accurracy 0.930 0.935 0.933 0.9325

Table 12: Mean accuracies for different validation batch sizes

The best setting for validation batch size is 20. The performance graph for these settings can be
found in Appendix 11 The worst setting found was 16. The performance graph for these settings
can be found in Appendix 12

Learning rate The effect of adjusting the learning rate was examined, using the following
hyper-parameters:
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hyper-parameter value
folds 10
epochs 30

learning rate [0.001, 0.0001, 0.00001]
augmentation threshold 0.2

number of frame 6
batch size training 16
batch size validation 16
number of heads [3, 6, 12, 24]
Window size [8,7,7]

Table 13: hyper parameter settings on the Swintranformer 3D model for adjusting the learning rate

Learning rate 0.001 0.0001 0.00001
Mean accurracy 0.431 0.823 0.653

Table 14: The effect of adjusting the learning rate on the Swintransformer 3D model

The best setting for the learning rate is 0.0001. For a graph of the best settings see Appendix 10.
The worst setting found was 0.001. The performance graph of the worst settings is depicted in
Appendix 13:

Optimized parameters from the paragraphs above, the following optimal hyper-parameter
settings arise:

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold 0.5

number of frame 6
batch size training 50
batch size validation 20
number of heads [3, 6, 12, 24]
Window size [8,7,7]

Table 15: seemingly optimal hyper parameter settings on the Swintranformer 3D model

When running the model on these settings, the following results were obtained:

metric Accuracy F1-score Loss
average value 0.9243 0.9241 0.2860

Table 16: average performance metrics on the test set for the MobileNetv2 model trained from
scratch with parameter settings 15
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The performance graphscan be found in Appendix 14

4.3 MobileNetV2 3D

First run The starting point for finding the optimal settings for the 3D MobilenetV2 model were
those found to be optimal for the ResNet3D model. The following hyper-parameter settings were
used:

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold 0.5

number of frame 6
batch size training 16
batch size validation 16

Table 17: hyper parameter settings on the MobileNetv2 3D models’ first run

This resulted in the following performance metrics:
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Figure 5: Average training and validation loss, F1-score and accuracy over all folds per epoch for
the MobileNetv2 3D model trained from scratch with parameter settings 17

metric Accuracy F1-score Loss
average value 0.959 0.959 0.1308

Table 18: average performance metrics on the test set for the MobileNetv2 model trained from
scratch with parameter settings 17
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Augmentation threshold The effect of adjusting the augmentation threshold was examined,
using the following hyper parameter settings:

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold [0.1, 0.2, 0.5, 0.7]

number of frames 6
batch size training 16
batch size validation 16

Table 19: hyper parameter settings on the MobileNetv2 3D model for adjusting the augmentation
threshold

augmentation threshold 0.1 0.2 0.5 0.7
Mean accuracy 0.936 0.937 0.959 0.919

Table 20: Mean accuracy scores of MobileNetv2 3D for different augmentation threshold values
using parameter settings 19

The best setting for the augmentation threshold is 0.5. The performance graph for these settings is
depicted in 5. The worst setting found was 0.7. The performance graph of the worst settings is
depicted in Appendix 16

Training batch size The effect of adjusting the training batch size was examined, using the
following hyper-parameter settings:

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold 0.5

number of frames 6
batch size training [16, 20, 50, 70]
batch size validation 16

Table 21: hyper parameter settings on the MobileNetv2 3D model for adjusting the training batch
size

training batch size 16 20 50 70
Mean accuracy 0.959 0.919 0.903 0.899

Table 22: Mean accuracy scores for different training batch sizes
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The best setting for the training batch size is 16. For a graph of the best settings see 5. The worst
setting found was 70. The performance graph of the worst settings is depicted in Appendix 17

validation batch size The effect of adjusting the validation batch size was examined, using the
following hyper-parameter settings:

hyper-parameter value
folds 10
epochs 30

learning rate 0.0001
augmentation threshold 0.5

number of frames 6
batch size training 16
batch size validation [16, 20, 50, 70]

Table 23: hyper parameter settings on the MobileNetv2 3D model for adjusting the validation batch
size

validation batch size 16 20 50 70
Mean accuracy 0.959 0.922 0.925 0.924

Table 24: Mean accuracy scores for different validation batch sizes

The best setting for the validation batch size is 16. For a graph of the best settings see 5. The worst
setting found was 20. The performance graph of the worst settings is depicted in Appendix 18:

Learning rate The effect of adjusting the learning rate was examined, using the following
hyper-parameter settings:

hyper-parameter value
folds 10
epochs 30

learning rate [0.01, 0.001, 0.0001, 0.00001]
augmentation threshold 0.5

number of frames 6
batch size training 16
batch size validation 16

Table 25: hyper parameter settings on the MobileNetv2 3D model for adjusting the learning rate

Learning rate 0.01 0.001 0.0001 0.00001
Mean accuracy 0.922 0.959 0.959 0.413

Table 26: Mean accuracy scores for different learning rate values
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The best setting for the learning rate is 0.0001. For a graph of the best settings see 5. The worst
setting found was 0.00001, the performance graph is depicted in Appendix 19
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pre-trained Mobilenetv2 3D The performance of the pre-trained mobilenet on hyper-parameter
settings 17, yielded the following results:

metric Accuracy F1-score Loss
average value 0.950 0.950 0.146

Table 27: average performance metrics on the test set for the pre-trained MobileNetv2 model with
parameter settings 17

The performance graph can be found in Appendix 20

Optimal settings for pre-trained model The best parameter settings found for the pre-
trained model were the following :

hyper-parameter value
folds 10
epochs 30

learning rate 0.001
augmentation threshold 0.2

number of frames 6
batch size training 16
batch size validation 20

Table 28: best hyper-parameter settings found for the pre-trained MobileNetv2 3D model

These settings yielded the following results:

metric Accuracy F1-score Loss
average value 0.974 0.974 0.073

Table 29: average performance metrics on the test set for the pre-trained MobileNetv2 model with
parameter settings 28

The performance graph can be found in Appendix 21

4.4 Results overview

For each model, trained and pre-trained the parameters which resulted in the highest average
accuracy score on the test set were used again, but this time on 50 epochs instead of 30. The
accuracy scores are depicted in par 30 . The performance graphs are depicted the Appendix at:

1. ResNet 3D 6

2. ResNet 3D (pre-trained) 7

3. Swintransformer 15

4. MobileNetV2 22
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5. MobileNetV2 (pre-trained) 23

Listed below are the best-acquired results for each model on 30 epochs and 50 epochs, trained
from scratch and pre-trained. The accuracy is the accuracy the model yielded on the test set. The
best-performing model is the pre-trained ResNet model on 50 epochs, which scores an accuracy of
0.989.

Model Best Avg Accuracy 30 e Best Avg Accuracy 50 e Hyper-parameters
Resnet 3D 0.972 0.988 2

Resnet 3D (pre-trained) 0.984 0.989 2
Swintransformer 3D 0.935 0.931 5
MobileNetv2 3D 0.959 0.936 5

MobileNetv2 3D (pre-trained) 0.974 0.956 28

Table 30: Best performances of all models on 30 epochs and 50 epochs (pre-trained and from
scratch)

5 Discussion and Conclusion

Although the papers by Huang [HDLG22] and [ZCL+24] raised high expectations for the Swin
Transformer model on the task of pollen classification with sequential data, its performance was
disappointing. Part of the reason for this is, of course, the lack of pre-trained weights available for
this model. However, when looking at table 30, it becomes clear that the Swin Transformer model
generally performs worse than ResNet and MobileNet, even when trained from scratch.
Swintranformer benefits from slightly larger batch sizes than ResNet, possibly because the Trans-
former models generally respond well to the stabilizing effects of larger batch sizes. Its architecture,
with complex attention mechanisms and hierarchical processing units, makes it more sensitive to
unstable gradients. [PB18]. The Swintrainsformer did not benefit from longer training, suggesting
over-fitting when trained on 50 epochs.
The MobileNetv2 model performs reasonably well, considering its light weight and few parameters.
Using a mobileNetv2 for pollen classification could be desirable if reducing computational cost
is one’s special interest. The pre-trained MobileNet outperforms the model trained from scratch
by 1.5 percent points. Interestingly, the hyper-parameter settings working the best for the model
trained from scratch are not those resulting in the best results for the pre-trained model. Seemingly,
the fact that the pre-trained model benefits from a higher learning rate is the effect of it already
having already captured general features from a large dataset. The model will not suffer from a
destabilized learning process, which is often a result of a high learning rate. The pre-trained model
is already close to a good solution so faster adjustments are beneficial.[ST17]. The MobileNet did
not benefit from longer training, suggesting the model over-fits on the training data when trained
for 50 epochs.

