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Abstract

Convolutional Neural Networks(CNNs) have been successfully used in image classification tasks,
with architectures like AlexNet, VGG, and ResNet setting performance benchmarks on various
tasks. The pooling layer is one of the building blocks of CNNs, crucial in reducing spatial
dimensions and improving computational efficiency. The most common pooling methods are
maximum and average pooling. However, research has indicated that these pooling methods
are not qualified to be optimal. In this study, a new pooling method named AVG-Mixed is
proposed. This pooling method aims to improve the overall performance of CNNs on image
classification by combining the values from both max and average pooling. Furthermore, this
study further investigates the effectiveness of AVG-TopK, a recently proposed pooling method
previously evaluated in LeNet, and transfer learning models like ResNet50. The AVG-Mixed
and AVG-TopK pooling methods aim to combine the strengths of traditional pooling methods
while mitigating their weaknesses by providing a more balanced approach.
The main objective of this study is to investigate the effectiveness of the AVG-Mixed and AVG-
TopK pooling methods in CNNs for image classification tasks. The effectiveness of AVG-Mixed
and AVG-TopK is assessed by integrating them into AlexNet, VGG16, and ResNet34 networks,
and evaluating their performance on the MNIST, CIFAR-10, and CIFAR-100 datasets using
accuracy and confusion matrices. A comparative assessment is conducted to determine the
impact of the custom pooling methods on the performance of CNNs, comparing them with
standard max pooling.
The experimental results demonstrate that the AVG-Mixed pooling method improved the
performance of VGG16 and ResNet34 on the CIFAR-10 and CIFAR-100 datasets, compared
to their baseline models with max pooling. The AVG-TopK pooling method slightly improved
the performance of AlexNet on CIFAR-10, compared to the baseline model with max pool-
ing. Additionally, the AVG-TopK pooling method consistently improved the performance
of ResNet34 on the MNIST, CIFAR-10, and CIFAR-100 datasets, compared to the baseline
ResNet34 model with max pooling.

Keywords: Convolutional Neural Networks, Pooling Methods, Image Classification, Down-
sampling.
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1 Introduction

1.1 Background and motivation

Deep learning, a branch of machine learning, has made breakthroughs in fields such as computer
vision, natural language processing, and speech recognition. This approach has surpassed traditional
machine learning approaches in many tasks by its ability to automatically learn feature representa-
tions from large volumes of data and handle non-linear relationships [11]. One of the most prominent
deep learning networks for computer vision tasks is Convolutional Neural Networks(CNNs) [48, 28].
CNNs can learn hierarchical feature representations directly from the data and identify patterns in
images that would be difficult for traditional machine learning algorithms to achieve [11].
The neocognitron, which was proposed by Fukushima in 1980, is recognized as the origin of deep
CNNs [12]. Its architecture was inspired by the neurophysiological findings, from the research by
Hubel and Wiesel, on the visual cortex of mammals [12]. In 1998, LeNet-5 [26] was proposed which
is one of the first successful applications of CNNs for image classification tasks. Despite its success,
this early attempt was limited by the small size of available datasets and the low computational
power at the time. CNNs have become state-of-the-art image classifiers since the ImageNet Large
Scale Visual Recognition Competition(ILSVRC) in 2012 [24] [38]. This competition has been crucial
in demonstrating the effectiveness of deep CNNs in image classification, object detection, and other
computer vision tasks.
CNNs consist of three main types of layers: convolutional layers, pooling layers, and fully connected
layers. In the convolutional layers, different kernels are applied to convolve the input image to
create feature maps. This layer is often followed by a pooling layer that reduces the size of the
feature maps and network parameters. The two main purposes of the pooling layer are to reduce
the computational costs by reducing the number of parameters and to prevent the model from
overfitting [14]. The pooling layer is often followed by a flattening layer and fully connected layers.
In the flatten layer, the multi-dimensional feature maps are converted to 1D vectors that are used
in the fully connected layers for the classification of the images.
Despite their success, CNNs are a relatively new technology, and there is a lot of research being
done on enhancing their performance and capabilities. A significant focus is on improving pooling
methods to better capture important features while reducing the spatial dimensions of feature maps
[7]. The pooling layer greatly influences the performance of CNNs, which makes it essential to pay
more attention to the choice of the pooling function. The effectiveness of the pooling method is
influenced by, among others, the dataset and the specific computer vision task [7].
Max pooling and average pooling are the most commonly utilized pooling methods in CNNs due to
their simplicity and usability [50]. Max pooling selects the largest value within each pooling window,
while average pooling computes the average value within each window. Moreover, max pooling
assumes that the most discriminative feature should be of the maximum activation value while
average pooling assumes the local equality of features. In tasks such as image classification, where
the presence of certain features is more important than the precise location, max pooling is often
superior in performance compared to average pooling [8]. In tasks such as semantic segmentation
[30], where the precise spatial locations of features are important, average pooling is often more
suitable [33]. Each of the two pooling methods has advantages and disadvantages due to the
inherent quantization errors in the pooling process [29]. These widely used pooling methods may
prevent discriminative details from being retained, which is crucial for image recognition and
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classification tasks [13]. Therefore, it has been argued that the optimal pooling method for a given
classification problem may be neither max nor average pooling, but something in between [7].
New pooling methods have been proposed to overcome the limitations of max and average pooling.
Mixed pooling, a method that randomly chooses between max pooling or average pooling, was
proposed to promote the generalization ability of pooling [49]. This method successfully improved
the overall performance of the pooling results but failed to reflect the advantages of both traditional
pooling methods at the same time. In a later study, mixed max-avg pooling was proposed, which
replaces the previous random choice between max or average pooling with a mixing proportion that
is learned during training [27]. The features of both max and average pooling could be reflected
in the pooling process by this mixing proportion mechanism. Another recent study proposed the
AVG-TopK pooling method, a method that selects the K highest activation values and computes
the average [33]. The experimental results of this study demonstrated that the AVG-TopK pooling
method achieved improved performance compared to traditional pooling methods. However, the
AVG-TopK pooling method was only evaluated on the LeNet architectures and transfer learning
models, such as DenseNet. The LeNet model was trained from scratch but is a relatively simple
model and the pre-trained models provide limited transparency in the training process.
Despite the advancements in the novel pooling methods, several potential gaps remain in the field.
The new pooling methods are often evaluated using either basic CNN architectures or transfer
learning models. Therefore, there is little insight into the generalizability and effectiveness of
the new pooling methods in improving the performance of popular CNN architectures, such as
VGG16 and ResNet34. The design of the CNN architecture could influence the effectiveness of
the pooling method [7], making it important to evaluate novel pooling methods across different
CNN architectures that are trained from scratch to understand their impact. Therefore, this study
investigates the impact of the recently proposed AVG-TopK pooling method on the performance
of CNNs by integrating it into three benchmark CNNs: AlexNet [24], VGG16 [42], and ResNet34
[19]. Moreover, this study aims to address the research gaps in the earlier study [33] by providing
potential valuable insights on the effectiveness of the AVG-TopK pooling method in different CNN
architectures than those earlier investigated.
Additionally, this study aims to contribute a new pooling method, called AVG-mixed, for min-
imizing information loss in the pooling layer. This pooling method is proposed to address the
limitations of max and average pooling, by providing a more balanced approach that combines the
strengths of both pooling methods The proposed AVG-Mixed pooling method could be used as a
replacement for standard pooling methods in different CNN architectures. Additionally, it could
improve existing pooling techniques in the field by providing valuable insights into the effectiveness
of the AVG-Mixed pooling method in different CNN architectures.

1.2 Research objectives

The main objective of this study is to investigate the effectiveness of the AVG-Mixed and AVG-
TopK pooling methods in CNNs for image classification tasks. Additionally, this study explores
whether these custom pooling methods can improve the performance of CNNS, compared to the
standard max pooling method. Both custom pooling methods aim to address the limitations of
traditional pooling methods and are like traditional pooling methods, simple and user-friendly.
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The AVG-Mixed pooling method has not been proposed in earlier studies. This pooling method
computes the average of the average value and the maximum value within each pooling window of
feature maps. The aim is that this method integrates the benefits of the two traditional pooling
methods: max pooling and average pooling. This could lead to improved performance in terms of
accuracy by maintaining the balance between generalization and specificity.
The AVG-TopK pooling method was proposed in another study where it was trained on a different
CNN architecture [33]. The main aim of this pooling method is to prevent the loss of high
representative values, which are discarded by the traditional pooling methods. This is achieved
by selecting the K highest values and computing the average of those values, within each pooling
window.
The new pooling methods will be evaluated by integrating them into popular CNN architectures:
AlexNet [24], VGG16 [42], and ResNet34 [19]. The performance of the CNNs, which will be
trained from scratch, will be assessed on benchmark datasets, including MNIST [25], CIFAR-10,
and CIFAR-100. The performance of the baseline CNN models, with standard max pooling,
on image classification tasks is compared with the performance of the models with the custom
pooling methods by utilizing established evaluation metrics: accuracy and confusion matrix. The
comparative assessment aims to provide valuable insights into how the custom pooling methods
impact the performance of CNNs in image classification tasks.

