£Y3. Universiteit Opleiding Informatica
W) Leiden b 8
The Netherlands

Exception handling support for

the Cranelift code generator

Bjorn Roy Baron

Supervisors:
Kristian Rietveld

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl dd/mm /yyyy

www.liacs.leidenuniv.nl

Abstract

Compilers that wish to have the compiled code interoperate with native C++ code and
those that wish to securely sandbox untrusted code have conflicting requirements on their
implementation of exceptions. The former has to use the native unwinder for compatibility,
while the latter can not use it as the native unwinder is not secure against untrusted inputs.
This thesis designs and implements a method to handle exceptions in the Cranelift code
generator which is flexible enough to fit with the requirements of both compilers interoperating
with native code and compilers which want to sandbox their input. The design has been
validated with rustc_codegen_cranelift to interoperate with native C++ exceptions and could
possibly be used in the future with Wasmtime for implementing WebAssembly exceptions
while maintaining the robustness of Wasmtime’s sandbox. Outside of microbenchmarks the
performance penalty is no larger than 3%.

Contents

1 Introduction 1
2 Background 2
2.1 WebAssembly 2
2.2 Cranelift 3
2.3 The rustc_codegen_cranelift projecto oL 6
2.4 Exceptions L 6
2.5 Related work L 8
3 Design 9
3.1 Extensions of Cranelift IR 9
3.2 Cranelift changes 10
4 Implementation 11
4.1 Cranelift IR o 11
4.2 Useinvoke incgeclif. 11
4.3 Interpreter support 11
4.4 Implementation in the Cranelift backends 12
4.5 Write unwind tables 13
4.6 Results s, 13
5 Experiments 14
5.1 Raytracer e 14
5.2 CSSparser. e 15
5.3 Unwinder experiments 16
6 Conclusion 18
References 20

A Source code 21

1 Introduction

Many compilers and compiler frameworks make use of an intermediate representation (IR). The
role of an intermediate representation is to simplify the compiler by removing details present in the
input language that are irrelevant to later parts of the compiler.

Cranelift is a compiler framework specifically designed for correctness. It has a fairly straight
forward IR and makes use of features like ISLE and a regalloc checker to help with verifying the
correctness of its various components. Currently several language frontends for Cranelift exist
amongst which are a Rust and a WebAssembly frontend. Many programming languages require
support for exceptions. For example Rust has exceptions in the form of ”panics”, which can
unwind into C++. For WebAssembly a proposal exists to add exception handling support ().
However, as Cranelift currently does not support exceptions, it is not possible to generate target
code for Rust panics and not efficiently for WebAssembly exceptions.

In this thesis we investigate the design and implementation of exception handling support for
Cranelift. This is a non-trivial problem as there are conflicting requirements. Exception handling for
Rust requires compatibility with native C++ code, whereas WebAssembly requires safety against
malicious WebAssembly code. Native C++ exception handling is not an option for WebAssembly
because the unwinder used for native C++ exceptions is not designed to handle untrusted input.
It blindly follows the instructions it is given. Therefore, we propose a generic way of expressing
exceptions in Cranelift IR which allows target code to be generated in different ways adapting to
the requirements of varying contexts.

As a qualitative validation we implement the proposed design for Rust and the x86_64 and ARM
backends of Cranelift to demonstrate the viability of the design. In the quantitative experimental
evaluation we show that the runtime performance cost is no larger than 3% outside of microbench-
marks.

The implementation developed as part of this thesis is released as open source. For links to source
code repositories please refer to Appendix A.

The remainder of this thesis is organized as follows. In Chapter 2 we will be describing background
information about various technologies and projects mentioned in the rest of the thesis. Chapter 3
describes the design for implementing exceptions in Cranelift that was chosen as well as a rationale
why this particular design was chosen. In Chapter 4 the changes that were made to Cranelift and
rustc_codegen_cranelift are described. After that in Chapter 5 the implementation will be evaluated.
And finally in Chapter 6 we will give a conclusion.

© 00 1O Ol W N

2 Background

In this Chapter we will concisely describe the background knowledge required to understand the
remainder of this thesis. This in particular comprises the Cranelift compilation flow. We will
introduce Cranelift by example. Therefore we first give a brief introduction of WebAssembly. Next
we describe Cranelift and how WebAssembly is lowered to Cranelift IR. Finally we introduce the
Cranelift based codegen backend for Rust and discuss various ways of implementing exception
handling.

2.1 WebAssembly

WebAssembly () (Web) is a bytecode language designed for portable and secure execution
of untrusted code. It was originally designed for compiling native programs to run in the browser.
It is now getting used on cloud platforms like Cloudflare Workers () and Fastly ()
for execution of programs provided by untrusted clients of their CDN networks. Traditionally
isolation of different clients has been done using containers or virtual machines. This is a fair bit
heavier than using the sandboxing capabilities provided by WebAssembly (). WebAssembly
does not require a full OS environment, but executes in a sandboxed process VM. As such using
WebAssembly reduces costs for CDN networks.

(module

(func $square (param i32) (result i32)
local.get 0
local.get 0
i32 . mul)

(func $call_square (result i32)
132 .const 2
call $square)

(export "do_call_square” (func $call_square)))

Listing 1: Example WebAssembly module

A small example of a WebAssembly module is shown in Listing 1. This module defines two functions.
square accepts a signed integer, multiplies with it self and returns the result. It does this by doing
local.get O twice to push the first argument onto the stack twice and then i32.mul to multiply
the top two values on the stack. The function implicitly returns the single remaining value on the
stack. call_square calls square with 2 as argument and returns the result. The final line exports
call_square from the module as do_call_square.

