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Abstract

Graph state preparation plays an essential role in various quantum computing algorithms, and
finding the minimum-edge graph state that is reachable under local complementation (LC)
from a target state is often a crucial step in this. This thesis explores the usefulness of binary
decision diagrams (BDDs) in the computation of these minimum-edge graphs by using them
to compute LC-equivalence orbits: sets of all graphs reachable from a given graph state under
LC. We contribute to existing tools by developing a program for calculating and storing LC
orbits in BDDs using the sylvan C++ BDD library. Our approach significantly outperforms
a standard brute-force approach (only) for graphs of eight nodes or more. Additionally, we
generated a dataset of orbits covering all more than 270 million graphs with up to 8 nodes
using our program.

Unlike other methods, our approach did not merge isomorphic graphs, but computed and
stored sets of arbitrary graphs. While this made our program more versatile, it added significant
complexity to the computation, prompting further research to establish the efficiency of BDDs
in orbit computation when isomorphic graphs are merged.
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1 Introduction

Since the 1980s, scientists and engineers have been researching a new form of computation: quantum
computing. Unlike conventional computers, quantum computers operate on qubits, making use of
the quantum-mechanical properties of particles to perform probabilistic computation. Oftentimes,
before a quantum algorithm can be run, it is necessary to set up the quantum state in the computer
as a specific target state. Graph states form an important subset of these quantum states, as they
encompass all quantum states in which the qubits and their entanglement can be represented
by an undirected graph (as its nodes and edges, respectively) [13]. Specifically in measurement-
based quantum computing, quantum networking, and quantum error correction, this graph state
preparation is an important process in ensuring the proper execution of any algorithm [13].

Preparation of a graph state from an unentangled empty-graph state can always be performed
through combinations of two operations on the graph state: performing local complementation,
which corresponds to single-qubit Clifford gates, and applying Controlled-Z (CZ) gates. Whereas
CZ is a more flexible operation, allowing for the addition or removal of any given edge in the graph
state, LC is a more delicate operation that changes multiple edges simultaneously.

However, the fact that CZ gates operate on two qubits has two critical drawbacks. First, two-qubit
operations introduce extra noise to the system, increasing the probability of an error arising during
state preparation. Second, due to this extra noise and thus the higher likelihood of failure (and of
more retries), they can severely increase the time that the preparation process takes, particularly
in quantum networking settings where qubits are separated by a large physical distance.

To minimize these errors, it is best to apply as few (two-qubit) CZ operations as possible and
perform as much of the preparation as possible by applying (one-qubit) LCs [7]. All graph states
reachable under LCs from a given graph state are called its orbit [6]. One strategy for preparing a
target graph state would thus be to first find out what graph state in the orbit of the target has the
fewest edges, so that this minimal graph can first be reached through CZs, after which the entire
remainder of the preparation can be done through less error-prone LCs.

The relevance of accurate and concise graph state preparation gives rise to the question of how to
most efficiently compute the graph in a target graph’s orbit with the lowest number of edges—a
question that remains unanswered. In an effort both to provide an algorithm to find these minimal
graphs as well as to gather data on orbit structures, this thesis researches the potential of binary
decision diagrams (BDDs) for computing and storing the orbits of graph states.

1.1 Orbit computation complexity

Previous research regarding related decision problems has shown that the vertex-minor problem,
the problem of deciding whether a graph G′ can be reached from a given graph G through local
complementations and vertex deletions, is NP-complete [9]. The same was shown by Dahlberg et
al. [8] to hold for graph-reachability under local complementations when combined with two other
operations on graph states: local Pauli measurements (LPM) and classical communication (CC),
i.e., reachability under LC+ LPM+ CC. Lastly, the decision problem of whether a target graph is
reachable from another graph through LCs was shown to be in P by Bouchet [4].
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However, the question of what complexity class the problem of finding the minimum-edge graph
in a given graph’s orbit belongs to has not been answered. The decision problem version of this
question, which is what one would have to (dis)prove NP-completeness of, is Given a target graph
T and an integer k, is there a G(E, V ) ∈ orbit(T ) with |E| ≤ k?

Originally, this thesis’ goal was to provide a classification of this decision problem into a complexity
class, together with a mathematical proof thereof. However, due to the onerousness of complexity
proofs, the lack of proofs for similar problems, and time constraints, we later had to decide to
diverge this thesis’ research, leaving that problem still open for further research.

1.2 Problem statement

The aim of this thesis is to investigate the effectiveness of using BDDs for finding minimal-edge
graph states in an orbit given a source graph. Our first goal is to find out whether this new method
is faster and more memory-efficient than performing the calculation by brute force, which is how,
for example, graph state compass by Adcock et al. implements its orbit exploration [1].

Second, we empirically investigate whether a greedy algorithm provides sufficiently accurate results
and how large the difference in computation speed is compared to our BDD approach. Since a
greedy algorithm should easily outperform our BDD-based algorithm in terms of speed, it is of
interest to know at what accuracy cost this speed benefit comes.

Lastly, we gather as much data as possible on orbits as possible, in order to expand the available
data found by Adcock et al. and Cabello et al. ([1] and [6], respectively). Unlike their approaches,
ours also regards graphs that are isomorphic to each other as separate graphs in an orbit, making
the computation of the minimum graphs in a graph state more intricate and realistic.

In doing so, we aim to establish the usefulness of BDDs in the context of graph state orbit
computation by showing their efficiency compared to other approaches.

1.3 Thesis overview

In this paper, we first lay out all the necessary formal definitions of relevant concepts in Section 2.
Then, Section 3 elaborates on other related works and their impact on our research’s approach,
which we detail in Section 4. In Section 5, we present the experiments we ran to benchmark our
approach, along with the results and discussion thereof. Lastly, our final conclusions and the insights
gained regarding our aforementioned research goals are outlined in Section 6.
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2 Background

This section provides readers with an understanding of all the relevant concepts needed for the
purpose of this thesis. The remainder of this section assumes familiarity with the fundamentals of
graph theory and set theory. For further information on graph theory and set theory, see [18] and
[12], respectively.

A central notion in quantum computing is a quantum state, which is a mathematical representation
of all information about the state of a quantum system at a specific point in time. It encompasses
the probabilities of the quantum-mechanical properties in a quantum system, such as a particle’s
position, momentum, and spin. From this, properties such as superposition or entanglement can
be derived, which are essential to quantum algorithms [14]. In this thesis, we focus on a specific
category of quantum states: graph states (as defined in Section 2.1).

However, these graph states have the unique property that they can be represented as graphs and
therefore, for our purposes, it suffices to reason solely about graphs and not the quantum states
they represent, as all relevant operations and computations can also be defined on these graph
representations. For a more comprehensive overview of the underlying quantum theory concepts,
we refer to [15].

