
Opleiding Informatica

Monte Carlo Methods for the

Board Game Patchwork

Teun Bergsma

Supervisors:
W.A. Kosters & J.M. de Graaf

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl July 25, 2024

www.liacs.leidenuniv.nl

Abstract
In this thesis an altered version of the board game Patchwork is analyzed using various
(Monte-Carlo) methods. Patchwork is a 2-player board game where players have to fill their
own 9×9 grid board as efficiently as possible by purchasing tiles from a set of polyominoes.
The altered version analyzed in this thesis is a variant where randomness and the second player
are removed. This is done as the goal is to find a score as close to optimal as possible using
various techniques, but namely Monte Carlo Methods. Our findings show that the huge search
space of the game means that runtime is a large problem. For the pure Monte Carlo algorithm
this limited playouts due to long runtimes, but for the Monte Carlo Tree Search algorithm this
led to a bottleneck caused by memory usage. This is why we have used a number of techniques
that limited the search space, such as the use of a heuristic and a Reinforcement Learning
framework. To do more extensive testing a simulated version of the game is implemented,
where tiles no longer need to be placed on the player board. Our results showed that for the
real version of the game we were able to achieve a score of 74 using a player that combines
multiple Monte Carlo methods and brute force and for the simulated player we were able to
achieve a score of 84 using Monte Carlo Tree Search and brute force. The action sequence
that led to a score of 84 can be altered to be possible in the 2-player game with a score of 81.

Contents

1 Introduction 1

2 Related Work 3

3 Patchwork 5
3.1 The game . 5
3.2 Single-player variant . 8
3.3 Examples . 8

4 Methodology 10
4.1 Simple strategies . 10
4.2 Monte Carlo strategies . 13
4.3 Simulations . 19
4.4 Reinforcement Learning . 19
4.5 Perfect finish . 20
4.6 Combined player . 20

5 Experiments 22
5.1 Different methods . 22
5.2 Reinforcement Learning . 33
5.3 Combined player . 34
5.4 Highest achieved score(s) . 35

6 Conclusions and Future Work 38
6.1 Future work . 38

References 39

1 Introduction

Board games have been a popular pastime for hundreds of years due to the fun they offer. They can
be enjoyed by people young, old, and everything in between, because they offer a fun challenge for
all. The nature of this challenge varies greatly per board game, but for most games this challenge
stems from the ability to understand the mechanisms of a game and then using these mechanics
to find an optimal strategy given your situation. This topic lends itself very well to the discipline
of computer science, as optimization is a task in which computers excel. Many popular board
games such as Catan [SCS09], Monopoly [Kot12], Go and chess [SHS+18] have already been
thoroughly researched using algorithms to find optimal strategies and much more about these
games.
The board game that will be analyzed in this thesis is called Patchwork [Ros14a]. The game
is quite popular and has won a number of awards [Gee], yet only a single other scientific paper
[Lag20] describes research in regards to the game and that paper focuses mostly on the tile laying
component. The game is a 2-player game where the players both have a 9×9 grid which they have to
fill as efficiently as possible by taking turns and purchasing Tetris-piece like shapes (polyominoes).
Scoring is based on the number of spots filled on their board and currency left at the end of the
game. This means that the challenge here comes from a finely balanced set of polyominoes with
different costs and shapes that each differ in quality at certain points in the game. This leads to an
interesting puzzle where the players have to critically assess what polyominoes to purchase at what
point in time to achieve the highest score, by maximizing their earnings and efficiently filling the
open spaces.
This thesis will focus on an altered version of the game in which the game is only played by one
player and is thus more of a puzzle. An example of a single-player game in progress can be seen
in Figure 1. In this figure the player board is on the right, which the player is trying to fill as
efficiently as possible by repeatedly purchasing pieces with different costs and shapes.

Figure 1: An overview of a single-player game in progress.

1

Thesis Goal

For this thesis, the goal is to achieve a score as close as possible to the maximum achievable score
in the single-player game (which we presume to fall in the [84-90] range based on results from
our experiments), and finding the action sequence that leads to this optimal score. As mentioned
previously we look at an altered version of the game to do this. This altered version will only have
one player and thus has slightly altered rules (that have been adapted for the single-player version)
compared to the original game. This altered version also removes any randomness present in the
game (this mechanic is normally present during tile selection) as the goal is finding maximum
possible scores. This is done to reduce the amount of computing power required (also the second
player is presumably irrelevant in finding an optimal score). We can then verify if this score is also
achievable in the real 2-player game. While these changes are not major for determining an upper
limit for a possible score in the 2-player game, they do alter the game significantly and thus it
would be interesting for future work to analyze the actual 2-player game of Patchwork without
the removed randomness and second player.
We aim to achieve our goal of finding a maximum score by using a variety of methods such as
human like strategies, but we will be mainly focusing on Monte Carlo based methods. Monte Carlo
methods are based on a large number of random playouts used to gauge the effectiveness of a move
at that time. We will specifically use a pure Monte Carlo method, a greedy variant of this pure
Monte Carlo method, Monte Carlo Tree Search and a greedy variant of Monte Carlo Tree Search.
Using these methods we aim to achieve a score as close to perfection as possible.

Thesis overview

This bachelor thesis was written under the supervision of Walter Kosters and Jeannette de Graaf
at Leiden University for the Leiden Institute of Advanced Computer Science.
We start with an introduction present in this section; Section 2 contains other work related to the
methods or subject of this thesis; Section 3 contains the rules of the game, some examples and
the single-player variant to be analyzed in this thesis; Section 4 explains the used algorithms and
various other techniques that are utilized; Section 5 shows the results gathered from experiments
based on the various methods used; Section 6 concludes our findings and discusses potential future
work.

2

2 Related Work

In this section we will be looking at research focused on (board)games with similar mechanisms to
the game Patchwork, games which have been experimented on using similar methods to the ones
used in this paper and methods similar to the ones used in this paper.

The field of game theory as mentioned in the introduction is quite interesting for computer scientist
as the rule based systems are a good fit for optimization algorithms. Some highly skilled games
such as Go, Shogi and chess have been played using a general algorithm which has been based on
Reinforcement Learning principles as in [SHS+18]. Additionally, the authors of [CWvdH+08] give a
detailed overview of the Monte Carlo Tree Search method and it is used to play the game Go.
In [DI22] the goal is to greedily play an altered version of Tetris as quickly as possible. This
altered version exclusively uses rectangular pieces (instead of the polyominoes present in normal
Tetris, such as an L shape), the goal is to greedily find a spot for a piece while minimizing the
gained height from dropping this piece as efficiently as possible. This paper features an impressively
large list of references to work related to algorithms playing the game of Tetris by utilizing
all kinds of machine learning and artificial intelligence techniques. In addition to knowledge on
computers playing the game their references also include a number of papers regarding the way a
human plays the game of Tetris.
In [ZZN11] the game of Tetris is analyzed using a Monte Carlo method. The authors use a
bandit-based Monte Carlo planning method (specifically using Upper Confidence Bound Trees). To
save on computing time they use a clever trick based on the fact that Monte Carlo Tree Search
does not keep information of game states from previous iterations. A new tree is formed for each
new decision, but in Tetris a game state can be revisited. This is why they decided to create a
method to store this information that allows it to be re-used. They also use a bandit algorithm to
handle the trade off made between exploration and exploitation and to guide the planning process.
Lastly in regards to (board) games, [SCS09] analyzes the very popular game of Catan using Monte
Carlo Tree Search.

The game of Patchwork features two key decisions: what tiles to purchase and where to place the
purchased tile. The placement part has been researched thoroughly as this is a polyomino placement
problem (a problem where a minimal amount of space is given and polyominoes have to be placed
to fill this space as efficiently as possible) which has been analyzed using many different algorithms.
Online solvers [Mea] for this problem have also been created, which can use a variety of methods
to solve them such as: Algorithm X [Knu00] (Dancing Links), which reduces the problem to an
exact cover problem, and an algorithm which reduces the problem to a SAT (Boolean satisfiability)
problem to be solved.
The authors of [TYA22] improve upon a method used in previous studies to solve the polyomino
placement problem. This method works by embedding the polyomino puzzle in a quadratic
unconstrained binary optimization (QUBO) problem, “where the objective function and constraints
are transformed into the Hamiltonian function of the simulated Ising model”. This method aims to
be improved by introducing new constraints such as removal of bubbles (1×1) gaps and introduction
of new guiding terms to encourage favorable rotations and polyomino pairs.
With regards to placement [CRM+13] discusses the polyomino placement problem using a genetic
algorithm. A genetic algorithm is an approach that is inspired by natural selection and it works by

3

representing a possible solution to a problem as a chromosome (collection of genes), these then
go through numerous iterations of selection, crossover and mutations to potentially find a good
solution. In this paper this is done by using a procedure named the “snowball” algorithm which is
based on a binary genetic algorithm. Here the genes represent the rotation of a piece (but not its
position) and a chromosome represents a collection of polyominoes and their associated rotations.
To actually place said pieces the “snowball” algorithm starts from the center of the grid and
repeatedly builds outwards. All the potential solutions (chromosomes) then get a rating and based
on this, selection is performed meaning that the population (current set of available chromosomes)
improves with each iteration.
Lastly in [Lag20] the Patchwork board game is used to research “State representation and
Polyomino Placement”. In the paper constraint programming, a solving technique that involves
specifying a set of constraints that must be satisfied in order to find a valid solution, is used. Regular
constraints are used to “specify the required placement of a patch on the board”. This means that
all placement options for a tile are encoded by a regular expression and these are evaluated later
on to find the seemingly optimal choice.

4

3 Patchwork

Patchwork [Ros14b] is a tile-laying game where two players face off against one another by
attempting to get the highest score (see scoring formula in Section 3.1) through the repeated
selection of tiles and their placement. The tiles are polyominoes, meaning they are shaped similarly
to Tetris [DI22] pieces. The players have to place these tiles as efficiently as possible on their own
player board consisting of a 9×9 grid. On the player’s turn, they can either skip a turn to earn
currency and give up some time or they can purchase a tile with the two currencies present in the
game, time and buttons. The players repeatedly take turns until they have spent enough time to
reach the end of the “walking board”, and once both players reach this point (space 53 on the
“walking board”) the game ends and the player with the highest score wins.