Several WebAssembly implementations exist like wasm3, WebAssembly Micro Runtime and Wasmer.
In this thesis we only consider Wasmtime because it is co-developed with Cranelift. Wasmtime
() is a WebAssembly runtime with support for both ahead-of-time and just-in-time compila-
tion of WebAssembly modules. It has a high focus on security as it is used and developed by Fastly
for running untrusted code on their CDN network.

0 3 O U i~ W N

D) = = R = e s e e
O O© 00 ~JO Uik W~ OO

2.2 Cranelift

The Cranelift code generator is used as backend of Wasmtime and, as described in Section 2.3,
rustc_codegen_cranelift. Cranelift is also focused on security to enable the security goals of Wasmtime
(). To this end the combination of Wasmtime and Cranelift undergoes thorough fuzzing of
every stable feature (basically feeding random wasm binaries into Wasmtime with the aim to either
crash it or find a difference in results with the official interpreter of the WebAssembly specification)
as well as working together with academia to integrate state of the art techniques for verification of
security. For example it has a register allocator checker which checks that the output of the register
allocator is valid, in addition a research group has been formally verifying the lowering rules from
Cranelift’s intermediate representation (CLIF IR) to the VCode IR which has an almost one-to-one
correspondence with real CPU instructions (). Most VCode instructions direcly correspond
to a single real CPU instruction, but some VCode instructions expand to a sequence of real CPU
instructions. The latter case is mostly used for instruction sequences where the register allocator is
not allowed to insert any moves, spills or other instructions in between as it could do if multiple
VCode instructions were used. A high level overview of the Cranelift compilation pipeline is shown
in Figure 1.

WebAssembly

Cranelift IR |—>| VCode |—>| Machine Code |

Figure 1: Cranelift compilation pipeline

function u0:0(i32, i64 vmctx) — 132 fast {
block0O(v0: 132, vl: i64):

v3d = imul v0, vO

v2 —> v3

jump blockl

block1 :
return v2
}

; Exported as ”"do_call_square”

function u0:1(i164 vmectx) —> 132 fast {
sig0 = (i32, 164 vmctx) —> i32 fast
fn0 = u0:0 sig0

block0(v0: 164):
v2 = iconst.i32 2
v3 = call fn0(v2, v0) ; v2 = 2
vl —> v3
jump blockl

21
22
23
24

block1:
return vl
}

Listing 2: Cranelift IR for the example WebAssembly module

Cranelift IR is a control flow graph in SSA form (). As an example consider Listing 2, which
is the Cranelift IR produced for code shown in Listing 1. function u0:0 here is square (Cranelift
IR does not contain human readable names). The client has to map any names into numerical
identifiers. The function consists of the basic blocks. The initial block that is being executed is
block0 and it gets the function arguments as block arguments. Cranelift IR uses block arguments
in the place of phi nodes like commonly used with SSA form IR’s including LLVM IR. There is no
strong reason to choose block arguments. It was picked very early on in the lifetime of Cranelift
and there has not been any good reason to change it. In the body of block0, v3 = imul vO, vO
multiplies the argument with itself and names the result v3. v2 -> v3 aliases v2 to v3 such that any
reference to v2 gets turned into a reference to v3. jump blockl then jumps to blockl. If blockl
had a block argument, it would have been specified when jumping like jump block1(v0). In blockl
return v2 then returns v2. In function u0:1 (call_square) the v3 = call fn0(v2, vO0) calls
function u0:0.

ISLE () ("instruction selection/lowering expressions”) is a pattern matching domain specific
language used by Cranelift to define the lowering from Cranelift IR to the backend specific VCode.
It was introduced when it became clear that hand writing pattern matching is error prone. Using
ISLE allows running checks for various classes of bugs that were common before the introduction of
ISLE. It also enables automatically generating optimal pattern matching trees. A simplified excerpt
of the lowering rules for the iadd instruction is given in Listing 3. As can be seen in the example,
an ISLE rule consists of a priority, a pattern matcher for one or more Cranelift instructions and
VCode that should be produced in case of a match.

(rule —5
(lower (has_type (ty-32_or_64 ty) (iadd x y)))
(x64_lea ty (to_amode_add (mem_flags trusted) x y (zero_offset)))

(rule —4
(lower (has_type (fits_in_64 ty) (iadd x (sinkable_load y))))
(x64_add ty x y)

Listing 3: ISLE rule for iadd

Semantically speaking for each instruction that needs to be lowered, each rule is processed from
the highest priority (-5 and -4 in this example) and the first rule which matches the Cranelift
instruction(s) and satisfies all additional conditions will be picked and the resulting VCode instruc-
tions will be emitted and any applicable helper functions will be called as necessary to emit further
VCode instructions. An example where a helper function is used rather than directly emitting the
VCode instructions is in the call instruction lowering, shown in Listing 4. Here gen_call is a
helper function which performs all necessary steps to handle the calling convention like putting

4

arguments in the right registers and stack slots.

(rule
(lower (call (func_ref_data sig_ref extname dist) inputs))
(gen_call sig_ref extname dist inputs)

Listing 4: ISLE rule for call

The actual ISLE implementation is smarter than the above description and for example produces a
pattern matching tree with equivalent behavior which only looks at potentially applicable rules.
As the last step, each VCode instruction is translated to a sequence of bytes representing generally
one, but sometimes more, machine code instructions.