Since graph states and binary decision diagrams are the central concepts for the remainder of this
thesis, Sections 2.1 and 2.2 formally define those and closely related concepts.

2.1 Graph theory

Since graph states are quantum systems that can be represented as graphs, this section will outline
all the relevant concepts related to graph theory, as well as define the operations on graph states in
terms of their graph representations. First, we more formally define the concept that is central to
this thesis: a graph state.

Definition 1. A graph state is a quantum state in which the entanglement between qubits can
be represented as a graph G = (V,E). In this graph, each node v ∈ V represents a qubit, and the
existence of an edge (u, v) ∈ E indicates that the qubits represented by u and v are entangled.
Conversely, the absence of an edge (u, v) /∈ E indicates that the qubits represented by u and v are
not entangled.

It is important to note here that, since entanglement is a mutual property of two qubits, this thesis
refers to undirected graphs when discussing graph states or graphs in general. Furthermore, we
specifically look at undirected graphs without any self-loops (i.e., edges from a node to itself).

A quantum computer can be prepared into a given target graph state through various operations.
This thesis is centered around two particular operations: the Controlled-Z (CZ) gate and local
complementation (LC). First, we define the CZ operation:

Definition 2. Given two nodes u, v ∈ V in a graph G = (V,E), a CZ -gate between the two qubits
that these nodes represent is an operation on the graph, CZ(u, v), that maps the graph G to a new
graph G′ = (V,E ′), where E ′ = E ∆ {(u, v)}.
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In other words, CZ(u, v) flips the existence of a potential edge (u, v): if it exists, it is removed
from the graph, and if it does not exist, it is added to it. Given just the CZ operation, one could
trivially derive a way of preparing any given target graph state from an empty graph. For a target
graph state G = (V,E), one could perform CZ(u, v) on all pairs (u, v) ∈ E to reach G after |E|
CZ operations. However, the problem with this, due to the fact that a CZ gate is a two-qubit
operation, each application of CZ severely increases the complexity of the quantum circuit as
well as the likelihood of introducing errors. This likelihood of error is much smaller with local
complementations.

If, instead of solely using CZ gates, we could use CZ gates to reach the graph with the fewest edges
from which we can reach our target with local complementations, we could thus significantly reduce
the complexity of the graph state preparation. Before we can define what local complementation is,
we first need to define the important graph-theoretical concept of a neighborhood:

Definition 3. The (open) neighborhood NG(v) of a node v in a graph G = (V,E) is the subgraph
given by the set of all nodes u ∈ V for which (u, v) ∈ E, and with the subset of E of all
edges between these nodes. Formally, NG(v) = (V ′, E ′), where V ′ = {u | (u, v) ∈ E} and
E ′ = {(u,w) | (u,w) ∈ E ∧ u,w ∈ E ′}.

Important to note is that when we refer to neighborhoods in this work, we refer to open neighbor-
hoods, which are neighborhoods of a node excluding the node itself (and edges to it). Given this
definition of neighborhoods, we can now define the operation this thesis is centered around: local
complementation.

Definition 4. Given a node v ∈ V in a graph G = (V,E), local complementation of that node LCv

maps the graph G = (V,E) to a new graph G′ = (V,E ′), where the neighborhood of v is replaced
by its complement. Formally, G′ = (V,E ′) where E ′ = E ∆ (V (NG(v))× V (NG(v))).

Given this definition of local complementation, example 1 shows an example of how to apply an
LC:

Example 1. Suppose a graph G = (V,E) with 5 nodes is given, where E = {(0, 1), (0, 2), (0, 3),
(1, 2), (2, 3), (3, 4)}. To perform local complementation on node 0, i.e., compute LC0(G), the process
(as shown in Figure 1) would look as follows:

1. First, consider the subgraph given by the neighborhood of 0, which in this example consists of
the nodes 1, 2, and 3 and the edges (1, 2) and (2, 3), i.e., NG(0) = ({1, 2, 3}, {(1, 2), (2, 3)}).

2. Then, take the complement of this subgraph, which removes the existing edges and adds all
the non-existing edges in the subgraph, making its edge set {(1, 3)}.

3. As a result, the full graph, as shown in Figure 1d, has edges E ′ = {(0, 1), (0, 2), (0, 3), (1, 3), (3, 4)}
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(a) A basic example graph
with five nodes.

0 1

23

4

(b) Outlined in red: the neigh-
borhood of node 0.

0 1

23

4

(c) Outlined in red: the com-
plement of the neighborhood
of node 0.

0 1

23

4

(d) The result graph: the com-
plement of the neighborhood
of node 0 is inserted back
into the original graph, and all
other edges remain unchanged.

Figure 1: A graphic representation of Example 1, in which
we take the local complement of node 0 on a 5-node graph.

This definition then leads to the second core concept of this thesis, that of an orbit:

Definition 5. Given a graph G = (V,E), the (LC) orbit of this graph orbit(G) is given by the set
of all graphs that are reachable from G through a series of local complementations on its nodes, i.e.:

orbit(G) = {G′ | G′ = (LCvk ◦ LCvk−1
◦ · · · ◦ LCv1)(G) for some v1, v2, . . . , vk ∈ V }

Important to note here is that these local complementations can be applied to the same node
multiple times, and that G itself (before any local complementation) is also in orbit(G). Furthermore,
there is some terminology we use throughout this thesis regarding graph states and their orbits.
When referring to the size of a graph G = (V,E), we refer to the number of edges (|E|) in the
graph, and by its order, we mean the number of nodes (|V |) in it. Similarly, with the size of an
orbit of a graph G, we refer to the number of graphs in the orbit (|orbit(G)|), and with the order
of an orbit, we refer to the number of nodes (|V |) in the graphs of the orbit.

As we will see later, one fundamental difference between our implementation of representing sets of
graphs as BDDs and the approaches by other researchers is that we store sets of arbitrary graphs.
When graphs are not labeled, however, almost all graphs have numerous graphs that are identical to
them, but with their nodes swapped. We call these graphs, which are identical under the exchange
of nodes, isomorphic graphs. A formal definition is provided in Definition 6, and an example is
given in Example 2.
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Definition 6. Two graphs G and G′ are called isomorphic if there exists a one-to-one mapping of
their nodes f : V (G)→ V (G′), such that (u, v) ∈ E(G) if and only if (f(u), f(v)) ∈ E(G′).

Example 2. An example of two isomorphic graphs would be the two graphs Ga and Gb shown in
Figures 2a and 2b. These are isomorphic because of the existence of the mapping f : V (Gb)→ V (Ga)
with f(0) = 3, f(1) = 2, f(2) = 0, f(3) = 1, and f(4) = 4. When mapping the nodes of Gb under
this mapping, the result graph (as shown in Figure 2c) has edges (0, 1), (0, 3), (1, 2), (2, 4), and
(3, 4), as does Ga.

