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Abstract

Large Multimodal Models (LMMs) are becoming increasingly more powerful, giving rise to
questions on their intelligent capabilities across multiple domains of information modality.
An important social-cognitive capability of humans is Theory of Mind (ToM): the ability to
infer mind-states of others. Although this is already a well-researched in Large Language
Models (LLMs), this capability is not as much yet researched in multimodal AI. In this paper,
we investigate the added value of visual cues in ToM assessments on LMMs. We construct
a framework for running ToM assessments on LMMs, that contain both text and image
information. Consistent with the literature, we find that our ToM assessments are easily
solved by modern GPT-4 family models, in their text-only form. We used the constructed
framework to structurally evaluate the effect of visual cues on ToM assessments in GPT-4o.
Taking away textual information from the tests, only to leave this information as found in
the supplementary test images, we still see the LMM perform the tests generally very well.
The results show that generally, the model confidence and correctness increases in presence
of a visual cue, with varying levels of degraded textual information. The paper concludes
with three test design criteria, where we summarize the findings and considerations for future
assessment of social-cognitive skills on Multimodal AI.

Keywords: Theory of Mind, Multimodality, Large Multimodal Models, Visual
Cues
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1 Introduction

Artificial intelligence (AI) technology has experienced rapid growth and development in recent
years, transforming a variety of sectors and enabling new forms of human-computer interaction.

Large Language Models (LLMs) represent the State-of-the-Art, consumer-ready advancement
of Natural Language Processing (NLP), a subfield of AI. NLP is a subfield of linguistics, computer
science, and artificial intelligence concerned with modelling language generation and understanding.
These models are usable for a plethora of different, general and specialized, text-to-text tasks. This
includes more traditional NLP tasks like Sentiment Extraction or Abstractive Summarization.

This also spawns research in exploring their capabilities in understanding and interpreting
human cognitive and emotional states. A key aspect of this is Theory of Mind (ToM), which is
the ability to infer mind-states, like beliefs and intentions, in others [2]. Theory of Mind in Large
Language Models is already researched extensively, with different types of ToM tests [32, 18, 12].
There are also multiple benchmarks like ToMBench and ToMChallenges [7, 21].

With rising popularity of Large Language Models, a next step is the integration of multimodal
capabilities, forming Large Multimodal Models (LMMs), sometimes also referred to as Multimodal
Large Language Models (MLLMs) or Vision Large Language Models (VLMs) [44, 40]. These LMMs
not only understand text but can also process and interpret images, videos, and other sensory data
to provide more contextually enriched responses. The expanding availability and capabilities of
powerful LMMs leads many scientists to evaluate different types of intelligent capabilities of such
models. In this thesis, we will examine the effect of multimodality on ToM by running ToM tests
on an LMM, with and without supplementary visual cues. We do this because many ToM tests
that were ran in humans, contain supplementary visuals; but the same ToM tests as ran on AI
models, was run without these visuals.

The first leading research papers are appearing in this field, like MMTOM-QA, presenting a
benchmark for assessing multimodal performance in Theory of Mind [15]. They write clearly in
their abstract that ”that large language models and large multimodal models still lack robust
ToM capacity” [15]. However, their tests had specific limitations, like only including videos of
household scenarios, lacking diversity. They also indicate to lack divesity in ToM concepts, like
desires, emotions and constraints. After shortly noting these limitations, they proceed to state that
further, more thorough research is needed. Another example is VToM, as presented by Chen et al.
[6]. Chen et al. claims to find emergent ToM reasoning in LMMs, based on their VToM architecture.
However, they also clearly indicate that there is a problem with available data and that further
research is needed. These are both new papers on the subject of ToM in Multimodal AI, and they
are part of the small amount of research in this field. Furthermore, both of these papers conclude
that there is further work in diversifying tests and improving their quality. This, combined with the
lack of volume and test coverage in multimodal ToM assessments, indicate existence of a research
gap. In our research, we aim to contribute to filling this research gap. Equation 1 will be utilized
to quantitatively assess the impact of Visual Cues (VCs) on the models’ ToM capabilities. This
Equation is an indication of the performance and will consist of multiple performance measurements.
We compare the model performance, with and without VCs.

performance delta = δ(performance text, performance visual) (1)

The content of this bachelor’s thesis is as follows. The central focus of this research is to determine
how these models integrate and utilize visual cues alongside textual data to interpret and predict
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human mental states and intentions. The research question—How do Large Multimodal Foundation
Models perform in multimodal Theory of Mind assessments, and what is the relative value of
visual cues in their performance?—guides the exploration of the ToM capabilities of advanced
multimodal AI, in this case OpenAI’s GPT-4o. For understanding multimodal AI, we compare the
technical details of LLMs to those of LMMs and other Visual Question Answering (VQA) systems.
To systematically assess the social-cognitive skills of multimodal AI, we build a semi-automated
evaluation pipeline, building on related work and literature on ToM and AI. This pipeline is capable
of running structured tests in different variations on LMMs, and analyzing and visualizing the
results. We run three sets of Theory of Mind assessments using this framework: Sally-Anne, Strange
Stories and Imposing Memory. The choice for these specific tests and more details can be found
in Section 2.4. The findings aim to contribute to the broader understanding of multimodal AI in
interpreting complex human-like tasks.
For a list of definitions as used throughout this thesis, refer to Section A.1. In Section 2 we evaluate
the necessary theory and related work. In Section 3 the actual method and evaluation metrics are
introduced. The results of the research are in Section 4, and the discussion and conclusions are in
Sections 5 and 6 respectively.

2 Background and Related Work

To comprehensively answer our research question, this section reviews the foundational concepts
of ToM and recent advancements in NLP, focusing on LLMs and their extension into LMMs. On
LLMs and LMMs, we discuss the architecture, operational mechanisms, and applications of these
models, which are insightful for understanding the artificial generation of human-like language.
Here, We begin by detailing the transformer architectures that underpin LLMs, diving also into
tokenization processes and the role of vocabulary and special tokens. We then explore ToM in
artificial systems, examining how AI models comprehend and predict human beliefs and intentions.
This includes an overview of adapted ToM tests for AI and comparative analyses of AI versus
human performance in these evaluations. Finally, we introduce LMMs, which incorporate multiple
data types—text, image, and more—broadening AI’s information processing abilities. This segment
highlights the integration techniques and challenges in visual and textual data processing, crucial
for tasks like VQA. First, we introduce ToM.

2.1 Theory of Mind and test overview

Theory of Mind or ToM is a cognitive ability that allows humans to understand and attribute
mental states to oneself and others [34]. This can be tested using tasks like a false belief test. For
most humans, this ability develops around the age of 4-5 years old [41]. ToM is interesting to
study in Artificial Intelligent systems, as it may indicate (simulated) cognitive capabilities of such
systems.

Here we supply an overview of widely used Theory of Mind (ToM) tests, many of which have
been adapted for evaluation in large language models (LLMs). This section joins data from several
sources, detailing the types of tests and their applications in current ToM research.

In the realm of foundational ToM assessments, Van Duijn names popular tests like the Sally-Anne
and Strange Stories, which are designed to evaluate basic ToM abilities such as belief attribution
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and understanding complex narratives [38]. The Sally-Anne test, for instance, explores first and
subsequent order false beliefs, while Strange Stories involve more nuanced interpretation of social
interactions and intentions. Another set of tests from this source includes Imposing Memory tests,
assessing how well individuals recall and understand others’ mental states. These tests all take
place in settings commonly found in human life, here all social interactions between the stories’
characters. Here, some information is spoken by these characters (read: written down on the tests),
but also some information is observable visually. In all these tests, drawings of the social situations
are added. However, in research of van Duijn, only the textual part of the test was provided to
the models as input [38]. This detailed evaluation by Van Duijn, of 11 LLMs, including both
base and instruction-tuned models, compared their ToM capabilities to those of children aged
7-10. This study revealed that while instruction-tuned models typically outperform others, base
models show considerable deficiencies. The research also delved into aspects like non-literal language
understanding and recursive intentionality, indicating that instruction tuning could enhance LLMs’
capabilities by fostering cooperative communication patterns similar to human social interactions.
The nuanced findings from these aforementioned tests, call for further exploration into the social-
cognitive capacities of LLMs, particularly as even the best models struggle with more complex
aspects of ToM [38].

Further expanding on the types of responses these tests require, Ma et al. further detail various
answering formats utilized in ToM testing, such as Fill-in-the-Blank, Multiple Choice, True/False,
and Chain of Thought True/False [21]. These formats aim to capture different dimensions of a
respondent’s ToM capabilities by probing not just factual recall but also inference and perspective-
taking. We will henceforth refer to Multiple-Choice and Yes-No as closed answer-type questions, or
fully constrained, and refer to Open answer-type questions as semi-constrained.

A detailed evaluation of models’ abilities to handle information-asymmetric conversational
contexts is presented by Kim et al., which introduces tests such as BeliefQ, AnswerabilityQ, and
InfoAccessQ [17]. They are part of their FANToM benchmark. These tests challenge models to
determine the beliefs, knowledge access, and factual understanding of characters within a narrative,
reflecting deeper layers of ToM such as epistemic reasoning and recognition of faux-pas. They find
that humans still outperform SoTA LLMs significantly, on the FANToM benchmark.

ToMbench, introduced by Chen et al., identifies eight key social cognitive tasks that robustly
assess ToM [7]. These include the Unexpected Outcome Test, Scalar Implicature Task, Persuasion
Story Task, and others listed in the provided table. These tasks have been proven in psychology
to effectively gauge various aspects of ToM, from understanding unintended consequences to
interpreting indirect hints. Just like Kim et al., they also find that GPT-4 lags behind human
performance, they claim by over 10 percentage points, based on their ToMBench evaluation
framework.

Beaudoin et al. present ”Abilities in Theory of Mind Space” (ATOMS) from a systematic review
of ToM literature, which includes a comprehensive categorization of ToM sub-abilities, providing
a framework for future tests and models’ evaluation [5]. They provide a new taxonomy of ToM
sub-domains, useful for gaining good understanding and oversight of different ToM abilities.

From an adversarial testing perspective, Shapira et al. introduce the ADVersarial CommonSense
with False-Belief (Adv-CSFB) dataset, which focuses on challenging AI models to discern subtle
nuances in belief states under misleading conditions, pushing the boundaries of what AI can infer
about hidden mental states [30]. They find that while the models exhibit some ToM capabilities,
they are not very thorough yet. They speculate that LLMs might be reliant ”on shallow heuristics
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rather than robust ToM abilities” [30].
Baron-Cohen et al. revisits the Reading the Mind in the Eyes Test (RMET), offering a revised

version that focuses exclusively on attributing emotional states from visual cues [4]. This test
is critical for understanding the depth of emotional recognition capabilities without additional
contextual information, and is also a widely recognized test for ToM.

Despite these advancements, certain benchmarks still challenge LLMs. The FANToM benchmark,
for example, is a proper and thorough conversation-based ToM evaluation for language models [17].
Another study by Terentev modified traditional ToM tests, like the Sally-Anne test, for LLMs,
finding that while these models excel in text-only contexts and match or exceed human performance,
further research is needed [34]. This is consistent with work from [33] and Van Duijn, whom all
claim to find that Theory of Mind performance in LLMs supersedes human-level performance.