2.3 The rustc_codegen cranelift project

Rustc_codegen _cranelift (cg_clif) () is a project by the author of this thesis to use the Cranelift
code generator as backend for the Rust compiler in the place of the default LLVM based backend.
While Wasmtime’s reason for using Cranelift is security, cg_clif’s reason for using Cranelift is that it
is faster at producing unoptimized code than LLVM. The Rust compiler (rustc) is often critizized for
substandard performance. In the 2023 rust annual survey 45% of the respondents considers compile
time performance high priority (). Because of considerable work has been done on optimizing
rustc and the introduction of several features like check-only builds and incremental compilation
that reduce the amount of work that needs to be done by the compiler during development.
Furthermore, work is currently on the way to parallelize the frontend of rustc in addition to the
already parallelized backend. Still there is a lot of room for further improvement. Cg_clif was created
to help with improving performance of rustc during development by accelerating the generation
of unoptimized machinecode. It is not meant to be used in production as Cranelift lacks many
optimizations that LLVM does support for optimized builds. Cg_clif has been adopted by the Rust
project and has recently started shipping as optional part of nightly releases (development builds
released every night) ().

2.4 Exceptions

Exceptions are a programming construct for handling errors. It allows a function to throw an
exception and then from the point of the throw the exception bubbles up the call stack until a
function catches the exception, at which point execution continues from the point the exception
was caught. Each function on the call stack that the exception bubbles past can run arbitrary code
to for example deallocate resources or restore invariants. While not every programming language
supports exceptions (C does not), many mainstream languages do like C++, C#, Java and Python.
To allow languages that support exceptions to be compiled to WebAssembly, there is a pre-existing
proposal to add exception handling support to WebAssembly (). While it is possible to
support exceptions without this proposal, doing so comes at the cost of having to check if an
exception happened on every function call, which adds a non-trivial amount of overhead. To be
able to implement this proposal in Wasmtime, support for exceptions in Cranelift is necessary.

Rust also has exceptions in the form of panics. Unlike most languages with exception support, in
Rust panics are expected to happen very rarely and almost always be the result of a bug somewhere,
instead for regular error handling the Result type is expected to be used. Because exceptions are

rare in Rust, the lack of exception support in Cranelift has not been much of an issue for the cg_clif
project. Still some programs like rust-analyzer regularly emit panics as a means of unwinding the
stack. In addition Rust RFC 2945 () added support for interfacing with exceptions thrown by
C++. As such cg_clif would benefit from exception support in Cranelift too.

For C++ exceptions on native platforms there are a couple of different implementations. In most
cases it consists of two parts. Firstly, a language independent part which defines how to unwind
from the current call frame to the caller’s call frame. This includes which registers it needs to load
from which stack locations or move from other registers, and how the cleanup/catch code is invoked.
Secondly, a language dependent part which determines how to determine if a specific exception
should be caught by the current function and where the code to cleanup or catch the exception is
located. LLVM only supports the C++4 version of this language dependent part and as such rustc
uses it too. GCC supports the language dependent part for a couple of languages including C++,
Go and Ada. The language independent part is implemented by the so called unwinder which is
generally shared by all libraries in the program, while the language dependent part is implemented
in a so called personality function provided by the language implementation.

For the language independent part there are three common basic variants:

e Landingpad based: When an exception occurs the unwinder will set everything up such that
it looks like the function that threw an exception returned normally with the exception data
passed as return value, except that execution continues at a landingpad within the caller
rather than immediately after the call instruction. Effectively a call can return to multiple
locations, either the regular return location, or a dedicated exception handling location. The
landingpad can continue execution like normal, in which case the exception is caught, or it
can after cleanup call the unwinder again to unwind another call frame. Itanium unwinding
which used on most UNIX systems including Linux follows this pattern. It is called this
because it was originally introduced by Intel for use on the Itanium architecture. While the
Itanium architecture failed to meet its promises, use of Itanium unwinding has spread to
most CPU architectures due to its performance advantage over SjLj based unwinding that
was previously used.

e Funclet based: When an exception occurs the unwinder will call a so-called funclet like a
regular call, except that it passes the stack pointer of the call frame for which the funclet
does cleanup as argument. Catching the exception and resuming regular execution requires
explicit interaction with the unwinder. While unwinding, the original call stack is preserved
all the way until the point the exception is caught. SEH unwinding which is used on Windows
follows this pattern.

e SjLj based: Setjmp/longjmp unwinding is what used to be common on UNIX until it was
replaced with landingpad-based unwinding due to the significantly better performance for
regular execution without exceptions getting thrown. This method is no longer in common
use.

With the exception of SjLj based unwinding all aforementioned variants of unwinding store the
information necessary for unwinding in side tables like .eh_frame and .gcc_except_table for
[tanium unwinding. In most cases for space efficiency it contains byte code which needs to be
evaluated to find the locations of all stored registers, but () evaluated compiling these
instructions down to machine instructions for faster execution.

2.5 Related work

LLVM () is a compiler framework which is in some sense similar to Cranelift but favors
runtime performance over compilation speed and does not have the same focus on correctness as
Cranelift. It has support for exception handling. The Cranelift IR extension proposed in this paper
is inspired by the way LLVM IR represents exceptions. Unlike the mechanism proposed in this
paper, LLVM is only able to generate a couple of different kinds of exception handling tables.