0

3

4

2

1

(a) Graph Ga = (Va, Ea),
isomorphic to the graph in
(b)

0

4

1

23

(b) GraphGb = (Vb, Eb), iso-
morphic to the graph in (a)

0

3

4

2

1

(c) Another visual represen-
tation of the graph in (a),
showing more clearly how
the nodes of Gb can be
mapped to those of Ga.

Figure 2: The graphs that accompany Example 2. In this figure, (a) and (c) are identical
graphs with the same nodes and edges but drawn differently. Graph Gb from (b) is isomorphic
to that of (a) (and (c)).

Lastly, an important structural property of graphs that is relevant to this thesis, is connectivity.

Definition 7. A graph is connected if for each pair of nodes (u, v) ∈ V × V there exists a path
from u to v.

The relevance of this definition for this thesis, is that it is much easier to compute the orbit of
unconnected graphs. If in a graph of, for example, ten nodes, only three nodes are connected while
there are no other edges between any other nodes in the graph, the computation of this ten-node
orbit is as trivial as the computation of the orbit of the three-node subgraph that is connected.

2.1.1 Relevant graph theory lemmas

This subsection highlights three lemmas that are important in the computation of the orbit of a
graph. We will prove two of these lemmas in this thesis, and a third one will be introduced from an
external paper.

Lemma 1. Given a graph G = (V,E) and a node v ∈ V , it holds that LCv(LCv(G)) = G.
In other words, performing local complementation on the same node twice in a row does not affect
the graph, regardless of which node it is performed on.
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Proof. First, it is important to observe that applying local complementation to a node v only
changes the existence of edges between the neighbors of v, but it does not affect any of the
edges from v itself to any other node. This means that local complementation on v does not
affect which neighbors v has.
Therefore, performing local complementation on the same node twice complements the same
subgraph (in terms of nodes) twice. Since complementing a graph twice yields the original
graph, it follows that this subgraph is not changed at all, and thus the entire graph remains
unchanged.

Given this lemma, it becomes obvious that performing local complementation on the same node
twice in succession does not help in computing a graph’s orbit.

The second lemma is relevant to the generation of random graphs to compute the orbit of, which
we do in order to run our speed comparison experiments later:

Lemma 2. Given a complete graph G = (V,E) (meaning E = V × V ), |orbit(G)| = |V |+ 1.

Proof. Given a complete graph G = (V,E), computing the entire orbit of G can be done by
iteratively performing LCk for each k ∈ V on all graphs found so far, as with the computation
of any orbit. Starting with the set of found graphs {G}, we get:

1. For each k ∈ V , LCk(G) removes all edges (u, v) for which u ̸= k and v ̸= k, since
in a connected graph, k is adjacent to all other nodes in V . This means that the first
iteration adds the following set S of |V | so-called “star graphs” to the set of found graphs:
S = {(V,E ′) | E ′ = {(u, v) | u = k ∧ v ̸= k, (u, v) ∈ V × V }, k ∈ V }.

2. For each graph G′ = LCk(G) in this set of new graphs, there is now one node k with |V |−1
edges to each other node, but without any other edges. Performing local complementation
on any other node j ∈ V \ k gives LCj(G

′) = G′, since the only adjacent node adjacent
to j is k. However, LCk(G

′) = LCk(LCk(G)), and thus LCk(G
′) = G. Therefore, we find

no new graphs in this iteration.

We now conclude that orbit(G) = S ∪ {G}, and thus |orbit(G)| = |V |+ 1.

This lemma is useful for our experiments, as we need to generate random graphs to test the efficiency
of our approach there. This lemma, together with later empirical evidence, shows that the orbits
of complete or “almost complete” graphs are not good representatives of what an average orbit
size for a given graph order N is, as these orbits are very small. As one might expect, we found
empirically that the opposite also holds: for graphs with very few edges, the orbit is also likely to
be very small. Therefore, for a program to generate random graphs with a reasonable orbit size,
choosing a balanced number of edges in these graphs is necessary.

The last useful lemma stems from the work of Brand et al. [5, §3.2], in which they derived an upper
bound for the number of local complementations needed to reach any graph in the orbit of a given
graph, based on Bouchet’s algorithm for determining LC-reachability [4].

Lemma 3. If a given graph G = (V,E) can be transformed into a graph G′ = (V,E ′) using local
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complementations, this takes at mostM = 11
2
(|V |−s) local complementations, with s = |V | (mod 2).

As explained in our methodology in Section 4, our algorithm for orbit computation stops when no
new graphs are found. However, given this upper bound M in Lemma 3, the last iteration in which
no new graphs are found could be prevented. If the first M iterations all yield new graphs, an
implementation not taking this upper bound into account would have performed an extra iteration,
only to realize there are no new graphs. Instead, when using this upper bound, it tells us that the
M + 1th iteration can be skipped, decreasing the likelihood of unnecessary local complementations.

2.2 BDD-related definitions

In this thesis, we compute and store orbits in binary decision diagrams. A binary decision diagram
(BDD) is a data structure that represents a Boolean function as follows:

Definition 8. Given an n-variable Boolean function f : {0, 1}n → {0, 1}, a binary decision diagram
for f is a directed acyclic graph consisting of nodes that represent variables, with outgoing ‘high’
and ‘low’ edges denoting true and false assignments to these variables, respectively. Leaf nodes in
the BDD represent the output of the Boolean function, i.e., either true or false (or 1 and 0). A walk
through the BDD corresponds to a unique variable assignment (x1, x2, . . . , xn) ∈ {0, 1}n, leading to
a true-valued leaf node if and only if f(x1, x2, . . . , xn) = 1.

When writing a program to compute orbits of graph states, this program has to store sets of graphs,
such as the orbits themselves. Essentially, these graph sets are subsets of the set of all potential
graphs of a given order |V |. Binary decision diagrams lend themselves particularly well to storing
these graph sets, as they can be used to represent indicator functions of this graph set.

Definition 9. An indicator function (also characteristic function) 1A : X → {0, 1} for a subset
A ⊆ X yields 1 if and only if the input is in the subset, and 0 otherwise. In other words:

1A(x) =

{
1 if x ∈ A

0 if x /∈ A

If we want to represent the indicator function for a set of graphs, however, we need to find a
way to define the graphs as a combination of binary variables. There are N(N − 1)/2 potential
edges in a graph for N = |V | because each of the N nodes has N − 1 potential neighbors, yielding
N(N − 1) combinations, but, since we are looking at undirected graphs, there are only N(N − 1)/2
potential edges. If we take N(N − 1)/2 binary variables x1, x2, . . . , xN(N−1)/2 ∈ {0, 1} to represent
the existence of a potential edge, we can now generate each possible graph as a combination of
true or false assignments to these variables. With this, we can now store sets of graphs in binary
decision diagrams. An example of a set of graphs stored in a BDD, as well as how this BDD can be
pruned to store it more efficiently, is given in Example 3.