1.3 Thesis overview

The remainder of this thesis is organized as follows. In Section 2, an overview of the literature on
CNN architectures, and more specifically on AlexNet, VGG, and ResNet is provided. Traditional
pooling methods, their functionalities, and limitations are also discussed in this section. In Section
3, an overview of related work on custom pooling methods for CNNs is provided. Section 4
describes the methodology used in the experiments. It starts with a comprehensive description
of the software and hardware that are used in this study. Furthermore, the two custom pooling
methods, Avg-TopK and Avg-Mixed, that are implemented in this study, are described. This is
followed by a detailed description of the architectures of the baseline CNN models and the datasets
that were used. This chapter also outlines the data preprocessing steps and the evaluation metrics
that were used in the experiment. Section 5 describes the experimental setup and presents the
results from the experiments in tables and figures. This section includes data on the accuracy of
AlexNet, VGG16, and ResNet34 using both standard and custom pooling methods on the three
datasets. Analysis of the performance data is also provided through the confusion matrices and
plots. Section 6 discusses the experimental results and provides insights into their implications
for the performance of the CNNs. Also, it addresses the limitations of this study and offers sug-
gestions for future research. Finally, in Section 7, the thesis is concluded by summarizing the findings.

This thesis is part of the bachelor program Data Science and Artificial Intelligence at the Leiden
Institute of Advanced Computer Science (LIACS) at Leiden University and was written under the
supervision of Prof. Dr. Michael Lew and Dr. Erwin Bakker.
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2 Theory

This study evaluates the effectiveness of two custom pooling methods in different CNN architectures
for image classification tasks. This section aims to provide an overview of the theoretical concepts
necessary to comprehend the methodology that follows.
First, in Section 2.1, the building blocks of CNNs will be described, followed by Section 2.2 which
provides a detailed explanation of the two traditional pooling methods. Section 2.3 will provide
theory on the three popular CNN architectures, that are used in this study: AlexNet, VGG16,
and ResNet34. More specifically, it includes the key features that make the CNNs successful in
computer vision tasks.

2.1 Convolutional Neural Networks

A Convolutional Neural Network(CNN) is a type of Deep Learning network that performs ex-
ceptionally well on vision tasks, such as image classification [47] and object recognition [32], in
comparison to other Artificial Neural Networks(ANNs) [2, 28]. The difference between CNNs and
other ANNs is that the architecture of CNNs is inspired by the connectivity pattern of the visual
cortex of humans, which plays an important role in processing visual stimuli [2] ĊNNs are able
to automatically and adaptively learn what features in the filters are most important for a given
task, while engineers had to manually design filters based on heuristics to handle image features in
traditional image processing algorithms [26]. Furthermore, the weight-sharing property of CNNs
has been a revolutionary concept in the field of deep learning and differentiates CNNs from other
types of neural nets [2, 28]. Weight sharing reduces the number of parameters in the network by
sharing the same set of weights, also known as filters or kernels, across different parts of the input,
making the network less complex and easier to train. Also, weight sharing contributes to translation
invariance, allowing CNNs to recognize patterns in images regardless of their position [26].
CNNs typically consist of three main layers: convolutional layers, pooling layers, and fully-
connected(FC) layers. First, the convolutional layers convolve the image to detect features that
could be used to classify the image. Then, the pooling layer will reduce the number of parameters
in the input data. Finally, the fully connected layer performs the classification task.

2.1.1 Convolutional layers

Convolutional layers are one of the building blocks of CNN architectures. The process starts
by sliding a kernel, also called filter, on the input image to detect important features. Each
convolutional kernel is, by default, initialized with a random weight matrix which is then adjusted
during the training process through backpropagation [2]. This allows the network to automatically
learn the best set of kernels for a given task. The convolutional layer computes the dot product
between the kernel and the receptive region of the input to generate a feature map that shows the
presence of the detected features in the image. The same kernel is applied to all regions in the
input image, the shared weights allow the model to detect the same features regardless of their
position. In a single convolutional layer, a series of convolutional kernels can be applied to produce
a set of feature maps. Each kernel corresponds to a specific feature the layer will seek to identify.
The feature maps will be stacked together and serve as input for the next layer in the architecture,
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enabling CNNs to gradually build a hierarchical representation of the image. Usually, the kernels
in the first layers detect basic features, such as lines, and the subsequent layers are more complex,
combining the simpler features that were identified earlier to recognize more complex patterns,
such as shapes [1].

2.1.2 Pooling layers

The convolutional layer is typically followed by a pooling layer. Pooling layers reduce the dimen-
sionality of the feature maps generated by the convolutional layers, which makes the network more
computationally efficient and less prone to overfitting [7]. Dimensionality reduction is conducted by
sliding a fixed-shape window, known as a pooling window, across the input feature maps. Within
each pooling window, a pooling function is applied and the output value generated within each
window replaces the original values within that window. Figure 1 illustrates a feature map and
a pooling window, demonstrating how the pooling process operates. Similar to a convolutional
operation, this process is repeated across the entire feature map until all regions have been processed.
Unlike convolutional operation, the pooling window does not have any trainable weights associated
with it [10].
The pooling layer serves two primary purposes. Firstly, it reduces the dimensionality of feature
maps, thereby reducing computational complexity and memory usage, and speeding up the training
time. Secondly. it extracts the relevant features while minimizing redundant information, thereby
limiting the risk of overfitting and improving the model’s generalization ability. The pooling layer,
along with the convolutional layer, contributes to translation invariance, making the model more
robust to small variations in the position of the features [7].
The most common type of pooling is max pooling, which surveys all of the pixels contained within
its receptive field as the pooling window sweeps across the input feature maps and selects the pixel
with the maximum value. Another common pooling method, known as average pooling, takes a simi-
lar approach but calculates the average value within each window instead of the maximum value [10].

Figure 1: Illustration of a pooling process: the feature map(bottom) and the downsampled feature
map(top)
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2.1.3 Fully-connected layers

A Fully Connected(FC) layer is a type of layer that is typically found towards the end of a CNN
architecture. In image classification tasks, the FC layer plays a critical role in classifying images
based on the features extracted by the preceding layers.
The output tensors from the preceding layers are flattened before they can be fed to the FC layer.
In this process, known as flattening, the multi-dimensional tensors from the pooled feature maps
are converted to a 1D linear vector. Furthermore, all the neurons in the FC layer are connected to
neurons of the adjacent layers. In each neuron, the weighted sum of the input is calculated and
an activation function is applied to the output of the neuron. This allows the model to learn the
relationships in the data and to make predictions based on a combination of different features.
In the CNNs that are used for image classification tasks, the number of neurons in the final FC
layer matches the number of classes. The activation function in the final FC layer normalizes the
output of the network to a probability distribution over predicted output classes.

2.2 Popular pooling methods

2.2.1 Max pooling

Max pooling [35] is a technique that selects the highest value within each pooling window, producing
a downsampled feature map that retains the most prominent features from the previous layer. The
max pooling method is especially effective in images with dark backgrounds and lighter regions
of interest, as the max pooling method retains the brighter pixels, which represent the dominant
features of the image [34]. For example: it is effective for the MNIST dataset because the digits are
represented in white color and the background is black [4].
The benefit of this pooling method is that it effectively captures the higher activation values which
is useful in tasks such as object recognition [32] where the higher activations are essential. Also, it
is robust to noise as small variations in other values will be ignored [10].
However, the max pooling method also has drawbacks: it ignores the information of other values
which may lead to the loss of valuable, often small-sized, features [52]. Also, high noise in a single
activation value could result in the selection of an outlier. This could affect the result significantly,
causing degradation of the performance of the model [3].

The max pooling function is defined as:

Omax(X) =
(

N
max
i=1

Xi

)
(1)

where N represents the total number of elements in the pooling window X, and Xi denotes the
i-th element within the window.

2.2.2 Average pooling

Average pooling [26] computes the average value of the pixels within each pooling window and uses
it to create a downsampled feature map. This pooling method is especially successful in images
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with minimal color variation [33] or when the exact location of features is not crucial.
The benefit of this pooling method is that it captures the central tendency of the activation
values by retaining information from all values in the window. This method is more robust to
outliers relative to max pooling because it averages all values, preventing a single extreme value
from significantly altering the results. However, there are also drawbacks, such as its inability to
capture the dominant features from the feature maps. All the values in the pooling window are
treated equally and we could lose the distinctions between certain features in images, which can
be problematic for some tasks such as object detection and image classification. Moreover, if the
number of high-energy pixels is low or the number of low-energy inputs is high, then the average
pooling method is disadvantageous [33]. Hence, average pooling is more suitable when the overall
texture or pattern is more important than specific details in image classification tasks.

The average pooling function is defined as:

Oavg(X) =

(
1

N

N∑
i=1

Xi

)
(2)

where N represents the total number of elements in the pooling windowX and Xi denotes the i-th
element within the window.