In () the ISLE rules of Cranelift are verified. It is an example of the focus on security
development of Cranelift has.
In () the landingpad based unwinding mechanism that C++ uses on Itanium is introduced.

This work has since been adapted by most UNIX systems to work on all CPU architectures they
support. The mechanism we propose can be used to implement the unwinding mechanism of
(Din00).

() shows how the method by which exceptions are implemented in C++ can break the control-
flow integrity (CFI) exploit mitigation. An exception handling implementation for a WebAssembly
runtime should ideally be designed to mitigate the attacks described by this paper.

Rustc represents the control flow for panics in it’s MIR IR (a control flow graph based IR which is
the input to all codegen backends of rustc ()) in two separate ways: For running destructors
when unwinding, each call basic block terminator has two edges/targets. One for regular returns
and one for unwinding (the cleanup edge). The one for unwinding points to a basic block marked as
cleanup which calls all necessary destructors and finally a resume terminator continues unwinding.
The exception value itself is implicitly forwarded by the codegen backend from the cleanup edge
to the instruction where unwinding is resumed. For catching exceptions a catch_unwind compiler
intrinsic is used which calls a function and if an exception unwinds through catch_unwind a second
function is called with the exception value as argument. The return value of catch_unwind indicates
if an exception was caught or not.

3 Design

Both Wasmtime and cg_clif constrain the chosen design for exception handling in Cranelift. In the
case of Wasmtime, the constraint is security. In the case of cg_clif the constraint is the ability to use
the same unwinding mechanism as C++ to be able to handle C++ exceptions as well as to throw
rust panics across C++ code. The use case of cg_clif would be satisfied by only supporting the same
unwinding mechanism as C++. This is what both the LLVM and GCC backend of rustc currently
do. This would however make it entirely unusable for Wasmtime. The unwinding mechanism used
by C++ is very flexible to support other languages, but also comes with a lot of complexity due
to this like support for distinguishing exception types, for separate handling of cleanup, catching
exceptions and aborting when an exception happens. In addition it is not designed for untrusted
input unlike Wasmtime. This means that there is a risk that using it for Wasmtime would enable
a sandbox escape in case a bug in the unwinder or unwind table generation of Cranelift allows
overwriting memory outside of the sandbox. In the past Wasmtime used the system unwinder
for generating backtraces, but moved away from this to using frame pointer based unwinding for
security.

To satisfy both constraints the design we chose does not dictate a specific format for the unwinder
metadata, instead opting to support any landingpad style unwinding mechanism and leaving it
up to the user of Cranelift to produce the unwinding metadata from the side tables produced
by Cranelift during compilation. For time constraint reasons we did choose to reuse the existing
code of Cranelift which emits tables to unwind the current call frame. This code can only emit
this information in the .eh_frame and Windows SEH formats. Adding support to allow the user
to emit this information in arbitrary formats is possible without significant changes to Cranelift.
In addition we chose not to support the funclet style unwinding mechanism used by Windows
SEH. Supporting this requires significant changes to the way Cranelift IR as well as the backend is
structured as there is currently no way for multiple functions to share a stack frame, nor for there
to be a difference between the stack frame of the funclet itself and the stack frame of the associated
regular function. For Wasmtime supporting this is also not required as it would implement its own
unwinder and thus would be able to choose a landingpad style unwinder on all platforms.
Summarizing, this design aims to add a generic way of expressing landing-pad style unwinding in
Cranelift IR, capable of handling both the needs of WebAssembly and Rust. From the output of
Cranelift after compilation, the user can generate the desired unwinding code and metadata, such
as what is necessary for C++ exceptions in the case of Rust.

3.1 Extensions of Cranelift IR

New invoke and invoke_indirect instructions will be added to CLIF IR. These act like call and
call_indirect except that they are terminators and have an additional BlockCall list argument
with all possible landingpads that can be reached when unwinding from the called function. More
than one landingpad may be given if the personality function wants to choose between them
depending on for example the exception type. The call and call_indirect instructions can not
be reused as these are not basic block terminators. As such they can not have a successor basic
block that is jumped to when an exception is thrown by the callee. Execution will always continue
at the instruction directly after the call. By having the new instructions be terminators, they can
have multiple successors. One for regular return and any number of successors for exceptions.

O 1O UL W N

[EG g —Y
N = OO

13

—_
N

Each landingpad has zero or more additional parameters compared to what is listed in the
BlockCalls. Each of these extra parameters can be set by the personality function before jumping
to the landingpad by writing to one of the registers dedicated by the Itanium unwinding ABI for
the target platform for landingpad arguments.

3.2 Cranelift changes

Cranelift will be changed to ensure that each landingpad follows ABI conventions like which registers
are preserved at entry. In addition it will generate the correct metadata for unwinding the stack in
a way that restores all registers that need to be restored.

After compilation Cranelift will return in the call_sites field of MachBufferFinalized (the type
containing all output produced by Cranelift after compilation) a list of the code offsets immediately
after the call instruction of each invoke combined with a list of code offsets to the start of each
landingpad for the respective invoke instruction. This list can be used to construct an LSDA (the
data read by the personality function, for example .gcc_except_table for C++) to be read by
the personality function in the case of cg_clif and whatever other simpler format is chosen in the
case of Wasmtime.