3.1 The game

In this section we mention the different game elements and their interplay to give an overview of
the players goals and the mechanics of the game. Some elements of the original game will be left
out, namely the turn order, limited selection and the random setup, as these things are not relevant
for this thesis. For a full overview of the original rules of the game the reader is referred to the rule
book [Ros14b].

Tiles

The game’s goal is to maximize the player’s score, which is achieved by filling their board as
efficiently as possible with the available tiles. There are 38 tiles in total, where 5 of those tiles
are 1×1 tiles which are awarded upon passing certain spaces on the time board (these are not
purchasable and are explained in more detail below). The other 33 pieces are of varying shapes
and sizes covering 2 to 8 squares on the player’s board. Each of the other 33 tiles has a unique
combination of the following attributes:

Button cost BC : The number of buttons required to purchase the tile.

Time cost (TC) : The number of steps taken on the “Walking board” upon purchase.

Buttons in piece (SB) : The number of buttons this tile awards the player upon each passing of
a button spot on the “Walking board”.

Size (S) : The number of squares the tile fills on the player board.

Shape : The structure of the tile.

For a structured overview of all purchasable tiles see Figure 2 (these are the same as the real game
shown in Figure 1) and for an overview of how these tiles actually look like in the real game see
Figure 1. Figure 1 shows each tile (seen on the player board and left of and below the boards) with
its button cost in blue denoted with a blue button behind the number, and the time cost is shown
with an hourglass after it. Shape and size speak for themselves and the number of sewn in buttons
is based on the number of blue buttons depicted on the tile (not including the button icon denoting
the number of buttons required to purchase the tile).

5

Figure 2: All the purchasable tiles in the game, containing their associated costs and the number of
buttons they contain (are sewn into them).

Boards

As seen in Figure 3 there are three boards in the game:

• Two identical player boards: These boards show a 9×9 grid which the players try to fill by
purchasing tiles and placing these on their board.

• A “walking board”: This board has a finite number of steps (53) and players advance on
this board by purchasing pieces. Most of the pieces have a cost in time, where 1 time unit
represents a single step on this board. This means that if your purchase a tile with a time
cost of 3, that after purchasing it you immediately take 3 steps on the “walking board”. The
board can also be advanced by deciding to pass the other player which awards the player
with a number of buttons equal to the number of steps required to pass the other player. This
gives the player an option to exchange time for buttons. This board also contains 9 spaces
which award any player that goes past it (both players can earn buttons from the same spot)
a number of buttons equal to the number of buttons sewn in all the tiles they own. Finally
5 spaces reward only the player that passes it first with a 1×1 tile that has to be placed
immediately.

Buttons

Each purchasable tile has a cost in buttons tied to it. To be able to purchase this piece the player
has to be able to pay this many buttons otherwise they are not allowed to purchase it. Both players
start with 5 buttons and there are two ways to get buttons during the game:

6

Figure 3: An overview of a 2-player game in progress [Lag20]. On the left and right the player
boards can be seen which are partially filled with purchased tiles, and in the middle the “Walking
board” is shown where the yellow and green circles represent what time the players are at.

• There are 9 spots on the “walking board” where upon entering a certain spot the player
receives buttons equal to the number of buttons in the tiles they have collected. The exact
spots are at timesteps 5, 11, 17, 23, 29, 35, 41, 47 and 53.

• On one’s turn there is the option to take as many steps as it requires to pass the other player
on the time board and one receives buttons equal to the number of steps taken. This is a way
to exchange time for buttons. However, the opposite is not possible. This is not possible in
the single-player version, but we will account for this by making some adjustments described
later in this section.

Scoring

The final formula for deciding the achieved score is:

score(a) =

{
Buttons(a) + 7, if OBS (a) = 0

Buttons(a)− 2 ·OBS (a), otherwise
(1)

Here a is the player and Buttons(a) refers to the total number of buttons not spent at the end
of the game by player a. Next, OBS (a) refers to the number of Open Board Spaces on player a’s
player board that are not covered by any tile. As can be seen in (1) there is a bonus for entirely
filling each space on the board to incentivize a well-structured board even more.

7

3.2 Single-player variant

With the rules of the regular Patchwork game explained we will now discuss any components
that had to be altered for the single-player variant that we attempt to optimize for this thesis.
The game remains mostly the same as there is very little direct player interaction other than the
other player purchasing pieces and being able to get the 1×1 pieces. Some mechanics do however
need to be altered such as:

The option to pass the other player to get buttons in exchange for time: We will allow the
player to take as many steps (>0) on the time board as they want to get an equal number of
buttons.

Limited tile selection and random setup in the base game limits the tile selection (tiles pur-
chasable at that moment) at any time to a select number of tiles which updates and changes
upon purchase of a tile (for the full rules on this the reader is referred to rule book [Ros14b]
sections “Setup” and “Take and Place a Patch”). We aim to find a maximum score, thus wish
to eliminate this randomness from the equation. To do this any tile will be purchasable at
any time.

Single tiles have not been altered in any way, but it is worth noting that in a normal 2-player
game it is highly unlikely (yet not impossible) for one player to get all the available single
tiles in the game. This could be accounted for by limiting the number of available single tiles,
but in order to find a maximum score we have kept them as is.

This leads to an optimization puzzle where an optimal sequence of actions consisting of purchases
and skips (exchanges of time for buttons) has to be found to achieve a high score for this single-player
variant. We can then also examine if this score is theoretically possible in a two-player game by
attempting to find an action sequence for the second player that allows the first player to perform
their optimal action sequence.

3.3 Examples

In this section we give some brief examples of actions in a single-player game in order to make the
game clearer.

Example 1

In Figure 4 we can see a diagram depicting two game states and the steps taken to transition from
the state on the left to the state on the right. This example gives an overview of the option to skip
spaces (exchange time for buttons) in order to earn buttons. In this case the player lacks the buttons
to purchase the piece they want to acquire (as can be seen in the left game state, denoted by “0
buttons” next to their board). This means that the player will have to skip a number of spaces.
The player needs 3 buttons (the button cost of the tile the player has decided to purchase), but if
they skip 2 spaces they will reach a button spot (as can be seen on the timeline below the player
board). The player has 4 sewn in buttons in the pieces on their board (shown right of the board),
meaning that skipping 2 spaces will award them 2 buttons (due to skipping 2 spaces) and 4 more
buttons (due to them passing a button spot and having 4 sewn in buttons on their board). The

8

player can then purchase and place the piece it has selected. This leads to the game state on the right.

Figure 4: A diagram with two actions in the game, highlighting the option to skip spaces on the
time board to earn buttons in order to be able to purchase a piece. In the left the game is in a state
where the player possesses zero buttons. The player will need to skip a number of spaces to gather
funds for the selected tile. The player can skip 2 spaces, earning them 2 buttons and 4 additional
buttons due to them reaching a button spot. This means that they have 6 buttons once they reach
that button space and then they are able to purchase the selected tile.

Example 2

In Figure 5 a diagram depicts two game states and their transition. This example gives an overview
of the way that players can place one of the 1×1 tiles present in the game. In this case the player
purchases a piece which makes them advance the time board by 3 steps (due to the tile having a
time cost of 3). This causes the player to pass a single tile spot and this is then placed in a spot
where no other tile would fit as seen in the game state on the right.

Figure 5: The figure depicts a diagram showcasing the purchase of the tile shown in the middle,
which results in the player passing a 1×1 tile spot. Upon reaching one of these spaces the player is
awarded a single 1×1 (yellow) tile which has to be immediately placed. In this case it is used to fill
the hole in the middle of the player board.

9

4 Methodology

To optimize and research the game several methods have been used and these will be described in
detail in this section. This includes methods directly solving the game, such as a simple random
player or a Monte Carlo player as well as methods that aim to reduce the search space such as
a heuristic. Additionally an overview of runtime optimization is discussed and a Reinforcement
Learning framework which uses other methods is discussed.

4.1 Simple strategies

A number of strategies have been implemented to be tested and examined. The “simple” methods
in this section are limited to methods that only base their decision on the current game state
without performing any sort of playouts (random games) to decide what piece to buy. In our case
these are the random player, rule-based placement player and a Return Zero player. All of the
implemented players will be explained in the following subsections.

Random Player

A random player is implemented to be used for experiments to get a solid baseline to compare
scores of other algorithms to. Additionally it is very important as it is later utilized for the Monte
Carlo methods. This random player consists of a rather simple algorithm to play the game. This
player will find all the placement options for all the possible tiles pieces (that can still be purchased
before the end of the game) and then it will pick one of these placement options at random. If
necessary the player will now skip a certain number of spaces on the “walking board” to earn
enough buttons to be able to purchase the selected tile. After this it purchases the tile and places
it in the chosen position.
Given this description, the first random player uses a very straightforward process consisting of the
pseudo code in Algorithm 1:

Algorithm 1 The loop that makes up the random player in pseudo code.

1: while steps taken < total time in game (53) do
2: Find all moves for all purchasable pieces that are able to fit
3: Randomly select one of the (position,rotation,piece) sets
4: if pieces that fit = 0 then
5: Skip spaces until steps taken = total time in game
6: break
7: if #buttons of the player < button cost of selected piece then
8: Take minimal number of steps required to get the required buttons

9: Purchase the piece (spend buttons and take steps on the “walking board”) and place it in
the decided position

It is worth noting that the line “Take minimal number of steps required to get the required buttons”
does take into account that at certain timesteps a smaller number of steps can be taken to get
the required funds if the player can earn the buttons by reaching a button spot as described in

10

Figure 4.
One thing that can be easily noticed from Algorithm 1 is the fact that this version of the random
player is actually biased towards certain pieces. Pieces with a larger number of placement options
(mostly smaller pieces) have a larger chance of being randomly selected as they appear more
frequently in the collection of (position,rotation,piece) sets. This combined with the fact that it is
computationally very expensive to find all the possible placement options for all tiles repeatedly
leads to another variation of this random player to utilize.
This variant only differs in the selection step. This altered version finds all tiles with at least 1
possible placement option and then selects one at random. Then all placement options for this
piece are found and one is selected at random. In the previously given Algorithm 1 line 2 and 3 are
altered to the following lines.

Algorithm 2 The altered lines 2 and 3 of the random player from Algorithm 1.

1: Find all tiles with at least one placement option
2: Randomly select one of the tiles in this list
3: Find all possible moves for the selected tile
4: Choose a random move from this list

This second variant requires less computing time as it does not need to find all possible placement
options for all the tiles and it is not weighted. This is not the case for the first random player where
pieces with more possible placements have a higher chance of being picked.