When looking at the performance graphs of the pre-trained ResNet, it becomes clear that the
pre-trained models are less susceptible to over-fitting, since the training and validation accuracy
over the epochs 4 lie closer together than those of the models trained from scratch 2. A high
accuracy score on the training set and a low accuracy on the validation set implies over-fitting.
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This is also the case for the MoblieNetV2 models 5 20. The ResNet model is the only model which
did benefit from longer training, improving the accuracy scores with 0.016 and 0.004. Since these
differences are only small, one could wonder if it is worth spending the extra computational power
on this exra learning. The answer to this question will depend on one’s preferences and available
resources.

5.1 Conclusion

The highest accuracy achieved in this paper was by the pre-trained ResNet model, trained on 50
epochs, achieving an accuracy of 0.989. This is not as high as the highest scores discussed in the
Literature Review 1.2, but it ranks around the average of all the scores. This is a promising sign
for pollen classification with 3D data.
Depending on the available computational resources, the best models found in this paper to use
for pollen classification are the pre-trained ResNet model (large computational demand) or the
MobileNetV2 (small computational demand).

5.2 Future work

Since the field of pollen classification is broad and diverse, the research conducted in this paper
could be extended to achieve better performance metrics. Some suggestions for this goal to be
achieved are mentioned in the subsections below.

5.3 Pre-trained Swintransformer

At the time of this research, no pre-trained weights for the specific Swintransformer3d class from
PyTorch were publicly available. Since the pre-trained versions of the other two models performed
well, it would be worth the effort to try a pre-trained Swintransformer on this task once the weights
are made available.

5.4 Experimenting with number of frames

In this paper, a number of six frames is used from each image. It would be interesting to see whether
including more or fewer frames in the input results in better or worse performance. On the one hand,
the blurry peripheral frames might only add noise and therefore lead to worse performance. On the
other hand, the data might contain information that is not visible to the naked (layman’s) eye but
can be very well extracted by the model, which would lead to an improvement in performance.

5.5 Colored images

Many of the papers discussed in the Literature Review 1.2 use colored images as the model’s input.
It would be worthwhile investigating whether the extra computational costs associated with this
change would outweigh the potential increase in performance.
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6 Appendix

6.1 Performance graph ResNet3D
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Results for ResNet3D 
 average acc: 0.9877675840978591 

 best model (ResNet3D_best_fold_2.pth), best accracy: 0.991, best loss 0.021, best F1: 0.991 

Figure 6: Performance graph of RESNET 3D model trained from scratch with optimal settings
trained on 50 epochs
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Results for ResNet3D 
 average acc: 0.9877675840978591 

 best model (ResNet3D_best_fold_2.pth), best accracy: 0.991, best loss 0.021, best F1: 0.991 

Figure 7: Performance graph of the pre-trained RESNET 3D with optimal settings trained on 50
epochs

6.2 Performance Graphs Swintransformer
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Results for MobileNet 
 average acc: 0.9191131498470947 

 best model (MobileNet_best_fold_9.pth), best accracy: 0.931, best loss 0.217, best F1: 0.931 

Figure 8: Graphs of the loss, F1 score and accuracy of the Swintransformer 3D model on the worst
setting found: 0.7
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Results for CustomSwintransformer3d 
 average acc: 0.9327217125382262 

 best model (CustomSwintransformer3d_best_fold_5.pth), best accracy: 0.943, best loss 0.225, best F1: 0.943 

Figure 9: Graphs of the loss, F1 score and accuracy of the Swintransformer 3D model on the best
setting found for training batch size: 50
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Results for CustomSwintransformer3d 
 average acc: 0.8232415902140673 

 best model (CustomSwintransformer3d_best_fold_7.pth), best accracy: 0.937, best loss 0.204, best F1: 0.937 

Figure 10: Graphs of the loss, F1 score and accuracy of the Swintransformer 3D model on the
worst setting found for training batch size: 16 and the best setting found for learning rate: 0.0001
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Results for CustomSwintransformer3d 
 average acc: 0.9348623853211009 

 best model (CustomSwintransformer3d_best_fold_1.pth), best accracy: 0.943, best loss 0.197, best F1: 0.943 

Figure 11: Graphs of the loss, F1 score, and accuracy of the Swintransformer 3D model on the best
setting found for validation batch size: 20

0 5 10 15 20 25 30
Epoch

0.1

0.2

0.3

0.4

0.5

Lo
ss

Train and Validation Loss on training folds
Train
Validation

0 5 10 15 20 25 30
Epoch

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

F1
-s

co
re

Train and Validation F1-score on training folds
Train
Validation

0 5 10 15 20 25 30
Epoch

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Ac
cu

ra
cy

Train and Validation Accuracy on training folds
Train
Validation

Results for CustomSwintransformer3d 
 average acc: 0.9302752293577983 

 best model (CustomSwintransformer3d_best_fold_2.pth), best accracy: 0.939, best loss 0.204, best F1: 0.939 