2.3 Benchmark CNN models

2.3.1 AlexNet

The AlexNet architecture was introduced in 2012 in the ImageNet Large Scale Visual Recog-
nition(ILSVR) challenge. This CNN is one of the first deep convolutional networks to achieve
significant accuracy on the challenge with an accuracy of 74.7%. The main reason this model
achieved significant high performance in the competition is its depth which was expensive compu-
tationally but was made feasible due to GPUs during training [24]. AlexNet was one of the first
CNNs that used GPU to increase performance. Furthermore, it introduced several new concepts
that have inspired the research of future models [36]. One of the key features of this model is
data augmentation, which includes mirroring and cropping the images, to increase the variation in
the training dataset and thereby reduce overfitting. The CNN also distinguishes itself from other
popular CNNs by using overlapped max pooling layers which are max pooling layers with strides
less than the window size [28]. Furthermore, AlexNet uses the ReLU activation function, which
allows the model to train much faster than the commonly used saturating activation functions, like
tanh or sigmoid. The original paper showed that AlexNet achieved a 25% training error rate six
times faster than an equivalent network with tanh [24]. Due to the unbounded nature of ReLU,
AlexNet introduces Local Response Normalization(LRN) to prevent the learned variables from
becoming unnecessarily high. Furthermore, AlexNet also addresses the overfitting problem by
including drop-out layers in the architecture, where a connection is dropped during training with a
probability of 0.5. Some of the introduced concepts in this model are still the standard for current
CNNs.
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Figure 2: AlexNet architecture [24])

2.3.2 VGG

The Visual geometric group(VGG) was introduced in the ILSVR-2014 where it was one of the
best-performing architectures [42]. This CNN model is characterized by its simplicity and uniform
architecture, which makes it easy to understand and implement. VGG comes in different depths,
including VGG16 and VGG19.
The VGG16 model significantly outperformed AlexNet, achieving 92.7% test accuracy on the
ImageNet dataset. This is achieved by introducing the concept of grouping multiple convolutional
layers with smaller, 3x3 kernel-sized, filters instead of one convolutional layer with a larger kernel
size. The first captures the same receptive field as the latter kernels while using fewer parameters.
This reduced number of parameters leads to faster learning and more robustness to overfitting.
However, there are also limitations to the VGG models. The two main limitations are the training
time and memory consumption. The original VGG model was trained on the Nvidia Titan GPU
for 2-3 weeks and the model requires a lot of memory as the trained weights are large. Additionally,
as the VGG models became deeper, the model was not able to converge to the minimum error rate.
This problem is known as the vanishing gradient problem and is later resolved in an architecture
known as ResNet [19] by introducing the concept of residual learning with skip connections.

Figure 3: VGG16 architecture [42]
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2.3.3 ResNet

Residual Networks, or ResNets, were introduced in the ILSVR-2015 [19]. One of the well-known
ResNet architectures, ResNet50, achieved state-of-the-art performance in this competition. The
main reason for the design of the model was to address the issue of the vanishing gradient. The
vanishing gradient arises when increasing the number of layers in the CNN. The idea of increasing
the number of layers is that the model will be able to more complex features from images. After
AlexNet won the ILSVR-2012, the consecutive CNN architectures increased the number of layers
to improve the model but experienced difficulties in learning due to the vanishing gradient [6].
ResNet provides an innovative solution, known as “skip connections”, to the vanishing gradient
problem. The skip connection allows the gradient signal to flow more easily through the network
by bypassing one or more layers. The connections allow the network to learn the residual function
instead of learning the complex mapping between the inputs and outputs. The connections also
allow the model to make small updates to the parameters which enables the model to achieve better
performance and converge faster [19]. Therefore, the skip connections allow an increased depth in
CNNs without degrading the performance.
Despite the numerous benefits, ResNet also has a few drawbacks, such as its complexity and
vulnerability to overfitting. Resnet is a complex architecture that requires more computational
resources and memory than shallower networks. The interpretability of the network can also be
challenging, as it learns complex and abstract representations. Also, ResNet is prone to overfitting,
especially in cases where the number of layers in the ResNet network is high and the dataset size is
limited [5].

Figure 4: ResNet34 architecture [31]

3 Related Work

Different new pooling methods [34, 27, 40, 41, 20, 13, 39, 37] have been proposed to overcome
the limitations of traditional pooling methods. A few of the proposed pooling methods will be
described below.
Mixed max-average pooling was proposed with the idea that there are regimes in datasets in
which either max pooling or average pooling performs better than the other [27]. This pooling
method computes the weighted sum of the maximum and average values by learning specific mixing
proportion parameters from the data. This pooling method is evaluated on the five standard
benchmark datasets: MNIST, CIFAR-10, CIFAR-100, SVHN, and ImageNet. The AlexNet
architecture is one of the CNN architectures used in the experiments. The results show that by
replacing the max pooling layers in AlexNet on the ImageNet dataset with the proposed mixed
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max-average pooling method, the test error(top 5, single-view) reduces by 6%.
The mixed max-average pooling function [27] is defined as:

Omix(X) = α
(

N
max
i=1

Xi

)
+ (1− α)

(
1

N

N∑
i=1

Xi

)
(3)

where N represents the total number of elements in the pooling window X, Xi denotes the i-th
element within the window, and α is a weighting factor with 0 ≤ α ≤ 1.

Lp pooling is a successful pooling method, integrated into a CNN that is specifically trained on
the Street View House Numbers dataset to recognize house numbers [40]. This pooling method
is another alternative to the average and max pooling methods that alternates between one or
the other depending on the value of p(i.e. a predefined parameter). The authors argue that the
proposed pooling method achieved state-of-the-art performance in CNNs compared to max and
average pooling. This pooling method is a sort of weighted function that assigns higher weights for
more important features and lower for lesser ones. The value for p ranges from 1 to infinity.

The weighted Lp pooling function [40] is defined as:

OLp(X) =

(
N∑
i=1

(Xp
i ·Gi)

) 1
p

(4)

where N represents the total number of elements in the pooling window X, Xi denotes the i-th
activation value within the window, Gi denotes the i-th Gaussian kernel value within the window,
and p is a parameter that determines the type of pooling. For p = 1, Lp pooling corresponds to
simple Gaussian average pooling, and p → ∞, corresponds to max pooling.

Rank-based pooling is proposed to prevent the problem of relevant information loss encountered
by max and average pooling [41]. In rank-based pooling, the values within each pooling window
are sorted after assigning ranks to each activation value. Then, the desired pooling operation(e.g.
max pooling) is applied to the sorted ranks. This pooling method can be regarded as an instance
of weight pooling where the weighted sum of activation values is used to generate the output.
The benefits of utilizing this method are that important activations can be distinguished by their
ranks, the ranking list is invariant under changes in activation values, and the usage of rank can
avoid the scale problem experienced by value-based methods [41]. Three forms of rank-based
pooling are proposed in the paper: rank-based average pooling, rank-based weighted pooling, and
rank-based stochastic pooling. The three methods are evaluated on four benchmark datasets:
MNIST, CIFAR-10, CIFAR-100, and NORB. The architecture of CNN used in this study is simple,
consisting of three convolutional layers, each followed by a pooling layer [41].
Rank-based average pooling alleviates some of the problems of the traditional pooling methods by
using an average of the top t highest activation values. The weights of the top t highest activation
are set to 1/t, and the other values to 0 [41]. The rank-based average pooling method is identical
to the AVG-TopK pooling method that is being investigated in this study. This equivalence and its
implications will be further discussed in Section 4.3.
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The rank-based average pooling function [41] is defined as:

Orank(X) =
1

N

N∑
i=1

ai (5)

where X represents the pooling window, ai denotes the value of the i-th activation within the
window, and N is the number of activations in the pooling window X that meet the rank threshold
t. The rank threshold t determines which activations are included in the computation.

4 Methodology

4.1 Software and hardware

The experiments were established on the ALICE server platform of Leiden University, and the models
were trained on NVIDIA TESLA T4 GPUs. The most important packages for the implementation
of the CNNs in this study are TensorFlow and Keras.

4.1.1 CUDA and cuDNN

CUDA, version 12.3.2, and cuDNN, version 8.9.7.29, were used in this study to allow for efficient
usage of GPUs. These specific versions of CUDA and cuDNN are the default versions that are
supported by the ALICE server, hence the choice to use those versions. CUDA is a framework, with
cuDNN built on top of it, that provides a general-purpose programming interface for NVIDIA GPUs.
This framework allows applications to use the GPU for different kinds of computing. CuDNN
provides highly optimized GPU implementations for neural networks. It is specifically designed
for deep learning functionalities and offers users GPU acceleration for common operations, like
convolution and pooling. Moreover, CuDNN and TensorFlow are closely connected, which allows
users to efficiently run TensorFlow models on the NVIDIA GPUs.

4.1.2 TensorFlow

TensorFlow, version 2.16.1, was used in this study for the implementation of the neural network
models as this version is compatible with the above CUDA version. TensorFlow is an open-source
framework that provides comprehensive tools for machine learning and deep learning applications.
The framework has a high-level API built on top of it, known as Keras, that simplifies the
construction of machine learning models, making it a suitable choice for research. Furthermore,
TensorFlow offers GPU support, allowing to use NVIDIA CUDA: a parallel computing platform.
The usage of GPUs accelerates the training process of the neural networks.

4.1.3 Keras

Tf-keras, version 2.16.0, was used in this study as this is compatible with the above TensorFlow
version. Keras is a high-level neural networks API, integrated within TensorFlow, that is used
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to facilitate the design and training of deep learning models. Keras provides a simple and user-
friendly interface, which allows for building and training deep learning models. Its integration with
TensorFlow allows it to use the functionalities that TensorFlow provides, i.e. the heavy lifting of
the computations, while maintaining the simplicity in the model development.

