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Abstract

Over the last decades, the capacity of installed renewable energy resources has
increased significantly. However, with the increasing deployment of these resources,
new issues arise. The inconsistent nature of photovoltaic systems, among others, is
a major challenge for grid operators and makes it hard to implement large systems
into the grid. Accurate forecasting methods are essential to ensure efficiency and
security. Forecasting photovoltaic (PV) power output is in fact a time series
prediction task and different approaches exist to gather accurate predictions. Deep
learning based regression models are among the most successful ones. However,
there are limited systematic comparisons of methods or studies into the influence
of different parameters on this performance. For example, the history window of
the data may have an important role on the performance of the models. This thesis
provides a review of different state of the art deep learning methods applied to the
task of short-term photovoltaic power output prediction, with a prediction window
of 1 hour. The random forest model, which serves as baseline, performs better
than any of the studied models. This surprising result is not in line with most
literature, where the deep learning methods often outperform the baseline model,
including the random forest. It suggests that either the training data is insufficient,
or the problem of photovoltaic prediction does not contain many non-linearity’s
and long-term dependencies. The benchmark of the different models gives useful
insight into the applicability of each model and the effect of different parameters
within the same setting, providing an extensive analysis for any of the suggested
methods.
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1 Introduction

Whereas the growth of global emissions in CO2 decreases, the yearly quantity of emitted
CO2 is still rising. The world is not on schedule to stay below the critical point of
a global temperature rise of 1.5◦C and the United Nations have warned more than
once that we are on the edge of an irreversible change [LDDC24]. Fortunately, the
yearly ringing alarm bells have made the awareness of the effect of CO2 on the planet
increase. Following agreements of Paris (2015) and Dubai (2023), governments, industries
and individuals shift away from fossil fuels and choose to invest in green alternatives.
There are noticeable increments in the deployment of renewable energy production. For
example, the installed capacity of renewable energy resources has increased by 35%
over the last 5 years in the European Union alone [DMFM20]. The noble and aspiring
intention of the EU is to be climate-neutral by the year of 20501. Even though it may
not be enough yet, many actions are taken to reduce global warming [RDK+22].

However, with the emergence of renewable energy sources and the increasing deployment
of these, new issues arise. A major issue is the inconsistent nature of renewable energy
production [RDK+22]. The electric grid is designed in the era where traditional power
plants ruled the electricity generation, which may be fossil, coal-fired or nuclear. The
power plants were very consistent and commonly only the demand on the electric
grid fluctuated. The only challenge was to make sure the grid could handle peak de-
mands, usually on early evenings, when every citizen was at home and cooking [PBBJ14].

Unlike the traditional power plants, the power output of renewable energy sources can
be very fluctuating. In this thesis, focus is laid on the production of solar energy, often
referred to as photovoltaic (PV) power production. The energy production of solar
panels usually follows a very well-known day-to-day trend. Yet, it can be very volatile
due to changing weather conditions. It is a major challenge to adapt the electric grid
to handle the inconsistent production of PV resources [SAAS22][TPA+17]. Especially
during extreme weather conditions, peak loads can flood the grid and decrease grid
stability [WXX+17]. Furthermore, peak times of PV production and residential needs
most of the times differ, an effect also known as the ‘duck curve’. On a normal day, the
solar irradiation is the strongest during the midday. When, after work, people return
home and the irradiation diminishes, demand on the grid increases while people cook or
stream their favorite series. This leads to imbalances in the grid and increased costs of
dispatching. Moreover, the well intended electrification of many devices (e.g., cars), leads
to a congested electric grid. For example, in some areas in The Netherlands, citizens or
companies cannot build new houses and offices due to the shortage in grid capacity2.

Many actions need to be taken to make the grid more robust and reliable for the
increasing production of and the increasing need for renewable energy. Accurate fore-
casting methods for PV production, among other resources, are essential. They are not
only necessary to improve efficiency but also required to assure security of the electric

1https://climate.ec.europa.eu/eu-action/climate-strategies-targets_en
2https://nos.nl/artikel/2502217-stroomnetten-weer-vol-nu-in-den-haag-groningen-en-overijssel
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grid [DMFM20]. This thesis compares possible approaches in improving PV forecasting
accuracy.

So far, different forecasting approaches have been proposed. The current state of the
art approach typically uses deep learning based regression models. The prediction issue
is in effect a time series prediction problem. Usually, studies use datasets from a solar
plant of which sufficient data is available and fit different (neural) models to predict
the PV power output based on meteorological data. As found in a review of related
studies by Gallardo et al. (see [GAG23]), results of the studies are sometimes inconsistent
but most of all often incomparable, due to different used system capacities and the
dependence of the accuracy scores on these. Furthermore, most of these studies did not
extensively benchmark different models on the same problem. However, the trend is
that recurrent and transformer based models are among the most successful in the task
of short-term power output prediction. Among important aspects on the performance of
time series prediction models can be the history window in the samples of data. The
history length can have a major influence on the performance of the models, especially
when dependencies of variables are on a long-term bases. For example, within long texts
the context of words in the last sentence can be dependent on something mentioned in
the very first sentence.

A remaining challenge is to systematically benchmark the performance of different model
architectures. Moreover, there is often no explicit study into using different history
windows for the proposed models, including the fixed window approaches (random forest,
linear feed-forward). At last, there remains a need for a study using Dutch meteorological
data as none of the found publications have systematically tested prediction models for
PV output of Dutch systems.