Ma introduces the ”ToMChallenges” dataset, which is designed for comprehensive ToM evalua-
tion using tasks derived from the Sally-Anne and Smarties tests, emphasizing the importance of
theoretical grounding and methodological validation to ensure measurement validity. This dataset
highlights that despite their potential, LLMs like GPT-4 need thorough validation against diverse
prompts to substantiate claims of human-like capabilities [21].

Large Language Models (LLMs) are designed to simulate human language, knowledge, and
interactions, making it essential for them to potentially pass false belief tests, indicative of a
Theory of Mind (ToM). Note that we do not state the LLMs actually understand any of these
social-cognitive tests, they solely answer the questions correctly. This would indeed signal intelligent
capabilities, but it’s not a direct proof that the models have such capabilities. This distinction is
important context, further such debate is described by Van Dijk et al. [37]

Ongoing research, primarily conducted on state-of-the-art models, reveals significant advance-
ments in this area. Before 2020, LLMs rarely passed ToM tests, but since 2022 the first models
began passing with high accuracy, suggesting, as Kosinki noted, that a ”ToM-like ability may have
spontaneously emerged as a byproduct” [18]. Van Duijn’s study also highlights that instruction-
tuned LLMs from the GPT family not only outperform other models but often seem to surpass
human children in these evaluations [38]. What they also find is that the model performance worsens
as more difficult or more deviated tests are presented to the models.

2.2 Large Language Models

LLMs are based on transformer architecture, which will further be described in Section 2.2. In NLP,
a vocabulary comprises of unique tokens that a model recognizes and processes. The vocabulary
is established during training through tokenization methods like Byte-Pair Encoding (BPE)1 or
WordPiece. These methods address out-of-vocabulary words by breaking them down into smaller,
sub-word units. Tokens, being text elements ranging from words to characters, depend on the
tokenization approach. We will shortly dive into tokenization, because tokens are the input units that
form the input to these models. In the case of multimodal input, this textual input is supplemented
by visual input, although they take slightly different path (see below).

Using OpenAI tokenizers2, we can demonstrate this simply, for example with the Dutch word

1GPT-4 uses a tokenizer called the cl100k base encoder.
2OpenAI’s tokenizers are available online in an easy-to-use web-interace: https://platform.openai.com/

tokenizer.
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helemaal. Using the tokenizer of GPT-35 and GPT-4, the word is split into three tokens3. While
using GPT-3’s tokenizer, the word is split into four tokens4.

Vocabulary forms the basis of tokenization, where text is segmented into tokens that are then
converted into embeddings for model processing. The size and composition of the vocabulary
influence both the tokenization process and the model’s effectiveness in text understanding and
generation. Vocabulary in NLP context typically refers to the set of unique words that the
model knows and understands, which forms the basis for interpreting and generating language
responses. These components collectively facilitate the development of sophisticated tools capable
of understanding and generating human language effectively. Special tokens are predefined markers
in NLP that signify specific conditions or functionalities within text sequences. They facilitate
modeling tasks by providing structure and managing sequence operations. Common special tokens
are <im start> and <im stop>. These are the start- and stoptokens of OpenAI models. A more
comprehensive list of special tokens is found here in Section C.3.

Transformers

Transformer models, a deep learning architecture, are built in different configurations: encoder-
only, decoder-only, and encoder-decoder. Each configuration is suited to a specific set of
tasks. Encoder-only transformers are primarily used for generating vector embeddings useful in
classification, clustering, and search, leveraging their ability to contextualize input data. While the
input data is commonly text, multimodal models can encode information from various sources,
such as images. Decoder-only variants excel in text generation and are commonly applied in
models designed for prompting and conversational interactions due to their sequential processing
and generation capabilities. Notably, most state-of-the-art LLMs, such as OpenAI’s GPT series,
are reportedly decoder-only transformers. These models utilize an autoregressive text generation
approach, where subsequent elements in a sequence are predicted based on the preceding elements,
generating one token at a time and feeding the entire input back in for each subsequent token.
Encoder-decoder transformers are particularly effective in complex natural language understanding
(NLU) tasks, including translation, question answering, and summarization, as they combine
the strengths of both encoding inputs and decoding outputs to process and generate language
comprehensively.

The original transformer, as presented by Vaswani et al., introduced a novel architecture that has
since been adapted into these various configurations, as depicted in Figure 1 [39]. The foundational
work laid out in the original GPT paper [25] and further advancements in the GPT-2 paper [26]
have significantly influenced the development and application of transformer models in NLP.

Integrating multimodal capabilities into the transformer architecture involves incorporating
various modal encoders, such as visual encoders, to process diverse types of input data. Visual
encoders are designed to extract and represent features from images, transforming them into
embeddings that can be seamlessly combined with textual embeddings within the transformer
framework. This integration allows the model to perform tasks that require understanding and
generating content across different modalities, such as image captioning, VQA, and multimodal
translation. VQA is further introduced and described in Section 2.3.2. By utilizing separate encoders
for each modality, the architecture ensures that each type of input is processed effectively before

3He le maal
4He le ma al
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Figure 1: The transformer model, as presented by Vaswani et al. [39]

being merged into a unified representation, enabling the transformer to leverage the strengths
of both textual and visual information for more comprehensive and accurate understanding and
generation tasks. For this there are multiple techniques, like MMFT-BERT (MultiModal Fusion
Transformer with BERT encodings), as introduced by Khan et al. [16], and the Multimodal Fusion
Transformer, as proposed by Siebert et al. [31].

2.3 Large Multimodal Models

Large Multimodal Models (LMMs) are generally extended Large Language Models, possessing
the added capability of accepting other input than text [42]. LLMs are solely text-to-text, where
LMMs also capable of processing other inputs. E.g. images, video and audio. In this thesis, we
focus on comparing performance text-only performance to text-plus-visual performance. We will
use a Large Multimodal Foundation Model for our tests. This means we use a model version that
is not instruction fine-tuned for specific tasks, like answering ToM questions. It is rather a base
model, suitable for many general tasks.

2.3.1 LMM overview

LMMs are a relatively new concept. There are only a few LMMs (also commercially) available since
2023, all of whom are considered state of the art as of writing this. OpenAI, the company behind
the famous product ChatGPT, has GPT-4 and GPT-4o [13]. Anthropic, another large AI company,
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has just released Claude 3.5 Sonnet. Google has the Gemini family5 of models, as first presented by
Google [3]. There exists a website where model performance can be compared between two models,
blindly, called the Chatbot Arena [8]. Here, a user can simultaneously chat with two popular LLMs,
until the best model is selected. Only then, does the website reveal the two models the user was
chatting with.

Processing other data types like images using transformer-based models built for NLP appli-
cations, is in it self not new. In 2019, [28] proposes the Multimodal Adaption Gate (MAG), to
allow BERT and XL-Net to accept multimodal data during fine-tuning. BERT and XL-Net are
older transformer-based language models. We provide an overview of five SoTA Large Multimodal
Models in Table 1.

2.3.2 Visual Question Answering

Visual question answering (VQA) has been around for many years, being introduced by Antol et al.
in 2015 [1]. In this well-recognized paper, they present a VQA LSTM-based model, its results, human
baselines and dataset. Traditional VQA models are commonly based on CNNs (Convolutional
Neural Networks), but more modern Vision Transformers (ViTs) are showing similar or even
improved performance over CNNs [27, 22]. VQA in transformer-based Large Multimodal Models,
such as GPT-4, involves integrating visual and textual information processing in the traditional text-
based transformer. This approach utilizes transformer architectures to manage multiple modalities,
enabling the model to understand and respond to queries about visual content. The process begins
with multimodal input encoding, where textual inputs are tokenized and embedded, similar to
traditional language models, and visual inputs are processed using convolutional neural networks
or vision transformers (ViTs) to extract relevant features. A critical component is multimodal
fusion, where advanced models like GPT-4 use a unified transformer architecture to process textual
and visual information simultaneously, allowing for seamless integration of different data types.
Attention mechanisms, specifically the transformer’s self-attention mechanism, enable the model
to focus on relevant parts of both textual and visual inputs when generating a response, with
cross-modal attention facilitating the establishment of relationships between elements in different
modalities. Additionally, advanced VQA models employ joint representation learning, as seen in
models like VisualBERT, which creates joint representations of visual and textual information
for a nuanced understanding of the relationships between image content and textual queries [20].
VisualBERT is built from integrating the original BERT model [10], built by Google10 with a object
detection Convolutional Neural Network model, based on Faster R-CNN, a CNN [14].

2.4 Research test set

The test set was composed to include assessments where supplementary visuals provide information
about the story setting, although they are not required to solve the tests. The definitive test set
consists of data as used in [38], comprising Strange Stories (with deviated names), Sally-Anne (with

5https://blog.google/technology/ai/google-gemini-ai/
6GPT-4o release blog
7At the time of writing. Full voice mode is expected anytime now.
8OpenAI GPT-4o model page
9Gemini API Docs

10Google’s Blogpost announcing open-sourcing BERT
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Model Capabilities Key Features Notes

GPT-4o 6 Text, Image,
Audio, Video

Real-time
conversation,
Multimodal
generation,
Contextual
awareness,

Enhanced safety

No
audio-to-audio

publicly
available yet7.

Easily accessible
through

OpenAI’s API 8.

Gemini 1.5 Pro
Text, Image,

Video

High-resolution
image synthesis,
Visual expertise,

Multimodal
understanding

Accessible
through Gemini

API9.

GPT-4V
Text, Image,

Video

Advanced visual
understanding,

Image
generation,
Multimodal
interaction

Computer vision,
Visual data

analysis,
Interactive

applications

LLaVA-NeXT-
Video

Text, Image,
Video

Comprehensive
video analysis,

Multimodal
learning, High

accuracy

Video content
analysis,

Multimedia
applications,

Research

Qwen-VL-Max
Text, Image,

Video

Multimodal
learning,

High-resolution
image synthesis,

Visual and
textual

integration

Image and video
synthesis,

Multimodal
research, AI
development

Table 1: Overview of (Top) 5 State-of-the-Art Large Multimodal Models
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deviated names), and Recursive Mindreading (recursive intentionality, including first, second, and
third-order belief tests).

We use the levels of freedom as defined in Table 5, from the work of Ma et. al [21]. Here, we chose
different answer-types for our tests from the larger overview, also from Ma et al., as defined in Table
6. We use the Multiple Choice, True/False, Q&A and Text Completion narratives. In this paper, we
use slightly different naming to align with the tests we use. We rename to True/False as ’Yes-No’, to
Q&A as ’open’, and Text Completion to ’autocomplete’. The accuracy of multiple-choice and yes-no
answer-type tests can be evaluated automatically, but the open- and autocomplete answer-types
tests have to be manually graded. For all tests, regardless of answer-type, the confidence can be
evaluated automatically.