Value Based Return Zero (VBRZ) strategy

The Value Based Return Zero (VBRZ) player serves to highlight the performance of a strategy
involving a simple evaluation of tiles, based on the current timestep in the game. This player does
however not feature any mechanism for efficiently placing the purchased pieces as it uses a return
zero strategy, meaning that the tile it has decided to buy (based on a value calculation described
below) it will be placed in the first top most left spot where the tile fits. An example of these
placements can be seen in Figure 6 where the first two moves in a Return Zero game are showcased.
This method is based on a ranking at each turn that ranks all the tiles which are purchasable and
are able to fit on the player board. We want our purchases to optimize the final score we achieve at
the end. This final score is based on the number of buttons earned and the number of open spaces
left at the end. This leads to Equation 2 which can be used to give guidelines about the number of
points a certain tile will give us upon purchasing it at that point in the game:

Value(p, t(a), a) = 2 ·S(p) +SB(p) ·BL(t(a))−BC(p)−min(TC(p), 53− t(a))− SR(p, a, t(a)) (2)

Here a stands for the player, t(a) stands for the timestep of player a (number of steps taken on
the “walking board” by player a) and p stands for piece (the tile being evaluated). Next, BL(t(a))
represents the number of button spots left on the “walking board” at the current time step t(a) of
player a. SR(p, a, t(a)) is the number of required skips for player a at timestep t(a) to be able to
purchase piece p. This will be 0 if the player has enough buttons, but if the player needs 2 more
buttons, they can earn these by skipping 2 spaces and thus this is accounted for in the value of the
tile (for an example see Figure 4). For the other symbols see Section 3.1. The equation starts of

11

with a positive value for the size of the tile as open spaces left on the board negatively impact the
final score. Next is the positive value that is based on the number of buttons the piece will award
the player if it is purchased at this time. As tiles award a player a number of buttons equal to the
number of sewn in buttons on the tile at each button spot the player passes (the amount of button
spots still left for a player is based on their position on the “walking board” t(a)). Button cost
is subtracted as each button left at the end is also worth a point. Each time step is also at least
worth a single button as a turn could have also been used to move on the “walking board” to skip
spaces in exchange for buttons, thus time cost is also subtracted from the value. Purchasing a piece
while the player is not able to pay the full amount of time is allowed (this can only happen when
purchasing a tile would send them past the end of the “walking board”). For example, if the player
only has 1 time left (at timestep 52) then purchasing a piece with a time cost of 6 is allowed and
this is accounted for by the min(TC , 53− t(a)) part of the equation. Lastly, if the player does not
have enough buttons they will need to skip enough spaces to gather funds and these required steps
are subtracted from the value.
This formula gives a very rough overview of the presumed value of pieces at certain times, but due
to the complexity of the game simply purchasing the piece with the highest return value does not
give the best overall score.

Figure 6: A diagram with three game states depicting the placement selections of the Return Zero
player that simply places the piece in the most top left position.

Rule-based placement and improvements to VBRZ

The rule-based placement player is an improvement of the VBRZ player and is meant as a baseline
to compare the more advanced methods against. It improves the quality of the value calculation
which can also be utilized for the VBRZ player. This player uses a strategy that most resembles the
thought process of a human to fill their board and choose their pieces. This player selects its pieces
by assigning each piece a value at that point of time in the game and it will then choose the piece
with the highest value, just like the VBRZ player. For placing the tile it will try to make as many
borders of the newly bought tile connect with other pieces and borders of the board. An example
of placement of tiles selected by this rule-based placement player (with TimeCostModifier = 1)
can be seen in Figure 7. This figure also has the connected edges highlighted in red to visualize
how the decision for its placement came to be. When comparing Figure 7 with Figure 6 one can
easily notice that the placement selections are more compact, which is more like the way in which
a human player approaches the game.
The value assigned to the pieces is based on a number of factors mentioned in Section 4.1 and a
new parameter:

12

• TimeCostModifier (TCM): A modifier that can change the weight of the time cost of a tile in
the value calculation.

These attributes are then used to determine a value per piece (p) using the following formula:

Value(p, t(a), a) = 2 ·S(p) + SB(p) ·BL(t(a))−BC(p)−min(TC(p), 53− t) · TCM − SR(p, a, t(a)) · TCM (3)

This value calculation does however not take into account that finishing the puzzle (entirely filling
the 9×9 grid) awards the player with 7 bonus points, but we can account for this by using a slightly
altered final formula. This formula uses the Value(p, t(a), a) calculation from Equation 3:

TrueValue(p, t(a), a) =

{
Value(p, t(a), a) + 7, if OBS (a)− S(p) = 0

Value(p, t(a), a), otherwise
(4)

Here OBS (a) is the number of open board spaces on the player board of player a. Using this
formula we can get an estimation of how this tile will contribute to our final score and this can
rank the tiles in our current state to decide what tile to purchase.
For example, suppose a tile is of size 6, has 3 sewn in buttons, has a button cost of 5 and a time
cost of 4. The value of this tile is not static, so for this example we will say that we have enough
buttons to purchase the tile, we are at timestep 25, have 5 button spots left to pass and that the
tile does not fill the player board. In that case the value assigned to the tile would be:

2 · 6 + 3 · 5− 5−min(4, 53− 25) · TCM − 0 · TCM = 18 (at TCM = 1) (5)

These improvements made to the calculation of the value, most importantly the addition of the
TimeCostModifier , have also been added to the VBRZ player for further experiments. Setting the
modifier to 1 and disabling the full grid bonus results in the normal performance of the previously
described VBRZ player.

Figure 7: A diagram with three game states depicting the placement selections of the rule-based
placement player that attempts to maximize connected edges.

4.2 Monte Carlo strategies

This section features all the implemented Monte Carlo strategies. All of these methods use a number
of random games to get a grasp of the outcome of choosing a certain move. For all these random
games the random player described in Section 4.1 will be used (the non-weighted random player to
be specific). The implemented methods in this section are a pure Monte Carlo player, a greedy
pure Monte Carlo player, a Monte Carlo Tree Search (MCTS) player and a greedy MCTS player.

13

Pure Monte Carlo

Monte Carlo methods use a large number of random playouts to decide which action is at that
time deemed optimal. These random games (playouts) are used to give an estimate of how good a
certain move is. A pure Monte Carlo Player first finds all of its possible actions (in the current
game state) and then for all of these actions it plays a number of these playouts (on a game in
which that specific action is taken). These random games are influenced by the action taken before
playing the random game and thus they give an estimation of how good it is to take a certain move.
Based on the performances of these random games a move will be picked, by choosing the move
that had the largest average score of its random games. Given this description Algorithm 3 for the
Monte Carlo player consists of the following loop:

Algorithm 3 The loop that makes up the Monte Carlo player in pseudocode.

1: while steps taken < total in game time (53) do
2: Find all moves for all purchasable pieces
3: if pieces that fit = 0 then
4: Skip spaces until steps taken = total time in game
5: break
6: for all possible moves do
7: Make a copy of the game
8: Perform the move on this copy
9: for the number of playouts do
10: Make a copy of this copy
11: Play a random game on this new copy
12: Update average score of this move based on the outcome of the random game

13: if average score of move > previous maximum achieved average score then
14: New maximum achieved average score = average score of move
15: New best move = move
16: move To Play = New best move
17: if #buttons of the player < button cost of selected piece then
18: Take minimal number of steps required to get the required buttons

19: Purchase the piece and place it in the decided position

This technique heavily relies on the random games and works best with a large number of playouts.
A single random game does not give a very accurate idea of how good a move is, but if one takes
enough of these random games and averages their results this gives a pretty good estimation of
how good the move is. Due to the nature of Patchwork this method does however take quite
some time due to the fact that we want to use a lot of playouts to get better results. Furthermore,
for each decision on what move to pick, a very large number of moves have to be tried and ideally
for all of these moves a large number of random games is played. This large number of possible
moves is caused by the fact that each tile can be rotated, mirrored and placed in many different
spots which means that the set of all moves ((position,rotation,piece) sets) is quite large.

14

Greedy Monte Carlo

A greedy Monte Carlo player is largely the same as the previously mentioned Monte Carlo player in
Section 4.2. The key difference between the two is the fact that this greedy player does not choose
moves that perform the best on average, it chooses the move with the highest achieved score in a
single game.
For example, if a move has a very low average score but a single random game from this move leads
to the largest maximum score among all possible moves this will be the move that is picked. This
player is very unstable and it relies even more heavily on the random games, due to the nature of
only examining the maximum while disregarding all other games of that move. This player performs
very poorly early on in a game due to the fact that the random games still have many random
moves to perform meaning that the games are not influenced that much by the actual move taken.
Taking the average (which is done in the normal Monte Carlo player) would be more reliable at the
start because of this. This player does however have the upside that during the final few moves
of the game it is most likely better at finding the moves which can actually achieve the highest
score. The random games started from a later stage in the game are way shorter, meaning that
they give a better insight into the actual scores that can be achieved and thus taking a maximum
here greedily could actually work out better than taking the average.

Monte Carlo Tree Search

Monte Carlo Tree Search is a method that is also based on random playouts like the pure Monte
Carlo method, but instead of simply performing a certain number of playouts for each possible
move, it will build a tree consisting of game states to determine the best move [CWvdH+08]. For
each decision of what move to pick a new tree will be built. Each node in this tree consists of a
game state. So we start the tree with a node that is the current game state and build from there.
Once the tree is fully built by using the process that will be described later in this section, from
the root node the child with the highest average score will be selected and this will be the action
that is performed in the game. So the algorithm consists of repeatedly building these trees to make
its decisions until the game is finished. The process of building these trees consists of performing
the following four steps as many times as the number of playouts.