This thesis provides a thorough analysis of performance of different models in short-term
prediction of PV power output, using a prediction window of 1 hour. Accurate prediction
methods are useful and necessary for grid operators, to ensure grid efficiency and safety.
For this study, data is retrieved from the Royal Dutch Meteorological Institute, the
TU Delft and the European Union. Initially, models were trained on a small dataset,
consisting of 1 year of PV power output, however the small amounts of data can limit
the neural implementations in performance. Therefore a larger dataset is gathered
from the European Union (EU), providing a dataset which describes 10 years of PV
production at the same site. Proposed models are a linear feed forward neural network,
a recurrent Elman network, a long short term memory network and a transformer. In
the experiments, the influence of the history time window within training and test
data is investigated. Moreover, the effect of using different model hyper parameters
(learning rate, hidden layer size) on prediction accuracy will be measured. All accuracy
is measured over unseen data and all data originates from the Netherlands. Results
of the proposed deep learning methods are eventually compared to a baseline random
forest model.

Results are interesting as none of the recurrent models or the transformer show increased
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performance compared to the linear feed forward network. On top of that, the random
forest model outperforms all of the deep learning implementations. The larger dataset
increases the performance of all methods slightly. Increasing history windows does not
affect performance much, if at all. Using longer history windows often even decreases
overall performance, especially with recurrent networks. A history window of 2 is often
already sufficient to achieve high accuracy, yet including the last 4 hours seems the fore-
most option in general. Increasing hidden layer sizes of neural architectures is beneficial
to improve accuracy. Smaller configurations often suffer from underfitting. However, this
effect stagnates when using hidden sizes of over 1024. Best measured mean absolute
errors (MAE) range from 36.0 Watts (the RF) to 71.0 Watts (the RNN/LSTM) with a
capacity of 2.000 Watt.

Our analysis of different approaches on predicting power output for Dutch PV systems
shows that the problem may not contain many non-linearity’s and deep learning methods
do not necessarily improve performance. Another explanation for the found results could
be that our experiment setup is wrong, for example by excluding too much features.
Still, forecasting can be done rather accurately by using methods which are easy to
fit and tune, as the random forest model performs the best and shows relative error
scores of 2%. The next paragraphs will be used to provide an overview of current work,
followed by an introduction and motivation to the proposed methods. The following
preliminaries and methodology sections further describe the used data and models in
detail, providing the necessary calculations and model architectures. The experiment
setup concludes the main body of this thesis, by describing the proposed tests for each
model. The last sections give space for an interpretation, discussion and conclusion of
results.

2 Related work

Improving forecasting accuracy of PV power output has gained large amounts of attention
over the last years. There are different approaches to this problem. This section first
discusses similar studies and approaches, after which it dives into the topic of forecasting
time series using deep learning. This way, a motivation is given for the used experiment
set-up and methodology.

2.1 Similar studies

Within most studies, the spectrum of methods varies between physical models, tradi-
tional machine learning methods and deep learning models. Moreover, the prediction
horizon varies extensively. Some studies focus on predicting for a time span of 10 minutes,
whereas others attempt to forecast longer windows, with studies forecasting up to 1
month ahead ([PMK+20], for example). Approaches of the physical modelling kind
first try to predict weather conditions and base the predicted solar irradiance (or flux
density) on these weather conditions. Examples of traditional machine learning methods
are random forest models or support vector machines. The most popular approach is
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using deep learning, in which recurrent architectures, long short term memory models
in particular, seem to be superior in most studies [GAG23].

Different studies find successes using different models. For example, Yung Ju et al.
([JLS20]) propose an encoder-decoder architecture using self-attention. The study finds
significant improvements compared to known deep learning implementations. Phan et
al. perform a similar experiment with a transformer based approach [PWP22] and their
results are in line with Yung Ju et al. In a different experiment, Zhou et al. ([ZZY+19])
study photovoltaic power output forecasting based on long short term memory (LSTM)
networks, also combined with attention mechanisms - and significant improvements
are noted. In most studies, traditional machine learning methods like support vector
machines or random forest often serve as baseline models and are then outperformed
by the provided neural-like architecture. Found mean absolute errors differ extensively,
depending on study and system capacity.

Standardisation is hard, since studies focus on local data and often do not generalize
their findings to other datasets. The accuracy metrics are dependent on the specific
dataset and system’s capacity which can make the scores differ extensively between
studies. Moreover, studies take place in different settings with different climates, making
a proper comparison even harder. Remarkable is that in a review of more than 60
studies about this issue, no significant improvements within the last 3.5 years have
been noticed, which could be due to the “limitations imposed by the physics of the
problem (accurate weather predictions), and the relatively short time span of this review”
[GAG23]. Suggested for further studies is to focus on data and features selection, and
the effect on performance using different configurations and models.

2.2 Time series forecasting and deep learning

As mentioned, the issue of predicting PV power output is in fact a time series prediction
task. Formally speaking, a time series is a series of data points indexed in time order,
usually a sequence of discrete-time data. Examples are temperature levels, stock indexes
and in our case power output of photovoltaic panels. Time series forecasting is the
process of using a model to predict future values based on historical data.

Machine learning (ML), a broad and long existing field, concerns the use of data and
training of algorithms to make predictions. ML is applicable to many tasks and particu-
larly useful for time series prediction tasks [BN06]. Current state of the art performances
in this field are often achieved by using deep learning. Typically, neural networks are good
in capturing dependencies in complex and large datasets and usually suit well on time
series prediction tasks. With the growing amounts of data and available computational
power, deep learning increases in popularity and accessibility. For lower-dimensional
tasks, the linear feed-forward neural network is often used, which is further described in
the methodology section. However, many complex combinations of layers of neurons exist.