Example 3. Suppose a set of graphs S is given, where S contains all graphs of order 3 except for
two graphs Ga and Gb. Formally, this means S = G3 \ {Ga, Gb}, where G3 is the set of all graphs
of order 3, i.e., G3 = {(V,E) | V = (0, 1, 2), E ⊆ V × V }. Suppose Ga, Gb ∈ G3 are two graphs
with nodes (0, 1, 2) and edges Ea = {(0, 1), (1, 2)} and Eb = {(1, 2)}, respectively.

To encode this set S as a BDD, we first introduce binary variables x0, x1, x2 ∈ {0, 1}, indicating the
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presence of edges (0, 1), (0, 2), and (1, 2), respectively, in a potential graph. Using this representation,
we define an indicator function 1S for S, the truth table of which is given in Table 1. This truth
table aids in the construction of the BDD, as shown in Figure 3.

x0 x1 x2 1S(x0, x1, x2)
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Table 1: A truth table for the indicator
function 1S corresponding to the
subset S ⊂ G3 from Example 3.

x0

x1 x1

x2 x2 x2 x2

T F T T T F T T

Figure 3: A BDD corresponding to the
truth table in Table 1, as another representa-
tion of the set of graphs S from Example 3. In
this BDD, dashed lines represent low edges,
while solid lines represent high edges.

This BDD is also a good example of how sets can often be represented more efficiently using BDDs,
due to their ability to be reduced, in two ways [2]. First of all, nodes that have two equal-valued
Boolean leaf nodes as children can be replaced by a leaf node with this Boolean value, eliminating
two nodes. In this BDD, this can be applied twice, at two of the occurrences of x2. Second, if
the edges of one node lead to two isomorphic subgraphs, this node can be eliminated as well by
replacing it with either of the isomorphic subgraphs. In this example, we can apply this second rule
to the root node, which, together with the other pruning of the BDD, is displayed in Figure 4.

x0

x1 x1

x2 T x2 T

F T F T

(a) The result of replacing two occurences of node
x2 for which both of its edges lead to true leaf
nodes, with a true-valued leaf node itself.

x1

x2 T

F T

(b) The result of merging the
two isomorphic subgraphs of the
root node of the BDD from (a).

Figure 4: An example of how the BDD from Figure 3 can be pruned into a minimal BDD.
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3 Related Work

This section outlines the existing literature concerning graph state orbit exploration, as well as
on the C++ BDD library we use, sylvan, and on the encoding of graph state operations through
logical variables.

Earlier research on the generation of datasets of LC orbits of graph states was performed by both
Cabello et al. [6] and Adcock et al. [1], and they were both able to compute all orbits with orders
up to twelve. What separates the two articles is that Adcock et al. expanded on the work of Cabello
et al. by not only computing the orbits but also exploring the structure of the orbits themselves.
Besides solely investigating the properties of graphs, Adcock et al. also looked at the structure of the
transition between graphs in an orbit, and the properties they could obtain thereof. They developed
an open-source Python tool called graph state compass to enable this orbit exploration.

As is mentioned in Section 4.4, however, both of these papers limit their orbit exploration by
merging all isomorphic graphs, making their computation significantly easier. For this, they use
a brute-force approach like the one we developed (found in Section 4.1), but instead, our main
contribution is a BDD-based approach to storing and computing orbits, making use of the sylvan
library.

In 2016, the sylvan C++ library was released by Van Dijk [17], offering a multi-core parallel
programming solution for the storage of and computation on BDDs. They offer high performance
not only through this parallelization, but also through caching the results of calculations and by
automatically minimizing the BBDs that are in memory using the pruning strategies described in
Section 2.2.

Furthermore, the sylvan library enables users to extend its functionality, by allowing the develop-
ment of custom BDD operations that have access to all internal features, including parallelization
and caching. They have also implemented transition relationships on BDDs (through their RelNext
method), making it possible to generate mappings of the set of all elements that the BDD represents
to a new set (BDD), while expressing this transition in logical expressions with respect to the
BDD’s variables. We use this feature to define our LC-relation on entire graph sets at once, instead
of on separate graphs.

Brand et al. developed SAT-encodings for graph states and the operations thereon, including local
complementations [5]. We can use this encoding of LCs to program logical expressions on our BDD
variables (i.e., the potential edges in the graph) for the aforementioned transition relationship for
LC. The encoding from Brand et al. to encode the local complementation of a node k can be found
in Equation 1. Here, x′

uv (for u < v and u, v ∈ V ) is a Boolean variable indicating whether the edge
(u, v) exists in the graph after performing local complementation, and xuv indicates the same but
for the original graph.

LCk =
∧

(u,v)∈V×V
u<v

{
x′
uv ↔ ¬((xuk ∧ xvk)⊕ ¬xuv) if u ̸= k and v ̸= k

x′
uv ↔ xuv else

(1)
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4 Algorithm Development and C++ Implementation

For this thesis, we first developed a codebase with three programs for finding minimum graphs in
an orbit, after which we ran experiments to determine their effectivities, as described in Section 5.
The three programs are the following: one using BDDs, one using a brute-force approach, and one
using a greedy algorithm. All three of these programs were written in C++, as it allows for high
control over memory usage and (partially therefore) its potential for performing high-performance
computation [19]. This section will detail the pseudocode for the programs, but the full code of
these programs, as well as of our experiments, can be found in our GitHub repository at [16].

4.1 Brute force implementation

In order to have a baseline to compare our experiments’ results to, we first wrote a brute-force
approach to the problem (the C++ program of which is later referred to as brute force). This
approach works by storing an std::set of “found” graphs and continuously looping over this set,
while computing local complementation for every node on every graph in it, until no new graphs
are found or the maximum computation depth (from Lemma 3) is reached. The pseudocode for
this algorithm is shown in Algorithm 1.

Algorithm 1 Our brute-force algorithm for ComputeOrbit, used to compute the orbit of a graph.