Selection Starting from the root node repeatedly select successive child nodes until a leaf node
(a node that has not yet had a playout or a game state from which no new moves can be
made) is reached. This selective process is guided by the following Upper Confidence bound
for Trees (UCT) selection equation:

UCT (n) =

{
wi

ni
(/MS) + c

√
lnNi

ni
, if ni > 0

∞, otherwise
(6)

In this equation n is the node for which the UCT value is being calculated. Next, wi normally
stands for the number of wins for the node considered after action i, but Patchwork works using
a scoring system, thus here it is the total accumulated score for this move. Next, ni is equal to the
number of visits to the node, that being the number of simulations started from this node or its
children; MS is a modifier that is based on a presumed Max Score (a value of 85 is used in our
experiments) in the game, which is implemented to decrease the range of values derived from the

15

wi

ni
/MS part of the equation. Normally UCT calculations are meant for a game in which one either

wins or loses, so the result from wi

ni
is then between 0 and 1. To normalize our results to be close to

a range between 0 and 1 this modifier is implemented to keep the results in a smaller range. Do
note that scores can be negative meaning that not all scores modified by this value fall between 0
and 1, but the values seem to be close enough as to where some negative values do not impact the
selection in a harmful way. Without this modifier exploration is greatly diminished which could be
a bad thing, but the modifier is in between brackets as using it led to too much exploration which
used too much memory on the real game, meaning that we could not use it during experiments on
the real game. However, for a simulated version described in Section 4.3 we were able to use the
equation including /MS due to the smaller search space in the simulated version. Furthermore, c
is a constant which is the exploration parameter, most commonly taken to be

√
2, which is also

the value we use. Finally, Ni is the total number of visits of the parent node of the node i being

considered. This second part c
√

lnNi

ni
prevents the selection process from being entirely greedy and

steers selection towards some options which have not been tried often, but do seem promising. In
the case where a move has not yet been tried, the UCT value will be infinite to assure that it is
tried first to encourage exploration.

Expansion The selected node now forms all of its potential children. In the Patchwork tree
this means that the node forms a child for all possible actions from that node and randomly
selects one of them for the next step.

Simulation From the newly formed child perform a playout. The newly formed child is in a game
state that has been reached by the parent node taking the action that led to the child. This
playout to be performed is a random game as described in Section 4.1.

Backpropagation Based on the score of the random game update the total accumulated score
and the number of visits for each node on the path from the child towards the root.

To get a better overview of these four steps a visual overview is given in Figure 8. This figure
contains made up (UCT) values as they are only there to give an example.

Greedy Monte Carlo Tree Search

Just as done with the pure Monte Carlo player we can adjust the algorithm to be a greedy variant.
This is done by keeping track of the maximum score achieved in each node. This maximum score,
just as the normal scores in MCTS, is based on the maximum achieved by any of its children, their
children, etc. This is achieved by also updating the maximum score of the nodes that are being
traversed in the backpropagation step. Once the tree is fully formed we simply select the child of
the root with the highest maximum achieved score and that is the action that will be taken.

16

Figure 8: A diagram showcasing the four steps in the main loop of Monte Carlo Tree Search.

Optimization

The Monte Carlo methods all have in common that more playouts give a better overview of what
to expect, thus it is better for its performance. Having a very large number of playouts will most
likely be ideal, but we are limited by the runtime. This is why a number of techniques to reduce
the runtime have been implemented of which the biggest impact will be felt on the pure Monte
Carlo methods, as their main limiting factor is runtime.
Firstly a rather simple step that reduces the computing time of the first move is implemented.
Each tile has many placements at the start and it can be rotated and mirrored, so for almost each
spot a tile can fit in 8 different ways (4 rotations times 2 due to mirroring (except situations where
tiles have some symmetry)). The ability to rotate and mirror tiles is necessary to efficiently fill the
board later on, but for the first tile it is entirely irrelevant as one can imagine that all of these
rotations or mirrorings can be performed by pretending the board is rotated or mirrored. As all
tiles after this do have the ability to be mirrored and rotated it does not impact the solutions found
in any way and cuts the runtime of the first move by a factor of (nearly) 8.
Parallelization is a technique that is based on performing multiple tasks simultaneously. For pure
Monte Carlo parallelization can greatly improve performance, as all playouts can be performed in
parallel and thus almost reducing the runtime by a factor equal to the number of used of threads.
However, for MCTS this is a bit more difficult. Since ordinary parallelization is not possible here as
the entire sequence of actions has to be sequential as the choice of what node to expand requires
information from the previous move. There are, however, some techniques which can be used to
parallelize some parts of its execution such as root parallelization, where multiple trees are being
built at once and the final decision is based on the result of all the trees. It is also possible to
simultaneously build some parts of the tree as not all parts being built depend on each other. This
would in theory speed up the MCTS algorithm as it reduces runtime, but for our implementation

17

of Patchwork the main limiting factor is memory. The game tree is so large that the number
of possible playouts is heavily limited as the branching factor is simply too large. For the first
action around 1700 moves are possible (because this takes into consideration that no rotations or
mirrorings are performed) and for the second action around 10,000 moves are possible, and after
this the number of possible moves decreases with each layer of the tree (due to more spaces being
filled). This branching factor is simply too large and there has to be something done to realistically
efficiently use the technique.

MCTS tree size reduction & heuristic

The tree being too large limits us to a UCT selection process with limited exploration which is
possible by removing the /MS part from Equation 6. This will steer it more towards exploitation,
thus reducing the size of the tree.
Another technique that reduces the tree size is the use of a heuristic. A heuristic can limit what
tiles are able to be selected at a certain time by not allowing all moves to be picked. If we were to
only allow a selection of the tiles to be picked at certain times the width of the tree would decrease
drastically. This would allow for more playouts and overall better performance, as long as this
selection of tiles is picked well. The value based VBRZ and rule-based placement player feature a
calculation for the value of a tile at a certain time so we can re-use part of Equation 3. It does need
some minor adjustments, namely the removal of the required skips (SR) attribute as we want the
heuristic ranking to be static to keep runtime low. Including the number of required skips would
result in a calculation for each use of the heuristic which we try to avoid. Thus the equation for the
values here is:

Value(p, t(a), a) = 2 · S(p) + SB(p) ·BL(t(a))−BC(p)−min(TC(p), 53− t) · TCM (7)

To keep us from having to re-calculate many of these values we use a database containing the heuristic
values (obtained using Equation 7) to not cause a negative impact on runtime as it now only requires
one lookup of an array value. This database is of size Numberoftiles × Numberofpossibletimesteps ,
where only the timesteps where one could purchase a tile (0–52) are relevant and only the purchasable
tiles are considered(0–32). This database contains the ranking of each tile at each specific timestep
and thus allows us to limit what tiles are able to be picked based on their ranking.
For our implementation we have decided that at each timestep the better half of the purchasable tiles
will be accessible to use. It is worth noting that later on in the game most of these tiles will have been
used so the exact number of tiles we allow to be used is: Totalnumberoftiles/2 + numberofownedtiles .
So only tiles with a ranking ≤ Totalnumberoftiles/2 + numberofownedtiles will be allowed to be
picked at any time. This will still limit selection later on as the top ranking tiles have already been
purchased at this point, so the extra allowed tiles will still limit the total selection of tiles to around
Totalnumberoftiles/2. This selection process later on includes a bit more than half of the remaining
tiles in the game as the numberofownedtiles is used which also counts the given 1×1 tiles. This is
done so that tile 0 (see Figure 2) is still allowed to be picked at the end of games as it is crucial for
filling the entire board in most games and it would be excluded at certain points, where it would
be a good pick without this modification.

18

4.3 Simulations

In order to get an idea of an upper limit for the possible scores within the game an altered version
of the game is also implemented. This version does not feature a player board and thus reduces the
amount of calculation time by an exponentially large factor. The amount of space is still limited by
a maximum of 9×9 available spots to fill, but the shape and placement of all tiles is disregarded
(their size is still highly relevant). Where there were previously around 1700 moves possible for
the first action this number is now reduced to 33 (the number of purchasable tiles in the game).
After the first action there are then 32 possible moves left (instead of around 10,000 moves in the
real game) and this number keeps decreasing by 1 with each action until the board is nearly full
where less moves will be possible as we can still not fill more than 9×9 spaces (tile size needs to
be ≤ open board spaces). This means that all games within this simulation are much quicker and
the number of possible playouts is much larger leading to the opportunity to do more extensive
testing. To increase the efficiency even further the 1×1 tiles do not have to be placed here and the
number of open final spaces will thus be decided by max(OBS(a)− 5, 0). This simulated version
has all methods implemented, that being: the random player, VBRZ and rule-based placement
player (which are equal here as they only differ in placement), pure Monte Carlo and MCTS. These
simulations can be used to get an upper limit, but it does not guarantee that the selected tiles can
all fit together to actually properly fill the player board. With the five 1×1 tiles it is very likely
that almost all configurations are possible, but we do not have proof for this. We did, however,
examine a number of games from the simulated version and found that, for the examined games all
30 of them had a tile selection that was able to fit on the 9×9 board. These 30 games were selected
based on the tiles they pick to include a wide range of used tiles (and all of them filled every space
on the board). It is possible to check whether the collection of tiles is able to fill a board by using a
polyomino placement problem solver [Mea].

4.4 Reinforcement Learning

As mentioned in previous sections, a good approach to improve overall scores and to reduce runtime
is the reduction of the number of moves that are playable at a time. We have already done this
statically by applying a heuristic (as explained in Section 4.2) that limits the selectable tiles. This
method is static, but another approach that can be used to reduce the allowed moves is a dynamic
approach, which is why we will be using a Reinforcement Learning technique.
Reinfocement Learning is an area within machine learning that does not rely on large datasets
created beforehand. Instead, it learns all of its behavioural patterns dynamically during runtime.
For our case we will dynamically learn what tiles to exclude from the games we play. This reduces
overall runtime as there are fewer tiles present in the game, meaning that each lookup of all the
possible moves will be faster. For the Monte Carlo methods the smaller selection of tiles also means
that there are fewer possible actions to try, meaning that fewer random games have to be performed.
So we want a way to dynamically choose what tiles to exclude based on results gathered during
runtime.
We start off by playing a number of games with all tiles present in the game. We play these
games and for each tile we keep track of the number of uses it got and the cumulative score of
all games using that tile. After a number of games we then perform what we will call a “learning
update”. A learning update uses the data derived from the previously performed games to make an

19

educated decision of what tiles to exclude going forward. During this learning update we will rank
all tiles and based on this ranking we will then remove a number of tiles equal to the parameter
TilesToRemoveperlearningupdate.
This ranking process goes as follows: firstly we find all tiles with zero uses (if any), meaning that
they have not been used in a single game. For these we unfortunately do not have data about their
performance in real games so we have to rank these based on a heuristic value. For this we use a
modified version of Equation 7. As we are not at a certain timestep we have to remove parts of the
equation requiring the information of the current timestep. This leads to the following equation:

Value(p) = 2 · S(p) + SB(p) · 4.5−BC(p)− TC(p) · TCM (8)

The main changes in this new equation are the fact that the BL(t) variable from Equation 7 is
replaced with a static value (4.5) which is close to the average number of button spots left on the
“walking board” during the span of the game. The other change made to the heuristic equation is
the removal of the reduced time cost which was relevant if the player bought a tile with a time cost
that would make them pass the final space (53) on the time board. This does not happen often,
thus no changes were made other than the removal of this factor.
Now that all the unused tiles are ranked we remove the lowest ranked tiles until we are at
TilesToRemoveperlearningupdate removed tiles. If there are enough unused tiles to do this, then this
learning update is done and we continue playing games until the next learning update is reached after
playing a number of games. If there are fewer unused tiles than TilesToRemoveperlearningupdate
then we will remove the used tiles that seemed to perform the worst in actual games. We rank
all used tiles based on their Cumulativescore

uses
(+uses) and then eliminate the worst ranking tiles until

TilesToRemoveperlearningupdate tiles have been removed. The part of the equation “+uses” is in
between brackets as we will experiment with it enabled and disabled. It is there to prevent tiles
that are in nearly every game from being removed in favour of a tile that happened to be in a
single game which went well.
This process of playing a number of games and then performing a learning update repeats until we
reach the limit of TilesToRemove at which point no learning updates will be performed anymore.
We do not want to end up removing too many tiles as there have been games where 17 tiles are
purchased. We want to be on the safe side, so a limit of 13 tiles to remove is set (the TilesToRemove
parameter). This still leaves these games with 20 tiles left to pick from, meaning that this should
not lead to scenarios where all available tiles are purchased in a game.

4.5 Perfect finish

We have implemented an option to brute force the puzzle from a certain point. This means that
all combinations of possible options from that point onward will be tried guaranteeing that the
optimal solution from that point on will be found. The width of the game tree is, however, very
large, so this can only be properly utilized for the last few moves.

4.6 Combined player

To attempt to reach a score as high as possible we use a mix of multiple techniques mentioned in
the previous Section 4.1 and Section 4.2. To reach a high score we have to strike a good balance
between exploration and exploitation as we can not simply exhaustively go trough the huge search

20

space of the game. This means that the start should focus mainly on setting up a strong consistent
start for the player by purchasing tiles that perform well over a number of games and this is why
the standard Monte Carlo player is used at first. The Monte Carlo player should in this case base
its decision on the average returns of the games because the greedy Monte Carlo player gives a
very poor idea of what actual good moves are at the start.
After a certain number of actions we are far enough into the game so that we can start using MCTS
at a proper number of playouts. This means that the number of playouts is actually larger than the
number of possible moves at that point. Once the number of playouts is around 2 to 3 times the
size of the number of possible moves MCTS is a better fit than pure Monte Carlo. This is the case,
because MCTS more efficiently uses its playouts on games with more potential and wastes less time
on moves that are sub-optimal (instead of pure MC which spreads all of its playouts equally among
all possible moves).
After the search space becomes small enough we use the perfect finish, so the entire search space will
be analyzed and this ensures that the last few moves in the game will always be played perfectly.

21

5 Experiments

To assess all the implemented players/strategies a number of experiments have been conducted.
For each experiment the experimental details will be reported in their relevant sections. The game
has been implemented in C++ and experiments have been performed on the following hardware: an
AMD Ryzen 9 5900X processor, with a clockspeed of 3.7GHz, 12 processor cores and 24 threads.
The memory consists of 32 Gigabytes of DDR4 RAM with a speed of 3600MHz. All experiments
have been performed on Windows 11 (version 23H2) using WSL2 with Ubuntu (version 22.04.1
LTS).

5.1 Different methods

We compare all the implemented methods mentioned in Section 4. This includes all the simple
strategies in Section 4.1 as well as the Monte Carlo methods in Section 4.2. In some experiments
the simulated version of the game from Section 4.3 will also be utilized.

Random players

The random player has two distinct implementations as mentioned in Section 4.1, the weighted and
non-weighted player. We have also included the random player playing the simulated version of the
game (the version without the board, see Section 4.3). We test these with 10,000 repetitions each.
The gathered data can be seen in the following table:

Method Av S Sd S Mn S Mx S Av O Sd O Mn O Mx O Av T Sd T Mn T Mx T Av B Sd B Mn B Mx B Av R (s)
weighted −6.62 11.65 −54 29 18.29 3.93 6 36 18.53 0.93 14 21 13.09 2.33 4 21 0.0257

non-weighted 1.90 11.81 −45 41 16.33 3.96 3 37 18.21 1.06 13 21 13.37 2.62 4 23 0.0088
simulated 12.88 16.02 −50 56 13.90 7.33 0 42 18.35 1.41 13 23 15.48 2.31 13 23 0.0003

Table 1: Table containing the results of 10,000 random games performed with the weighted, the
non-weighted and the simulated random player. Here S stands for Score, O stands for Open spaces,
T is the total number of Tiles acquired during the game, B is the number of sewn in Buttons on
the player board and R is the runtime. Av is average, Sd is standard deviation, Mn is minimal, Mx
is maximum.

Table 1 shows that the weighted random player performed quite poorly, which is explained by a
number of factors. The number of open spaces is on average quite large with an average of 18.5,
resulting in an average of 37 score lost (see Equation 1). This is explained by the fact that the
weighted random player is unable to balance its economy during a game as randomly picking tiles
leads to a small number of Sewn in buttons, which means that the button spots are not utilized
that well. This leads to fewer tiles being purchased as more time has to be spent skipping spaces
on the “walking board” in order to even purchase tiles.
The non-weighted random player performs significantly better than the weighted player while taking
much less runtime. The runtime reduction is due to the fact that the non-weighted variant does not
need to find all possible moves for all tiles. It has an equal probability to pick any tile that fits at
any point which helps with overall scoring, as it does not have an increased probability to pick the
smaller tiles which the weighted version does have. In general larger tiles are more expensive in
both time and button cost, but they offer many more sewn in buttons on average as can be seen

22

in Figure 2. The larger tiles also cover more spots and Table 1 reflects this by having a smaller
number of open spaces on average for the non-weighted player. The number of tiles purchased is a
bit smaller than that for the weighted player, because larger tiles are generally more expensive.
This, however, is not a problem for its score as these tiles on average fill more spaces. Furthermore,
the larger number of average sewn in buttons compensates for the more expensive tiles since less
time has to be skipped (exchanged for buttons), which reduces the impact of the tiles being more
expensive. All of these factors lead to the non-weighted player scoring higher on average.
Lastly the simulated player performs significantly better than both real players. The simulated
random games are not weighted as no placement options have to be considered. The number of
spots to fill is still restricted to the total number of spaces on the player board, that being 9×9 (the
board size). This simulated player performs significantly better purely because the shapes of tiles
no longer impact the game. This leads to larger tiles being able to be picked more frequently, which
was not the case for the real game players, as these also had to deal with placement restrictions.
This increase in larger tiles being able to be picked later on in the game led to a significantly larger
number of spaces filled and sewn in buttons. This leads to a better economy during the game,
meaning that more tiles could be bought, leading to a larger score.

Figure 9: Two figures showing the best and worst performing starting tiles in the various random
games.
On the left: the tiles that were in the top 5 of one of the three types of random games. On the
right: the tiles that were in the bottom 5 of one of the three types of random games.

Table 2 shows the impact of the first tile on the average score achieved in those random games.
The table shows the 5 best and 5 worst performing starting tiles per random player. The best tiles
are the same for the most part, with the total selection only containing 7 different tiles with their
precise characteristics shown in Figure 9,left. These tiles are all strong starting tiles and have a few
things in common. They are almost all quite large and have a large number of sewn in buttons,
with the major exception to the large number of sewn in buttons being tile 10 and 20. These tiles
may only have a single sewn in button, but their cost is very low (even zero for tile 20) and they
are relatively big especially for this low cost, meaning that it is a great starting pick. Overall these
starting tiles show that it is very important to start off with tiles that are large, cheap and feature
a lot of sewn in buttons to help with the players’ economy during the game.
On the other hand, the worst starting tiles of Table 2 as seen in Figure 9,right seem to have less in
common when looking at them. Tiles 1, 2 and 3 all have zero sewn in buttons, which explains why

23

they are a bad pick at the start, along with the fact that they are small, meaning that they would
have been better utilized later on in the game to fill spots where other tiles can no longer fit. Tile
25 is big, but it has no sewn in buttons and leaves the player in an unfortunate position, as picking
the tile at the start places them at timestep 2 with only a single button left. As for tile 19, it has 2
sewn in buttons, which is quite good, but picking it as ones starting tile simply costs too much
time as one needs to skip 5 spaces first and purchasing it lands the player at timestep 8 with only a
single tile.

weighted: tile avg Score non-weighted: tile avg Score simulated: tile avg Score
20 4.30 20 12.47 20 25.83
28 3.34 28 10.60 24 22.60
10 3.32 10 9.77 30 21.95
26 1.49 24 9.18 10 18.60
24 1.40 30 9.11 16 18.08
.
1 −13.23 2 −4.68 19 5.48
19 −13.54 1 −5.91 1 5.27
2 −14.28 19 −6.09 2 5.24
3 −14.95 3 −6.83 3 4.68
25 −17.45 25 −8.40 25 1.66

Table 2: From left to right the weighted, non-weighted and the simulated random players with the
average achieved scores when purchasing the tile as the first purchase. The table contains the 5
best performing first picked tiles and the 5 worst performing first picked tiles. Results are gathered
from 10,000 random games per method

Value Based players

The two value based methods, VBRZ and the rules-based placement player, both choose their tile
based on the value calculated from Equation 3. Both of these players are deterministic in contrast
to all other utilized methods, so there is no need for a large number of repetitions. The only change
in behaviour is caused by altering the TimeCostModifier which will be tested in this experiment.
Alongside the two real players a simulated variant of the Value Based player is tested. This player
does not need to place tiles in any way so the tile selection solely relies on the value of tiles, while
still being limited by the restriction preventing the player from filling more than 9×9 squares. The
results have been given in two graphs where the first depicts the acquired scores at different values
for the TimeCostModifier and the second depicts the number of open spaces at the end of the
games.
The graphs in Figure 10 show that the TimeCostModifier (TCM) has a very large impact on the
achieved score and spaces filled. The score graph shows very large spikes in score which is explained
by the fact that a small change to the TCM can lead to a single different action being taken
which changes the entire game drastically. For all three methods the optimal values seem to fall in
the [1,2] range. This is mostly explained by the fact that taking a value of 1.0 precisely mimics
the exact score achieved by purchasing the tile at that time, meaning that it is a pretty good
estimation, which is why the optimal values are close to it. For both the rule-based placement and
normal VBRZ players it appears that values a bit larger than 1 proved to be more effective, which
is explained by the fact that this decreases the value of tiles that cost much time, and this results

24

in the player using their time more efficiently.