Latest developments in deep learning show results of high standards in many different
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areas. Many techniques are becoming increasingly available, such as high quality video
generation, natural language processing or image generation. The foundation of recent
developments lays in the power of the attention mechanism, as found by Vaswani et al. in
2017 [VSP+17], as well as the access to large sets of data and the increasing capacity of
GPUs (models can use over billions of parameters). Vaswani et al. showed by developing
the ‘transformer’ that with enough data available and using attention, performances in
natural language processing tasks can increase significantly. The transformer showed
significantly better results than other models at that time, with an architecture solely
based on attention mechanisms. For example, the nowadays well-known ChatGPT is
based on a Transformer-like architecture. Before the success of the transformer, recurrent
networks were considered the state of the art methods concerning sequential tasks. In
essence, recurrent models keep track of hidden cell states for each time-step and use
previous hidden states as input for new time-steps, which enables them to capture
contexts and dependencies in sequential data of undetermined length. Recurrent models
are known to be able to capture non-linear dependencies of features, learn functions
of arbitrary complexity and deal with complex patterns as saturation or exponential
effects [BMK+17]. Such methods suit well on time-series prediction tasks. This study
implements two different flavours of recurrent networks, namely the Elman recurrent
network (RNN) and the long short term memory network (LSTM). Rather than the RNN,
the LSTM is known for its improved capabilities in capturing long-term dependencies
and serves as an improvement to the RNN. The scope of this study is to compare
different deep learning architectures, which include the feed forward network, recurrent
networks and (the encoder of) the transformer.

3 Preliminaries

This section describes some necessities for the process of forecasting. It explains the
features in the dataset and describes the performed steps during preprocessing.

3.1 Data preprocessing

Three different datasets are used. Originally, the data used in the experiments is collected
from (a) TU delft open source PV power databases3 and (b) the “Koninklijk Nederlands
Meteorologsich Instituut” (KNMI)4. The TU Delft dataset describes the PV power
output from a residential power plant in Amstelveen (the Netherlands) in watts (W)
for every 15 minutes over the year of 2022. The dataset of the KNMI describes 21
different meteorological variables measured in Schiphol (the Netherlands) per hour, over
the year of 2022 as well. Locations are 7.0 km away from each other. The relatively
small size of the TU Delft dataset may limit most neural networks in performance.
Therefore, solar data is in a second experiment collected from a different dataset, given

3https://www.tudelft.nl/ewi/over-de-faculteit/afdelingen/electrical-sustainable-energy/

photovoltaic-materials-and-devices/dutch-pv-portal/pv-power-databases
4https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens
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feature i (t− n) ... feature i (t− 1) feature i PV power output in W
xi(t−n) ... xi(t−1) xi y

Table 1: An outline of the preprocessed dataset. As the data is ordered by timestamp,
history is introduced by aggregating shifted datsets with the original dataset.

by the European Union5. The EU data differs slightly from the TU Delft data set.
Essentially, the data describes hourly PV power output from 2005-2015. However, the
data is converted from measured solar irradiation to hypothetical power production
of a PV system on the same location. The capacity and efficiency of the system can
be determined and configured by hand. For this experiment, the capacity is set to a
similar capacity of the TU Delft dataset’s capacity (2.000 Watt). Efficiency is set to
a full 100%, which ensures the system’s capacity the model is trained on actually is
2.000 Watt. The origin of the EU data is Schiphol. The EU data can be combined
with the KNMI data, which is available for the same period and same geographical origin.

Preprocessing the dataset requires matching datasets by the timestamp feature. As the
KNMI dataset uses hourly data and the TU Delft quarter-hourly, the PV power output
dataset is averaged per hour to match both datasets. Some models (linear feed-forward
neural network and random forest) require history introduced within each sample,
whereas others (the RNN, LSTM and Transformer) require sequences of samples instead.
For the first, history is introduced by aggregating (a) the actual data with (b) shifted
data repeatedly. The data is then split into training and test sets on a 80 / 20 proportion.
The test set consists of sequences of length 100 (hours), spread throughout the dataset
so performance is evaluated on different seasons and years. The preprocessed dataset
for FNN and RF models look as shown in Table 1. For the deep learning methods,
extra steps include scaling data (to enable the models to learn faster) and for recurrent
architectures to convert the data to batches of sequences with the history length as
length of each sequence.

3.2 Feature selection

Features to be included are selected based on the calculated Pearson’s correlation
coefficient (Equation 1).

r =

∑
(xi − x)(yi − y)√∑
(xi − x)2(yi − y)2

(1)

The r is the correlation coefficient, determining how much the label is linearly correlated
to the feature on a scale from -1 to 1. Next, xi is the value of the x-variable (the feature)
in the dataset, indexed by i. The x̄ is the mean of the values of that same x-variable. yi
is the value of the y-variable (the label) in the dataset (indexed by i), which is the PV
production in W and ȳ is the mean of the values of the label.

5https://re.jrc.ec.europa.eu/pvg_tools/en/
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Figure 1: The calculated correlation coefficient (see eq. 1) of several different features
with respect to the power output of solar panels. A score of -1 indicates a perfect negative
correlation, a score of 1 a perfect positive correlation and zero means no correlation at all.
Noticeable is that statistically speaking, the duration of sunshine and relative humidity
have a higher correlation to PV power output than the irradiation. Variables marked
with (*) are expressed as boolean values (0, 1), which can explain lower correlation
scores. Features in bold are included for the prediction task.

Outcomes of most features in the KNMI dataset can be found in Table 1. Some variables
were left out in this table. Excluded are the indicator of attendance at weather station
(IX), weather code (WW) and mean wind direction (DD), as they all all use meaningless
scales (360=north, 90=east, 180=south, 270=west, 0=calm, 990=variable, for example
for mean wind direction DD). Features are included in the dataset based on correlation
scores. This step is thought of to only include relevant features for the task, as seen in
[ZZY+19]. However, the risk of using this metric is that non-linear dependencies are
excluded. This may therefore have of a strong effect on the final performance of the
neural networks.

4 Methodology

This thesis implements five different architectures, based on data from the KNMI, the
European Union (EU) and the TU Delft. Models are evaluated on the holdout set of
test data, which consists of intervals of 100 hours of unseen data, spread throughout
the years so performance is independent on seasonal changes. Accuracy scores of all
configurations are noted and training curves of neural architectures are examined per
different configuration. This section describes the architectures of the implemented
methods.