4.2 AVG-Mixed

In this study, a new pooling method called AVG-Mixed is proposed. This method involves com-
puting both the average and maximum value within each pooling window of the feature map, and
then taking the average of these two values. The AVG-Mixed pooling method aims to balance
the two traditional pooling methods by averaging the results of both methods. Moreover, it aims
to combine the smoothing effect of average pooling and the feature selection capability of max
pooling, resulting in a more balanced feature representation. This pooling method could improve
the generalization ability of the popular CNNs compared to their original pooling method: max
pooling.

The AVG-Mixed pooling method was implemented by using TensorFlow and Keras. Custom
layers were created to perform the AVG-Mixed pooling method and were integrated into the
AlexNet, VGG16, and ResNet34 networks, replacing the max pooling layers. In the implemented
AVG-Mixed pooling method, the AveragePooling2D() and MaxPooling2D() from TensorFlow’s
Keras API are used to compute the average and max pooling value for each patch of the input
tensor. In each patch, the computed values are averaged, producing an output that captures both
average and maximum values, as demonstrated in Figure 5.

The AVG-Mixed pooling function is defined as:

OAVG-Mixed =
1

2
(max(X) + avg(X)) (6)

where X represents the pooling window of the input feature map.

Figure 5: Sample AVG-Mixed pooling
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4.3 AVG-TopK

The AVG-TopK method was proposed by Cuneyt Ozdemir in 2023 [33]. The proposed pooling
method, AVG-TopK, aims to prevent the loss of high representative values by addressing the
drawbacks of the max and average pooling methods. In max pooling, only the highest value is
selected and all the other values are discarded. In average pooling, the highly representative values
and least representative values are treated equally, often diluting the significance of prominent
features. The proposed AVG-TopK method solves these problems by selecting more than one
representative high value, and averaging these values. Moreover, in the AVG-TopK pooling method,
the K highest activation values are selected from the pooling window of the incoming feature map,
and the average of these values is computed.
In the seminal study [33], the AVG-TopK pooling method was integrated into the LeNet architecture
and different transfer learning models. The effectiveness of the pooling method was evaluated by
conducting a comparative analysis of the AVG-TopK pooling method with different values for K
and different pool sizes. Additionally, the performance of the LeNet models with the AVG-TopK
pooling method was compared to the LeNet models with both max and average pooling. All the
models are trained on MNIST, CIFAR-10, and CIFAR-100. The experimental results show that
this new method is superior to the traditional pooling methods [33].
In this study, the effectiveness of the AVG-TopK pooling method will be further investigated
by integrating the pooling method into different CNN architectures that will be trained from
scratch: AlexNet, VGG16, and ResNet34. This could provide valuable insights into the effectiveness
and generalizability of the AVG-TopK pooling method, as the design of the CNN can greatly
influence the effectiveness of the pooling method. However, after the experiments in this study
were conducted, further investigation revealed that the AVG-TopK pooling method [33] is identical
to the rank-based average pooling method [41], years earlier proposed. Despite this overlap, the
study proceeds with the evaluation of the AVG-TopK pooling method due to its potential for
providing valuable insights into its effectiveness, as the rank-based average was also only evaluated
on a simple CNN architecture [41].

In this study, the Avg-TopK pooling method was implemented by using TensorFlow (TF) and
Keras. Custom layers were created to perform the selection and averaging of top K values. These
custom layers were integrated into the AlexNet, VGG16, and ResNet34 networks, replacing the
max pooling layers. The implementation details of the AVG-TopK pooling method in TF are as
follows: patches(corresponding to the pooling windows) from the input tensor are extracted, using
tf.image.extract patches, and reshaped accordingly. The K values are extracted from each patch,
by using tf.nn.top k with sorted=False to avoid sorting operations as this would have increased
computational load unnecessarily. The K values are then averaged to produce the final output
for each patch, as demonstrated in Figure 6. Additionally, in this study, the value of K in the
AVG-TopK pooling method is set to 3, based on findings from the study by Ozdemir [33] where the
AVG-TopK method with a pooling size set to 3 and K set to 3 demonstrated improved performance
on the LeNet architecture. Additionally, a higher value for K would not be possible for VGG16,
which uses 2x2 pooling windows. For example, setting K to 4 in VGG16 would effectively convert
the AVG-TopK into AVG pooling.
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The AVG-TopK pooling function is defined as:

OAVG-TopK(X,K) =
1

K

K∑
i=1

Xi (7)

where Xi are the top K values selected from the pooling window X of the input feature map.

Figure 6: Sample AVG-TopK pooling

4.4 Models

The implementation of the baseline models, AlexNet, VGG16, and ResNet34, is described below.
The original architectures of AlexNet, VGG16, and Resnet34 are visualized in Figures 2, 3, and 4,
respectively. These models were selected in this study due to their simple structure and powerful
classification capabilities. The three CNN architectures each significantly contributed to the devel-
opment of CNNs. AlexNet was the first CNN that achieved significant performance on ImageNet
at the time. The study on VGG is the first study that provided undeniable evidence that adding
more layers increases performance, which was true up to a certain point. Lastly, ResNet introduced
the concept of residual learning with shortcut connections, which solved the vanishing gradient
problem that deep CNNs, like VGG, experienced.

In this study, the CNNs will be trained on MNIST, CIFAR-10, and CIFAR-100, while origi-
nally designed to classify the ImageNet dataset. The architectures and training process of the
models are replicated as described in their original papers, with the only exception being the weight
and bias initialization in each of the three CNNs and the learning rate in ResNet. Additionally, the
data augmentation steps are not entirely identical to the original augmentation on all three CNNs.
This will be addressed in the below sections.

4.4.1 AlexNet architecture

The exact AlexNet network architecture as implemented in this study is visualized in Figure 22,
highlighting the pooling layers that will be replaced by custom pooling layers in the experiments.
The AlexNet architecture [23] consists of 5 convolutional layers, 3 max-pooling layers, 2 local
response normalization layers, 2 fully connected layers, and 1 SoftMax layer. Out of these layers,
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Only the five convolutional layers and the 3 fully connected layers are weighted. The input to
the CNN is fixed-size 227x227 RGB images. The convolutional and fully connected layers are
regularized with L2 regularization, also known as weight decay, set to 0.0005. The non-linear
activation function ReLU is applied to the output of each convolutional and fully connected layer.
Furthermore, after the first and second convolutional layers, there is a local response normalization
layer. Max pooling layers follow the response-normalization layers and the fifth convolutional
layer. These pooling layers use overlapping pooling windows, sized 3x3 with a stride of 2 between
the adjacent pooling windows. The overlapping regions result in less loss of surrounding spatial
information. After the last convolutional layer, there are two fully connected layers with 4096
outputs. Also, a dropout rate of 0,5 is applied before the first and second fully connected layers.
The final fully connected layer is the output layer which uses a softmax activation function and
produces a distribution that depends on the number of classes in the dataset. The network cannot
be described in detail due to space constraints but is specified in Figure 22.

The original AlexNet model [23] had weights initialized from a zero-mean Gaussian distribu-
tion with a standard deviation of 0.01 and set biases to 1 in specific layers [24]. However, this
specific initialization hindered learning in the implemented AlexNet model in this study. Therefore,
the default weight initialization method of Keras, Glorot uniform initialization [15], is used.

4.4.2 VGG16 architecture

VGG comes in several depths, but this study focuses on the model that supports 16 layers, known
as VGG16 [42]. The exact network architecture as implemented in this study is visualized in Figure
23, highlighting the pooling layers that will be replaced by custom pooling layers in the experiments.
VGG16 is a 16-layer Artificial Neural Network that consists of thirteen convolutional layers and
three fully connected layers. The input to the CNN is fixed-size 224x224 RGB images. The config-
uration of VGG16 has block structures where each block consists of a sequence of convolutional
layers that are followed by a max-pooling layer. The first two blocks consist of two convolutional
layers, each followed by a max pooling layer. The last three blocks consist of three convolutional
layers, each also followed by a max pooling layer. The convolutional and fully connected layers
are regularized with L2 regularization set to 0.0005. Furthermore, all the hidden layers use ReLU
which is an innovation from AlexNet that reduces training time. The biases of all the convolutional
layers and fully connected layers were initialized with zero. Unlike AlexNet, VGG16 does not use
Local Response Normalization, because this increases training time without particularly increasing
accuracy on the ILSVRC dataset [42].
The number of filters in the convolutional layers of the first block is 64 and doubles in the later
blocks until it reaches 512. All the convolutional layers in all blocks use the same padding and
apply the same kernel size(3x3). All the pooling layers in VGG16 have size 2x2 with strides of 2.
As mentioned, the VGG architecture consists of three fully connected layers: two fully connected
hidden layers and one fully connected output layer. The first two fully connected layers have 4096
channels each. The output layer consists of several channels that correspond to the number of
categories of the dataset. The final layer in this architecture, that performs the classification, is the
softmax layer.

In the original VGG16 architecture, the weights of the first four convolutional layers and the
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last three FC layers were pre-trained and initialized with specific values, while the intermediate
layers were initialized randomly from a normal distribution with zero mean and 0.01 variance.
However, the authors described in the original paper [42] that it is possible to initialize the weights
without pre-training by using the Glorot uniform initialization. This implies that a similar effect is
achieved with both initialization techniques. Therefore, for consistency, simplicity, and to address
the learning issues encountered with AlexNet, Glorot uniform initialization [15] was also used in
the experiments with the VGG16 models.