The test set includes:

• Sally-Anne (SA): 2 tests, SA1 and SA2

• Strange Stories (SS): 7 tests, one from each Strange Story(each containing control, justification,
and intentionality questions)

• Imposing Memory (IM): 4 tests, the two original sets containing all questions and two sets
filtered with only questions marked as intentionality

The Recursive Mindreading test set originates from an unpublished version created by Anneke
Haddad and Robin Dunbar [11], originally for adolescents, which was adapted to be suitable for
children aged 7-10. This version features two different stories followed by true/false questions,
including 10 ’intentionality’ and 12 ’memory’ questions [38].

For the assessments, control questions from SA1, SA2, and SS were retained, mirroring how
the tests were ran with children. For Imposing Memory, also sometimes referred to as Recursive
Mindreading, a subset was created focusing solely on intentionality questions due to length and
relevance. In the case of autocomplete tests, control questions were removed as they were typically
yes/no questions.

To maintain consistency and parallelism with the real children’s tests, ’easy’ control questions
were not removed for open, multiple-choice, and yes/no tests. Although ’easy’ control questions for
Strange Stories tests 6 and 7 could have been easily formatted for the autocomplete answer-type,
they were removed to ensure consistency.

2.5 Related work: ToM in Large Multimodal Models

During 2022 and 2023, we saw the rise of widespread and commercial use of LLMs for various tasks
and applications. With the increasingly available LMMs in 2024, the focus has extended to ToM in
these more advanced AI systems. ToM research in LLMs is well-established, but the actual tests,
such as those evaluating false beliefs that children undertake, are often multimodal, including both
textual and visual components. This complexity makes it compelling to explore ToM in LMMs,
which can provide insights into the simulated cognitive capabilities of current state-of-the-art AI
systems.

Yu et al. introduced an evaluation benchmark for examining LMMs, called MM-vet [43]. This
benchmark is not specifically aimed at Theory of Mind, but rather at different types of complicated
multimodal tasks. Here they also propose an LLM-based evaluator for open questions. They
simultaneously give a good overview of LMMs, other benchmarks and recent literature.
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The Multimodal Theory of Mind Question Answering (MMToM-QA) benchmark, introduced
by Jin et al. [15], is designed to assess machines’ ability to infer human thoughts and intentions
using both multimodal and unimodal data. This benchmark evaluates several models including
InstructBLIP, LLaMA, GPT-4, and VideoLLaMA2 on a range of ToM tests such as belief tests
and goal inference, highlighting the models’ capabilities in both multimodal settings and video-only
options. The findings suggest that while GPT-4 demonstrates competence in certain ToM areas,
overall, the models lack robust ToM capabilities, especially in more complex tasks like goal inference
and false belief recognition. It emphasizes the superior performance of the novel Bayesian Inverse
Planning Accelerated by Language Models (BIP-ALM) method over existing large language models
and multimodal models.

Further research conducted by Elyoseph et al. utilized the classic Reading the Mind in the
Eyes Test (RMET) on OpenAI’s ChatGPT-4 and Google’s Bard [12]. The results showed that
ChatGPT-4 significantly outperforms Google’s Bard, aligning more closely with the scores of typical
human participants, thereby suggesting potential areas for further research, especially concerning
the representation of emotions across different demographics.

While some models show promise in specific ToM tasks, the findings underscore the necessity
for further structured research in multimodal data processing and a broader coverage of human-like
cognitive capabilities in future ToM assessments.

3 Method

This study employs a mixed-methods approach to investigate the influence of Visual Cues (VCs) on
the proficiency of Large Multimodal Models (LMMs) in Theory of Mind (ToM) assessments. The
research introduces complex, multimodal ToM tasks that incorporate VCs alongside text, to more
closely mimic the conditions under which human ToM is assessed. As mentioned in Section 2.1, van
Duijn’s work used ToM tests with text-only input for the models, but the children were given the
same textual tests with VCs. In our research, we use the text-only versions of the same multimodal
test for comparison. The evaluation criteria will focus on the models’ ability to reason and take
perspectives in scenarios presented in multiple modalities. Data collection will involve recording
model responses and response metadata to both sets of tasks. Analysis will compare performance
across the different test types to determine the extent to which VCs enhance or detract from the
models’ ToM proficiency. This approach should answer the research question by evaluating the
capabilities and limitations of current LMMs in understanding and attributing mental states. Here
we compare the LMMs to themselves, to LLMs and to humans.

3.1 Initial experiments

Prior to constructing the evaluation pipeline, preliminary experiments were conducted to analyze
model behavior under various conditions. For example, we tested the OpenAI model with one
versus multiple images in the conversational history, where it was determined that using multiple
images did not present issues. This was to be expected as even multiple images can be passed to
this API per model prompt11. The model temperature is also an influential parameter, which we
experimented with. Temperature is a number between 0 and 2, where a lower value results in a

11According to official OpenAI documentation, Section Multiple image inputs
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more coherent, less creative and more deterministic response [23].12 We tried different values for the
temperature. To avoid hallucinations and ensure a more deterministic response, we quickly decided
to set the temperature to 0. Another test, details found in Section B.3, involved testing model
understanding of an image composed of several sub-images. We found that model understanding is
sufficient on all available information, and the model is able to deduct possible social interactions.
However, also finding real order and information sources from such a combined image is out of
scope. Adding image markers in both text and sub-images is possible, but hard to validate.

Additionally, attempts were made to synthesize images for tests using DALL-E 313. However,
the results were found to be highly inconsistent and the images were not representative of scenarios
encountered in human testing. The outcomes of these tests are illustrated in Figure 11. Combined
with the fact that running new test scenarios on humans is out of scope for this thesis, led to the
decision that we will use predefined ToM tests in this research.

3.2 Pipeline and configuration

To structurally test our research questions, we designed a pipeline to run different Theory of Mind
evaluations. These evaluations are in a fixed format. The pipeline is implemented as a Python
program, that loads, runs, and analyses the provided test collections. We will not go into any
program specifics; rather we will solely focus on the evaluation functionalities. The source code is
publicly accessible on GitHub14 and is published under the MIT license15. More information on
configuring the entire program, to reproduce the results, is found in the repository README.md. See
Section A.2 for more information.

Figure 2 shows the Pipeline steps schematically. It starts with defining tests and the test
environment. This entails defining the actual ToM tests as later described in Section 3.3, but also
connecting the pipeline to (Azure) OpenAI for running LMMs. This shows also the creation of test
variations as described in detail in Section 3.3.2. These form the core for the following analysis,
determining the effect of the supplementary visuals. Each variation of each test is ran and the
results are stored on the host machine. Another part of the program is able to load (a subset
of) these result files and process these. Here, calculations like averages are calculated, and then
can be visualized. Summarized, all test questions are tested with seven different levels of textual
information, with and without the supplementary test visuals.

The pipeline has some configuration settings, setting up the experiments 16. Defaults are
provided, which are used throughout the experiments performed in this research. Here are the
configurable settings, Python datatype and their defaults:

• TOP LOGPROBS: int = 5

• MASK ANSWER OPTIONS STRING: bool = False

12OpenAI API Reference
13The version as integrated in ChatGPT Plus was used. OpenAI DALL-E 3 page.
14GitHub Link
15The MIT License permits users to freely use, copy, modify, merge, publish, distribute, sublicense, and sell

software and its associated documentation, provided they include the original copyright and permission notice in all
copies or substantial portions of the software.

16These are found in the src/config.py file.
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Figure 2: Functional Pipeline schematic, showing different stages of processing

• DEFAULT MC INSTRUCTIONS: str = ”Please select the correct answer by choosing either
A, B, C, or D.”

• DEFAULT YN INSTRUCTIONS: str = ”Please select the correct answer by choosing either
A or B.”

3.3 Defining pipeline tests

To understand the pipeline, we introduce some terminology first.
Test : a single Theory of Mind evaluation, containing test metadata, questions and their metadata.
System message: a set of specific instructions provided to an LLM or LMM to guide its behavior
and improve its performance for given tasks17.
Test metadata: an automatically generated model containing metadata as defined in the test. It
contains the following properties: LMM system message, test language, model to test18, a list of
Questions, and optionally: test name, description, and answer-type, where the answer-type is solely
an indication of the answer-type used in all questions, throughout the test.
Test collection: a set of tests.
Questions: a single instruction and/or Theory of Mind question. Questions are loaded from the
YAML input format as defined below. They are also defined directly as Python objects, containing
the questions’ information.

Question:

question: str

correct_answers:

- str

b64_image: str

17OpenAI Docs on System Messages
18Based on the OpenAI models, specified in their official docs
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question_type: str

answer_options: list[str]

answer_instructions: str

answer_type: str

possible_answers: list[str]

correct_answers: list[str]

question_id: uuid.UUID

We run the tests automatically to ensure structure and repeatability of the results. Tests are
defined in YAML format, and are read by the program. One YAML file contains one Test Collection.
Tests consist of multiple attributes, as defined below. Multiple-choice questions are required to have
four options (i.e. A, B, C and D).

Example file with one test collection with a single test with a single question:

test_collection_1:

description: "Test collection containing only one test with one question"

tests:

- sys_msg: "DEFAULT_SYS_MSG_1"

model: "gpt-4o"

language: "en"

test_name: "strange_stories_1_mc"

test_answer_type: "multiple-choice"

test_description: "Sample description"

test_images_folder: "strange_stories_1"

questions:

- question: "Jan says: ’The dog knocked it over, it is not my fault!’

Did Jan say the truth?"

answer_options: ["A) Yes", "B) No"]

correct_answers: ["b", "B"]

image_name: "c"

question_type: "control"

answer_type: "multiple-choice"

test_collection_2:

...

Required test fields are: sys msg, model, language, test name, test answer type, test images folder.
Required question fields are: question, answer options string, correct answers19, and answer type.
Optional question fields: answer instructions, question type, possible answers, question type.

3.3.1 Test set deviations

To have as little syntactical resemblance to tests as commonly found on the internet, which likely
are present in LMM training data, we deviate the tests from their original form. Although many

19Only required for automatic evaluation with confidence and accuracy scores.
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deviations are thinkable, we stuck to only changing names of story personas, because we are limited
by the story illustrations. These illustrations do not show names, but do contain other information,
like gender-indication, story locations and objects. Therefore, to be consistent, we refrained from
deviating further than just names.

On the Sally-Anne and Strange Stories test sets, the personas appearing in the stories were
renamed. For example, Sally is now called Beth, and Anne is now called Laura. For a full renaming
list, see Section C.2. As the Imposing Memory test is unpublished, we use the test directly [38].

Deviating is important, because we want to test the actual ability of ToM, rather than test the
ability to answer certain specific questions. Ullman et al. states that while LLMs are increasingly
good at passing ToM tests, they still sometimes fail on rather trivial tasks, indicating that LLMs
can show behavior of understanding ToM, while in reality the models do not yet possess these
capabilities [36].

3.3.2 Test question variations

As mentioned in Sections 1 and 3.2, the pipeline automatically creates test variations to analyze
the impact of visual cues for the tests, based on available text information. We define fourteen
levels of variations. These consist of seven text masking levels, and two image levels. The two
image levels are of Boolean type: either the supplementary test image is attached to the model
prompt, or it is not. To systematically alter the information available in existing test questions, we
define a framework to mask certain words. We mask words based on their Part-of-Speech (POS). A
part-of-speech tag is a label assigned to each word in a text to indicate its grammatical category,
such as noun, verb, adjective, etc., based on its definition and context. Here, we define the seven
different levels of masking words, and therefore difficulty20.