7



4.1 Baseline model

As mentioned, we use a random forest as baseline model. A random forest, originally
proposed by Breiman (2001) [Bre01], consists of a collection of N randomized decision
trees. Once a decision tree is generated, it bases its outcome on the values of the input
features. A visualization would be Figure 2, where a very simplified (and unrealistic)
decision tree bases its prediction of y on the values of input features x1 and x2. The
random forest has shown to be extremely successful in many classification and regression
tasks. In our regression problem, a multitude of trees is generated after which the output
of all trees is averaged. The random forest works on the bagging principle, which involves
training multiple models independently. For a more thorough review of this method, see
[BS16]. The average of the multiple trees serves as the final output of the random forest.
The model has no max depth, uses gini as criterion for splitting and uses a default
number of estimators of 100, which corresponds to the number of trees in the forest.

Figure 2: A very simplified visualisation of a decision tree regressor. Based on values of
a feature, the root splits into new nodes and so on. In our case, x1 could be temperature,
for example. A random forest creates a multitude of trees (in an expanded version) and
takes the average over all predicted values.

4.2 Feed-forward neural network

The fully connected feed-forward network (FNN) is a neural network, in our case built
of three hidden layers and two drop-out layers (drop-out rate = 0.25). As activation
function the ReLU function is used, so each layer calculates output by the following
equations.

ϕ(x) := ReLU(x) = max(0, x) (2)

h1 = ϕ(Wh1x + bh1) (3)

h2 = ϕ(Wh2h1 + bh2) (4)

h3 = ϕ(Wh3h2 + bh3) (5)

y = Wyh3 + by (6)

h is a vector of size hidden dimension, x a vector of size input dimension, W are weight
matrices with trainable weight parameters and sizes dependent on dimensions of the
layers it connects. The first dimension of the weight matrix in the first layer therefore
corresponds to the number of features (input dimension) and the output dimension of
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Figure 3: When the sequence of inputs is fed to the recurrent neural network (RNN),
the unit repeats itself up till the last item of the sequence. Outputs of hidden states in
the current timestep serve as input for the next timestep. When, for example, sequences
of 4 hours serve as input, the RNN unfolds itself four times. The output of the last unit
serves as prediction for the next hour. Image based on [RNN].

the last layer (y) is 1. The hidden dimensions are set by configuration and the effect of
different dimensions is what we want to evaluate.

After each forward pass, loss is calculated using the mean absolute error (see Equation
7).

L = |yn − ŷn| (7)

In this equation, ŷ corresponds to the predicted label. The final output of each forward
pass is computed according to Equation 6, where the output of the last hidden layer
is transformed to the still scaled label (as we have seen in the preprocessing section).
Output is up-scaled reversibly to express output in Watts, so it is possible to express
accuracy. Within the training process, mini-batch training is used, in which repeatedly
small batches with a size of 16 are created. Within one epoch (a training cycle), the model
repeatedly predicts one mini batch (one forward pass) after which the loss for each item
is calculated (by Equation 7). The model updates its parameters using backpropagation.
Backpropagation minimizes the loss by updating network’s weights matrices and bias
vectors. How much the weights adjust is determined by the gradients of the loss function
with respect to each weight (by equations 8 and 9).

w = w − ϵ
δL

δw
(8)

b = b− ϵ
δL

δb
(9)

In Equation 8 and 9, δL
δw

determines the gradient of the loss function with respect to
the weights in weight matrices W and δL

δb
for biases b. ϵ corresponds to the learning

rate, which determines how much the model updates its weight each time. Values of the
gradients are calculated using the chain rule (see [Wyt93] for a detailed outline of this
process). After each epoch performance is evaluated by predicting the holdout set of
test data, which is used to study learning curves and visualization of the predictions.
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Figure 4: The intuition behind backpropagation through time (BPTT). BPTT unfolds
a recurrent network in time, so it tracks output for every timestep. For every timestep,
loss is calculated and summed. BPTT is used to find the gradient of the loss with respect
to the parameters in the network. Image based on [Gup19].

4.3 RNN

As an extension of the feed-forward network, recurrent neural networks (RNN) are known
for their ability in handling sequential data, such as sentences or time series. RNNs
leverage hidden state vectors to capture short-term dependencies within sequential data,
which enables them to perform complex tasks like machine translation where order is
critical. Developed in 1986 (see [WZ89]), the RNN introduced the so called memory
cell. The most common implementation is the Elman network (see [SM19]), which is
used in this thesis as well. This thesis studies the performance of an implemented RNN
after predicting PV power output based on the sequences of meteorological data. The
RNN consists of one hidden cell, which recurs every time-step. The hidden cell state is
updated each time-step, with the input features of the current time-step combined with
the hidden cell state of previous time-step as input. The hidden cell then serves as input
to the output layer as well as to the next hidden state in time (Equations 11 and 12).
When feeding sequences, the RNN unfolds itself in time and repeatedly uses the same
weight matrices to calculate next outputs, a process visualised in 3. This time, the Tanh
function is used as non-linear activation function, keeping output between 0 and 1.

ϕ(x) = tanh(x) (10)

ht = ϕ(Wxxt + bx + Whht−1 + bh) (11)

yt = Wyht + c (12)

ht is the hidden state vector, of a size to be determined by configuration, Wh, Wx,
Wy are weight matrices of dimensions (hidden dimension, hidden dimension), (input
dimension, hidden dimension) and (hidden dimension, output dimension) and b and
c are trainable bias vectors with a length equal to the hidden dimension and output
dimension respectively.