As an example the code in Listing 5 will call £n1 at line 6 and if fnl unwinds, execution will jump
to the landingpad at block2, which immediately calls _Unwind_Resume to continue unwinding.

function %f(i32, f32) —> 132 system.v {
fn0 = %func0(i32) —> i32 system.v
fnl = %funcl (i64, i64) system_v ; _Unwind_Resume

block0O(v0: i32, vl: f32):
invoke fn0(v0), blockl, [block2(vl)]

blockl (v2: i132):
return v2

block2(v3: {32, v4: 164, vb5: 164):
call fnl(v4, v5)
trap unreachable

Listing 5: Cranelift IR example for the invoke instruction

10

4 Implementation

In this chapter we describe the necessary changes to Cranelift and cg_clif for adding unwinding
support.

4.1 Cranelift IR

The first step was extending the Cranelift IR to add the invoke and invoke_indirect instructions.
This was done in cranelift/codegen/meta/src/shared/instructions.rs and required adding
support for new instruction formats to fit these instructions in to the IR and the parser and printer
for Cranelift IR. Once this was done the IR verifier needed to be adopted to account for the extra
arguments passed by the invoke and invoke_indirect instructions to the target blocks that were
not mentioned in the BlockCalls. And finally a couple of helper functions and optimization passes
needed to be adopted to account for the new instructions.

4.2 Use invoke in cg_clif

The next step was to extended cg_clif to emit invoke instructions and cleanup blocks for panics
where the MIR IR says these need to be emitted. To keep the initial implementation simpler, the
exception data passed to the landingpad is immediately stored on the stack rather than kept in an
SSA value. Changing this would likely yield a very small performance improvement for panics but
is otherwise harmless. In addition Rust dictates that exceptions unwinding into Rust code which
has unwinding support disabled should abort the process. This has not yet been implemented and
will need to be implemented before upstreaming all changes made for this thesis.

4.3 Interpreter support

After that the Cranelift IR interpreter was extended to support exceptions. This allowed testing
of all parts before machinecode generation without having to worry about miscompilations in
the backend. This required fairly intrusive changes as the interpreter did not support some of
the functionality required by cg_clif such as libcalls (Function calls with hardcoded knowledge in
Cranelift. Examples include memcpy and ceilf.) and thread local storage. It also required adding
support for serializing entire Cranelift IR modules and merging them together to the cranelift-
module interface for the interpreter to be able to get Cranelift IR for the entire program even
when multiple parts are compiled separately. In the end it did uncover an optimization pass which
needed to be adapted for the new instructions as well as a couple of mistakes in the IR produced
by cg_clif for exceptions. In particular the unreachable_code optimization pass needed to be
adapted to consider the tables used in invoke and invoke_indirect instructions such that it
doesn’t remove them due to thinking they are unused. In addition the remove_constant_phis
optimization pass needed to stop removing the return values and exception values passed to the
invoke and invoke_indirect target blocks.

11

4.4 Implementation in the Cranelift backends

As the next step support for the new instructions in the Cranelift backends for the x86_64 and
arm64 architectures was added as well as support for returning the necessary information used for
emitting the unwind tables to the user of Cranelift.

Most of the backend changes necessary are in the ABI handling code. Cranelift reuses a fair amount
of code for the ABI handling between the various backends leaving only the actually architecture
specific details in the individual backends. The most important shared types are:

e SigData which contains the calling convention used as well as the computed locations of all
arguments and return values at the point of the call instruction. And after the changes done
for implementing exception support also the locations of the landingpad arguments.

e Caller which contains all state used for lowering a call(_indirect) or invoke(_indirect)
CLIF instruction to VCode that moves all arguments to the right locations and loads the
return values. It also contains methods to emit the right machine instructions.

e Callee which contains all state used for implementing the calling convention on the callee’s
side reading all arguments from the right locations and storing the return values correctly. It
also contains methods to emit the right machine instructions.

e ABIMachineSpec is an interface implemented by each backend which contains the code for
creating the SigData such as assigning arguments to the right registers and call stack locations
as well as functions to create the machine instructions which Caller and Callee emit.

The first step was modifying SigData: :from_func_sig to compute the locations of the landingpad
arguments. To make the prototype easier to implement, this code currently has hard coded that
two 64-bit integer arguments are used. This works as the ABI on x86_64 and arm64 only allows
integer arguments and does not allow more than two arguments. It also does not come at a runtime
performance cost as the registers which are passed are caller-saved. Caller: :emit_call was then
modified to compute the set of clobbered registers by directly subtracting the list of registers
"defined” by the call instruction from the list of caller-saved registers as opposed to computing it at a
higher level by subtracting the list of returned values defined in SigData. The latter would miss the
landingpad arguments as definitions and Cranelift requires that every register is marked either as
definition or as clobber, but not both. Next a Caller: :gen_landingpad_argval method was added
for defining the return values that will be used as landingpad arguments by the individual backends.
Then a new gen_invoke_common function was added, which is like the existing gen_call_common
function used for lowering CLIF IR calls to VCode, except that it also handles adding the landingpad
arguments as return values for the call instruction using gen_landingpad_argval and forwarding
those as arguments to the landingpad blocks as block arguments.

The next step was wiring up support in the arm64 and x86_64 backends. Only the steps taken for
the arm64 backend are listed so as not to take up too much space. The same steps apply to the
x86_64 backend with a couple of minor differences. For the arm64 backend wiring up exception
support required adding some code to AArch64MachineDeps: : compute_arg_locs (implementation
of ABIMachineSpec) to compute the register locations of the landingpad arguments. Next up was
adding ISLE lowering rules for the invoke and invoke_indirect instructions. This involved calling

12

the gen_invoke_common function that was added earlier to emit the actual call followed by emitting
a jump instruction to the regular return destination to terminate the block.