• Level 0: Baseline: no word masking.

• Level 1: Masking PRON (pronoun)
This level targets pronouns, which often convey minimal semantic load but are crucial for
grammatical structure and co-reference resolution.

• Level 2: Masking PRON + DET (pronoun, determiner)
Determiners are fundamental in specifying noun phrases and their absence tests understanding
of implied context and article usage.

• Level 3: Masking PRON + DET + ADJ
(pronoun, determiner, adjective)
Adjectives provide descriptive details. Masking these tests comprehension of nouns in less
descriptive contexts.

• Level 4: Masking PRON + DET + ADV
(pronoun, determiner, adjective, adverb)
Adverbs modify verbs, adjectives, or other adverbs, often specifying degree, manner, place, or
time. Their removal checks the model’s ability to infer such nuances.

20These POS tags are defined directly in the source code, src/utils/ai.py, in the method get pos tags().
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• Level 5: Masking PRON + DET + ADV + VERB
(pronoun, determiner, adjective, adverb, verb)
Verbs are central to the construction of meaningful sentences. Masking verbs significantly
increases difficulty, requiring the model to infer actions or states from context.

• Level 6: Masking PRON + DET + ADV + NOUN
(pronoun, determiner, adjective, adverb, noun)
This is the most challenging level, removing nouns instead of verbs, pushing the model to
interpret and generate content based primarily on function words and remaining context.

These levels are designed to incrementally increase the difficulty of the task, thereby evaluating
different aspects of the model’s language understanding and generation capabilities. Starting with
pronouns, which are less critical for semantic content, and moving towards nouns and verbs, which
are essential for maintaining the core meaning of texts, allows for a comprehensive assessment of
the model’s robustness and adaptability in handling incomplete or ambiguous textual input. We
can compare this on a question-basis to the additional information as found in the images. In the
test images, stories are depicted where objects and possible actions are portrayed. Masking the
parts of speech as described above, takes away valuable context for the model to interpret the
situation and answer the question. With the loss of textual information, the LMM should be able to
find this information in the supplementary images. This progression not only tests basic syntactic
understanding but also evaluates semantic prediction and contextual inference capabilities, with
and without visual cues.

3.3.3 Example instruction-question pair

An example question from the Strange Stories test set: (question 3 of Strange Stories, Story 1,
Multiple-Choice)

Original:

Jan says: ’The dog knocked it over, it is not my fault!’ Did Jan say the

truth?

Masked on level 2:

Jan says: ’[MASK] dog knocked [MASK] over, [MASK] is not [MASK] fault!’

Did Jan say the truth?

Masked on level 5:

Jan [MASK]: ’[MASK] dog [MASK] [MASK] over, [MASK] is not [MASK] fault!’

Did Jan say the truth?

3.3.4 Total test volume

This results in:

• Sally-Anne and Strange Stories: 4 answer-types, totaling 36 tests

• Imposing Memory: 1 answer-type, totaling 4 tests
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Test Sort answer-type Total Questions Total Variations

SS mc 21 294
SA mc 13 182
SS y/n 21 294
SA y/n 13 182
SS open 21 294
SA open 13 182
SS autocomplete 7 98
SA autocomplete 4 56
RM all autocomplete 23 322
RM intentionality autocomplete 11 154
RM all autocomplete 23 322
RM intentionality autocomplete 10 140

Total 180 2520

Table 2: Summary of Test Sorts and answer-types with Total Questions and Total Question
Variations

• Total unique tests: 40 tests

• Total unique questions: 180 questions, counted from source data

• Amount of test variations: 14 variations, as defined in Section 3.3.2

Total unique test variations: 14 variations ∗ 40 tests = 560 unique tests
As seen in Table 2, we test a total of 2520 question variations. Counting only open and autocomplete
answer-type question variations, we have 630 total hand-graded question variations. This is 25% of
all question variations.

3.4 Answer evaluation

Referring to the defined answer-types in Section A, we analyze the results of the experiment in two
different ways. To assess answer correctness, we calculate the accuracy of the model answers. To
analyze the model confidence in the answer, we calculate a confidence score from the logarithmic
probabilities as provided by the model response, as described in Section 3.4.2. Then, we visualize
these two combined metrics, to analyze our results.

3.4.1 Correctness and Manual rating

In this section, we explain the process and criteria for grading correctness, both automated for
the either Multiple-Choice or Yes-No questions, as for manually grading the model’s responses to
open questions. For the fully constrained questions, MC or YN, we calculate the accuracy, using
Equation 2. The correct answers are supplied beforehand at the test definition, as described in
Section 3.3.
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Accuracy =
Number of Correct Answers

Total Number of Questions
(2)

When rating manually, the model’s responses are scored on a scale of 0 to 2, taking into account
the models explanation for its answer:

• Score 0: Fully incorrect, incomplete, unwanted answer, or no question perceived by the
model.

• Score 1: Partially correct, or seemingly correct understanding of the story, or correct
inferences.

• Score 2: Fully correct answer, directly or indirectly after rephrasing the answer (e.g., the
model might pose the answer as a statement and ask ”why” back; the statement is correct).

We then calculate the overall accuracy by normalizing the average of all accuracy scores per test.
This accuracy is calculated as defined in Equation 3. This equation contains variable R, the number
of raters, to normalize the average accuracy, ensuring that the final accuracy score accounts for
the potential variance introduced by multiple raters. In this equation, variable si represents the
summed accuracy scores for the i-th test as evaluated by all raters, prior to normalization.

Open question average test accuracy =
1

RN

N∑
i=1

si (3)

The answers are scored by two raters, thus our R = 2. Then, we calculate Cohen’s kappa to assess
the inter-rater reliability. Cohen’s kappa is calculated as defined in Equation 4. We do not rate
blindly. For each response, we can see the image-level, masking-level, question ID, and the provided
correct answers from the test definition.

κ =
Po − Pe

1 − Pe

(4)

3.4.2 Confidence

We do not solely score the answers based on correctness; we also look how likely the chosen answer
was for the model. This is done by evaluating the logarithmic probabilities of each output token in
the answer. Logarithmic probabilities, usually denoted in official documentation as logprobs, refer to
the logarithm of the probability assigned by the model to a particular token or sequence of tokens.
They provide a measure of how likely a language model thinks a particular output is, given the
context it has seen. For multiple choice answers, an answer or answer alternative is only one output
token, which is a single letter (e.g. ’a’ or ’c ’).

Using Token log probabilities, as provided by the OpenAI API log probability documentation21,
we can analyze what the alternative tokens were for the model when generating it’s response. A
sample logprobs output for an answer to multiple choice questions can be found here D.2. We
see the token chosen, the alternatives, and their log probabilities. The token chosen by the model
has the highest log probability. In this case, it is the token B. Token log probabilities are always

21https://platform.openai.com/docs/guides/text-generation/token-log-probabilities
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negative. As linear probabilities are between 0 and 1, their log will always be negative, as denoted
in Equation 5.

Logprobs are not necessarily directly the confidence of the model in it’s answer. Instead, logprobs
should be viewed as indicative of the relative likelihood according to the model’s training data and
algorithms. They show the model’s internal statistical bias towards certain words or phrases in
given contexts, not a guarantee that those words or phrases are the correct or best choices. Thus,
while logprobs can guide expectations about model output, they should be interpreted with an
understanding of their limitations and the nature of probabilistic modeling.

log(p) ≤ 0 for 0 < p ≤ 1 (5)

We can visualize the tokens and their log probabilities, and plot the like in Figure 3. In the case
of this research, it is important to note that alternative tokens include other tokens than expected.
With multiple-choice answers, you would expect the model only to choose one of the provided
options (e.g. A or B). However, the model might tend to explain it’s answer or state the full MC
option - i.e. ”A) Sally is upset”, instead of ”A”. Moreover, the model might include punctuation
or internal model tokens, like a stoptoken. Figure 3 is a good example of this, where the Cyrillic
letter ”Б” was presented as an alternative token. We filter these noise tokens from the logprobs, in
the closed answer-type questions. Here, in order of logarithmic probability: ["B", " B", "A", "",

"Б"], we see only token "A" is the first actual alternative token to the highest probability token
"B". Then, the next highest logprob is ”A”. This filtering is illustrated in Figure 4, together with a
logprob confidence.

For this research, we propose two ways to calculate the confidence score. This score is
computed from the model logprobs, and is a linear probability. This ensures easy interpretability,
in contrast to the logarithmic probabilities. We propose a base and comparative calculation. These
are calculated using Equation 8 and Equation 9 respectively. In these equations we use variable N ,
where N is the amount of tokens in a model response. For multiple-choice and yes-no answer-type
questions, this means N = 1. The base approach only considers the highest logprob and the
comparative approach additionally compares this to the next highest logprob. These are defined
in Equation 6 and Equation 7, respectively. In these Equations (6 and 7), variable n is the amount
of alternative logprobs requested, per token. This is denoted by the top logprobs variable as
defined in Section 3.2. Throughout this research, we use n = 5.

logPhighest = max(logPi), for i = 1, 2, . . . , n (6)

logPnext highest = max(logPi | logPi ̸= logPhighest), for i = 1, 2, . . . , n (7)

base confidence score = exp

(
1

N

N∑
i=1

logPhighest,i

)
(8)

comparative confidence score =
N∏
i=1

(exp(logPhighest,i) − exp(logPnext highest,i)) (9)

When utilizing the comparative approach, we apply additional filtering to the logprobs before
calculating the confidence score, for the closed answer-types (i.e. multiple-choice and yes-no). Not
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Figure 3: Example logprobs response to the question: Jan says: ’The dog knocked it over, it
is not my fault!’ Did Jan say the truth? A) Yes, B) No . X-axis is format: chosen token

(first alternative token).

only do we solely pass the first token, to prevent any possible explanations, to interfere with the
model confidence, we also filter the tokens for noise as aforementioned. Also, note that the highest

logprob, next highest logprob are always negative negatives. A larger value of the confidence

score indicates a higher confidence in its answer.
The choice between the base and compare approaches for calculating confidence scores has

notable implications. The base approach, which averages the log probabilities and then expo-
nentiates, provides a straightforward measure of confidence but may obscure differences between
closely competing alternatives. Conversely, the compare approach, which calculates the difference
between the exponentiated highest log probability and the next best exponentiated log probability,
accentuates these differences, offering a more nuanced view of relative confidence. However, this
approach has a critical drawback: longer answers inherently suffer from reduced confidence scores
due to the multiplicative effect on probabilities, which diminishes rapidly with each additional
token. Consequently, this makes the compare approach unsuitable for direct comparisons between
single-token responses (e.g., multiple-choice or yes/no questions) and longer, open-ended answers,
as the latter will consistently yield lower confidence scores regardless of their actual correctness.
Despite it’s drawbacks, we choose to calculate the confidence score using the comparative approach,
to provide more insight into model accuracy, taking into account the alternative probabilities.