4.4.3 ResNet34 architecture

ResNet comes in several depths, but this study focuses on the model that supports 34 layers,
known as ResNet34 [19]. The reason this ResNet architecture is chosen in this study, rather than a
deeper architecture like ResNet50, is due to simplicity reasons. The exact network architecture as
implemented in this study is, partially, visualized in Figure 24, highlighting the pooling layer that
will be replaced by custom pooling layers in the experiments.
ResNet34 is a 34-layer CNN that consists of thirty-three convolutional layers and one fully connected
layer. The input to the CNN is fixed-size 224x224 RGB images. The convolutional and fully
connected layers in this network are regularized with weight decay set to 0.0001. Furthermore, the
biases of all the convolutional layers and fully connected layers were initialized with zero. This
CNN has one initial convolutional layer that consists of 64 filters with a kernel size of 7x7, followed
by batch normalization and ReLU activation. This layer is followed by a max pooling layer which
downsamples the spatial dimensions by 3x3 with a stride of 2. The rest of the architecture consists
of four sets of residual blocks with similar structures that consist of 2 convolutional layers with
filters of size 3x3, where each convolutional layer is followed by Batch Normalization and ReLU. In
each block, the shortcut connections are included that add the input of the residual block to the
output. The first set consists of 3 residual blocks, where each layer contains 64 filters. In the other
three sets, the structure is similar but with an increasing number of filters in each set, and applies
downsampling by using a stride of 2 in the first convolutional layer of each set. In the other blocks,
a stride of size 1 is used. The second set consists of 4 residual blocks, where each convolutional
layer contains 128 filters. The third set consists of 6 residual blocks, where each convolutional layer
contains 256 filters. The fourth set consists of 3 residual blocks, where each convolutional layer
contains 512 filters. Following these blocks, the feature maps are passed through the global average
layer and then through one fully connected layer to classify the images.

In the original ResNet34 architecture, a zero-mean Gaussian distribution with a standard de-

viation of
√

2
nl

is used to initialize the weights [19] [18]. This weight initialization method, called

He initialization, is particularly well-suited for the ReLU activation and is proposed to allow
extremely deep models to converge, while the Glorot method [15] cannot. However, in this study,
for consistency and simplicity, the Glorot initialization with uniform distribution is used in the
ResNet34 models as well. The Glorot initialization is not the most optimal choice for the ReLU
activation function but worked well enough in the experiments. Moreover, the inventor of Glorot
initialization argues that there is no vanishing gradient problem in the ReLU [16]. Therefore, the
choice to use Glorot initialization for consistency in the experiments should not hinder the learning
process of the models.
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4.5 Datasets

The below datasets are classic datasets widely used for training and evaluating deep learning models
on image classification tasks.

4.5.1 MNIST

The MNIST dataset contains a total of 70000 images which are divided into 60000 training images
and 10000 testing images [25]. The images are divided into 10 different classes, each representing a
digit from range 0 to 9. The images in this dataset are grayscale and have a size of 28x28. The
samples are handwritten by different individuals, covering variations. Therefore, it’s a valuable
dataset for assessing the generalization ability of models in digit recognition tasks.
The MNIST dataset originally consists of three dimensions but is transformed by adding a fourth
dimension to represent the number of channels. Since images in MNIST are grayscale, the number
of channels is 1. This four-dimensional input shape is required by Keras, hence the transformation.

Figure 7: Samples from the MNIST dataset [33]

4.5.2 CIFAR-10

The CIFAR-10 dataset contains a total of 60000 images which are divided into 50000 training
images and 10000 testing images [23]. The images are divided into 10 different classes, with each
class having 6000 images. These classes include, among others, airplanes, cars, birds, cats, deer,
and dogs. Each image in this dataset consists of RGB channels and has a size of 32x32. CIFAR-10
has become one of the benchmark datasets, extensively used, due to its relatively small size and
diverse categories.
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Figure 8: Samples from the CIFAR-10 dataset [33]

4.5.3 CIFAR-100

The CIFAR-100 dataset contains a total of 60000 images which are divided into 50000 training
images and 10000 testing images [23]. The images are equally divided into 100 different fine-grained
classes, with each class having 600 images. These classes include a wide range of objects, animals,
and items. Each image in CIFAR-100 consists of RGB channels and has a size of 32x32 pixels.
This dataset is an extended version of the CIFAR-10 dataset.

Figure 9: Samples from the CIFAR-100 dataset [33]

4.6 Data preprocessing

In the VGG and ResNet papers [42] [19], the authors described they used identical preprocessing
methods on the training data as described in the paper on AlexNet [24]. The preprocessing steps
regard the centering and augmentation of the data. Centering can help improve stability during
learning. Centering is applied on the datasets which means the mean of the training data is
subtracted from the data. After centering, from each dataset, 10% of the training data is allocated
for the validation set in this study. Data augmentation is applied to the training data as this can
improve the generalization ability of CNNs by reducing overfitting. The augmentation steps on the
training data of the datasets in this study are extracting random 224x224 patches(and randomly
their horizontal reflections) from the resized 256x256 images. Furthermore, the brightness of the
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images is randomly adjusted by a maximum delta of 0.1 and the contrast is randomly adjusted
between a lower bound of 0.8 and an upper bound of 1.2. Random Gaussian noise is also added to
the images with a mean of 0.0 and a standard deviation of 0.01, which is subtle noise. The testing
and validation data are not augmented, merely resized to 224x224 images.

In this study, the input to the AlexNet model is changed to 227x227, even though the paper
[24] mentions 224x224 as the math only makes sense if they are 227x227 [9]. Therefore, the
augmentation steps on the AlexNet network differ from the VGG16 and ResNet as it extracts crops
of size 227x227 from the 256x256 images.

The data augmentation of the training and testing sets in this study differ from the augmen-
tation as described in the original papers of the AlexNet [24], VGG [42], and ResNet [19] networks.
More specifically, the standard color augmentation techniques used in the original implementations
were not applied to the training data on the three networks in this study due to implementation
issues. Instead, the brightness and contrast of the training dataset are randomly adjusted to achieve
a similar effect. Furthermore, the augmentation that is applied during testing in the original
implementations is also not applied on the testing data on all three networks in this study, which
is also due to implementation issues. The original AlexNet and ResNet implementation applied
10-crop testing [24] [42] and the original VGG applied a similar form of crop testing [19].

4.7 Evaluation metrics

The performance of the CNNs on image classification will be compared by using two evaluation
metrics: accuracy and confusion matrix.

4.7.1 Accuracy

Accuracy measures how often the classifier correctly predicts the classes. It is the ratio of the
number of correct predictions and the number of predictions. Accuracy is considered a useful
evaluation metric if the model is trained on data with well-balanced classes.

Accuracy =
Number of correct predictions

Total number of predictions
(8)

4.7.2 Confusion matrix

Confusion matrix is an evaluation tool for evaluating the performance of machine learning models.
The matrix presents combinations of the predicted and actual classes, displaying the number of true
positives (correctly predicted positive class), true negatives (correctly predicted negative class), false
positives (incorrectly predicted positive class), and false negatives (incorrectly predicted negative
class) for each class. The matrix aids in analyzing the performance of the models, contributing
to the understanding of the performance of the model in the classes where the model performs
exceptionally well or needs improvement.
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5 Experiments and results

5.1 Experimental Setup

In this study, the effectiveness of the AVG-Mixed and AVG-TopK(K=3) pooling methods is
evaluated through experiments conducted using the same architecture, datasets, and training
process as the baseline models, with the only difference being the pooling layer. The baseline
models refer to the original architectures of AlexNet, VGG16, and ResNet34 as described in Section
4. The standard pooling layers in these models are as follows:

• In AlexNet [23] and VGG16 [42], the pooling layers of the baseline architecture consist
solely of max pooling layers. Therefore, in the experiments, all the pooling layers in those
architectures are replaced by the custom pooling layers, as visualized in Figure 22 and 24

• In ResNet34 [19], the architecture consists of a max pooling layer and a global average pooling
layer. In the experiments, the global average pooling layer remains unchanged, while the max
pooling layer is replaced by the custom pooling layers, as visualized in Figure 24.

All other experimental conditions, including data pre-processing, augmentation, and training
hyperparameters, remain consistent with those used for the baseline models. This ensures that any
observed differences in performance can be attributed to the pooling method used.

5.1.1 Training

In the experiments, each type of CNN model was trained using the specific hyperparameters
and training process as described in their original papers [23] [42] [19], with a few exceptions as
mentioned in Section 4. The settings were consistently applied across the AlexNet, VGG16, and
ResNet34 models on all the experiments across the three datasets. Additionally, for consistency
across comparisons, the number of epochs in all models is set to 50. However, all the models utilize
learning rate schedulers, as described below, which might cause the models to terminate earlier.
The AlexNet models, in this study, are trained using Stochastic Gradient Descent(SGD) with a
batch size of 128 and momentum of 0.9. The learning rate was initialized at 0.01 for all layers and
then adjusted manually throughout training. The learning rate is decreased by a factor of 10 when
the validation error rate stops improving with the current learning rate. The learning rate can be
reduced three times before termination.
The VGG16 models are trained using mini-batch gradient descent with a batch size of 256 and
momentum of 0.9. Identical to AlexNet, the learning rate was initialized at 0.01 and then decreased
by a factor of 10 when the validation error rate stopped improving. The learning rate can be
reduced three times before termination.
The ResNet models are trained using SGD with a mini-batch size of 256 and momentum of 0.9.
The learning rate is initialized at 0.01 and then decreased by a factor of 10 when the validation
error rate stops improving. The learning rate can be reduced three times before termination.