Figure 10: For both figures the methods used are the Value Based Return Zero player, the rule-
based placement player and the Value Based simulation. All increments of the TimeCostModifier
are in steps of 0.01. On the left: a graph depicting the score obtained for various values of the
TimeCostModifier on the horizontal axis and the score on the vertical axis. On the right: a graph
depicting the number of open board spaces for various values of the TimeCostModifier on the
horizontal axis and the number of open board spaces on the vertical axis.

For the VBRZ player the optimal TCM was 1.4 with a score of 57. This maximum score is quite a
bit lower than the maximum of the other two methods due to the fact that the placement strategy
of the VBRZ player never managed to fill all spaces, thus missing out on the 7 bonus points. This
also explains why its optimal TCM is not at its lowest point on the open spaces graph as the
lowest point was 1 here, while at the optimal TCM there are 2 open spaces. This single extra open
space reduces the score by two, but the tile selection at TCM = 1.4 is better even though it has
an extra open space.
For the rule-based placement player an optimal TCM of 2.0 achieved an impressive score of 67.
The rule-based placement player did manage to fill the board for several TCM values due to the
tile placement strategy having a more compact configuration that proved to be more effective than
the VBRZ placement strategy. This more compact strategy is less restrictive on what tiles are able
to be picked later on in the game, meaning that the tiles with the best value can be picked longer
without being hindered by the board being too full.
For the simulated player a TCM around 1.0 proved to be the most effective with a score of 69,
however at exactly 1.00 a large dip is made with only a score of 54 and 7 open spaces. This dip is
caused by only a 0.01 change in the TCM as the scores for 1.01 and 0.99 are both 69 with the
same action sequence. When looking at the sequence at 1.00 we found that the third tile selection
changed which caused a slew of different decisions that led to a much worse score. A large TCM
proved to be worse here while the other two players worked better at a larger TCM . It is most
likely that the action sequence for the other two players at TCM 1.0 led to a certain tile placement

25

that prevented a good tile from being picked afterwards which is not a problem here as there is no
board restricting our tile selection.
For the original VBRZ player without the improvements made to the value calculation the score
and behaviour are exactly the same as in Figure 10 at TCM = 1.00 and it achieves a score of 50,
showing that the TimeCostModifier makes a big impact on the achieved score.

Pure Monte Carlo players

For the pure Monte Carlo (MC) players the main factor impacting their performance is the number
of playouts performed. A larger number of playouts means that more random games have to be
played leading to longer runtimes per game, but the approximations of what tiles are good will be
better, because the results are based on more random games. In this experiment we compare the
performance of the greedy and the normal pure MC player by looking at the performance of 50
repetitions for each number of playouts from 1 to 10. We also looked as the normal pure MC player
with larger playouts ranging from 20 to 100 playouts in steps of 20.

Figure 11: The greedy and non-greedy pure Monte Carlo players with their average achieved scores
at different numbers of playouts. Results were gathered from 50 repetitions for each number of
playouts. Bars along the lines depict the standard deviation at that point. Right below the graphs
are tables depicting the exact values in the graph.

When looking at the graphs in Figure 11 and Figure 13 one can clearly see that overall a larger
number of playouts leads to substantially better average performance. This is explained by the fact
that a smaller number of random games leads to an overall worse and more noisy prediction of the
impact caused by a tile being purchased. The greedy variant seems on average to perform quite a
bit worse than the player that uses the average rather than the maximum. For playout count one
the two are functionally exactly the same and the score difference is still about 2.0, which shows
that the data is a bit noisy, but when looking at both graphs in Figure 11 and Figure 12 it is clear
that the difference between the two is large enough to confidently say that the greedy player is
worse. The greedy player also improves less with a larger number of playouts, which is explained by

26

the fact that its approximation of what a good move is only gets slightly better at higher playout
counts. Taking the maximum of a number of random games gives an improved estimation, but it is
still a pretty poor estimation due to the nature of the random games.

Figure 12: The greedy and non-greedy pure Monte Carlo players with their maximum achieved
scores at different numbers of playouts. Results were gathered from 50 repetitions for each number
of playouts. Right below the graphs are tables depicting the exact values in the graph.

When looking at the maximum scores achieved in Figure 12 and Figure 13 it can be seen that in
general a larger number of playouts helps, but due to the random nature of Monte Carlo methods
sometimes a larger score is achieved at smaller playouts.
Ideally a larger number of repetitions would have been used, but as can be seen in Table 3 the
games took very long, meaning that creating these two graphs in Figure 11 and Figure 12 already
took close to 40 hours. This limited the number of repetitions we have tested. The greedy runtimes
are not included, since these are nearly equivalent as their calculations are exactly the same only
differing in selection. The same goes for the games at large playout counts as the runtime increase
from more playouts is linear.

Playouts 1 2 3 4 5 6 7 8 9 10
pure MC runtimes (s) 24.43 50.37 73.38 96.77 125.31 146.47 170.87 195.27 222.47 244.07

pMC non parallel runtime (s) 462.58 965.88 1403.36 1854.46 2318.34 2801.73 3253.11 3700.71 4174.42 4615.89

Table 3: A table depicting the average time of a pure Monte Carlo game at different numbers of
playouts. Along with the real used time the time it would take without parallelization is given to
show the impact of using multi threading.

27

Figure 13: Large playout counts for the pure Monte Carlo player with 10 repetitions each.

Figure 14: A mixed player that utilizes both greedy and pure Monte Carlo moves (at 5 playouts)
with 20 repetitions per greedy threshold.

Mixed greedy and pure Monte Carlo

While the greedy player seemed to perform much worse than the non greedy MC player there is a
chance that it could still be useful to help make decisions later on in the game. This is why we
have ran an experiment where a greedy threshold is implemented. If this threshold is set at 20, for
example, this means that moves made before timestep 20 will be normal pure MC moves and after
timestep 20 they will be greedy pure MC moves. This could offer a good hybrid where the start can
be taken using the averages of the normal pure MC player and later on transitioning to the greedy
choices that could potentially lead to better endings, as the moves that seem to have the largest
potential will be picked rather than the on average best performing moves. For the experiment the
tests were performed at 5 playouts and 20 repetitions were performed per Greedy Threshold value.
The graph in Figure 14 shows improvement with each increase in the Greedy Threshold parameter,
but it never surpasses the performance of the normal pure Monte Carlo player in Figure 11 and
Figure 12. This means that this increase in performance is most likely only caused by fewer moves

28

being taken greedily, which is better as the greedy moves are simply worse than the normal MC
moves.

Large playouts on simulated pure MC

We have experimented with a larger number of playouts for the simulated version of the game as
this would have taken far too long on the real game. The results can be seen in Table 4. When
comparing performances with the real game depicted in Figure 13, Figure 12 and Figure 11 it is
clear that the simulated version manages to achieve higher scores while at the same playout count.
This is explained by the fact that it does not have to place the 1×1 tiles, so these can not be placed
sub-optimally and the player is not restricted by the tile shapes other than being limited to 9×9
spots that can be filled. The table seems to support the idea that using more playouts leads to a
better score when looking at the averages. The maximum scores do however tell another story (we
have seen this previously in Figure 11 and Figure 12), but here something else is the cause. Here it
was not entirely caused by pure chance due to the random games. At playouts 1000 and 10,000
the variety of moves picked decreased drastically, which led to very safe games with little variance
which got a higher average score, but the maximum score suffered due to this. This got especially
bad at 10,000 playouts where 67 out of 100 tests all had the exact same action sequence, which
meant that it has become too stable for its own good. This set of moves led to a score of 74, which
is good, but higher scores have been achieved at lower playout counts. In this case using an average
with enough playouts led to overlearning.

Playouts 1 10 100 1000 10,000
Average score 43.19 66.32 70.63 71.07 72.41
Max score 65 75 78 76 76

Standard deviation 31.35 9.83 5.63 6.10 4.73
Average runtime (s) 0.0048 0.050 0.47 4.32 42.99

Table 4: A table containing the data for various playouts performed on the simulated version of the
game. All results were gathered from 100 repetitions.

Tiles purchased: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Normal game 1693 11228 7688 5579 4119 2960 1394 650 465 164 123 76 53 17 9 2
Heuristic used 822 4298 3357 2559 1938 758 599 350 326 287 120 125 97 42 8 4

Table 5: Table depicting the number of possible moves of two games from the MCTS experiment.
One of the games has the heuristic tile selection applied while the other does not.

Monte Carlo Tree Search players

For the Monte Carlo Tree Search (MCTS) player the runtime is an important factor, but for our
implementation the main limiting factor was memory. The game tree being built simply gets very
large quickly which limits our testing capabilities of the method here. To combat this as mentioned
in Section 4.2 we have implemented a heuristic to slightly relieve this issue, but we were still only

29

able to test with a limited number of playouts on the real game. To get an idea of why memory
is the issue one can see from Table 5 that the branching factor for an example game is very big.
For the first move there are 1693 moves and afterwards there are 11,228 moves, meaning that for
this example the first two moves already have a branching factor of 1693×11228, which is just
above 19 million. Seeing how many moves are still present after this the size of the full tree is in
order O(n!). We do manage to drastically reduce this branching factor using our heuristic from
Section 4.2, but the branching factor is still quite large and in order O(n!). Lastly, the simulated
game will be utilized as these have a way smaller search space, which allows us to test performance
at very large playouts.

Figure 15: A graph containing the average scores of the MCTS players with either the heuristic
applied to tile selection (reduced) or not (non-reduced). Results were gathered from 20 repetitions.