3.4.3 Comparison to human levels

To compare the performance of the model to human levels, we compare the accuracy as found in
[38]. Here, the Sally Anne and Strange Stories test were run on a younger group, aged 7 to 8 years
old with n = 37. The Imposing Memory test was run on an older group, aged 9 to 10 years old
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Figure 4: Filtered example log probs, with confidence indication. Same data and x-axis format from
question as presented in Figure 3.

with n = 36.

3.5 Running tests

The tests are run automatically, in a sequential manner, using a Python script. The default
parameters for the OpenAI ChatGPT API are the following.

For reproducability, we use a seed and set the temperature to 0. The seed is arbitrarily set to
123. This seed however, gives no absolute guarantee of reproducability. The feature is officially still
in beta, and according to official OpenAI sources: ”There is a small chance that responses differ
even when request parameters and system fingerprint match, due to the inherent non-determinism
of our models”.22 23 Tests were, with one exception, run with zero-shot prompting, meaning the
task was provided without any full completed task examples added to the conversation history.
Autocomplete question prompts did contain a one-shot example: i.e., the capital of France example
answer. Section C.1 shows the separate system message as used for the autocomplete answer-type
questions. One-, few- or many-shot prompting is usually expected to be passed to the model as
actual user- and assistant messages, as if the conversation took place before the final task or prompt.
In this case, we provide the model with the one-shot example in the system message itself.

The requested maximum response tokens was set to 52 tokens. This was kept consistent for all
answer-type questions; even though we only expect one token for fully-constrained questions (e.g. ’Y’
or ’B’). 52 tokens is enough for a small English paragraph, containing approximately three sentences.
It is important to note that token density differs between languages. Modern LLMs commonly

22OpenAI Cookbook
23OpenAI Docs
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use Common Crawl (CC) datasets for a large part of their pre-training dataset. For example, the
original LLaMa model by Meta AI, indicate to use English CC as 67% of their pre-training dataset
[35]. While this a specific English-filtered example, the Common Crawl organisation indicates that
approximately 45% of their main CC datasets consists of English texts.24 Because of the over
representation of English pre-training data, models are more optimized for English, even when
they exhibit good multilingual performance. Petrov et al. prove a clear token-density advantage to
English, over other less similar, or more low-resource languages [24].

Tests run, without performance mode, at approximately 3s/it, where one iteration is one
question prompt. For all 2520 questions, it takes over 2 hours to run.

ChatGPT Parameters:

temperature: float = 0

max_tokens: int = 52

top_p: float = 1

frequence_penalty: float = 0

presence_penalty: float = 0

logprobs: bool = True

n: int = 1

top_logprobs: int = 5

seed: int = 123.

3.6 Validity and reliability

The internal validity of this study is reinforced through the use of three separate test sets: Sally-Anne
(SA), Strange Stories (SS), and Imposing Memory (IM), each addressing different answer-types.
Although there are some outliers, the averages support the overall findings of the study. To ensure
consistency, baseline text masking was used, and the same tests employed in previous LLM Theory
of Mind (ToM) studies were applied. Control measures included resetting the conversation history
for every unique test variation and answer-type, and maintaining consistent LMM parameters such
as seed and temperature.

The external validity, or generalizability, of the findings is supported by the high accuracy of
the model responses across all tests, consistent with other ToM assessments on LLMs, as seen in
Section 2. Two of the measures for ensuring reproducibility include setting an LMM seed and fixing
the temperature at 0.

The assessment process was semi-automated, with full automation for multiple-choice and
yes-no answer-types. As defined in Section 3.4.1, open-ended questions were graded manually by
two independent raters, with Cohen’s kappa calculated to ensure inter-rater reliability. Additionally,
individual tests were rerun to verify results, yielding nearly identical outcomes each time, which
supports the reliability of the study.
Despite efforts to ensure validity and reliability, some limitations remain. One significant limitation
is the lack of full test equivalence between human subjects and the multimodal AI, which may
threaten internal validity. Another concern is that the SA and SS questions and stories are publicly
available on the internet, raising the possibility that the model may recognize the test texts and
structures rather than demonstrating true ToM capabilities. We try to deviate the tests, as defined

24Official Common Crawl Statistics
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in Section 3.3.1, by changing the names of the SA and SS stories. These are minimal changes, not
affecting the test structure. However, this is no guarantee the model does not still recognize this test
structure, and therefore know how to answer the tests. These limitations were mitigated as much
as possible, but they do present areas for further investigation and refinement in future research.

4 Results

In this section we factually examine the results of the experiments. These are partly visualised or
otherwise displayed and evaluated. We dive into the three different test sets, Sally-Anne (SA) in
Section 4.1, Strange Stories (SS) in Section 4.2 and Imposing Memory (IM) in Section 4.3. The
main test results, measured with accuracy and confidence as described in Section 3, are visualised
in combined plots. These are visualised with on the x-axis the increasing difficulty level, which
usually is the masking level as described in Section 3.3.2. The SS test results are visualised both
per SS test and per masking level. On the y-axis of these plots, we have both the accuracy and
confidence, ranging both from 0 to 1, where higher is better.

4.1 Sally-Anne

In the SA1 test, we clearly see nearly flawless performance and high confidence in the closed
answer-types, as displayed Figures 5a and 5b. These differences appear less pronounced in the
open answer-types. Here we see a steep drop in accuracy in the open questions, see Figure 5c. The
accuracy in autocomplete is still very high, see Figure 5d.

In SA2, we only see an advantage in confidence with the use of the VC in the autocomplete
test, although the accuracy is very low (Figure 6d). The other three tests have relatively similar
confidences, as seen in Figures 6a, 6b and 6c. The use of a VC does not appear to help a lot, as
even with a higher confidence, accuracy is still very low. Interestingly enough, in SA2 MC, we see a
jump in accuracy on the highest masking level.

4.2 Strange Stories

Almost all Strange Stories tests show similar behavior, whether grouped by difficulty of masking
level or by difficulty of the Strange Stories Story itself. We generally see higher accuracy and
confidence scores with the use of a VC, as illustrated in Figures 7a, 7b, 7c, 7d, 8a, 8b, 8c and 8d.
On the other hand, without VCs, we see higher confidence in the open-ended tests in Figures 7c
and 7d. Accuracy is rarely slightly higher without VCs, but this does not appear consistent.

We see roughly similar accuracy scores between MC and YN, for both the tests grouped per
story in Figures 8a and 8b, and for the tests grouped by masking level in Figures 7a and 7b.
However, these do not necessarily mean the same. If we take into account the guessing chance,
where the odds for a correct MC guess are lower than for YN, then MC would perform better than
YN.

4.3 Imposing Memory

In the Imposing Memory tests, we see a pattern similar the one as seen in Section 4.2. With some
outliers on masking levels, we still generally notice a higher accuracy and confidence for the results
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(a) SA1 - Multiple-Choice (b) SA1 - Yes-No

(c) SA1 - Open (d) SA1 - Autocomplete

Figure 5: Sally Anne 1 Test Results Visualised per Masking Level with Combined Accuracy and
Confidence
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(a) SA2 - Multiple-Choice (b) SA2 - Yes-No

(c) SA2 - Open (d) SA2 - Autocomplete

Figure 6: Sally Anne 2 Test Results Visualised per Masking Level, with Combined Accuracy and
Confidence

(a) Per SS Story - Multiple-Choice (b) Per SS Story - Yes-No

(c) Per SS Story - Open (d) Per SS Story - Autocomplete

Figure 7: Strange Stories Results - Averaged over all Questions, Split per Story - per Test
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(a) All SS - Multiple-Choice (b) All SS - Yes-No

(c) All SS - Open (d) All SS - Autocomplete

Figure 8: Strange Stories Results - Averaged over all Questions, for all Stories - per Masking Level

as seen in Figures 9a, 9b, 9c and 9d. Overall, a very good illustration of the research: with increasing
difficulty, we see decreased performance and decreased confidence. Interestingly enough, in IM1
and IM2, filtered on intentionality (Figures 9c and 9d), we see a rise in accuracy and confidence
after masking level 5, seeing higher values in masking level 6.

4.4 Accuracy and confidence overview

An accuracy comparison between the tests, their answer-types and human performance is displayed
in Table 3. Unlike in the work of Van Duijn, we do not distinguish between levels of recursion for
the Imposing Memory test [38]. We average the levels of recursion, just like we average over the
question accuracy for the plots of the IM tests. The human child accuracy data is used from the
work of Van Duijn, as described in Section 3.4.3.

We say a test has overall higher accuracy with use of Visual Cues (VCs), when the average
question accuracy, for all levels of masking, is higher than without using the VCs. We call this a
win for using VCs. When average accuracy scores are equal, we call this a tie. A loss is when the
average accuracy is lower using VCs than without.

Here, for the SA tests, we see two ties in SA1, slightly better accuracy in autocomplete VCs,
and an further higher accuracy for five of the tests. There is also one loss. In Strange Stories, we
see most of the higher accuracy scores occurring in the Yes-No and open answer-types. In total, for
the use of VCs, there are six ties, five losses and seventeen wins. For the IM tests, we see two losses
for the use of VCs, one tie and one win. For all open answer-type tests, we see a higher accuracy

25This is the average for both IM1 and IM2. Calculation: (0.936 + 0.762)/2 = 0.849
26This is the average for both IM1 and IM2. Calculation: (0.964 + 0.667)/2 = 0.816
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(a) IM1 General (b) IM2 General

(c) IM1 Intentionality (d) IM2 Intentionality

Figure 9: Imposing Memory Tests Results Visualized per Masking Level

Test MC MC I YN YN I Open Open I Auto Auto I Humans
SA1 1.0 1.0 1.0 1.0 0.732 0.786 0.982 0.946 0.45
SA2 0.476 0.524 0.476 0.524 0.345 0.369 0.054 0.071 0.225
SS1 0.0 1.0 0.929 0.929 0.143 0.714 0.964 0.857 0.930
SS2 0.786 0.786 0.429 0.5 0.339 0.589 0.714 0.857 0.819
SS3 0.714 0.5 0.571 0.643 0.429 0.571 0.893 0.893 0.709
SS4 0.786 0.714 1.0 0.929 0.286 0.768 0.786 0.571 0.598
SS5 0.429 1.0 0.857 0.929 0.214 0.536 0.679 0.679 0.487
SS6 0.5 0.5 0.357 0.571 0.429 0.714 0.857 1.0 0.377
SS7 0.929 0.929 0.643 0.786 0.482 0.571 0.286 0.393 0.266

IM1 General - - 0.707 0.701 - - - - 0.849 25

IM2 General - - 0.682 0.63 - - - - 0.849

IM2 Intentionality - - 0.629 0.657 - - - - 0.816 26

IM1 Intentionality - - 0.675 0.675 - - - - 0.816

Table 3: Comparing the observed accuracy scores between tests and humans, from [38], and our
tests. The I denotes the use of the Visual Cue (i.e. an image) in the test. Bolds indicate a higher
accuracy, per test, per answer-type, comparing the use of the Visual Cue. Note that the Imposing
Memory tests were kept in their original Yes-No answer-type.

26



Figure 10: Cohen’s kappa scores visualized per category of comparison

with the use of VCs. In total this gives us 9 ties, 8 losses and 23 wins in accuracy for the use of
Visual Cues. As seen in Table 3, the human accuracy levels are exceeded by the model, on one or
more answer-types.