Input: InitialGraph and maxDepth
Output: Graphs (a set of all graphs in the orbit of the input graph)

1: function ComputeOrbit(InitialGraph, maxDepth)
2: Graphs,PrevAddedGraphs← {InitialGraph}
3: for depth← 1 to maxDepth do
4: newGraphs← empty list
5: for G in PrevAddedGraphs do
6: for v in V (G) do
7: if LCv(G) not in Graphs then
8: add LCv(G) to newGraphs

9: if size of newGraphs = 0 then
10: break
11: add every element in newGraphs to Graphs
12: PrevAddedGraphs← newGraphs

13: return Graphs

4.2 BDD sylvan implementation

The second program we wrote, gs bdd, uses BDDs instead of std::sets, because of the potential
benefits offered by a BDD’s ability to define transition relations on a set as a whole, instead of
having to perform computations on individual elements of the sets. In our brute-force algorithm,
for example, we have to compute the local complementation for every node of every graph in the
set of found graphs, compared to having to perform the computation only on the BDD itself when
storing the sets as BDDs.
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For the C++ implementation of the BDDs, we used sylvan to implement storing sets of graphs as
BDDs and to compute the outcomes of transition relations on them, and for the storage of the sets
of graphs in BDDs, we used the method described in Example 3. We developed a GSExplorer class
that allows users to store graphs in BDDs, compute the orbits of BDDs, find the smallest graph in
a graph set, and find all the orbits of all graphs of a given size. In this class, we implemented local
complementations as transition relations, where the logical expressions were implemented as per
the approach of Brand et al. [5], as discussed in Section 3. Using this GetLCRelation(k) function,
we implemented a ComputeOrbit function, shown in Algorithm 2:

Algorithm 2 Our BDD approach to ComputeOrbit, used to compute the orbit of a graph.

Input: InitialGraph (a BDD representing only one input graph)
Output: Graphs (a BDD with all graphs in the orbit of the input graph)

1: function ComputeOrbit(InitialGraph)
2: Graphs,PrevAddedGraphs← InitialGraph
3: while PrevAddedGraphs ̸= false BDD do
4: NewGraphs← false BDD
5: for k ← 1 to N do
6: NewGraphs← NewGraphs ∪ (GetLCRelation(k) applied to PrevAddedGraphs)

7: PrevAddedGraphs← Graphs \ NewGraphs
8: Graphs← Graphs ∪ NewGraphs

9:

10: return Graphs

Then, we use this ComputeOrbit procedure in FindAllOrbits, which is the function we wrote for
computing all the orbits of all graphs of a given size N . The pseudocode for this is shown below in
Algorithm 3. It works by continuously picking a graph that has not yet been found, computing its
orbit, and adding this orbit to the BDD of found graphs, until all graphs of order N have been
found.

Algorithm 3 The function FindAllOrbits, used to find all orbits of order N .

Input: InitialGraph and maxDepth

1: function FindAllOrbits(N)
2: G← empty graph
3: DiscoveredGraphs← false BDD
4: while true do
5: NewOrbit ← ComputeOrbit(G)
6: DiscoveredGraphs ← AllDiscoveredGraphs ∪ NewGraphs
7: if AllDiscoveredGraphs = true BDD then
8: break
9: UndiscoveredGraphs← negation of DiscoveredGraphs
10: G← pick one graph from UndiscoveredGraphs

12



In practice, one would usually want to save data about the new orbit that was just found between
lines 5 and 6 in Algorithm 3. In our implementation, we stored a tuple containing the orbit size, the
size of the orbit’s smallest graph, and a representative graph in this orbit that has this minimum size.
This procedure and the accompanying data collection were implemented for the dataset generation
experiment, which is described in Section 5.1.

Important to note here is that this method computes the orbits of all graphs of a given order
N , including the orbits of unconnected graphs. This is unlike the computer programs for orbit
computation by Adcock et al. and Cabello et al., in which they only included connected graphs ([6]
and [1]). The reason we chose to consider unconnected graphs is that we prioritized completeness
in the generation of the dataset of all orbits, in the experiment described in Section 5.3.

Lastly, an important function is FindSmallestSAT, which finds the smallest graph in an orbit. We
defined this function in C as an extension of the sylvan library, and it computes the smallest set of
variables needed to satisfy the BDD. This is done recursively with a top-down approach, making
use of sylvan’s caching capabilities, as shown in the pseudocode in Algorithm 4.

Algorithm 4 The function FindSmallestSAT, which computes the smallest set of variables needed
to satisfy a given BDD.

Input: BDD
Output: result and varAssignment (an example variable assignment array represented by a 0 or 1

entry for each variable in BDD).

1: function FindSmallestSAT(BDD, &varAssignment)
2: if BDD = true BDD then
3: return 0
4: if BDD = false BDD then
5: return Infinity

6: if |V ars(BDD)| ≤ 64 then
7: if BDD is in sylvan cache then
8: varAssignment← decoded result from sylvan cache
9: return number of true values in varAssignment

10: varAssignment low ← copy of varAssignment
11: count low ← FindSmallestSAT(BDD.low, varAssignment low), computed in a parallel process
12: result← FindSmallestSAT(BDD.high, varAssignment)

13: wait for parallel execution to finish

14: if count low < count high then
15: varAssignment← varAssignment low
16: result← count low
17: if |V ars(BDD)| ≤ 64 then
18: put varAssignment encoded as a 64-bit bitstring in sylvan cache

19: return result
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Because sylvan requires cache entries to be of type uint64 t, we store our varAssignment results
as bitstrings, where each bit in the cache entry’s uint64 t represents one variable in the variable
assignment (where the rightmost bit is varAssignment[0]). This is why the algorithm encodes
and decodes the varAssignment before storing it in the cache and retrieving it from the cache,
respectively, as well as why it only stores and retrieves cache entries of BDDs with at most 64
variables.

4.3 Greedy implementation

The last program we wrote was a greedy algorithm, used to assess the efficiency and, more
importantly, the accuracy of a heuristic approach for finding the minimum graph in an orbit. The
greedy algorithm we wrote works by continuously storing only the smallest graph found thus far.
In each iteration, the algorithm performs local complementation on each node of this graph and
compares the size of the smallest graph found this iteration with the size of the smallest graph
from the previous iteration. If a smaller graph was found, the process is repeated, and if not, the
smallest graph that was found is returned.

This method may be very fast, as it takes no more than 11
2
|V |(|V |+ 1) local complementations,

because the algorithm performs at most M + 1 local complementations on |V | nodes, given the
upper bound in the local complementations M from Lemma 3. However, it is also very unlikely
to find the smallest graph in the orbit. This is due to the fact that sometimes it is necessary to
first perform a local complementation that does not yield any smaller graphs, because it enables
later local complementations that do lead to smaller graphs. This is why we also allowed a separate
version of this algorithm to “look ahead” one layer (later referred to as greedy with depth 2). In
this version, the algorithm not only considers the graphs reachable from the current-found smallest
graph after one LC but also considers the smallest reachable graph after two LCs, in an effort to
make the algorithm more versatile.

Because of its expected high efficiency, it is of particular interest to analyze the difference in the
found ‘minimum’ graph size compared to the true minimum graph in the orbit, as well as the
difference in efficiency compared to the BDD algorithm, across different graph orders.

4.4 Our approach to isomorphic graphs

Compared to the work of Adcock et al. [1] and Cabello et al. [6], one fundamental difference between
their approach and ours is that we did not merge isomorphic graphs but considered all isomorphic
graphs as separate graphs. Table 2 shows the impact this has on the number of graphs that need to
be computed and stored. From this, it becomes obvious that the separation of isomorphic graphs
vastly increases the computational complexity of storing all graphs of a certain order.