Figure 16: A graph containing the maximum scores of the MCTS players with either the heuristic
applied to tile selection (reduced) or not (non-reduced). Results were gathered from 20 repetitions.

30

Monte Carlo Tree Search

The graphs in Figure 15 and Figure 16 show the results of games with playout counts as high as
2500 (larger playout counts kill the process due to memory restrictions), but for the non-reduced
MCTS player the maximum playout count that could be used was 1500 due to memory restrictions
killing the process if we were to go any higher. For this experiment we have also had to use a
sub-optimal UCT calculation without the MS from Equation 6, meaning that exploitation is heavily
prioritized with nearly no exploration. The graphs show that a larger number of playouts increases
the average performance with some minor deviations due to the small number (20) of repetitions
performed. Overall the non-reduced player performed far worse which is explained by looking at
Table 5. At the playouts used for the non-reduced player most of the time the number of playouts
does not exceed the number of moves in that state. When this is the case MCTS is basically a
worse performing version of pure MC as this means that for a selection of the possible moves a
single playout is performed. MCTS only properly works when more playouts than the number of
possible moves from the root is possible as this allows the algorithm to reach deeper branches. This
is also the reason that the heuristic is so effective as it gets faster to the point where playouts
exceed the total number of moves possible in the state. However, as we can see in Table 5 there are
still some moves for the reduced player where it is basically a worse pure MC with a single playout.
This is the reason why it does not perform as good as hoped, but despite this restriction some very
impressive scores have still been reached as can be seen in Figure 16. So while the method shows
great potential, it is simply not viable for the real version of the game with a branching factor this
large without drastic adjustments. Only 20 repetitions have been performed per playout due to the
long runtime of the methods which can be seen in Table 6. The pure MC methods also had long
runtimes, but we could reduce these by nearly a factor 20 which allowed for more extensive testing,
but here no parallelization is performed due to the memory constraint.

Playouts 500 1000 1500 2000 2500
Avg runtime non-reduced MCTS (s) 41.11 178.22 267.35 N/A N/A
Avg runtime reduced MCTS (s) 65.27 224.26 383.68 498.19 646.13

Table 6: Table depicting the runtimes of Monte Carlo Tree Search performed on the real game at
various playout counts.

Simulated Monte Carlo Tree Search

The branching factor of the game with placement of the tiles might be too large to test it extensively,
but this does not mean that the same holds for the simulated version of the game. In the simulated
version at the start there are as many moves as there are purchasable pieces and with each purchase
this goes down by one (or sometimes a bit more at the end of the game where the board is completely
filled). This means that the game tree is very tiny compared to the real version of the game, thus
we are able to test at playouts up to 120,000, at which point the time per game was very long, but
the results were the best so far. In this version we can also use the proper UCT Equation 6 with
the “/MS part” of the equation enabled. For this experiment we have tested at varying playouts
with either this “/MS adjustment” to the equation either enabled or disabled.

31

Playout count 10 100 1000 10,000 20,000 40,000 80,000 120,000
Average score /MS 48.53 58.49 66.27 71.44 73.09 74.65 76.95 77.31
Max score /MS 65 73 77 80 81 82 82 81

Average runtime /MS (s) 0.098 2.480 15.365 83.772 227.325 589.752 1002.636 1290.100
Average score NO /MS 47.84 68.56 71.98 72.07 72.36 72.70 71.97 72.19
Max score NO /MS 66 77 78 78 79 78 78 77

Average runtime NO /MS (s) 0.088 1.185 8.255 53.129 127.588 294.092 467.834 597.747

Table 7: A table containing the results from simulated Monte Carlo Tree Search games. Results
were gathered from 100 repetitions for counts 10–20,000, 50 repetitions for 40,000–80,000 and 25
repetitions for 120,000.

Table 7 shows that for this simulated version of the game the MCTS method performs well with
great averages and the highest achieved maximum score up until this point. The average score
without “/MS” is higher for all tested playout counts below 20,000, due to the fact that the increase
of exploration with “/MS” included appears to come at the cost of consistency at smaller playouts
(10,000 and smaller). This is because at small playout counts there is not enough exploitation within
the playouts due to the increased exploration. However, at 20,000 playouts and higher this increase
in exploration is no longer a detriment, but a large upside, as can be seen by the large increase in
average and maximum score gained at higher playout counts for the player with “/MS”. This is
explained by the fact that it has reached a good balance between exploration and exploitation at
these large playout counts. The same increase in average and maximum score at higher playout
counts can not be seen for the MCTS without “/MS” included, as this player spends the extra
playouts exploiting the same moves repeatedly without gaining any significant extra information
from the extra playouts. When looking at the maximum score, we found that larger playout counts
did, however, not keep increasing the maximum past 40,000 playouts as we have most likely nearly
reached the limit of what this MCTS simulated player can find.

Usage of heuristics

The heuristic proved to help with the tree size and allowed more playouts which led to better
performance for the MCTS player so we decided to test using this heuristic on some of the other
players to reduce their runtime and potentially increase their achieved scores.

Average score Max score runtime (s)
weighted random player 11.74 43 0.020

non-weighted random player 17.43 45 0.010
pure MC at 5 playouts 58.71 70 30.54
pure MC at 10 playouts 61.88 73 60.55

Table 8: A table showing the achieved scores from games with the implemented heuristic applied to
limit tile selection. The results for the random players are gathered from 10,000 repetitions and for
the MC players 100 repetitions were used.

The results can be seen in Table 8 with the average and maximum score displayed for the various
players. The heuristic improves the scores achieved by the random players (for scores without

32

the heuristic applied see Table 1) drastically which can be easily explained by the fact that the
tiles that are not that good at that time have been excluded which benefits the random players’
performance a lot. For the Monte Carlo player it is however a bit more complicated. On average
the Monte Carlo games using the heuristic have a smaller average score (for scores without the
heuristic applied see Figure 11 and Figure 12) which is caused by a smaller percentage of boards
that are entirely filled when using the heuristic. For 5 playouts without the heuristic the percentage
of boards that were completely filled was 44 and at 10 playouts this was 50. With the heuristic
implemented this dropped to 35 at playout count 5 and it dropped to 45 at playout count 10. While
excluding the tiles based on their value, their shape is entirely disregarded, meaning that sometimes
a tile that could help with entirely filling the board is excluded at a timestep where it was required
to fill the board. This experiment shows that there is potential in the use of a heuristic, but this
implementation is just a bit too limited for Patchwork.

5.2 Reinforcement Learning

To test our implemented Reinforcement Learning framework we have tested it on non-weighted
random games and pure MC games with 5 playouts. The experiments consists of a number of
rounds and after each round a learning update is performed, which removes a certain number of
tiles.

Figure 17: A graph depicting the average and max score of the non-weighted random player with
restricted tile selection by the reinforcement framework. Rounds lasted 1000 games and the results
were gathered from 50 repetitions.

The results from the random games can be seen in Figure 17. For this experiment we have used 20
rounds, where after each round a single tile was removed until there were 20 left. Rounds consisted
of 1000 random games, meaning that many random games were played before even a single tile was
removed from the selection. When looking at the average of the random games it shows a steady
increase with each removed tile and this reaches its limit at the round where no more tiles are being
removed due to minimum number of tiles in the game being capped at 20. The maximum does
improve slightly over time, but due to the nature of the random games this increase is minimal.

For the experiment using the pure MC player we have used 5 playouts, rounds consisted of
5 games and in each learning update 3 tiles were removed. The scores from 10 repetitions can be
seen in Table 9 and the percentage of full boards can be seen in Table 10. For this experiment at 5

33

Round 0 1 2 3 4 5
Average with boost 58.80 58.46 58.20 56.64 56.76 54.76
Max with boost 69 69 69 72 72 69

Average without boost 57.84 59.76 58.48 59.01 56.20 56.04
Max without boost 64 70 70 68 67 65

Table 9: A table depicting the average and max scores gathered from the Monte Carlo Reinforcement
Learning experiment.

Round 0 1 2 3 4 5
With boost percentage full boards 24 44 24 20 16 12

Without boost percentage full boards 32 22 24 12 6 4

Table 10: A table depicting the percentage of filled boards at each round in the MC Reinforcement
Learning experiment.

playouts we have to compare the scores achieved by the pure MC player at 5 playouts in Figure 12
and Figure 11 with an average score of 59.54 and a max score of 68. The results have been gathered
at quite a small sample size so the data is a bit noisy, but overall a steady decrease in average and
max score is very apparent. Round 1 for the MC player without the boost seemed to perform a bit
better which is caused by the removal of 3 tiles which were simply quite bad due to their high cost.
Here in nearly all of the 10 games tiles 3, 9, 19 and 25 (see Figure 2) have been removed as they
had not been used and had the worst value from the unused tiles. The decrease in overall score
at later rounds is explained by looking at Table 10 which shows that with the removal of these
tiles the percentage of games that reach a full board decreased drastically. This table also shows
that with the boosted score for tiles that are used often, the percentage of full boards is quite a bit
higher. This is explained by the fact that without this boost tiles such as 0, 1 and 2 (see Figure 2),
which are great for filling the board, had been removed by the MC player without the boost.
Overall the removal of tiles is very tricky due to the fact that each tile that may appear bad on
paper perhaps is the best fit in a situation. At very large playouts with very stable players it could
potentially help with runtimes but at small playouts it simply hinders the games too much.

5.3 Combined player

For the combined player we will not run a large structured experiment as the runtimes are very
long. We have used the pure Monte Carlo player at 500 playouts for the first 6 purchases and after
this we were able to use the MCTS player at 3000 playouts until move 12 at which point we used
the perfect finish to end perfectly. We have ran this combined player 3 times with their runtime
being around 10 hours each. The highest score on the real game we have been able to achieve by
doing this was at 74 with the other two games scoring 72 and 70. This marks the highest score we
were able to find on the real game. This is attributed to the fact that the MC player set up a good
solid start and the MCTS player had a playout count high enough to build large enough trees to
get a good grasp of what good moves were and the perfect finished ensured that the ending was
player perfectly.