Aggregating accuracy and confidence all together, we can create an overview of all values. The
means and standard deviations of both metrics, for all tests, with and without VCs, are displayed
in Table 4. We on average do see a higher accuracy with the use of a visual cue, and a slightly
lower standard deviation. However, the difference for the confidence is significantly smaller. Both
the confidence mean and standard deviation are slightly higher without a VC.

Image Level Accuracy Mean Accuracy Std Confidence Mean Confidence Std
With Visual Cue 0.700416 0.458394 0.883315 0.225741
Without Visual Cue 0.678225 0.467482 0.885693 0.229773

Table 4: Aggregated confidence and accuracy with and without visual cues.

4.5 On inter-rater agreement

As outlined in Section 3.4.1, we use Cohen’s kappa to calculate the inter-rater agreement. These
scores are calculated and visualized by a program, based on the structured input of ratings for the
two raters. Cohen’s kappa is calculated for the entire rating, but also on an image- and masking-level
basis. This is seen in Figure 10. The agreement for this rating is high: there is no kappa value below
0.73, with an average of 0.84. However, this does not surprise us a lot, because firstly, the model is
usually either objectively wrong or right. And secondly, because both raters have a highly similar
academic background (See Section 6).
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5 Discussion

5.1 Reflection on results

Looking at the resulting plots, we mostly see good performance compared to the human accuracy
scores. The accuracy scores are especially good for Sally-Anne 1, which is to be expected of the
classic false-belief test: the test is the easiest of the test-set and commonly found on the internet.
However, accuracy on SA2 is very low, consistent on all answer types. We also see that the open
question types with supplementary visuals perform the best, throughout the SA1 and SS tests. This
leads us to assume that open-ended generation might give the model the most freedom to interpret
the visuals correctly, and use them to form an answer. The confidence scores for the autocomplete
and open ended questions are usually lower, partly due to our comparative confidence approach
as described in Section 3.4.2. Because we did not account for the response length in tokens, for
example by normalizing the scores, it is unclear how large the confidence drop exactly was for the
longer answers. Glancing over the model answers, we see similar answer lengths, but there were
outliers where the model unmasked the texts, which all discounts the confidence scores. This finding
is further described in Section 5.2.

We see something like the Dunning-Kruger effect in the results of SA2, of all answer-types,
as illustrated in Figures 6a, 6b, 6c and 6d. The Dunning-Kruger effect is a cognitive bias, where
overestimation of abilities occurs, when people are actually unskilled in such domains [19]. We see
that the answer correctness is the lowest (i.e., limited abilities) when the model confidence is the
highest (i.e., overestimation). This is not consistent among all test results, but still an interesting
phenomenon. In general, we see higher model confidence and accuracy when a visual cue is used, as
seen in Section 4.4. Because of our limited scope and test set, being limited to only the English
language and the GPT-4o LMM from OpenAI, we can not say for sure that these results are fully
valid. They hold in this scope, but may not hold everywhere else. Furthermore, high accuracy on
the tests indicate high understanding of social situations and mind-states, but still do not prove
that the models actually understand. It just appears this way; leading to a similar argument as
that in the Chinese Room argument by Searle [29].

Comparing the different answer-types, we notice a few things. Firstly, we see that the fully-
constrained answer-types, Multiple-Choice and Yes-No, usually have very similar accuracies, where
only SA2 is the exception, as seen in Figures 6a and 6b. Between the Open- and Autocomplete
answer-types, we see differing results. Sometimes the accuracy and confidence are higher for the
Open questions, but the Autocomplete questions seem to slightly outperform the Open questions.
As GPT-4o is a chat completion model, and not a so-called completion model, this is somewhat a
striking finding. Namely, when asked to complete a sentence, the model mostly treats it like an
Open question, answering the question in a full sentence. Rarely does the model directly complete
the sentence. However, we do see a measurable difference in both accuracy and confidence between
the answer-types.

When comparing between the presence of a visual cue and the absence of it, we also see a large
difference, mostly in accuracy, on most tests. With the exception of the SS Yes-No, SA1- and SA2
tests, we see noticeable difference in accuracy with- and without visual cues. This is usually in favor
of the use of the visual cue, but not for all levels. The confidence difference appears less meaningful,
as sometimes with low accuracy, still high confidence scores appear, like in the SA2 tests. Only
in the IM tests, we clearly see both decreasing confidence and accuracy, with increasing masking
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levels.

5.2 Manual rating: issues and observations

The manual rating of the open-ended answer-type questions led to some interesting and also some
unexpected findings. In this section, we go over the issues and observations as found when rating
these questions. When the model makes wrong assumptions about the text in open/autocomplete
modes, follow-up questions are often answered incorrectly as well. For example, if the model initially
misunderstands the context, subsequent responses are also likely to be wrong. The model sometimes
tries to ”unmask” the text but still provides incorrect answers. This often happens in a fill-in-the-gap
manner, sometimes literally including ’[]’s or using markdown-bold around the inferred words. This
behavior is observed both with and without images, though intuitively, it is less accurate without
images (see D.1.2). Occasionally, the model figures out the masked question but does not answer it,
especially in open questions. For larger stories, this issue is compounded by the token generation
limit, which can cut off the response mid-sentence. Despite masked words and no supplementary
images, the model can still answer questions correctly. However, sometimes the model produces
answers like ”no question” to a masked question, even when a question is clearly present (see D.1.3).
The model’s performance is notably poor on certain tasks with high masking levels and limited
supplementary images, as there is insufficient context for the model to generate accurate responses
(see D.1.4). This suggests that further improvements in question formulation are necessary.

5.3 Test limitations

Aggregating our findings from constructing and running the ToM tests on a LMM, we discuss
any identified limitations of these ToM tests. Namely, with how the ToM tests are structured and
conducted in humans, but also with how we fit the tests into our pipeline, there are some limitations.
In this section, we discuss these limitations.

The distinction between ToM and visual reasoning is crucial. While ToM is a social cognitive
ability requiring complex inferences about hidden mental states, visual reasoning is a broader cogni-
tive skill for interpreting visual information. Multimodal ToM often necessitates more sophisticated
inferences that are not directly observable, highlighting the added value of integrating visual cues.
However, it remains unclear which specific aspects of the images are being assessed by the models.
This is an issue highlighted by more authors [38, 37]. The concept of ’confidence’ reported by
models might not reflect true confidence, but rather an indication of confidence.

The theory indicate that most Theory of Mind assessments are relatively straightforward for
modern LMMs, such as those ran on GPT-4 models [38]. The models easily passed both the
text-only and the mixed text-image tests, demonstrating their robust performance in understanding
and reasoning with textual information. We have seen the same in our tests, where generally the
accuracy scores are high. However, significant challenges persist, such as the difficulty of effectively
incorporating images into existing tests without diminishing the textual information, which alters
the test’s comparability to those administered to children. Integrating images into these tests
does not significantly alter the outcomes, suggesting that simply adding visual elements without
modifying textual information fails to enhance the complexity of the test.

It is important to note that humans retain memory of previous tests when assessing test
equivalence between humans and machines, because the AI models were scoped to the conversation
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history of each test run, comprising only a few questions at a time. Additionally, the answer options
for the LMMs were created after human testing, meaning that humans were not tested with most
answer-types that the LMMs encountered. This poses a limitation in the direct comparability of
human and model performance. Ensuring full test equivalence between the AI models and humans
will also improve internal validity, eliminating confounding variables. A limiting factor being the
test data for the models, is in line with similar work, where the test data is also indicated to be a
bottleneck [15, 6].

Masking questions in the tests serves to evaluate the model’s ability to infer missing information.
However, excessive masking can render questions unintelligible, making it unrealistic to expect
accurate responses without visual cues. This is particularly evident at masking levels 2, 3, and
4, which are quite similar due to the simplicity of ToM evaluations for children, often lacking
adjectives and adverbs. Additionally, masking both the question and answer options at higher levels
can make the question unreadable, but not masking them may reveal too much about the story
that was originally masked. Especially in the Strange Stories tests, we do not see any clear trends
in accuracy or confidence, as visualised per Masking level in Figures 8a, 8b and 8c. This might
indicate that the limited available text, even when in presence of a visual cue, is not a proper way
to test the Strange Stories test set. Thus, a balance must be struck between preserving the integrity
of the test and allowing the model a fair opportunity to exhibit its reasoning skills.

The comparison of masking levels reveals that the difficulty of levels 5 and 6 varies between
tests. We clearly see this in the intentionality plots of IM 1 and IM 2, as indicated in Section 4.3, in
Figures 9c and 9d: the accuracy and confidence is higher for masking levels 6, than for levels 5. In
Figure 9a, this was the other way around. These levels 5 and 6 mask verbs and nouns, respectively,
in addition to other words masked in earlier levels. Consequently, tests with a higher number of
pronouns or verbs show different levels of difficulty under these masking conditions. Current ToM
evaluations are possibly too simplistic for state-of-the-art language models, as they generally do not
include complex ToM scenarios such as third-order false beliefs, for which there is limited human
comparative data.

Furthermore, the study was restricted to a select one model considered to be at the cutting
edge of multimodal model development, potentially limiting the generalizability of the findings.
Existing tests are highly likely to be found in training data, as LLM-builders scrape essentially
the entire internet. This also poses a direct threat to internal validity, which could be mitigated
by creating unique, unpublished tests, which will be directly tested on humans and models. This
ensures the tests do not occur in the LMM training data, and full equivalence between tests.

Additionally, the unclear segregation between control and ToM questions is a limitation. To
maintain parallelism with the original tests, control questions were included where possible. Only
in the case of the Imposing Memory test, we removed the questions marked as memory and ran
them in a separate test. This was also done in the work of Van Duijn, of whom we used the human
accuracy scores for comparison [38]. A case could be made to remove control question evaluation in
future work, for all test sets, focusing solely on ToM questions (e.g., intentionality).

5.4 Further research

This research is focused on Theory of Mind, which is a simple social-cognitive skill. Basic ToM
usually develops in children who are 4 to 5 years old. In the future, the research should be extended
to include more complex social-cognitive skills.
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We propose three test design criteria, needed for more thorough assessment of Theory of Mind in
Multimodal AI.

Test Design Criteria

• Ensure unique, unpublished tests with full equivalence between evaluations in humans and
LMMs, to ensure a valid comparison.

• Add information to the tests that is only found in images, not the text, to ensure humans
and LMMs both use their visual reasoning skills to answer the questions.

• Linking LMM architecture to ToM test performance, to properly assess the impact of visual
information in different multimodal AI models.

Besides these three important test design criteria, there is more work left in this field. Firstly,
more thorough and repeated testing could be conducted, with different parameters. Think different
model seeds, max. output lengths for open- and autocomplete questions, and other values for
temperature and top p. In the test setup, there could also be more experimenting with different
answer-types (See Table 6). Here, with proper statistical evaluation, it is possible to determine
any relevant differences between the parameters and test answer-types. Secondly, this research was
limited to one model that is currently considered SoTA, being GPT-4o. However, to thoroughly
investigate ToM capabilities in LMMs, more high-end models should be tested. At the time of writing,
examples would be Google’s Gemini 1.5 Pro and Anthropics’ Claude 3.5 Sonnet. Furthermore,
this research was also limited to one extra modality over text: still images. Expanding to more
modalities, like audio and video, is also highly beneficial to augment the understanding on ToM in
AI.