Error is again calculated as mean absolute error. To update weight matrices and biases,
backpropagation through time (BPTT) is used. During backpropagation, the error
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Figure 5: The architecture of the LSTM. The red c (cell state) on top ensures structure
for long-term dependencies, whereas h (the hidden state) on the bottom acts like the
recurrent cell from the RNN and corresponds to the short-term memory. Initial hidden
and cell states can be chosen arbitrarily. Image based on [LST].

gradients flow backward through time, visualized in Figure 4. The unrolled RNN is now
in fact a feed-forward network, but then with the same parameters repeated throughout
the network, appearing at each time step. Just as in any feed-forward neural network, the
chain rule can be applied, to backpropagate through the unrolled network. The gradient
with respect to every parameter is then summed through all places the parameter occurs
in the (unrolled) network. For further reading on backpropagation through time, I
recommend the paper by P.J. Werbos et al., see [Wer90].

4.4 LSTM

Unfortunately, RNNs typically struggle in capturing long-term dependencies, as error
gradients vanish when longer sequences are fed to the network, a problem commonly
referred to as the vanishing and exploding gradient problem. In order to solve this
particular vanishing gradient problem, long short term memory (LSTM) models introduce
different sorts of memories and ‘gates’ to update the memories. LSTMs were initially
developped in 1997 (see [HS97]) and many adaptations and improvements have followed
(the PhD thesis of Gers et al. [GSC00], for example, introduces the forget gate). LSTMs
usually perform better in capturing long-term dependencies in sequential data, which is
useful for time-series prediction tasks such as ours. LSTMs are known as highly effective
RNNs and are able to learn faster.

The implemented LSTM, much like the RNN consists of a recurring unit. However,
the LSTM distinguishes long term memories and short term memories by creating two
separate ’pipelines’, as shown in Figure 5. Each time-step, the input is combined with
the previous long-term memory (’cell state’) as well as with the previous short-term
memory (’hidden state’) and both states are updated separately.

When sequences of data are fed, the LSTM unrolls just as the RNN. However, the LSTM
consist of different memory cells which are calculated separately. Now, for every timestep,
output is calculated and forward passes are done by performing different calculations,
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as seen below. Figure 5 provides an intuition of what happens within the equations.

σ(x) =
1

1 + e−x
(13)

it = σ(Wixt + bxi + Uiht−1 + bhi) (14)

ft = σ(Wfxt + bxf + Ufht−1 + bhf ) (15)

ot = σ(Woxt + bxo + Uoht−1 + bo) (16)

c̃t = tanh(Wgxt + bxg + Ught−1 + bhg) (17)

ct = ft ⊙ ct−1 + it ⊙ c̃t (18)

ht = tanh(ct) ⊙ ot (19)

U and W are weight matrices but now of dimension (hidden dimension, cell state
dimension) and (input dim, cell state dimension), respectively. As addition to the RNN,
c is the cell state vector, which fulfills its role as long-term memory. The ⊙ operator
denotes the element-wise product of both vectors.

The hidden state at every timestep corresponds to the output of that timestep. Er-
ror is calculated the same way as with RNN and erorr gradients are determined by
backpropagation through time.

4.5 Transformer

The current state of the art models in deep learning are very often based on the
transformer architecture, as proposed by Vaswani et al. in [VSP+17]. For example, Chat
GPT is in essence a gigantic pre-trained transformer, as the name already suggests
(GPT = Generative Pre-trained Transformer) [WHL+23]. Transformers typically have an
encoder-decoder architecture and make use of multi-head attention. In many sequence-to-
sequence tasks, such as next-word prediction or translation tasks, using the transformer
architecture has many advantages. Due to the multi-head attention, they are known
to be very successful in capturing contexts within sequences and finding correlations
between them. In this experiment, the encoder part of the transformer is taken and
used for encoding the input of the meteorological variables.

4.5.1 Architecture

The proposed architecture uses the encoder architecture of the transformer and combines
it with a feed-forward layer as decoder, see Figure 6. This way, input is encoded into a
vector, using the advantages of attention and then decoded into the single feature of PV
power output.
The multi-head attention requires input to be labelled with their position in time. To
enable this, the first step in the encoding process is positional encoding. Positional
encoding in transformers uses sine and cosine functions to create a fixed-dimensional
vector for each item in the input. This vector captures the item’s position based on its
index. The positional encoded vectors are then passed to the multi-head attention layer.

12



Figure 6: The architecture of the transformer encoder and used decoder. Each forward
pass, input is transformed into an embedding vector (the output). This vector is then
decoded, using a single feed-forward layer which converts the vector into a single number.

4.5.2 Multi-head attention

Multi-head attention increases the transformer’s capacity to attend to specific informa-
tion within a sequence. While traditional attention mechanisms focus on a single spot,
multi-head attention divides this focus into multiple spots, by using multiple heads. The
heads calculate the query, key, and value vectors assigned to each element of the input.
Using multiple parallel attention matrices allows the model to simultaneously extract
different relational features from the input data. The outputs are merged at the final
step. The number of heads can be very influential to the performance, as an insufficient
number hinders the capture of the different correlations, while a number too high can
increase the computational costs.

Multi-head attention is a combination of multiple Scaled Dot-Product attention heads.
Scaled dot product attention is defined by three different vectors, namely the query (Q)
(what we want to pay attention to), key (K) (what our current input is ‘offering’) and
value vector (V ) (the vector we want to average over).

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (20)

Using scaled dot product attention, the model is able to assign different weights to
different aspects of the input. However, there may often be different aspects (or: contexts)
a sequence element can attend to. Therefore, multi-head attention increases the possible
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number of ‘contexts’ by using more heads:

Multihead(Q,K, V ) = Concat(headi, ..., headn) (21)

Where headi = Attention(QWQ
i , KWK

i , V W V
i ) (22)

Matrices Wi are trainable weight matrices which assist in defining the function of each
vector.