The learning rate of the original ResNet model is set to 0.1 [19], however, this learning rate
hindered the learning process in the implemented ResNet34 model as it consistently hovered around
10% accuracy. Therefore, the learning rate is set to 0.01 in the ResNet34 models in this study.
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5.2 MNIST

This section presents the experimental results evaluating the performance of AlexNet, VGG16,
and ResNet34 using different pooling methods on the MNIST dataset. The standard architectures
of these CNNs were modified by replacing the standard max pooling layers with the AVG-Mixed
and AVG-TopK pooling layers. The performance of each architecture with these custom pooling
methods is compared to the baseline architecture with standard max pooling.

Model Accuracy(val) Accuracy(test)
AlexNet
Baseline 99.4% 99.2%
AVG-Mixed 98.9% 98.5%
AVG-TopK 98.6% 98.5%
VGG16
Baseline 98.8% 99.0%
AVG-Mixed 98.9% 98.4%
AVG-TopK 98.8% 98.9%
ResNet34
Baseline 99.0% 98.9%
AVG-Mixed 99.2% 99.0%
AVG-TopK 99.3% 99.0%

Table 1: Validation and test accuracies of the different models and pooling methods on MNIST

The results in Table 1 show that:

• AlexNet: The baseline model achieved the highest validation and test accuracy, of 99.4%
and 99.2%. The AVG-Mixed and AVG-TopK pooling methods performed slightly worse than
the baseline model, with AVG-Mixed achieving 98.8% validation accuracy and 98.5% test
accuracy, and AVG-TopK achieving 98.6% validation accuracy and 98.5% test accuracy.

• VGG16: The baseline model achieved a validation accuracy of 98.8% and a test accuracy
of 99.0%. The AVG-Mixed model achieved a slightly higher validation accuracy of 98.9%,
but a lower test accuracy of 98.4%, compared to the baseline model. The AVG-TopK model
achieved the same validation accuracy of 98.8% and a slightly higher lower test accuracy,
decreased it by 0.01%, of 98.9%, compared to the baseline model.

• ResNet34: The baseline model achieved a validation accuracy of 99.0% and a test accuracy
of 98.9%. The AVG-Mixed model achieved slightly higher accuracies compared to the baseline
model, a validation accuracy of 99.2%, and a test accuracy of 99.0%. The AVG-TopK model
also achieved slightly higher accuracies compared to the baseline model, a validation accuracy
of 99.3%, and a test accuracy of 99.0%.

The results in Table 1 and Figure 10, 11, and 12 show that the baseline, AVG-Mixed, and AVG-TopK
models of AlexNet, VGG16, and ResNet34 all achieved near-perfect accuracies. It is relatively easy
to capture the simple and distinct features of handwritten digits.
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5.2.1 AlexNet

(a) AlexNet with Standard Pool-
ing

(b) AlexNet with AVG-Mixed
Pooling

(c) AlexNet with AVG-TopK
Pooling

Figure 10: Accuracy plots of AlexNet with different pooling methods on MNIST

5.2.2 VGG16

(a) VGG16 with standard pool-
ing

(b) VGG16 with AVG-Mixed
pooling

(c) VGG16 with AVG-TopK
pooling

Figure 11: Accuracy plots of VGG16 with different pooling methods on MNIST

5.2.3 ResNet34

(a) ResNet34 with standard
pooling

(b) ResNet34 with AVG-Mixed
pooling

(c) ResNet34 with AVG-TopK
pooling

Figure 12: Accuracy plots of ResNet34 with different pooling methods on MNIST
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5.3 CIFAR-10

This section presents the experimental results evaluating the performance of AlexNet, VGG16, and
ResNet34 using different pooling methods on the CIFAR-10 dataset. The standard architectures
of these CNNs are modified by replacing the standard max pooling layers with the AVG-Mixed
and AVG-TopK pooling layers. The performance of each architecture with these custom pooling
methods is compared to the baseline architecture with standard max pooling.

Model Accuracy(val) Accuracy(test)
AlexNet
Baseline 86.2% 84.8%
AVG-Mixed 84.8% 84.1%
AVG-TopK 86.4% 85.5%
VGG16
Baseline 78.8% 77.6%
AVG-Mixed 79.8% 78.6%
AVG-TopK N/A 1 N/A 1

ResNet34
Baseline 78.2% 77.1%
AVG-Mixed 82.6% 81.6%
AVG-TopK 81.4% 80.2%

Table 2: Validation and test accuracies of the different models and pooling methods on CIFAR-10

The results in Table 2 demonstrate that:

• AlexNet: The baseline model achieved a validation accuracy of 86.2% and a test accuracy
of 84.8%. In the AVG-Mixed model, the validation and test accuracy are slightly lower, at
84.8% and 81.1%. The AVG-TopK pooling method achieved a validation accuracy of 86.4%
and test accuracy of 85.5%, improving the performance by 0.2% and 0.7% compared to the
baseline.

• VGG16: The baseline model achieved a validation accuracy of 78.8% and a test accuracy
of 77.6%. The AVG-Mixed model improves the accuracies by 1.0%, to 79.8% and 78.6%,
compared to the baseline model.

• ResNet34: The baseline model achieved a validation accuracy of 78.2% and a test accuracy
of 77.1% The AVG-Mixed model improves the baseline accuracies by 4.4% and 4.5%, to 82.6%
and 81.6%. The AVG-TopK model achieved a validation accuracy of 81.4% and test accuracy
of 80.2%, which is an improvement of 3.2% and 3.1% over the baseline model.

1Results are missing due to a coding bug that invalidated the initial experiments
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5.3.1 AlexNet

(a) AlexNet with Standard Pool-
ing

(b) AlexNet with AVG-Mixed
Pooling

(c) AlexNet with AVG-TopK
Pooling

Figure 13: Accuracy plots of AlexNet with different pooling methods on CIFAR-10

(a) AlexNet with Standard pooling (b) AlexNet with AVG-Mixed pooling

(c) AlexNet with AVG-TopK pooling

Figure 14: Confusion matrices of AlexNet with different pooling methods on CIFAR-10
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The results in Table 2 demonstrate that the AVG-Mixed pooling method achieved worse validation
and test accuracies, reduced by 1.4% and 0.7% compared to the baseline model. Additionally, the
results in Table 2 demonstrate that AlexNet with the AVG-TopK pooling method achieved an
improved performance compared to the AVG-Mixed and baseline models on the CIFAR-10 dataset.
The validation and test accuracies are improved by 0.2% and 0.7%, compared to the baseline model.
The confusion matrices in Figure 14 demonstrate that the three AlexNet models achieved similar
correct predictions on the different classes of the CIFAR-10 dataset.

5.3.2 VGG16

(a) VGG16 with standard pool-
ing

(b) VGG16 with AVG-Mixed
pooling

Figure 15: Accuracy plots of VGG16 with different pooling methods on CIFAR-10

(a) VGG16 with standard pooling (b) VGG16 with AVG-Mixed pooling

Figure 16: Confusion matrices of VGG16 with different pooling methods on CIFAR-10

The results in Table 2 show that the baseline VGG16 model achieved a solid performance with a
validation accuracy of 78.8% and test accuracy of 77.6%. By incorporating the AVG-Mixed pooling
method in VGG16, the model achieved an improvement of 1.0% in both the validation and test
accuracy, compared to the baseline model. This implies that the AVG-Mixed pooling method can
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better capture and retain important features. The confusion matrices in Figure 16a and 16b show
that the VGG16 with the AVG-Mixed pooling predicts each class, except for the ’deer’ class, of the
CIFAR-10 dataset equally or better than the baseline model.

5.3.3 ResNet34

(a) ResNet34 with standard
pooling

(b) ResNet34 with AVG-Mixed
pooling

(c) ResNet34 with AVG-TopK
pooling

Figure 17: Accuracy plots of ResNet34 with different pooling methods on CIFAR-10
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(a) ResNet34 with standard pooling (b) ResNet34 with AVG-Mixed pooling

(c) ResNet34 with AVG-TopK pooling

Figure 18: Confusion matrices of ResNet34 with different pooling methods on CIFAR-10

The results in Table 2 show that the baseline ResNet34 model achieved a validation accuracy
of 78.2% and a test accuracy of 77.1%. By replacing the max pooling layers with AVG-Mixed
pooling, the model improves its performance significantly to 82.6% and 81.6%. This implies that the
AVG-mixed pooling method improves the ResNet34 model’s ability to capture important features
or generalize better, compared to the standard pooling method used in ResNet34. Furthermore,
the results of the ResNet34 model with AVG-TopK pooling also demonstrate an improvement over
the baseline model, achieving validation and test accuracies of 81.4% and 80.2%. The confusion
matrices in Figure 18c and 18a show a significant difference in the number of correctly predicted
classes by the baseline model and the AVG-TopK model on CIFAR-10. More specifically, there are
significant differences in the following classes: bird, cat, and deer. The AVG-TopK model achieved
better predictions in those classes compared to the baseline model. Furthermore, the confusion
matrix of the AVG-Mixed model in Figure 18b also shows significantly better performance in those
three classes, along with an additional improvement in the ’dog’ class.
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5.4 CIFAR-100

This section presents the experimental results evaluating the performance of AlexNet, VGG16, and
ResNet34 using different pooling methods on the CIFAR-100 dataset. The standard architectures
of these CNNs are modified by replacing the standard max pooling layers with the AVG-Mixed
and AVG-TopK pooling layers. The performance of each architecture with these custom pooling
methods is compared to the baseline architecture with standard max pooling.