As shown in Sections 5.1 and 5.3, respectively, the largest orbit we were currently able to compute
(within a reasonable time) had 10 nodes, and the largest graph order we were able to compute all
orbits of was 8. If we had been able to limit our orbit exploration to only non-isomorphic graphs,
we likely would have been able to explore all orbits of graphs of up to 10 nodes, as this would have
required us to store only 12,005,168 graphs and 1,274,068 orbits [10]. This is less than the number
of graphs and orbits we had to store for all 8-node graphs in our current implementation (as shown
in Section 5.3).
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N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8
#Non-iso. graphs 1 2 4 11 34 156 1,044 12,346
#Graphs 1 2 8 64 1024 32,768 2,097,152 268,435,456

Table 2: An overview of the number of potential graphs for sizes one through eight. Here,#Graphs
refers to the total number of arbitrary graphs, whereas #Non-iso. graphs refers to the
number of graphs after merging isomorphic graphs. Source: [3].

On the other hand, considering the fact that we are trying to generate a dataset of all graphs we
are trying to generate in this thesis, it can be argued that looking at arbitrary graphs in an orbit
without merging isomorphic graphs is not necessarily a disadvantage for the purpose of this project.
This difference in approach necessitates future research to investigate whether our BDD approach
can be extended to allow for the merging of isomorphic graphs, to also enable comparison between
our approach and others in this scenario.
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5 Experiments

To answer our research questions and to establish whether using BDDs is efficient and practically
useful, we ran three experiments. In our first two experiments, we compared the speed of our
BDD implementation to the brute-force and greedy algorithms in the experiments described in
Sections 5.1 and 5.2. In our second experiment, we tried to generate a dataset of the orbits all
graphs we could compute, as detailed in Section 5.3.

Both experiments were run on a 2020 M1 Macbook Pro running macOS Sonoma version 14.4.1.
All of the code was compiled using CMake version 3.14 with the g++-13 (Homebrew GCC 13.2.0)
compiler.

5.1 BDD vs. brute force for minimum graph computation

A practically relevant task is the computation of the smallest graph in the orbit of a given
target graph. Therefore, in our first experiment, we wanted to compare the efficiency of our BDD
implementation and the brute-force implementation.

The way we compared the efficiencies is twofold. First, we compared the speed of the brute-force
and BDD methods for different graph orders, to establish whether either program performed better
at smaller or larger numbers of nodes. The other part of this experiment consisted of comparing
the brute-force and BDD approaches when computing orbits of different graphs of the same order,
to determine whether either approach is favorable for the computation of either larger or smaller
orbits.

For the first part of this experiment, we generated ten random graphs using the method described
below, for graph orders |V | = 3 through |V | = 10. We chose this range because graphs with under
three nodes always have trivial orbits of size 1, and graphs with over ten nodes were too complicated
to compute the orbit of for either program. For each of these generated graphs, we computed its
orbit and found the smallest graph in it using both programs, while measuring the computation
speed and memory usage of both implementations.

For the second part of this experiment, we generated one hundred random graphs of fixed graph
order |V | = 8 and computed their orbits using both programs, measuring the time and counting the
size of the orbit that we generated. The reason why we opted for |V | = 8 as a graph order is that
this is the largest order for which we were able to compute all orbits (using the BDD program),
and all lower orders had a smaller variety in orbit sizes. Through this part of the experiment, we
aimed to determine whether one of the two programs outperforms the other when computing, for
example, larger or smaller orbits.
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Random graph generation
For reproducibility, we wrote a Python program that we chose to employ a standard method
for random graph generation. It uses the Erdős-Rényi model [11] with parameter p = 0.6, which
indicates the probability of an edge being included in a generated graph. As we will see in
Section 5.3, the variety in orbit sizes is very large, even when comparing graphs of the same
order, making the choice of p a delicate one. The reason why we chose p = 0.6 is twofold: firstly,
it is important to keep p fixed for reproducibility in future research, and secondly, p needs to
be neither too low nor too high.

If p is too high and the graph has too many edges and is almost complete, the orbit has very
few graphs in it (see Lemma 2). If the graph has too few edges, the probability of the graph
being connected is very low, making it hard to compare to other graphs of that order. Even if
a graph with few edges is connected, each node has a small neighborhood, and thus the effect
of local complementation is likely small, making the orbit likely very small too. We empirically
found that using p = 0.6 gives graphs with reasonable orbit sizes, which are usually a suitable
average representation for other graphs with that graph order.

Lastly, after this graph is generated, it is checked to see whether it is connected or not, using the
networkx Python package’s is connected method. If it is not, our graph generation program
discards this graph and generates a new one.

The results of the first part of this experiment are shown graphically in Figure 5, and a table with
all the numerical results corresponding to these graphs can be found in Appendix A.
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Figure 5: Average computation time in milliseconds and memory usage in bytes for running
ComputeOrbit on 10 randomly generated graphs for |V | ranging from 3 through 10, for both
the gs bdd and brute force programs.

These results show that for graphs of lower order, a simple brute-force approach is significantly
faster than our BDD program. This is likely because for graphs with fewer nodes, the performance
drawback caused by the overhead of storing the graph sets in BDDs outweighs the benefit of being
able to define transition relations on sets as a whole for computing LCs. However, for graphs of
higher order, there is a substantial benefit to using BDDs for orbit computation. We observe that
using BDDs is consistently more than 20 percent faster than brute-forcing the calculation. This
can be explained by the fact that each iteration of local complementations is likely to increase the
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size of the set of newly found graphs, in particular for graphs of higher order, and thus the speed
benefits of using transition relations on entire sets simultaneously become larger too.

Regarding the memory measurements from the first experiment, we observe that the BDDs have
a higher memory consumption than the regular std::sets of graphs for graphs of higher order.
This is likely because for regular graph storage, the program only needs to store the edges that
are in the graph, whereas in a BDD, this is not necessarily the case. The memory consumption of
BDDs does not necessarily grow linearly with the number of graphs or edges in those orbits, but is
moreso determined by the complexity of the graph set being stored.

The results of the second part of the experiment, in which we compare the speed of the two programs
for various graphs of the same order, are shown in Figure 6.
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Figure 6: The computation times of the calculation of the orbits
of 100 random graphs (with |V | = 8) by the BDD program and the
brute-force program, plotted against the orbit sizes.