4.5.3 Feed forward and normalization layers

After the Multi-Head Attention, a feed-forward network is added to the model, which is
applied to every position individually and identically. For this feed-forward layer, the
ReLU activation function is applied, identical to the proposed feed-forward network as
seen earlier. However, the calculations are slightly different.

σ := ReLU(x) = max(0, x) (23)

FNN(x) = σ(Whx + bh)W2 + b2 (24)

x = AddNorm(x + FNN(x)) (25)

The AddNorm layer is a way to normalize the distributions of the layers in-between,
which ensures a smoother gradient and it lets the model train a lot faster. The feed
forward layer increases complexity to the model and allows conversions on each sequence
element individually.

4.5.4 Decoder

At last, when the input is transformed into a vector in the latent space, this vector is fed
to the decoder. For our experiment, a single feed-forward layer is chosen as decoder. The
layer is trained to transform the vector into a single item - namely the PV prediction.
Output is calculated in the same way as in Equation 6.

5 Experimental setup

Different configurations will be tested for each model. The random forest architecture
does not have many possible hyperparameters for its architecture and its implementation
is quite straight forward. For the random forest model, performance is analyzed for
different history windows. Unlike the random forest, the deep learning methods require
many fine-tuning steps. Within this study, focused is on three options to adjust to
increase performance: the learning rate, the hidden dimension and the history window.
The learning rate, represented by ϵ in equations 8 and 9, determines how much the
model’s weights should adjust each time, based on the calculated gradients. In the
experiment, the learning rate will be tuned with values ranging from 0.001 to 0.00001,
dependent on hidden dimension size and network architecture.
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Next, different hidden dimensions are possible for every architecture. Hidden dimensions
are found in equations for the hidden states and hidden layers, see Equation 11, for
example. Depending on the problem as well as the model’s architecture, the performance
of the model per hidden dimension can vary to a great extent. All models are first
trained on the smaller TU Delft dataset, after which the best performing configurations
are further trained on the larger EU dataset, which takes longer training time. For this
experiment, models with hidden dimensions varying between 128 and 2048 are imple-
mented. Dependent on the learning curve and results different ranges of dimensions are
tested. Increasing the hidden dimension, however, has a negative effect on training time,
due to the time-expensive process of calculating loss gradients with backpropagation.

At last, this thesis studies the effect of the history window of features by training all
models on different history windows, varying from 2 to 10 hours. All model configurations
are trained until convergence or with no further expected increments in test accuracy.
Each training epoch, the models are evaluated by predicting the unseen holdout set of
test data. Finally, for every history window in prediction samples, performance is noted
for each configuration (which thus can differ in hidden dimension and learning rate).
The transformer is set to be fixed at a hidden dimension of 2048 and for this case only
the history window differs.

5.1 Accuracy metrics

To measure accuracy, the mean absolute error (MAE) and the root mean squared error
(RMSE) are calculated. Both are known to be robust estimators of prediction accuracy
for time series forecasting problems [DH06].

MAE =

∑n
i |yi − ŷi|

n
(26)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (27)

The lower both metrics, the better. The MAE calculates the average over all absolute
errors, indicating absolute accuracy. The larger the difference between the RMSE and
the MAE, the greater the variance of the individual errors is. The RMSE in its turn
is more sensitive to outliers. As the errors are squared before they are averaged, the
RMSE relatively assigns a heavier weight to greater errors. As we want all but many
large errors or outliers, RMSE is considered a useful metric.
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6 Results

Table 2 shows an overview of both MAE and RMSE scores for all of the proposed models
in Section 4. The table describes how different models perform on the same test data
using the two different datasets. The results tell us that the (baseline) random forest
model performs better than any other of the proposed deep learning methods. The MAE
and RMSE scores of the random forest model are, respectively, 36.0 and 75.2 on the
large dataset. Based on a system capacity of 2.000 Watt, this indicates a relative error of
2%. Most methods perform slightly better when using a larger dataset to train, except
for the feed-forward network. The feed-forward network performs nevertheless best out
of the deep learning methods, followed by the RNN, LSTM and at last the transformer.
Noticeable is that, for every deep learning model, training scores differ extensively from
test scores. For example, with the RNN, training MAE scores could lower down to 15
with test scores of 70.

Compared to the random forest, the FNN yields slightly less accurate error scores. The
MAE and RMSE scores of FNN’s best noted performance are 42.5 and 85.9, using a
history window of 8 (compared to 36.0 and 75.2 of the RF). On both datasets, the
random forest does a better overall job than the FNN, yet with a small history window
(≤ 2) performance is comparable. Noticeable is the decreased accuracy of the FNN
when using the larger dataset. Perhaps the larger dataset contains more variation in
unseen data, which could be a problem for the FNN. Furthermore, the RMSE scores are
significantly higher than the MAE scores, for both methods. This indicates that both
models lack in capacity of capturing outliers, corresponding to extreme weather events
and sudden changes in weather. At last, the training time of the RF can take up to a
few minutes whereas the FNN could require a few hours up to an entire day to converge
to optimal performance. The random forest is therefore in advantage in both terms of
accuracy and computational costs.

Following Table 2, we can see that the RNN performs comparable to the LSTM. The
smaller dataset is in advantage of the LSTM, whereas with the larger dataset, the RNN
is supreme. Best found MAE and RMSE error scores of the RNN are 70.2 and 77.3 and
for the LSTM 71.2 and 79.1. The recurrent models have trouble in minimizing errors
and capturing dependencies, with both methods performing poorly compared to the
baseline and the FFN. However, both recurrent models are remarkably better in terms
of handling outliers, since the MAE and RMSE scores are rather close to each other
and the RMSE is even lower than that of the FNN.