34

5.4 Highest achieved score(s)

To find a score as close as possible to the optimal score we use the simulated version of the game
with the perfect finish option enabled. The MCTS player showed the best performance, which is
why we will be using the MCTS player at large playouts to find a score as high as possible. We run
a number of repetitions with 80000 playouts for MCTS with a perfect finish.
The best game we have found ended with a score of 84, 14 purchased tiles and 18 sewn in buttons
in total. The sequence is shown in Figure 18 alongside the highest scoring game without the perfect
finish. Proof of it being able to fit on the board is shown in Figure 19. To confirm that it would fit
we have used an online polyomino placement problem solver [Mea] that uses the Dancing Links
algorithm [Knu00].
This highest scoring game shows that during a good game you want to skip as few spaces as possible
as the time to buttons exchange is not a good trade for the most part. The game was also able
to very efficiently space out its purchases where it bought many tiles just before a button spot.
Button spots in the game are at timestep 5, 11, 17, 23, 29, 35, 41, 47 and 53 and it managed to
use these very well. For the ending sequence the only major improvement that the perfect finish
brought was the option to find a sequence that kept a tile with a high time cost for its last purchase
at timestep 52 meaning that a tile with a timecost of 5 was essentially reduced to a timecost of 1 here.

Figure 18: A figure depicting the game with the highest score we have found with or without the
perfect finish option enabled. Green arrows indicate a purchase of the tile depicted above, blue
arrows indicate the passing of a button spot (awarding the player buttons equal to their sewn in
amount) and red arrows indicate skipping spaces (to exchange time for buttons)

Based on this highest scoring game we presume that a potential maximum score of the single-player
game to fall somewhere in the 84–90 range. The game with a score of 84 used its time very well,
but there was still an action that skips 2 spaces early on which could potentially be used more

35

efficient. Other than this the game seems to be played nearly perfectly, which is why we presume
that the maximum is in between 84 and 90.
This highest scoring game we found is, however, not possible in the 2-player game as it assumes
that it is able to acquire all five 1×1 tiles. With this action sequence the player wants to go from
timestep 25 to 31, while there are 1×1 tiles at timestep 26 and 32, meaning that it misses out on
at least one of them in the 2-player game. This can be remedied by purchasing tile 0 (see Figure 2)
which fills 2 spaces. We have verified that there exists an action sequence in the 2-player game,
where the first player gets 3 1×1 tiles and perform the action sequence in Figure 18 along with
purchasing tile 0. This extra purchase required means that it has to spend 2 more buttons and
1 extra time, thus bringing the highest found score for the 2-player game to 81. This collection
of tiles with tile 0 being included was verified to fit on a board using the polyomino placement
problem solver [Mea] and can be seen in Figure 20.

Figure 19: A figure depicting a filled board with the tiles used in the best game we have found [Mea].

Figure 20: A figure depicting a filled board with the tiles used in the best real game we have
found [Mea].

36

Recap of highest achieved score per method

We close this section off with Table 11, which features all the maximum and average score achieved
for the most important used methods to give an overview of all the used methods’ performance. For
full details and notes on performance we refer the reader to the respective sections within Section 5.

Method Average score Maximum score runtime
Random weighted −6.62 29 0.0257 s
Random non-weighted 1.90 41 0.0088 s
Random simulated 12.88 56 0.0003 s
Value Based Return Zero (best scoring TCM) N/A 57 N/A
Value Based rule-based placement (best scoring TCM) N/A 67 N/A
pure Monte Carlo (10 playouts) 62.38 72 4m 4.07 s
pure Monte Carlo (100 playouts) 67.7 72 40m 40.70 s
pure Monte Carlo greedy (10 playouts) 47.94 60 4m 4.07 s
simulated Monte Carlo (100 playouts) 70.63 78 0.47 s
simulated Monte Carlo (10,000 playouts) 72.41 76 42.99 s
Monte Carlo Tree Search (with heuristic) 63.7 70 10m 46.13 s
Monte Carlo Tree Search (with heuristic) greedy 60.6 67 10m 46.13 s
simulated Monte Carlo Tree Search (40,000 playouts) 74.65 82 9m 49.752 s
combined player 72 74 10h
simulated Monte Carlo Tree Search (80,000 playouts) w/ perfect finish 78.32 84 28m 5.326 s

Table 11: Table containing the scores and runtimes of all the most important methods used.

37

6 Conclusions and Future Work

We have implemented and tested a number of algorithms on a single-player version of the board
game Patchwork. We have done this using several methods, but mainly Monte Carlo methods
have been utilized to find a score as high as possible. We have done testing on a real version of the
game where the player has to place tiles on a board, as well as a simulated version of the game
where the player does not have to place tiles on the grid (this simulated version is still limited by
the number of spaces on the 9×9 board, so tile shape is irrelevant but size still matters).
From our experiments we have learned much about the behaviour of Monte Carlo methods on this
version of the game, such as impact of playout counts and the performance of different Monte Carlo
methods. Overall we have found that the Monte Carlo Tree Search algorithm performs the best,
but this method is flawed by the fact that its memory usage for a game with such a large search
space is simply too high. This is why we have implemented a number of techniques to reduce the
size of the search space. Our attempts include the use of a heuristic limiting tile selection as well as
a Reinforcement Learning framework that learns what tiles to exclude based on a number of games,
but unfortunately both of our attempts negatively impacted the score. For the MCTS algorithm
the heuristic did however improve performance as the smaller tree size caused by the heuristic
allowed for more playouts, which increased achieved scores.
For the real game this limited number of playouts for Monte Carlo Tree Search meant that the pure
Monte Carlo player was able to perform better as we could play many more random games without
being limited by memory usage. To find the highest score for the real game we have combined the
pure MC player and the MCTS player with brute force to find a score of 74. For the simulated
game however, this memory usage was not a problem as the search space was far smaller, meaning
that we have been able to use MCTS at very large playout counts combined with brute force at the
end to find a score of 84 for this altered version of Patchwork. This action sequence was then
verified to be possible in the real (non-simulated) game. This action sequence that achieved a score
of 84 can be slightly altered to be achievable in the real 2-player game for a score of 81.

6.1 Future work

In the future it would be interesting to further analyze the methods we have used at higher playout
counts on the real (non-simulated) single-player game. This could not be done as currently the
runtime is too long to experiment on the real game extensively. We believe that the largest gain
here could be made by finding a heuristic that is able to limit placement options for a tile, but it is
very hard to make a good heuristic for this due to the complex nature of the game.
We believe that the most interesting research building on this work (on the single-player game)
would come from more time and effort spent on including Reinforcement Learning techniques.
While we have incorporated a mechanism that removes poorly performing tiles, we believe that
this only scratches the surface of what can be done. Developing a method that limits tile selection
only at certain time steps, would be the best step to take next. This could greatly reduce runtime
as a smaller set of tiles has to be analyzed at any one time, but this would be difficult to fine tune,
mostly due to the large impact any small purchase can have on the flow of the game.
It would also be interesting to run experiments on versions of the game with altered rule sets such
as a more limited number of 1×1 tiles or more or fewer button spots present in the game.
Lastly, while quite some work could still be done on the single-player variant of the game, it would
be interesting to test these methods on the normal 2-player game with both players trying to win.

38

References

[CRM+13] Roman Chirikov, Paolo Rocca, Luca Manica, S. Santarelli, Robert Mailloux, and
Andrea Massa. Innovative GA-based strategy for polyomino tiling in phased array
design. In Proceedings of the 7th European Conference on Antennas and Propagation,
EuCAP 2013, pages 2216–2219, 2013.

[CWvdH+08] Guillaume Chaslot, Mark Winands, H. Jaap van den Herik, Jos Uiterwijk, and Bruno
Bouzy. Progressive strategies for Monte-Carlo Tree Search. New Mathematics and
Natural Computation, 4:343–357, 2008.

[DI22] Justin Dallant and John Iacono. How fast can we play Tetris greedily with rectangular
pieces? In Proceedings of the 11th International Conference on Fun with Algorithms,
FUN 2022, volume 226 of LIPIcs, pages 13:1–13:19, 2022.

[Gee] Board Game Geek. Patchwork. https://boardgamegeek.com/boardgame/163412/
patchwork. Accessed on June 25th 2024.

[Knu00] Donald E. Knuth. Dancing links. https://arxiv.org/pdf/cs/0011047, 2000.

[Kot12] Róbert Kotŕık. Searching for a strategy of monopoly game using cognitive and
artificial intelligence approach. Master’s thesis, 2012.

[Lag20] Mikael Zayenz Lagerkvist. State representation and polyomino placement for the
game patchwork. https://arxiv.org/abs/2001.04233, 2020.

[Mea] C. Meadors. polyomino-solver. https://github.com/cemulate/

polyomino-solver. Accessed on June 28th 2024.

[Ros14a] U. Rosenberg. Patchwork, the board game. 2014.

[Ros14b] Uwe Rosenberg. Patchwork rulebook. https://cdn.1j1ju.com/medias/74/af/

f2-patchwork-rulebook.pdf, 2014. Accessed on May 13th 2024.

[SCS09] Istvan Szita, Guillaume Chaslot, and Pieter Spronck. Monte-Carlo tree search in
Settlers of Catan. In Ethical Theory and Moral Practice, pages 21–32, 2009.

[SHS+18] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. A general reinforcement learning algorithm that masters chess, shogi, and go
through self-play. Science, 362(6419):1140–1144, 2018.

[TYA22] Kazuki Takabatake, Keisuke Yanagisawa, and Yutaka Akiyama. Solving generalized
polyomino puzzles using the Ising model. Entropy, 24:354, 2022.

[ZZN11] Cai Zhongjie, Dapeng Zhang, and Bernhard Nebel. Playing Tetris using bandit-based
Monte-Carlo planning. In Proceedings of AISB 2011 Symposium: AI and Games,
2011.

39

https://boardgamegeek.com/boardgame/163412/patchwork
https://boardgamegeek.com/boardgame/163412/patchwork
https://arxiv.org/pdf/cs/0011047
https://arxiv.org/abs/2001.04233
https://github.com/cemulate/polyomino-solver
https://github.com/cemulate/polyomino-solver
https://cdn.1j1ju.com/medias/74/af/f2-patchwork-rulebook.pdf
https://cdn.1j1ju.com/medias/74/af/f2-patchwork-rulebook.pdf

	Introduction
	Related Work
	Patchwork
	The game
	Single-player variant
	Examples

	Methodology
	Simple strategies
	Monte Carlo strategies
	Simulations
	Reinforcement Learning
	Perfect finish
	Combined player

	Experiments
	Different methods
	Reinforcement Learning
	Combined player
	Highest achieved score(s)

	Conclusions and Future Work
	Future work

	References