5.5 AI energy consumption

With widespread adoption of LLM’s and LMM’s, the energy use and potential environmental
impacts are an increasing concern. Using a rough, but accepted estimate energy-use range for LLM
inference, we calculate the impacts of this specific research. [9] estimates an average of 3Wh, or
0.0003KWh, per prompt. On diverse internet blogs and fora, a less conservative 300Wh, or 0.3KWh
is named 27. Using the estimate pessimistic case of 0.3KWh per prompt, we used 756 KWh for
the main run 28 29. Note: This energy usage is only for one run of the entire evaluation pipeline.
During development and testing, many tests and questions were ran.

total questions = 180
total prompts = 180 questions ∗ 2 image levels ∗ 7 masking levels = 2520
2520 ∗ 0.3KWh = 756KWh energy use

27Calculation on Substack, Calculation on Stackexchange
28This is a rough approximation and is not accurate for the used GPT-4o model here.
29The energy estimation is only for GPT inference, not accounting for energy use during GPT training and

development.
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6 Conclusions

Thus, the answer to our main research question: How do Large Multimodal Foundation Models
perform in multimodal Theory of Mind assessments, and what is the relative value of visual cues in
their performance?, is that the tested model performs very well on accuracy, on average. Generally
exceeding the performance of human children, as seen in Section 4.4. We also see the confidence
is generally higher when using a Visual Cue in the tests. The visual cues influence the accuracy
and confidence of the models; when the needed information is present, the model is able to use the
information to correctly infer mind-states.

Accuracy and confidence, on average, improve when decreasing available information in the
textual component in presence of a visual cue, leading us to believe the model is successfully able
to use the visual information from the questions to infer mind-states in ToM tests. We also find
that current generation Theory of Mind tests are incomplete for proper evaluation in LMMs.
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A Appendix A

A.1 Definitions

(Native) Multimodal AI: AI models that integrate and process multiple forms of data inputs, such
as text, audio, and visual information, to perform tasks that require a comprehensive understanding
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of different modalities. A Native multimodal model is inherently designed to interpret inputs from
various modalities, without the need for extensive adaptation.

Theory of Mind: A cognitive framework that refers to the ability to attribute mental
states—beliefs, intents, desires, emotions, knowledge, etc.—to oneself and others, and to understand
that others have beliefs, desires, and perspectives that are different from one’s own.

Visual Cues: Information derived from visual inputs, such as images or videos, which are used
by cognitive systems to interpret context, understand content, and infer meanings.

Foundation Models: Large-scale models pre-trained on extensive and diverse datasets, which
provide a broad base of knowledge and capabilities that can be fine-tuned (read: adapted) for a
wide range of specific tasks.

A.2 Source Code

The Open-Source source code of this research is accessible on GitHub: https://github.com/
thekaasking/Thesis. The code is licensed under the MIT License. For further details on repro-
ducing the results and code structure, please consult the README.md file as found in the root
directory of the repository.

A.3 Answer Type Overview

Table 5: Levels of Freedom in Generation [21]

Level Description
Fully-Constrained Fully-constrained generation limits the model output to

specific predefined structures or responses. In this group,
we design 3 tasks, i.e., Fill-in-the-Blank, Multiple Choice,
and True or False questions.

Semi-Constrained Semi-constrained generation involves partial guidance
by specific rules or structures, while still allowing some
flexibility in the model’s responses. This group consists
of 2 tasks, i.e., Chain-of-Thought (CoT) True or False
questions and Question Answering (Q&A) tasks.

Open-Ended Open-ended generation enables the model to generate
responses without being restricted by predefined rules or
structures, leading to more diverse and varied outputs.
An example of this group is Text Completion.
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Table 6: Types of Task Templates in Theory of Mind with Levels of Freedom [21]

Type Level of Freedom Description and Example
Narrative Open-Ended Neila and Juanita were hanging out in the

attic. They saw a closet and a cabinet. They
found a towel in the closet. Juanita left the
attic. Neila moved the towel to the cabinet.

Fill-in-the-Blank Fully-Constrained Fill in the blank (<>): After Juanita came
back to the attic, Neila would think Juanita
would look for the towel in the <>.

Multiple Choice Fully-Constrained Choose the correct answer from A or B for
the following question: After Juanita came
back to the attic, where would Neila think
Juanita would look for the towel? A. cabinet
B. closet

True/False Fully-Constrained Given the context, judge True or False of
the given statements A and B respectively:
A. Juanita would look for the towel in the
cabinet. B. Juanita would look for the towel
in the closet.

CoT True/False Semi-Constrained Given the context, reason through statements
A and B step by step and provide a True
or False judgment based on the reasoning:
A. Juanita would look for the towel in the
cabinet. B. Juanita would look for the towel
in the closet.

Q&A Semi-Constrained Answer the question based on the context:
After Juanita came back to the attic, where
would Neila think Juanita would look for the
towel?

Text Completion Open-Ended Complete the following paragraph: After
Juanita came back to the attic, Neila would
think Juanita would look for the towel in

B Appendix B: Experiments

B.1 Pilot Prompts

Using the comic provided, please answer the following questions, using this context.

Story

Laura and Beth are spending time in the park. Nearby, a lemonade stand is set up beside the
fountain. Both wish to purchase lemonade, but Laura realizes she does not have enough money.
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Laura decides to return home for more money. The person managing the stand tells Beth that he’s
relocating to another spot near the playground. He encounters Laura on her way back and informs
her of his new location. After Laura gets her money, she heads to the playground to buy lemonade.
Meanwhile, Beth visits Laura’s house and inquires about Laura’s whereabouts. Laura’s mother
informs her that Laura is at the playground buying lemonade.

B.2 Image examples

(a) The plot in its original form, including a hint. (b) The plot without the hint

Figure 11: Sample DALL-E 3 generated images for the story

Questions and Answers

Question 1: Where is the lemonade stand now?
1A) Near the playground.

1B) Still beside the fountain.
1C) Inside the park’s main entrance.
1D) Near the parking lot.

Question 2: Why does Beth think Laura went to Laura’s house to get lemonade, and why?
2A) Beth thinks Laura went to Laura’s house because she was unaware of the lemonade stand’s

new location near the playground.
2B) Beth thinks Laura went home because Laura wanted to make her own lemonade instead of
buying it.
2C) Beth believes Laura’s house is a meeting point for them whenever they get separated in the
park.
2D) Beth assumes Laura went home to invite her to the park.
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B.3 Image Understanding

To evaluate whether the model would understand combined images and their context, we tested
this shortly. ChatGPT Plus, Web Version. Model: GPT-4o. Mode: Temporary Chat.

Prompt: What do you see here?

Answer:

The series of illustrations appears to tell a simple story:

In the first panel, a group of three people are seated around a table.

One person is standing with a chair, looking towards the group.

In the second panel, a person is depicted thinking about someone,

as indicated by the thought bubble containing an image of a person.

In the third panel, the person who was standing in the first panel

is now seated, engaging with the person who was thinking.

The narrative suggests a sequence where someone joins a group, and the

individual who was thinking about someone earlier is now interacting

with the newcomer. The theme seems to focus on social interaction and

the anticipation of joining a group or meeting someone.

Figure 12: Combined image as used, from Recursive Mindreading 2, images 2, 3 and 4.

C Appendix C

C.1 System Messages

self.DEFAULT_SYS_MSG_EN = "You respond the question in English. If there

is no question, you respond with ’no question’. If asked for only one letter,

in a multiple-choice scenario, you respond with only one letter."

self.AUTOCOMPLETE_SYS_MSG_EN = "You respond the question in English. Respond

to the user based on the type of query presented. If there is no question,

you respond with ’no question’. If the query is an autocomplete question, in
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the form of: ’The capital of France is ’, you respond with the correct answer,

’Paris’."

self.DEFAULT_SYS_MSG_NL = "Je beantwoordt de vraag in het Nederlands. Als er

geen vraag is, antwoord je met ’geen vraag’. Als er gevraagd wordt om slechts

één letter, in een multiple-choice scenario, antwoord je met slechts één letter."

self.AUTOCOMPLETE_SYS_MSG_NL = "Je beantwoordt de vraag in het Nederlands.

Reageer op de gebruiker op basis van het type vraag dat wordt gepresenteerd.

Als er geen vraag is, antwoord je met ’geen vraag’. Als de vraag een automatisch

aanvullen vraag is, in de vorm van: ’De hoofdstad van Frankrijk is ’, antwoord

je met het juiste antwoord, ’Parijs’."

C.2 Name Deviation List

Original name in test - Changed name

Sally - Beth

Anne - Laura

Jan - Peter

James - Ryan

Claire - Harley

Tineke - Celina

Sanne - Rosalyn

Bram - Jaxx

Jip - Frankie

C.3 Commonly Used Special LLM Tokens

• <end>, </s>, <im end >: These tokens indicate the end of a text sequence, aiding
models in understanding sequence boundaries.

• <bos>, <s>, <im start >: These tokens mark the beginning of a sequence, providing a
starting point for text generation or processing.

• <pad>: Used for padding sequences to a uniform length, ensuring consistent input size
across different texts for model processing.

• <unk>: Represents unknown or out-of-vocabulary items within a text, allowing models to
handle words not encountered during training.

• <mask>: Employed in masked language modeling tasks, this token is used to obscure a
word in a sequence, facilitating the learning of contextual relationships between words.
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D Appendix D

D.1 Examples Found during Manual Ratings

D.1.1 Example 1

The model ”asks back” a question, after correctly answering the question.
Question ID: 6273bc2b-fd5f-567a-8d68-7bdbac7f8dd6
Image Level: without image - Masking Level: 2
Prompt:
[Frankie realizes that [MASK] others will also think that [MASK] shed is [MASK] best

place. Why does [MASK] hide behind [MASK]?]

Correct Answer: []
Model Answer:
[Frankie realizes that the others will also think that the shed is the best place.

Why does Frankie hide behind it?]

D.1.2 Example 2

The model unmasks the texts, uses [ and ], and then answers the masked question correctly.
Question ID: 4ddcc4d2-085d-57ad-ad2c-12d4a3441a41
Image Level: with image - Masking Level: 5
Prompt:
[Jaxx’s mother [MASK] for [MASK] [MASK] [MASK] time to [MASK] Jaxx’s [MASK] dish: fish

and chips. But when [MASK] [MASK] [MASK] to Jaxx, [MASK] is [MASK] TV. [MASK] does

not [MASK] [MASK] up or [MASK] [MASK] [MASK]. Jaxx’s mother is [MASK] and [MASK], ’Well

[MASK]’s [MASK] [MASK]! [MASK]’s [MASK] [MASK] [MASK] politeness’!]