The transformer performs the least of all methods. This method is only trained on the
large dataset, which limits the possibility to perform a complete benchmark. However,
comparing with the large dataset alone, the transformer shows MAE scores of 79.1 and
RMSE scores of 92.8. Both MAE and RMSE scores are far behind compared to other
model’s and the model does not serve as an overall improvement to any of the methods.
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Optimal performance of models using different history windows

Model Dataset N (history) Best MAE Best RMSE
RF S 0 88.1 165.7
RF S 1 66.7 125.7
RF S 2 44.3 89.6
RF S 4 45.4 91.0
RF S 8 43.9 86.7
RF L 4 36.0 75.2
RF L 8 37.0 76.6

FNN S 2 44.3 91.6
FNN S 4 44.0 88.7
FNN S 6 42.8 88.8
FNN S 8 42.5 85.9
FNN S 10 45.7 90.2
FNN L 4 50.6 101.4

RNN S 2 93.1 102.1
RNN S 4 85.7 105.4
RNN S 6 86.3 118.6
RNN S 8 86.5 124.9
RNN S 10 87.3 132.4
RNN L 2 70.2 77.3

LSTM S 2 102.5 112.5
LSTM S 4 89.0 110.3
LSTM S 6 82.3 113.9
LSTM S 8 82.2 120.3
LSTM S 10 82.7 128.6
LSTM L 8 71.2 79.1

Transformer L 4 79.1 92.8
Transformer L 8 79.4 106.2

Table 2: The performance of the different models and configurations. For example, for
N = 2, the dataset includes the current hour and the previous two hours of features.
The performance of the random forest is averaged over 50 stochastic runs. Noticeable is
the almost unchanged effect on accuracy scores after increasing N up to more than 2.
Features from over two hours ago do not seem to affect the accuracy for the next-hour PV-
production. The scores itself are less accurate compared to comparable implementations
[JLS20]. Moreover, none of the deep learning methods performs better than the random
forest.
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Figure 7: The learning curves of different configurations of the models when predicting
on the holdout test set. From left to right, curves originate from the feed-forward neural
network, the recurrent neural network and the LSTM. Per hidden dimension, the learning
rate and history window is varied and thus each line describes the best performance
per hidden dimension of the network. Used learning rates range between 0.001 and
0.00001, dependent on model size and performance. Training is done for around 250
epochs and for time related convenience stopped when no further improvements are
found on the test set. The model’s hidden dimension can have limited impact on the
training curves. Whenever the hidden dimension is set too low, the model underfits and
fails in finding relationships between features, which is also why the smaller LSTMs
were stopped training before they converged. Optimal performance is often found using
a hidden dimension of 1024.

6.1 Model configurations

In Figure 7, learning curves are shown for different model architectures. The figure
shows the learning process for the FNN, RNN and LSTM using different hidden layer
sizes for each model. Best performances are often found with a hidden dimension of
1024. This experiment excludes the transformer, for which limited time was available to
benchmark the model for every configuration. The plots tell us that choosing different
hidden dimension sizes can have limited impact on the learning process. For every model,
the final performance often converges to a limit after which no further improvement
is found. This means that there is a limit on how beneficial increasing the hidden
dimension can be. The smaller hidden dimensions (256, 512) show slower learning curves
with worse final performance and indicate an underfitted model. As mentioned, the
hidden dimension of 1024 shows optimal performance with fast convergence. A hidden
dimension of 2048 does not increase performance any further and only increases the
required amount of training time. This can take up to 7 minutes per epoch instead of
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Figure 8: The learning curves of models on different history lengths. From left to right,
plots correspond to the feed forward network, the RNN and the LSTM. Per history
window, the learning rate and model architecture is varied and thus each line describes
the best performance per history window. Training is done for around 250 epochs and
for time related convenience stopped when no improvements are found on the test set.
The history length can have a minor influence on training curves, yet which length is
optimal differs per metric and per model. Especially the LSTM is sensitive to the history
window, whereas the FNN and RNN do not show significant improvements. This may
be explained by the focus on the long-term dependencies of the LSTM.

2.5 when using 1024. Another interesting result is that the required epochs to fit the
RNN and LSTM is much more than that of the FNN. In terms of computational costs,
the FNN is superior.

6.2 History lengths

Figure 8 shows the training process and performances of the deep learning methods
for different history windows. The learning curve of the transformer can be found in a
separate figure, see Figure 9. The figures and Table 2 tell us that the effect of increasing
history windows after a certain level is marginal, yet differs for every model. For the
random forest model, accuracy doesn’t increase much after incrementing the history
length up to two hours. However, the first two hours are essential. Performance increases
from 88.1 to 44.3 (MAE, RF). Neural networks and especially recurrent neural networks
show slightly different behavior. For the feed-forward neural network, a history length of
at least four is required to ensure optimal behaviour. For the RNN accuracy decreases
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Figure 9: The training process of the transformer when using different history windows.
The lower bounds corresponds to the MAE score and the upper bounds to the RMSE
scores. Using a history window of 4 delivers the optimal performance, with lowest MAE
and RMSE scores.

after inserting more history than the past four hours, yet for the LSTM model MAE
scores are slightly more optimal for higher history lengths. However, with the smaller
dataset, the LSTM shows optimal performance when using a history window of 2. The
LSTM shows significantly worse results when using small history windows. Moreover,
unlike other implementations, the RMSE score for LSTMs is not always in line with the
MAE score. RMSE scores appear optimal for a history length of 4, yet optimal MAE
scores are found using a history length of 8.