Model Accuracy(val) Accuracy(test)
AlexNet
Baseline 56.4% 58.0%
AVG-Mixed 54.4% 55.2%
AVG-TopK 55.4% 56.8%
VGG16
Baseline 53.0% 53.3%
AVG-Mixed 55.5% 55.8%
AVG-TopK N/A 1 N/A 1

ResNet34
Baseline 49.4% 50.9%
AVG-Mixed 51.3% 52.0%
AVG-TopK 54.0% 54.9%

Table 3: Validation and test accuracies of the different models and pooling methods on CIFAR-100

The results in Table 3 demonstrate that:

• AlexNet: The baseline model achieved a validation accuracy of 56.4% and a test accuracy
of 58.0%. In the AVG-Mixed model, the achieved validation and test accuracy are slightly
lower, at 54.4% and 55.2%. The AVG-TopK model achieved a validation accuracy of 55.4%
and a test accuracy of 56.8%.

• VGG16: The baseline model achieved a validation accuracy of 53.0% and a test accuracy
of 53.3%. The AVG-Mixed model improved the accuracies by 2.5%, to 55.5% and 55.8%,
compared to the baseline model.

• ResNet34: The baseline model achieved a validation accuracy of 49.4% and a test accuracy
of 50.9% The AVG-Mixed model improved the baseline accuracies by 1.9% and 1.1%, to
51.3% and 52.0%. The AVG-TopK model improved the accuracies by 4.6% and 4.0%, to a
validation accuracy of 54.0% and test accuracy of 54.9%.
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5.4.1 AlexNet

(a) AlexNet with Standard Pool-
ing

(b) AlexNet with AVG-Mixed
Pooling

(c) AlexNet with AVG-TopK
Pooling

Figure 19: Accuracy plots of AlexNet with different pooling methods on CIFAR-100

The results in Table 3 show that the baseline AlexNet model achieved a validation accuracy of 56.4%
and a test accuracy of 58.0%. The AVG-Mixed pooling method achieved a worse performance, with
the model achieving a validation accuracy of 54.4% and a test accuracy of 55.2%. The AlexNet
model with the integrated AVG-TopK pooling method achieved a validation accuracy of 55.4%
and test accuracy of 56.8%, which is also worse than the baseline AlexNet but better than the
AVG-Mixed pooling method. The plots in Figure 19 show that the AlexNet models are overfitting,
indicated by the significant difference in the training and validation accuracy. The training accuracy
significantly surpasses the validation and test accuracies.

5.4.2 VGG16

(a) VGG16 with standard pool-
ing

(b) VGG16 with AVG-Mixed
pooling

Figure 20: Accuracy plots of VGG16 with different pooling methods on CIFAR-100

The results in Table 3 show that the baseline model achieved a validation accuracy of 53.0% and
a test accuracy of 53.3%. The AVG-Mixed model improved the accuracies by 2.5%, to 55.5%
and 55.8%, compared to the baseline model. Similarly to the AlexNet results on CIFAR-100, the
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training and validation accuracies of the VGG16 models, in Figure 20a and 20b, also indicated that
the models are overfitting.

5.4.3 ResNet34

(a) ResNet34 with standard
pooling

(b) ResNet34 with AVG-Mixed
pooling

(c) ResNet34 with AVG-TopK
pooling

Figure 21: Accuracy plots of ResNet34 with different pooling methods on CIFAR-100

The results in Table 3 show that the baseline model achieved a validation accuracy of 53.0% and
a test accuracy of 53.3%. The AVG-Mixed model improved the accuracies by 1.9% and 1.1%, to
51.3% and 52.0%, compared to the baseline model. The AVG-TopK method significantly improved
the performance by 4.6% and 4.0% to 54.0% and 54.9%.
Similarly to the AlexNet and VGG16 results on CIFAR-100, the training and validation accuracies
of the ResNet34 models, in Figure 21, also indicate that the models are overfitting.

6 Discussion

This study evaluated the effectiveness of the AVG-Mixed and AVG-TopK pooling methods by
integrating them into AlexNet, VGG16, and ResNet34 architectures and training the models on
the MNIST, CIFAR-10, and CIFAR-100 datasets. A comparative assessment was conducted to
determine the impact of the custom pooling methods on the model performance. The performance
of the CNN models using the AVG-Mixed and AVG-TopK pooling methods was compared to the
models using standard max pooling.

The experimental results of the three CNN architectures with the different types of pooling
methods on the MNIST dataset are not insightful for this study as all models achieved near-perfect
accuracy. MNIST is a relatively simple dataset with clear distinct classes, which makes it easy for
models to achieve high performance. Therefore, the focus in this discussion is primarily on the
CIFAR-10 and CIFAR-100 datasets, where the effectiveness of the proposed pooling methods is
more discernible.

The experimental results of the AlexNet models with the AVG-Mixed pooling method demonstrate
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it achieved a slightly decreased performance on CIFAR-10 and CIFAR-100 compared to the base-
line AlexNet model. The experimental results of the VGG16 and ResNet34 architectures with
the integrated AVG-Mixed pooling on CIFAR-10 and CIFAR-100 showed improved performance
compared to their baseline models with standard max pooling. This new method appeared to
better capture and retain important features, by providing a balanced approach, compared to
the standard max pooling method in the VGG16 and ResNet34 architectures. Moreover, the
experimental results imply that the effectiveness of the AVG-Mixed pooling method improves in
deeper and more complex architectures. The depth of the architecture may allow the models to
learn more hierarchical feature representations, provided by the AVG-Mixed pooling method.

The experimental results of the models with the integrated AVG-TopK pooling on the CIFAR-10
and CIFAR-100 datasets also imply that the effectiveness of the pooling method varies, depending
on the CNN architecture and the dataset. AlexNet with the integrated AVG-TopK pooling method
on CIFAR-10 achieved a slightly improved performance compared to the baseline with max pooling.
However, the AVG-TopK pooling method achieved a reduced performance on CIFAR-100 compared
to the baseline AlexNet. The experimental results of the ResNet34 model with the Top-AVGK
pooling method demonstrate significantly better performance on CIFAR-10 and CIFAR-100 com-
pared to the baseline ResNet34 model. This may be due to their deeper architectures and residual
connections which might be better equipped to handle the feature aggregation that is performed by
the AVG-TopK pooling method.
Unfortunately, the results for VGG16 with AVG-TopK are missing, as noted in footnote 1. The
results could have provided insights into the effectiveness of the AVG-TopK pooling with smaller
pooling sizes, namely of 2x2, compared to the 3x3 pooling sizes used in AlexNet and ResNet34. In
the case of VGG16, with a pooling window of 2x2 and K set to 3, the AVG-TopK pooling operation
would be similar to average pooling, as it averages the top three values out of four in each pooling
window.

Prior studies have also demonstrated that custom pooling methods can outperform standard
max pooling. The study in which the AVG-TopK pooling method was proposed, demonstrated that
replacing the traditional pooling with the AVG-TopK pooling method in the LeNet architecture
improves the performance in MNIST, CIFAR-10, and CIFAR-100 [33]. However, the improved
performance was not consistent for all types of pooling sizes and values for the K parameter of
the AVG-TopK pooling method [33]. This implies that the effectiveness of the AVG-TopK pooling
method may depend on the pooling size and value of K.
In the study [33], experiments with transfer learning models, DenseNet169 [21], VGG16 [42], and
Resnet50 [19], on the CIFAR-100 dataset have also been conducted, which showed that the VGG16
model could not learn [33]. The DenseNet169 [21] and ResNet50 [19] achieved improved performance
with the AVG-TopK pooling method compared to their standard pooling methods [33].

This study has limitations. First, the dataset scope is limited, as the CNN models were trained
and tested on standard datasets that do not include relatively complex images. Second, due to
time constraints, experiments with different values for K for the AVG-TopK pooling method have
not been conducted. In this study, the value of K in AVG-TopK pooling was set to 3, which
might not be optimal. Different architectures and datasets may require different values for K to
effectively capture important features. Third, during the implementation phase of this study, the
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choice was made to use the default weight initialization from Keras, Glorot initialization [15], for
all models. This decision was made because AlexNet was unable to learn effectively, achieving
10% accuracy, with the original weight initialization described in its paper [23]. However, at a
later stage, it was noted that the He weight initialization method is preferred for models using
ReLU activation functions [18]. Since AlexNet, VGG16, and ResNet34 all utilize ReLU activation
functions, the use of Glorot initialization could have potentially hindered their learning effectiveness.
Lastly, while both the AVG-Mixed and AVG-TopK offer improved performance in some cases, their
increased computational intensity is a notable disadvantage, compared to the standard max pooling
operation in those CNNs. The max pooling method merely selects the maximum value within each
pooling window. The AVG-TopK, on the contrary, requires first identifying the top values and
then performing additional averaging. The AVG-Mixed method also requires more computation as
both the average and maximum values within each pooling window have to be selected and then
averaged. Considering both custom pooling methods require more computation power and time
compared to traditional pooling methods, their practicality can be limited.