Correct Answer:
[’because she is sad that Jaxx is not grateful’]

Model Answer:
[Jaxx’s mother [took] for [a] [long] [time] to [prepare] Jaxx’s [favorite] dish: fish

and chips. But when [she] [brought] [it] to Jaxx, [he] is [watching] TV. [He] doesn’t

[look] [up] or [say] [thank] [you]. Jaxx’s mother is [angry] and [says], ’Well [that]’s

[just] [great]! [That]’s [not] [very] [polite]’!]

Jaxx’s mother [is] [upset] because Jaxx didn’t acknowledge her effort.]

D.1.3 Example 3

The model uses [MASK] in its answer, but answers correctly.
Question ID: d2db8b50-7b7d-5aab-bcea-bb5bc0037bcc
Image Level: without image - Masking Level: 3
Prompt:
[Why does Jaxx’s mother say [MASK]?]

Correct Answer:
[’she is being sarcastic’]

Model Answer:
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[Jaxx’s mother says [MASK] because she is likely expressing her frustration or disappointment

with Jaxx’s lack of gratitude or acknowledgment for the effort she put into cooking

his favorite dish.]

D.1.4 Example 4

The model unmasks the story text, and consequently correctly answers the question.
Question ID: 237fd604-071e-5c06-b8e4-e8c9c9c43c33
Prompt:
[Beth and Laura are in [MASK] park. [MASK] is [MASK] ice cream truck next to [MASK]

fountain. [MASK] [MASK] want to buy [MASK] (redacted) [MASK] mother says that Beth

is buying ice cream. Laura thinks Beth went to [MASK]]

Correct Answer:
[’fountain’]

Model Answer:
[Beth and Laura are in the park. There is an ice cream truck next to the fountain.

They both want to buy (redacted). Her mother says that Beth is buying ice cream. Laura

thinks Beth went to the swing.]

D.1.5 Example 5

The model does not answer the question directly, but the answer is graded as correct (score: 2).
Question ID: 3554dd44-c872-5e76-b304-4ab2380af338
Image Level: with image - Masking Level: 1
Prompt:
[Peter says: ’The dog knocked [MASK] over, [MASK] is not [MASK] fault!’ Did Peter say

the truth?]

Correct Answer:
[’n’, ’N’, ’no’, ’No’]

Model Answer:
[Peter says: "The dog knocked it over, it is not my fault!"]

D.1.6 Example 6

The model does not understand the masked question.
Question ID: ff3cb2f8-b514-507e-a4f8-a9db862cad8d
Image Level: without image - Masking Level: 6
Prompt:
[Ryan goes to Harley’s [MASK] for [MASK] [MASK] [MASK]. [MASK] goes [MASK] for [MASK]

[MASK] and wants to see Harley’s [MASK] [MASK] [MASK] [MASK] talks about. Ryan likes

[MASK] [MASK] [MASK]. When Ryan gets to Harley’s [MASK], Harley runs to [MASK] [MASK]

to open [MASK], and [MASK] [MASK] jumps up to greet Ryan. Harley’s [MASK] is [MASK],

and [MASK] [MASK] [MASK] [MASK] Ryan! When Ryan sees Harley’s [MASK] [MASK] [MASK]

says, ’Harley, [MASK] don’t have [MASK] [MASK] [MASK] [MASK]. [MASK] have [MASK] [MASK]!’

Is [MASK] Ryan said [MASK]?]

Correct Answer:
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[’no, she just has a big dog’]

Model Answer:
[Is there a specific question you would like to ask about the text?]

D.2 Sample Log Probabilities

token: "B"

logprob: -3.1281633e-07

top_logprobs:

- token: "B"

bytes:

- 66

logprob: -3.1281633e-07

- token: " B"

bytes:

- 32

- 66

logprob: -16.25

- token: "A"

bytes:

- 65

logprob: -16.625

- token: "\ n"

bytes:

- 10

logprob: -20.75

- token: "b"

bytes:

- 98

logprob: -22.125

- token: "Б"
bytes:

- 208

- 145

logprob: -22.625

D.3 Filtered Log Probabilities

token: "B"

logprob: -3.1281633e-07

top_logprobs:

- token: "B"

bytes:

- 66

logprob: -3.1281633e-07
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- token: "A"

bytes:

- 65

logprob: -16.625

E Appendix E: Combined Result Plots

E.1 Resulting Visualizations SA1 and SA2

E.1.1 SA 1 per Masking Level

(a) Combined accuracy and confidence for SA1 -
Multiple-Choice

(b) Combined accuracy and confidence for SA1 - Yes-
No

(c) Combined accuracy and confidence for SA1 -
Open

(d) Combined accuracy and confidence for SA1 -
Autocomplete

Figure 13: Sally Anne 1 Test Results Visualised per Masking Level
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E.1.2 SA 2 per Masking Level

(a) Combined accuracy and confidence for SA2 -
Multiple-Choice

(b) Combined accuracy and confidence for SA2 - Yes-
No

(c) Combined accuracy and confidence for SA2 -
Open

(d) Combined accuracy and confidence for SA2 -
Autocomplete

Figure 14: Sally Anne 2 Test Results Visualised per Masking Level
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E.2 Resulting Visualizations SS

E.2.1 Results per Test

(a) All Masking Levels, per SS Story - Multiple-
Choice (b) All Masking Levels, per SS Story - Yes-No

(c) All Masking Levels, per SS Story - Open (d) All Masking Levels, per SS Story - Autocomplete

Figure 15: Strange Stories Results - Averaged over all Questions, Split per Story - per Masking
Level

46



E.2.2 Results per Masking Level

(a) All SS - Multiple-Choice (b) All SS - Yes-No

(c) All SS - Open (d) All SS - Autocomplete

Figure 16: Strange Stories Results - Averaged over all Questions, for all Stories - per Masking Level

E.3 Resulting Visualizations RM

E.3.1 All Questions

(a) IM 1 - Yes-No (b) IM 2 - Yes-No

Figure 17: Imposing Memory Tests Results - All Questions - Visualized per Masking Level
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E.3.2 Intentionality Only

(a) IM 1 - Yes-No (b) IM 2 - Yes-No

Figure 18: Imposing Memory Tests Results - Intentionality Questions Only - Visualized per Masking
Level

F Appendix F: Individual Test Result Plots

F.1 Accuracy Plots

F.1.1 Sally Anne 1 and 2

(a) Sally Anne 2 Ice Cream Autocomplete (b) Sally Anne 2 Ice Cream Multiple Choice

(c) Sally Anne 2 Ice Cream Open (d) Sally Anne 2 Ice Cream Yes/No

Figure 19: Accuracy plots for Sally Anne 2 Ice Cream test
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(a) Sally Anne 1 Autocomplete (b) Sally Anne 1 Multiple Choice

(c) Sally Anne 1 Open (d) Sally Anne 1 Yes/No

Figure 20: Accuracy plots for Sally Anne 1 test

F.1.2 Imposing Memory

(a) Recursive Mindreading 1 (b) Recursive Mindreading 2

(c) Recursive Mindreading 1 Filtered Intention-
ality

(d) Recursive Mindreading 2 Filtered Intention-
ality

Figure 21: Accuracy plots for Imposing Memory tests
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F.1.3 Strange Stories

(a) Strange Stories 1 Autocomplete (b) Strange Stories 1 Multiple Choice

(c) Strange Stories 1 Open (d) Strange Stories 1 Yes/No

Figure 22: Accuracy plots for Strange Stories 1

(a) Strange Stories 2 Autocomplete (b) Strange Stories 2 Multiple Choice

(c) Strange Stories 2 Open (d) Strange Stories 2 Yes/No

Figure 23: Accuracy plots for Strange Stories 2
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(a) Strange Stories 3 Autocomplete (b) Strange Stories 3 Multiple Choice

(c) Strange Stories 3 Open (d) Strange Stories 3 Yes/No

Figure 24: Accuracy plots for Strange Stories 3

(a) Strange Stories 4 Autocomplete (b) Strange Stories 4 Multiple Choice

(c) Strange Stories 4 Open (d) Strange Stories 4 Yes/No

Figure 25: Accuracy plots for Strange Stories 4
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(a) Strange Stories 5 Autocomplete (b) Strange Stories 5 Multiple Choice

(c) Strange Stories 5 Open (d) Strange Stories 5 Yes/No

Figure 26: Accuracy plots for Strange Stories 5

(a) Strange Stories 6 Autocomplete (b) Strange Stories 6 Multiple Choice

(c) Strange Stories 6 Open (d) Strange Stories 6 Yes/No

Figure 27: Accuracy plots for Strange Stories 6
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(a) Strange Stories 7 Autocomplete (b) Strange Stories 7 Multiple Choice

(c) Strange Stories 7 Open (d) Strange Stories 7 Yes/No

Figure 28: Accuracy plots for Strange Stories 7

F.2 Confidence Plots

F.2.1 Sally Anne 1 and 2

(a) Sally Anne 2 Ice Cream Autocomplete (b) Sally Anne 2 Ice Cream Multiple Choice

(c) Sally Anne 2 Ice Cream Open (d) Sally Anne 2 Ice Cream Yes/No

Figure 29: Confidence plots for Sally Anne 2 Ice Cream test
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(a) Sally Anne 1 Autocomplete (b) Sally Anne 1 Multiple Choice

(c) Sally Anne 1 Open (d) Sally Anne 1 Yes/No

Figure 30: Confidence plots for Sally Anne 1 test

F.2.2 Imposing Memory

(a) Recursive Mindreading 1 (b) Recursive Mindreading 2

(c) Recursive Mindreading 1 Filtered Intention-
ality

(d) Recursive Mindreading 2 Filtered Intention-
ality

Figure 31: Confidence plots for Imposing Memory tests
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F.2.3 Strange Stories

(a) Strange Stories 1 Autocomplete (b) Strange Stories 1 Multiple Choice

(c) Strange Stories 1 Open (d) Strange Stories 1 Yes/No

Figure 32: Confidence plots for Strange Stories 1

(a) Strange Stories 2 Autocomplete (b) Strange Stories 2 Multiple Choice

(c) Strange Stories 2 Open (d) Strange Stories 2 Yes/No

Figure 33: Confidence plots for Strange Stories 2
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(a) Strange Stories 3 Autocomplete (b) Strange Stories 3 Multiple Choice

(c) Strange Stories 3 Open (d) Strange Stories 3 Yes/No

Figure 34: Confidence plots for Strange Stories 3

(a) Strange Stories 4 Autocomplete (b) Strange Stories 4 Multiple Choice

(c) Strange Stories 4 Open (d) Strange Stories 4 Yes/No

Figure 35: Confidence plots for Strange Stories 4
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(a) Strange Stories 5 Autocomplete (b) Strange Stories 5 Multiple Choice

(c) Strange Stories 5 Open (d) Strange Stories 5 Yes/No

Figure 36: Confidence plots for Strange Stories 5

(a) Strange Stories 6 Autocomplete (b) Strange Stories 6 Multiple Choice

(c) Strange Stories 6 Open (d) Strange Stories 6 Yes/No

Figure 37: Confidence plots for Strange Stories 6
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(a) Strange Stories 7 Autocomplete (b) Strange Stories 7 Multiple Choice

(c) Strange Stories 7 Open (d) Strange Stories 7 Yes/No

Figure 38: Confidence plots for Strange Stories 7
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