6.3 Performances on unseen data

In Figure 10, performance is visualized over different unseen test intervals. The intervals
originate from the small dataset and cover three different seasons: winter, spring and
summer. The figure shows us mainly two things. First, the predictions are quite in line
with the actual trend, for every model. The deep learning models are correctly trained
and succeed in the task of finding relevant features in the data. Next, we can see that
the RF follows the line very accurately, whereas the RNN finds it harder to match
with abrupt changes. Moreover, the RNN has difficulty in maximizing the predicted
power output, as in some intervals (almost every one except for the first), the predicted
output is 50-100 Watts less compared to the actual output. The FNN shows comparable
behavior to the RF, predicting on a correct scale and handling most abrupt changes
and peaks.
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Figure 10: Performance for some of the different models when predicting three different
unseen 100 hour-long intervals in the year of 2022. Output 0, 5 and 10 correspond to
which batch in the testset is taken (the starting date of the interval). On top: the random
forest (RF) model (nhistory = 8), second row: fully connected neural network nhistory = 4
and the last corresponds to the RNN, with a history window of 4. From left to right,
intervals start at 13 January, 2 May and 1 August. Significant deviations from over 100
Watt at some points are shown. However, the overall performance is acceptable, with
the predictions following the actual outputs neatly at most points.
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7 Discussion

We find the random forest performing best out of the studied models. This result is
not in line with most other studies, where the recurrent models in particular seem to
be superior compared to most other models, including the random forest [DMFM20].
Furthermore, the relatively small impact of the history window is remarkable, in a way
that it implies almost no long-term relations between variables. The combination of
these two findings suggest that the proposed challenge of predicting solar output is
a more plain and linear task than expected. In next two sections, I will give possible
explanations for the findings and provide suggestions for further studies.

7.1 Limitations in the neural networks

A logical explanation for the initial bad performance of the neural networks is the
limited available amounts of training data. The models initially only gather experience
from 0.8 years of data from only one location, which could be significantly less than
required. Indeed, the overfitting indicated by the the quite large differences in training
and test loss suggest that the models need more data. The larger dataset increases the
performance of most methods, however the error scores are still far behind compared to
the random forest.

The recurrent models may not be very suitable for this specific experiment, for dif-
ferent reasons. For one thing, the difficulty in training RNNs properly is a problem
acknowledged in other studies [Sut13]. The fine-tuning and fitting of the RNNs may have
been insufficient to gather good results, even though the effect of many of the possible
parameters has been studied. Second, the recurrent models especially suit for tasks with
non-linear dependencies and changing lengths of sequences (sentences, for example).
As mentioned, for this task, the dependency of the next-hour PV output on the given
features seems to be only on a very short-term and fixed basis, with divergences on
this function of only minor importance. For one thing, the RNN may have picked up
signals as important indicators, which in fact may be noise and completely irrelevant.
It is known that when temporal dependencies of data can be contained in finite and
small time intervals, the usage of RNNs as well as Transformers may be unnecessary.
In that case, methods using time-window approaches, such as the feed forward neural
network (or even the random forest), are known to be better in terms of both accuracy
and required computational resources [BMK+17].

Another reason for the limited performance of the neural networks may be the feature
selection step in the experiment setup. Features are based on a linear correlation
coefficient. A side effect is that this may throw away any feature with non-linear
dependencies. My original thought was that this step was required to decrease complexity
so the models would be easier to fit, especially the random forest. However, this is not
in line with the strengths of neural networks. The power of neural networks lie in the
fact that they can find (non-linear) relationships themselves and that they can identify
important features. Throwing away some of the variables may have been problematic.
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7.2 Future work

This study has investigated several factors for improving performance of different models,
namely the dataset size, the history window and the model’s hyperparameters. We find
a clear overview of which method performs better in this setting. This can give useful
insights into the applicability for any of the methods for this particular task. However,
open questions remain. For one thing, as the random forest is already quite successful,
we can wonder how high the need is for further studies into this issue. Following the
results, the random forest may be sufficient for this particular task. The relevance of
this study may therefore be less than expected. Moreover, we do not see many long-term
dependencies in our results, as only the past two hours show a significant improvement
in accuracy. Therefore, we can also doubt the setting of this task, on several bases. The
relevance of the features for the predictor variable may be less than expected. Some
excluded features could be states of the solar panels, or indeed the ones excluded in
the feature selection step. Whether these give significantly better results, I doubt. One
insight is that the PV-production is very much correlated to the solar irradiation. In fact,
the PV power output of the EU dataset is a direct function from the solar irradiation.
Predicting the solar irradiation, or at least, the weather, is something done for centuries.
The local weather and thus the solar irradiation is dependent on more than the features
currently included. Whereas in this study, we have regarded it as an stand-alone PV
prediction issue, regarding the task as a weather prediction issue may perhaps show
better results. Further studies could focus on actively using developed weather models to
convert predicted features into a PV power output prediction, especially for long-term
prediction. The results of this study suggest such an approach.

Furthermore, it remains an open question on how applicable the methods are in dif-
ferent (real-life) settings. A model with an error rate of 2% may be considered a very
accurate predictor. However, whether grid-operators think the same is an open question.
Additionally, the proposed models could be tested on unseen data from other origins,
with other capacities, to investigate the generalizability of these models.

8 Conclusion

In this thesis, several different deep learning methods are compared to a baseline random
forest model, on the task of predicting photovoltaic power output. The most successful
method appears to be the random forest, instead of the expected neural networks. The
model has a mean error of around 2% (MAE of 36.0 on a capacity of 2.000W) and
outperforms all other methods, even when using a larger dataset. Moreover, the history
window seems to be of almost no importance, as larger history windows only improve
performance slightly. Optimal performance is often achieved using a history window
of 8 hours, yet the positive effect of increasing this length is negligible after 4 hours.
We conclude that the random forest model can be a good fit for this specific problem,
due to the highest accuracy and the relatively low computational costs. Yet, we have
also seen that the setting of this thesis can be flawed, due to the excluded features.
Moreover, the high correlation of PV power output on solar irradiation and the limited

23



long-term dependencies we found suggest other approaches, for example, the use of
weather forecasting models could be more successful. Upcoming hours of solar irradiation
may be dependent on more than the features included in the data. The study into
predicting PV power output is an ongoing process and this thesis provides an extensive
benchmark of different methods on the same setting.
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