This study provides insights into the effect of the pooling method on the performance of dif-
ferent popular CNN models. This study contributes to the field of deep learning by focusing on
one of the building blocks of CNNs: the pooling layer. This study provides insights for researchers
that the performance of different CNN architectures could be improved by replacing the standard
pooling operation with custom pooling methods. Moreover, it provides insights into the effect of
custom pooling methods that combine aspects from the two traditional pooling methods, max and
average pooling, on the performance of CNNs.

Future research can build on the findings of this study by integrating the two custom pool-
ing methods into different types of CNN architectures, like GoogLeNet [43] or ResNet50 [19]. This
could be valuable as the experimental results of the CNNs trained on CIFAR-10 and CIFAR-100
imply that the performance of deeper architectures improves with both new pooling methods.
Also, in future experiments, the custom pooling methods could be evaluated on larger complex
datasets as the experiments in this study were conducted using relatively small datasets. These
further investigations with other CNN architectures and datasets could validate the generalizability
of both the AVG-Mixed and AVG-TopK pooling methods. Additionally, future research could
explore optimal values for the K parameter in the AVG-TopK pooling method to improve model
performance.

7 Conclusion

This study introduced a new pooling method called AVG-mixed and builds upon recent research
on the AVG-TopK pooling method [33]. Both pooling methods aim to improve the performance
of Convolutional Neural Networks(CNNs) on image classification by providing a more balanced
pooling approach, compared to the traditional pooling methods. In this study, the impact of both
custom pooling methods on the performance of three benchmark CNNs, AlexNet [23], VGG16 [42],
and ResNet34 [19], was investigated. The AVG-Mixed and AVG-TopK pooling layers, individually,
replaced the max pooling layer in the baseline configuration of these networks. The CNN models
were evaluated on three benchmark image classification datasets: MNIST, CIFAR-10, and CIFAR-
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100. Moreover, a comparative assessment was conducted to evaluate the architectures’ performance
with the two custom pooling methods and the standard max pooling methods across the three
datasets.
The experimental results demonstrate that ResNet34 consistently achieved improved results across
MNIST, CIFAR-10, and CIFAR-100 with both the AVG-Mixed and AVG-TopK pooling methods,
compared to the standard max pooling method in the baseline model. The two custom pooling
methods were demonstrated to be effective in retaining important information from features for
accurate classification in the ResNet34 model. Additionally, the VGG16 model achieved slightly
higher performance with the AVG-mixed model on CIFAR-10 and CIFAR-100, compared to the
baseline VGG16 model. The AlexNet model achieved improved performance on CIFAR-10 with
the AVG-TopK pooling method, compared to the baseline model. The experimental results imply
that the effectiveness of both AVG-Mixed and AVG-TopK pooling may depend on the complexity
and depth of the CNN architecture, as well as the dataset used.
This study contributes to the field of deep learning by conducting a study that could provide
valuable insights for future research on one of the building blocks of CNNs: the pooling layer.
Additionally, the AVG-Mixed and AVG-TopK pooling methods could be used as replacements for
standard pooling operations in different CNN architectures, potentially improving the performance.
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[33] C. Özdemir. “Avg-topk: A New Pooling Method for Convolutional Neural Networks”. In:
Expert Systems With Applications 223 (2023), p. 119892. doi: 10.1016/j.eswa.2023.119892.

[34] M. S. S. Patel and S. S. “Improved Spatial Invariance for Vehicle Platoon Application using
New Pooling Method in Convolution Neural Network”. In: International Journal of Advanced
Computer Science and Applications 13.7 (2022).

[35] M. Ranzato et al. “Unsupervised Learning of Invariant Feature Hierarchies with Applications to
Object Recognition”. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition.
2007, pp. 1–8. doi: 10.1109/CVPR.2007.383157.

[36] R. Reshma and A. Jose Anand. “Predictive and Comparative Analysis of LENET, ALEXNET
and VGG-16 Network Architecture in Smart Behavior Monitoring”. In: 2023 Seventh Inter-
national Conference on Image Information Processing (ICIIP). IEEE, 2023, pp. 450–453. doi:
10.1109/ICIIP61524.2023.10537732.

[37] A. M. Romano and A. A. Hernandez. “An Improved Pooling Scheme for Convolutional
Neural Networks”. In: 2019 7th International Conference on Information, Communication
and Networks (ICICN). IEEE, 2019, pp. 201–206. doi: 10.1109/ICICN.2019.8834960.

[38] O. Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International
Journal of Computer Vision 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[39] F. Saeedan et al. “Detail-Preserving Pooling in Deep Networks”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2018, pp. 9108–9116. doi: 10.1109/
CVPR.2018.00949.

[40] P. Sermanet, S. Soumith, and Y. LeCun. “Convolutional neural networks applied to house
numbers digit classification”. In: Proceedings of the 21st International Conference on Pattern
Recognition (ICPR2012). 2012, pp. 3288–3291. url: https://ieeexplore.ieee.org/
document/6460867.

[41] Z. Shi, Y. Ye, and Y. Wu. “Rank-based pooling for deep convolutional neural networks”. In:
Neural Networks 83 (2016), pp. 21–31. doi: 10.1016/j.neunet.2016.07.003.

[42] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image
Recognition”. In: arXiv (2014). url: https://arxiv.org/abs/1409.1556.

[43] C. Szegedy et al. “Going Deeper with Convolutions”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2015. doi: 10.1109/CVPR.2017.243.

36

https://www.researchgate.net/publication/301841902_A_Learning-based_Frame_Pooling_Model_For_Event_Detection
https://www.researchgate.net/publication/301841902_A_Learning-based_Frame_Pooling_Model_For_Event_Detection
https://medium.com/analytics-vidhya/understanding-resnet-architecture-869915cc2a98
https://medium.com/analytics-vidhya/understanding-resnet-architecture-869915cc2a98
https://doi.org/10.1007/11957959_20
https://doi.org/10.1016/j.eswa.2023.119892
https://doi.org/10.1109/CVPR.2007.383157
https://doi.org/10.1109/ICIIP61524.2023.10537732
https://doi.org/10.1109/ICICN.2019.8834960
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/CVPR.2018.00949
https://doi.org/10.1109/CVPR.2018.00949
https://ieeexplore.ieee.org/document/6460867
https://ieeexplore.ieee.org/document/6460867
https://doi.org/10.1016/j.neunet.2016.07.003
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2017.243


[44] M. M. Taye. “Theoretical Understanding of Convolutional Neural Network: Concepts, Ar-
chitectures, Applications, Future Directions”. In: Computation 11.3 (2023), p. 52. doi:
10.3390/computation11030052.

[45] M. M. Taye. “Theoretical understanding of convolutional neural network: concepts, archi-
tectures, applications, future directions”. In: Computation (Basel) 11.3 (2023), p. 52. doi:
10.3390/computation11030052.

[46] N. Weber et al. “Rapid, Detail-Preserving Image Downscaling”. In: ACM Transactions on
Graphics 35.6 (2016), pp. 1–6. doi: 10.1145/2980179.2980239.

[47] M. Xin and Y. Wang. “Research on image classification model based on deep convolution
neural network”. In: EURASIP Journal on Image and Video Processing (2019), p. 40. doi:
10.1186/s13640-019-0417-8.

[48] R. Yamashita et al. “Convolutional Neural Networks: An Overview and Application in
Radiology”. In: Insights Into Imaging 9.4 (2018), pp. 611–629. doi: 10.1007/s13244-018-
0639-9.

[49] D. Yu et al. “Mixed Pooling for Convolutional Neural Networks”. In: Lecture Notes in
Computer Science. Springer, 2014, pp. 364–375. doi: 10.1007/978-3-319-11740-9_34.

[50] A. Zafar et al. “A Comparison of Pooling Methods for Convolutional Neural Networks”. In:
Applied Sciences 12.17 (2022), p. 8643. doi: 10.3390/app12178643.

[51] M. D. Zeiler and R. Fergus. “Visualizing and Understanding Convolutional Networks”. In:
Lecture Notes in Computer Science 8689 (2014), pp. 818–833. doi: 10.1007/978-3-319-
10590-1_53.

[52] L. Zhao and Z. Zhang. “An Improved Pooling Method for Convolutional Neural Networks”.
In: Scientific Reports 14.1 (2024). doi: 10.1038/s41598-024-51258-6.

37

https://doi.org/10.3390/computation11030052
https://doi.org/10.3390/computation11030052
https://doi.org/10.1145/2980179.2980239
https://doi.org/10.1186/s13640-019-0417-8
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/978-3-319-11740-9_34
https://doi.org/10.3390/app12178643
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1038/s41598-024-51258-6


Appendices

A CNN Architectures

Figure 22: Visualization of the AlexNet architecture, specifically highlighting the pooling layers
that are being replaced by the custom pooling layers in the experiments
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Figure 23: Visualization of the VGG16 architecture, specifically highlighting the pooling layers
that are being replaced by the custom pooling layers in the experiments39



Figure 24: Partial visualization of the ResNet34 architecture. Due to space constraints, only a
subset of the first layers is shown, specifically highlighting the only pooling layer that is being
replaced by custom pooling layers in the experiments.
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