The final step was modifying MachCallSite to store the locations of all landingpads for consumption
by the user of Cranelift. This also required adding a new MachCallSiteFinalized struct which is
like MachCallSite except that it stores the final CodeOffsets rather than a symbolic MachLabels
that do not have a fixed location yet. With this the changes to the arm64 backend were in place.

4.5 Write unwind tables

The final step was adding support for writing the required unwind tables to cg_clif. cg_clif already
has support for writing the .eh_frame section with the information necessary to produce backtraces.
For this the gimli DWARF debuginfo reader/writer library is used (). The only necessary
changes here were adding a reference to the personality function and LSDA to .eh_frame and
generating the LSDA. For the personality function, the existing rust_eh_personality made for
the LLVM backend was used. As a consequence the LSDA is required to be in the same format
as emitted by LLVM. This is stored in the .gcc_except_table section. (LLVM uses the same
format as GCC for compatibility with GCC’s implementation of the C++ standard library.) After
validating with a simple personality function that exceptions can be successfully triggered, a writer
for the .gcc_except_table section was written based on the description of the format found in
the LLVM source code. Care was taken to produce an identical section as LLVM to reduce the risk
of introducing bugs. Finally the writer was wired up to cg_clif.

4.6 Results

With all this in place cleaning up works, catching exceptions works and the majority of the panic
tests in the rustc test suite pass. The only failing tests are couple of tests for aborting when C++
exceptions pass through places that they are not allowed to pass through. The fix for this is a
couple of relatively simple changes to cg_clif. As this is not required for the evaluation of the final
product, implementing the fixes is left for once the changes are submitted to be upstreamed to
Cranelift and cg_clif.

13

5 Experiments

In this chapter we will quantify the performance of the implemented exception handling support
on Rust code on the x86_64 and arm64 architectures. To this end a number of experiments have
been performed on two different platforms:

e An AWS EC3 virtual machine. This was done on a c6g.8xlarge instance, which uses an AWS
Graviton2 arm64 processor with 32 vCPU and 64GB RAM.

e An x86_64 laptop with an Intel Core i3-7130U CPU running at 2.7GHz.

The virtual machine is shared with multiple people, some of whom have been using the virtual
machine concurrently with the executions of the benchmarks, and in general when running in the
cloud, other VM’s on the same machine can cause performance to change over time. All performance
benchmarks are relatively quick, so most likely would not have been affected too much by this.
The raytracer and CSS parser benchmarks have been performed using hyperfine (https://github.
com/sharkdp/hyperfine). This benchmarking tool invokes a command a specified amount of times
(in this case 10 times) and measures wall time of each execution, reporting the average.
Measurements for LLVM without exception support are omitted as at the time of benchmarking
the cargo build system had a bug that made it impossible to recompile the Rust standard library
with LLVM with exception support disabled on targets that support exceptions.

5.1 Raytracer

The first benchmark is comparing the time to render an image using a simple raytracer implemen-
tation in Rust compiled with rustc_codegen _cranelift both with and without exception support
enabled. This will give an indication of the overhead of introduced by exception support if any.
The results are shown in Figure 2 and 3. The difference is within the margin of error on x86_64 and
arm64 both with and without optimizations enabled.

Furthermore the binary size overhead has been compared. This shows between 4.7% and 6.0%
overhead of supporting exceptions over not supporting them as can be seen in Table 1.

’ \ No exceptions \ Exceptions ‘
arm64 unopt 16.4 MiB 17.3 MiB (+5.1%
arm64 opt 13.0 MiB 13.8 MiB (4+6.0%
x86_64 unopt 17.3 MiB 18.1 MiB (+4.7%
x86_64 opt 14.0 MiB 14.8 MiB (+5.5%

~— ||~ — | —

Table 1: Size of the raytracer executable

14

https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine

I
Unopt Opt LLVM unopt

l0No exceptions I Exceptions

Figure 2: Raytracer execution time on x86_64

I
Unopt Opt LLVM unopt

l0No exceptions |0 Exceptions

Figure 3: Raytracer execution time on arm64

5.2 CSS parser

Next up a benchmark adapted from the rustc-perf benchmarking tool used by the Rust project
has been tested. This benchmark makes use of the 1lightningcss CSS parser to parse a stylesheet.
The stylesheet originated from facebook.com. The results are shown in Figure 4 and Figure 5.
Again the difference in execution time between an executable compiled with and one compiled
without exception support has been measured. Unlike with the raytracer this did show a difference
in execution time. On the arm64 machine with optimizations disabled this showed a 2.7% slowdown.
With optimizations enabled the difference was within the margin of error. On the x86_64 machine

15

however with optimizations disabled the difference was within the margin of error while with
optimizations enabled a 3.1% slowdown was observed.

Time (s)

Unopt Opt LLVM unopt

l0No exceptions |0 Exceptions

Figure 4: CSS parser execution time on x86_64

I
Unopt Opt LLVM unopt

l0No exceptions |0 Exceptions

Figure 5: CSS parser execution time on arm64

5.3 Unwinder experiments

To compare the performance of exceptions between different implementations of an unwinding
runtime, the demo example of Cranelift has been adapted to support throwing and catching
exceptions. Unlike with rustc_codegen_cranelift this is not tied to a single unwinding runtime and
personality function. Four different versions were implemented:

16

The original version is used as baseline.