In these results, we observe a very steep, seemingly exponential, increase in the computation time
as the orbit size grows when calculating the orbit using brute force, whereas this steep growth is
not present with gs bdd. This shows that for graphs with smaller orbits, a brute-force approach
is faster than a BDD approach, and vice versa. While the difficulty of predicting the orbit size
beforehand might make this information seemingly unhelpful in determining which program to use,
there are still two important considerations to derive from these results. First, we established in
Section 2.1.1 that very small or large graphs are expected to have small orbits, so in these cases,
the brute-force program would be recommended over the BDD program. Second, this performance
benefit for larger orbits is yet another supporting fact that shows BDDs’ efficiency when computing
orbits of graphs of higher order, as these tend to have larger orbits.
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5.2 BDD vs. greedy for minimum graph computation

Similar to the way we compared our BDD approach to the brute-force program, we also compared
our BDD program to the greedy algorithm (as specified in Section 4.3). Here, we expect the greedy
algorithm to be magnitudes faster than the BDD algorithm due to the simplicity of its approach.
However, this same simplicity causes the greedy algorithm to fail to find the actual smallest graph
in an orbit. Therefore, the more interesting performance metric for greedy is the difference between
the greedy algorithm’s found smallest graph size and the actual smallest graph size.

As a result, we decided for this experiment to again generate 10 graphs for graph orders 3 through
10, and make the BDD and greedy program (with a depth of 1 and a depth of 2) compute the
smallest graph in their orbits. We then measure both the computation time and the size of the
smallest graph they found, to assess the trade-off between the greedy algorithm’s accuracy decrease
and speed increase. The results of these measurements are shown in Table 3.

|V | Avg. |E| BDD Greedy (d = 1) Greedy (d = 2)

Time Graph size Time Graph size Time Graph size

3 2.4 1.14ms 2.0 0.01ms 2.0 (+0.0%) 0.02ms 2.0 (+0.0%)
4 4.1 4.04ms 3.0 0.03ms 3.1 (+3.3%) 0.07ms 3.1 (+3.3%)
5 6.1 18.4ms 4.4 0.07ms 4.6 (+4.5%) 0.21ms 4.6 (+4.5%)
6 9.0 56.5ms 5.4 0.15ms 5.9 (+9.3%) 0.57ms 5.9 (+9.3%)
7 13.4 266.0ms 7.3 0.31ms 9.3 (+27.4%) 1.47ms 8.3 (+13.7%)
8 17.3 666.0ms 9.5 0.61ms 12.5 (+31.6%) 2.82ms 10.6 (+11.6%)
9 23.2 3947.0ms 11.4 1.17ms 15.0 (+31.6%) 5.15ms 12.7 (+11.4%)
10 28.6 24 297.0ms 13.9 1.93ms 18.7 (+34.5%) 10.2ms 15.9 (+14.4%)

Table 3: This table shows the results of the second experiment. For 10 graphs of orders 3 through
10, we show the average graph size along with the average orbit computation time and
the average size of the reduced graph obtained by both the BDD program and the
greedy algorithm (with depths 1 and 2). The percentual differences between the greedy
algorithms’ smallest graph sizes and the optimal solution are shown in parentheses.

Comparing the BDD and greedy programs using this data, the results are as expected: the greedy
algorithm is magnitudes faster (even at depth 2) compared to the BDD algorithm, but at the
cost of lower accuracy in terms of the smallest graph found. However, the lost accuracy of the
greedy approach is relatively small, particularly with the greedy algorithm at depth 2. However,
the disparity between the greedy algorithm’s result and the true minimum graph size grows larger
as the graph’s order increases. Therefore, for graphs with more nodes, it appears that the greedy
program becomes less appropriate to use than, for example, gs bdd or brute force.

5.3 Orbit dataset generation

As one of the goals of this thesis is to form a dataset of as many orbits as possible, in the third
experiment, we attempt to compute all orbits of graphs with as many nodes as possible. We again
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measure the time and memory needed to perform this computation. If, after 24 hours, a computation
has not finished yet, we terminate it as it is not likely to succeed within a reasonable time.

From the data garnered from this experiment, we collected the following statistics for each graph
order: the number of orbits, the distribution of the orbit sizes, and the distribution of the sizes of
the minimum graph in each orbit, i.e.: how many graphs with N nodes can be reduced to having
only k edges? For this last question, results become more relevant if we filter out disconnected
graphs, again by using networkx’s is connected method. If we had not excluded disconnected
graphs such as, for example, the 8 · (8− 1)/2 = 28 eight-node graphs with only one edge, our data
would have suggested that large graphs are much more reducible than they truly are.

For this experiment, we were able to compute all 307,480 orbits of all 270,566,475 graphs of one
through eight nodes. The entire dataset of orbits can be found in our GitHub repository at [16].
Table 4 provides an overview of the number of orbits found and the time and memory consumed
during this exploration of all orbits of a given order.

Graph order #Orbits Time (s) Mem (bytes)

1 1 0.0002 16
2 2 0.0007 48
3 5 0.006 144
4 18 0.047 720
5 93 0.45 7,888
6 760 8.1 126,336
7 10,773 665 6,481,776
8 295,828 ±70,500 408,515,312

Table 4: The results of executing FindAllOrbits(N) for N = 1, 2, . . . , 8, detailing the number of
orbits found, the computation time, and the peak memory consumption for the storage
of the orbits’ BDDs. The measurement of the computation time of all eight-node orbits is
approximated, due to the program needing to be paused frequently to prevent throttling.

It is important to note that the computation of all seven- and eight-node orbits, spread out over
multiple cores, was a computationally very intensive task. Particularly with the computation of all
eight-node orbits, it was hard to gather concrete results regarding the computation time, as the
computation was slowed down significantly due to throttling. Therefore, we decided to implement
the possibility to automatically pause and resume the computation (and time measurement) at
a given time interval, in order to prevent overheating and get a more accurate result for the
computation time.

Our BDD implementation was not able to compute the orbits of all graphs of nine or more nodes
within a reasonable time. Even though our first experiment showed that the program is capable of
computing orbits of graphs of order nine or ten as well, the computation of all graphs of this size
would likely take months and require more memory than is available in most contemporary PCs.

Lastly, the graphical representations of the distribution of the graph sizes of the minimum graphs in
the orbits, as well as the distribution of orbit sizes, are shown in Figures 7 and 8. The full numerical
results corresponding to these graphs are shown in Appendix A.
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Figure 7: Six histograms showing the frequency (relative to the total number
of orbits) of the sizes of the orbits, for all orbits of graph sizes |V | = 3 through
|V | = 8.
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6 Conclusions and Further Research

This thesis explored various methods of computing the minimum graph in an orbit of a given
target graph—an important calculation when performing graph state preparation. In particular,
we proposed a new method for this computation using binary decision digrams. Our experiments
have shown that using BDDs is an efficient manner of computing minimum graphs in an orbit,
particularly when computing larger orbits or orbits of graphs of a high order (|V | ≥ 8).

For graphs of low order, we found a brute-force approach to be faster while also consuming less
memory. Furthermore, a greedy approach was found to be multitudes faster than either of the other
algorithms, but with the trade-off of significantly decreasing the computation’s accuracy. Using
the greedy algorithm for an approximation of the smallest graph in an orbit can perform within a
reasonable margin, particularly when the graph order is low (|V | ≤ 8) and the algorithm is allowed
to look one LC-layer further ahead (i.e., depth = 2).