Figure 12: Graphs of the loss, F1 score, and accuracy of the Swintransformer 3D model on the
worst setting found for validation batch size: 16
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Results for CustomSwintransformer3d 
 average acc: 0.9302752293577983 

 best model (CustomSwintransformer3d_best_fold_2.pth), best accracy: 0.939, best loss 0.204, best F1: 0.939 

Figure 13: Graphs of the loss, F1 score, and accuracy of the Swintransformer 3D model on the
worst setting found for learning rate: 0.001
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Results for CustomSwintransformer3d 
 average acc: 0.9203363914373088 

 best model (CustomSwintransformer3d_best_fold_6.pth), best accracy: 0.936, best loss 0.237, best F1: 0.936 

Figure 14: Swintranformer model ran on hyper-parameter settings 15

31



0 10 20 30 40 50
Epoch

0.1

0.2

0.3

0.4

0.5

Lo
ss

Train and Validation Loss on training folds
Train
Validation

0 10 20 30 40 50
Epoch

0.80

0.85

0.90

0.95

1.00

F1
-s

co
re

Train and Validation F1-score on training folds
Train
Validation

0 10 20 30 40 50
Epoch

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Train and Validation Accuracy on training folds
Train
Validation

Results for CustomSwintransformer3d 
 average acc: 0.9307339449541285 

 best model (CustomSwintransformer3d_best_fold_4.pth), best accracy: 0.939, best loss 0.228, best F1: 0.939 

Figure 15: Performance graph of the Swintransformer model trained on 50 epochs with optimal
parameter settings

6.3 MobileNetV2 performance graphs
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Results for MobileNet 
 average acc: 0.9191131498470947 

 best model (MobileNet_best_fold_9.pth), best accracy: 0.931, best loss 0.217, best F1: 0.931 

Figure 16: Graphs of the loss, F1 score, and accuracy of the MobileNetV2 3D model on the worst
setting found for the augmentation threshold: 0.7
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Results for MobileNet 
 average acc: 0.8990825688073395 

 best model (MobileNet_best_fold_3.pth), best accracy: 0.911, best loss 0.244, best F1: 0.911 

Figure 17: Graphs of the loss, F1 score, and accuracy of the MobileNetV2 3D model on the worst
setting found for the training batch size 70
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Results for MobileNet 
 average acc: 0.9218654434250764 

 best model (MobileNet_best_fold_8.pth), best accracy: 0.933, best loss 0.187, best F1: 0.933 

Figure 18: Graphs of the loss, F1 score, and accuracy of the MobileNetV2 3D model on the worst
setting found for validation batch size: 20
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Results for MobileNet 
 average acc: 0.41269113149847103 

 best model (MobileNet_best_fold_6.pth), best accracy: 0.427, best loss 5.723, best F1: 0.418 

Figure 19: Graphs of the loss, F1 score, and accuracy of the MobileNetV2 3D model on the worst
setting found for the learning rate 0.00001
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Results for MobileNet 
 average acc: 0.9501529051987768 

 best model (MobileNet_best_fold_9.pth), best accracy: 0.965, best loss 0.104, best F1: 0.965 

Figure 20: Average training and validation loss, F1-score and accuracy over all folds per epoch for
the pre-trained MobileNetv2 3D model parameter setting 5
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Results for MobileNet 
 average acc: 0.9743119266055047 

 best model (MobileNet_best_fold_3.pth), best accracy: 0.985, best loss 0.043, best F1: 0.985 

Figure 21: Average training and validation loss, F1-score and accuracy over all folds per epoch for
the pre-trained MobileNetv2 3D model parameter settings 28
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Results for MobileNet 
 average acc: 0.9359327217125383 

 best model (MobileNet_best_fold_7.pth), best accracy: 0.948, best loss 0.168, best F1: 0.948 

Figure 22: Performance graph of the MobileNetV2 model trained from scratch with 50 epochs on
optimal parameters
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Results for MobileNet 
 average acc: 0.9559633027522937 

 best model (MobileNet_best_fold_6.pth), best accracy: 0.966, best loss 0.108, best F1: 0.966 

Figure 23: Performance graph of the pre-trained MobileNetV2 model trained from scratch with 50
epochs on optimal parameters
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