The system unwinder on Linux with the same C++ personality function as rustc_codegen_cranelift.

The system unwinder on Linux with a specialized personality function (henceforth referred to
as the fast personality) only usable for this example program and not for C++.

A custom unwinder which does the minimum necessary to get working on the example
program and will crash when needing to unwind multiple call frames. This unwinder is only
to give an indication of the lower bound on the overhead unwinding can give.

The results are shown in Figure 6. Any unwinding mechanism at all results in a 20% performance
hit on making a lot of calls in a loop. The fast personality function gives about a 10% performance
improvement when unwinding past a lot of frames, or less when only unwinding a single frame. The
custom unwinder gives about a 30x improvement over the system unwinder for unwinding a single
frame. A decent amount of the speedup is likely because registers are not correctly restored while
unwinding. Exactly measuring the possible performance improvement for a correctly implemented
custom unwinder is beyond the scope of this thesis.

500 :
400 :
E300] l
<}
£ -
= 200 :
100 |- :
I I — I
100m calls 100k throws 1k throws
single frame 1000 frames

1IN0 exceptionslIGCC personality [Dfast personality Il custom unwinder

Figure 6: Unwinder experiments execution time on arm64

17

6 Conclusion

In this thesis we have designed and implemented a mechanism to implement exception support in
the Cranelift code generator in a generic way suitable for both interoperability with native C++
exceptions and for use in WebAssembly runtimes. We have shown that it is a viable implementation
of unwinding in rustc_codegen_cranelift with only a minor performance cost of up to 3% outside of
microbenchmarks.

All code implemented as part of this thesis are released as open source and will be upstreamed
to Cranelift and the main branch of rustc_codegen_cranelift. As future work, exception handling
support will be implemented in Wasmtime.

18

References

[all19] ALL, Kyle J S.: 29/5-c-unwind-abi - The Rust RFC Book. https://rust-lang.github.
io/rfcs/2945-c-unwind-abi.html. Version:2019. — Accessed: 2023-12-21

[all23] ALL, Bjorn Roy B.: Cranelift codegen backend for rust. https://github.com/rust-
lang/rustc_codegen_cranelift. Version:2023. — Accessed: 2023-12-21

[Bar23] BARON, Bjorn R.: Progress report on rustc_codegen_cranelift (Oct 2023). https:
//bjorn3.github.i0/2023/10/31/progress-report-oct-2023.html. Version: 2023.
— Accessed: 2023-12-21

[BKZN19] BASTIAN, Théophile ; KELL, Stephen ; ZAPPA NARDELLI, Francesco: Reliable and
Fast DWARF-Based Stack Unwinding. In: Proc. ACM Program. Lang. 3 (2019), oct, Nr.
OOPSLA. http://dx.doi.org/10.1145/3360572. — DOI 10.1145/3360572

[DFP*23] DuTa, Victor ; FREYER, Fabian ; PAGANI, Fabio ; MUENCH, Marius ; GIUFFRIDA,
Cristiano: Let Me Unwind That For You: Exceptions to Backward-Edge Protection. In:
NDSS, 2023

[Din00] DINECHIN, Christophe de: C++ Exception Handling for {IA64}. In: First Workshop on
Industrial Experiences with Systems Software (WIESS 2000), 2000

[Fal23] FALLIN, Chris: Cranelift’s Instruction Selector DSL, ISLE: Term-Rewriting Made
Practical. https://cfallin.org/blog/2023/01/20/cranelift-isle/. Version: 2023.
— Accessed: 2024-03-28

[Fit22] F1TZGERALD, Nick: Security and Correctness in Wasmtime. https:

//bytecodealliance.org/articles/security-and-correctness-in-wasmtime.
Version: 2022. — Accessed: 2023-12-21

[GFD22] GACKSTATTER, Philipp ; FRANGOUDIS, Pantelis A. ; DUSTDAR, Schahram: Pushing
Serverless to the Edge with WebAssembly Runtimes. In: 2022 22nd IEEE International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), 2022, S. 140-149

[Hic19] HickEY, Pat: Lucet Takes WebAssembly Beyond the Browser — Fastly.
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-
compiler-runtime. Version:2019. — Accessed: 2023-12-21

[HRS™17] HAAs, Andreas ; ROSSBERG, Andreas ; SCHUFF, Derek L. ; TITZER, Ben L. ; HOLMAN,
Michael ; GOHMAN, Dan ; WAGNER, Luke ; ZAKAI, Alon ; BASTIEN, JF: Bringing
the Web up to Speed with WebAssembly. In: Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. New York, NY, USA
: Association for Computing Machinery, 2017 (PLDI 2017). — ISBN 9781450349888,
185-200

[LA04] LATTNER, Chris ; ADVE, Vikram: LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In: Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO’04). Palo Alto, California, Mar 2004

19

https://rust-lang.github.io/rfcs/2945-c-unwind-abi.html
https://rust-lang.github.io/rfcs/2945-c-unwind-abi.html
https://github.com/rust-lang/rustc_codegen_cranelift
https://github.com/rust-lang/rustc_codegen_cranelift
https://bjorn3.github.io/2023/10/31/progress-report-oct-2023.html
https://bjorn3.github.io/2023/10/31/progress-report-oct-2023.html
http://dx.doi.org/10.1145/3360572
https://cfallin.org/blog/2023/01/20/cranelift-isle/
https://bytecodealliance.org/articles/security-and-correctness-in-wasmtime
https://bytecodealliance.org/articles/security-and-correctness-in-wasmtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime

[Mat16]

[PC24]

[RWZSS)]

[Tea24]

[Var1§]

[VPF+23]

[was23a)]

[Was23b]

[Web]

MaATsAKkis, Niko: Introducing MIR. https://blog.rust-lang.org/2016/04/19/MIR.
html. Version: 2016. — Accessed: 2024-03-28

PuiLip CrAIG, Nick Fitzgerald et a.: A library for reading and writing the DWARF
debugging format. https://github.com/gimli-rs/gimli/. Version:2024. — Accessed:
2024-07-02

RoseEN, B. K. ; WEGMAN, M. N. ; ZADECK, F. K.: Global value numbers and redundant
computations. In: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages - POPL 88 (1988). http://dx.doi.org/10.
1145/73560.73562. — DOI 10.1145/73560.73562

TeEAM, The Rust S.: 2023 Annual Rust Survey Results. https://blog.rust-lang.org/
2024/02/19/2023-Rust-Annual-Survey-2023-results.html. Version:2024. — Ac-
cessed: 2024-03-28

VARDA, Kenton: WebAssembly on Cloudflare Workers. https://blog.cloudflare.
com/webassembly-on-cloudflare-workers/. Version: 2018. — Accessed: 2023-12-21

VANHATTUM, Alexa ; PARDESHI, Monica ; FALLIN, Chris ; SAMPSON, Adrian ; BROWN,
Fraser: Lightweight, Modular Verification for WebAssembly-to-Native Instruction Selec-
tion, 2023. — Accessed: 2023-12-21

FException Handling Proposal for WebAssembly. https://github.com/WebAssembly/
exception-handling/. Version:2023. — Accessed: 2023-12-21

Wasmtime: A fast and secure runtime for WebAssembly. https://wasmtime.dev.
Version: 2023. — Accessed: 2023-12-21

ROSSBERG, Andreas (Hrsg.): WebAssembly Core Specification. https://www.w3.org/
TR/wasm-core-1/. — Accessed: 2023-12-21

20

https://blog.rust-lang.org/2016/04/19/MIR.html
https://blog.rust-lang.org/2016/04/19/MIR.html
https://github.com/gimli-rs/gimli/
http://dx.doi.org/10.1145/73560.73562
http://dx.doi.org/10.1145/73560.73562
https://blog.rust-lang.org/2024/02/19/2023-Rust-Annual-Survey-2023-results.html
https://blog.rust-lang.org/2024/02/19/2023-Rust-Annual-Survey-2023-results.html
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://github.com/WebAssembly/exception-handling/
https://github.com/WebAssembly/exception-handling/
https://wasmtime.dev
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/

A Source code
All source code associated with this thesis is available online at the following locations:

e Cranelift unwinding implementation: https://github.com/bjorn3/wasmtime/tree/bsc-
unwinding-final

e rustc_codegen_cranelift interpreter support: https://github.com/bjorn3/rustc_codegen_
cranelift/tree/bsc-unwinding-interp

e rustc_codegen_cranelift unwinding implementation: https://github.com/bjorn3/rustc_
codegen_cranelift/tree/bsc-unwinding-final

e Writer for the GCC LSDA format: https://github.com/bjorn3/eh_frame_experiments

e Unwinder experiments: https://github.com/bjorn3/cranelift-jit-demo/blob/bsc-unwinding-
simple—-invoke

e Raytracer benchmark: https://github.com/ebobby/simple-raytracer/tree/804a7a21b

e CSS parser benchmark: https://github.com/bjorn3/rustc_codegen_cranelift/tree/
bsc-unwinding-final/rustc_perf_bench_css

21

https://github.com/bjorn3/wasmtime/tree/bsc-unwinding-final
https://github.com/bjorn3/wasmtime/tree/bsc-unwinding-final
https://github.com/bjorn3/rustc_codegen_cranelift/tree/bsc-unwinding-interp
https://github.com/bjorn3/rustc_codegen_cranelift/tree/bsc-unwinding-interp
https://github.com/bjorn3/rustc_codegen_cranelift/tree/bsc-unwinding-final
https://github.com/bjorn3/rustc_codegen_cranelift/tree/bsc-unwinding-final
https://github.com/bjorn3/eh_frame_experiments
https://github.com/bjorn3/cranelift-jit-demo/blob/bsc-unwinding-simple-invoke
https://github.com/bjorn3/cranelift-jit-demo/blob/bsc-unwinding-simple-invoke
https://github.com/ebobby/simple-raytracer/tree/804a7a21b
https://github.com/bjorn3/rustc_codegen_cranelift/tree/bsc-unwinding-final/rustc_perf_bench_css
https://github.com/bjorn3/rustc_codegen_cranelift/tree/bsc-unwinding-final/rustc_perf_bench_css

	Introduction
	Background
	WebAssembly
	Cranelift
	The rustc_codegen_cranelift project
	Exceptions
	Related work

	Design
	Extensions of Cranelift IR
	Cranelift changes

	Implementation
	Cranelift IR
	Use invoke in cg_clif
	Interpreter support
	Implementation in the Cranelift backends
	Write unwind tables
	Results

	Experiments
	Raytracer
	CSS parser
	Unwinder experiments

	Conclusion
	References
	Source code