Our BDD-based approach considered all isomorphic graphs separately, prompting further research to
explore the benefits of merging isomorphic graphs while using BDDs. Although the implementation
of this appears complex and has not been studied in this thesis, this would allow for a better
comparison to other research on orbit computation and pave the way to further solidify the potential
of using BDDs for graph state exploration.

Since this thesis was not able to find a proof for a classification of the complexity of finding the
smallest graph state in an LC orbit (as discussed in Section 1.1), further research is needed to
(dis)prove the NP-hardness of the problem. If it is shown to be in P, a polynomial algorithm
could then be used to compute the smallest graph state in an orbit. Until that time, in situations
where isomorphic graphs are not excluded, BDDs have now been shown to be an efficient manner
of computing a target graph’s local complementation orbit during graph state preparation.

22



References

[1] Jeremy C Adcock, Sam Morley-Short, Axel Dahlberg, and Joshua W Silverstone. Mapping
graph state orbits under local complementation. Quantum, 4:305, 2020.

[2] Anna Bernasconi, Valentina Ciriani, Fabrizio Luccio, and Linda Pagli. Exploiting regularities
for Boolean function synthesis. Theory of Computing Systems, 39:485–501, 2006.

[3] Nicolas Borie. Generating tuples of integers modulo the action of a permutation group and
applications. Discrete Mathematics and Theoretical Computer Science, 11 2012.
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A Full results of experiments

The below table shows the full (non-logarithmically scaled) numerical results of the first part of
the first experiment, in which we compare the computation time and memory consumption of our
BDD and brute-force programs. This is the data that is graphically represented in Figure 5.

Graph order Avg. orbit size BDD Brute-force

Time Mem. usage Time Mem. usage

3 4 1.15ms 276 0.04ms 384
4 11 4.82ms 1038 0.26ms 1248
5 45 19.59ms 4803 2.65ms 6628
6 197 77.82ms 29 782 23.3ms 36 278
7 659 232ms 150 616 149ms 152 630
8 1980 500ms 594 512 779ms 555 945
9 6307 2452ms 2 781 694 4302ms 2 187 004
10 40434 19 586ms 16 311 721 24 441ms 9 069 840

Table 5: Average computation time and memory usage (in bytes) for running ComputeOrbit on
10 randomly generated graphs for |V | ranging from 3 through 10, for both gs bdd and
brute force. For reference and reproducability, we also included the average orbit size for
the 10 random graphs.

In the following table, the entire distribution of orbit size frequencies for all graph orders, resulting
from our third experiment in which we generated orbit datasets, as detailed in Section 5.3, is shown.

Table 6: The frequency of all orbit sizes for graph orders 3 through 8.

#Nodes Orbit size Freq. (#orbits) #Nodes Orbit size Freq. (#orbits)

3 1 4 8 52 840
3 4 1 8 54 168
4 1 10 8 55 210
4 4 4 8 56 560
4 5 1 8 57 210
4 11 3 8 58 280
5 1 26 8 60 210
5 4 20 8 61 420
5 5 5 8 62 840
5 6 1 8 63 210
5 11 15 8 64 280
5 14 10 8 66 280
5 30 15 8 82 5040

Continued on next page
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Table 6: Full results of the third experiment (continued)

#Nodes Orbit size Freq. (#orbits) #Nodes Orbit size Freq. (#orbits)

5 132 1 8 104 3360
6 1 76 8 106 5040
6 4 80 8 108 840
6 5 30 8 110 2520
6 6 6 8 112 2520
6 7 1 8 120 840
6 11 90 8 121 315
6 14 60 8 126 840
6 16 10 8 130 1680
6 17 15 8 132 840
6 18 10 8 134 1680
6 30 90 8 135 420
6 38 60 8 136 1680
6 39 45 8 138 2520
6 40 15 8 139 1260
6 41 15 8 140 2100
6 82 90 8 142 2520
6 132 7 8 145 1260
6 176 45 8 148 105
6 372 15 8 149 420
7 1 232 8 151 630
7 4 350 8 152 315
7 5 140 8 176 2520
7 6 42 8 220 840
7 7 7 8 224 5040
7 8 1 8 232 2520
7 11 420 8 236 5040
7 14 420 8 264 210
7 16 70 8 284 3360
7 17 105 8 288 4200
7 18 70 8 290 5040
7 20 56 8 294 2520
7 22 35 8 296 3360
7 30 630 8 300 2940
7 38 420 8 302 2520
7 39 315 8 306 5040
7 40 105 8 308 2520
7 41 105 8 312 2520
7 44 105 8 314 2520

Continued on next page
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Table 6: Full results of the third experiment (continued)

#Nodes Orbit size Freq. (#orbits) #Nodes Orbit size Freq. (#orbits)

7 46 105 8 318 3360
7 48 175 8 372 840
7 50 315 8 484 2520
7 52 105 8 492 5040
7 82 630 8 504 2520
7 104 420 8 528 224
7 106 630 8 532 270
7 108 105 8 612 6720
7 110 315 8 616 2100
7 112 315 8 636 840
7 132 49 8 640 5040
7 176 315 8 644 5040
7 220 105 8 648 11 339
7 224 630 8 652 1260
7 232 315 8 656 5040
7 236 630 8 660 1316
7 372 105 8 668 12 600
7 484 315 8 680 3150
7 492 630 8 692 840
7 504 315 8 704 630
7 528 21 8 1052 2880
7 532 30 8 1056 840
7 1052 360 8 1096 840
7 1056 105 8 1320 2520
7 1096 105 8 1356 5038
8 1 764 8 1368 1260
8 4 1456 8 1380 12 599
8 5 700 8 1404 10 079
8 6 224 8 1408 5040
8 7 56 8 1424 10 496
8 8 8 8 1428 2520
8 9 1 8 1436 840
8 11 2100 8 1448 2520
8 14 2240 8 1452 168
8 16 560 8 1468 5460
8 17 840 8 1492 420
8 18 560 8 1628 210
8 20 448 8 2784 1
8 22 280 8 2848 2

Continued on next page
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Table 6: Full results of the third experiment (continued)

#Nodes Orbit size Freq. (#orbits) #Nodes Orbit size Freq. (#orbits)

8 23 28 8 2904 210
8 24 56 8 2932 2520
8 25 35 8 2952 3360
8 26 56 8 3004 10 077
8 27 35 8 3024 840
8 30 3360 8 3032 2520
8 38 3360 8 3072 2520
8 39 2520 8 3088 5040
8 40 840 8 3092 5040
8 41 840 8 3156 3480
8 44 840 8 3160 2520
8 46 840 8 3168 35
8 48 1400 8 3248 315
8 50 2520
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