
Computer Science & Economics

Enriching Historical Records:

An OCR and AI-Driven Approach for Database Integration

Zahra Abedi

Supervisors:
Richard van Dijk & Gijs Wijnholds

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 18/07/2024

www.liacs.leidenuniv.nl


Abstract

This paper is part of the Linking University, City, and Diversity (LUCD) project, which aims
to visualize the interactions between Leiden University and the city of Leiden since 1575
and capture the impact of students and professors on Leiden. Focusing specifically on the
digitization of the ’Leidse hoogleraren en lectoren 1575-1815’ dataset, originally compiled
by A.A. Bantjes and L. van Poelgeest between 1983 and 1985, this research is dedicated to
converting these typewritten records into a digital format and importing them to a centralized
database created by the LUCD project. The dataset contains valuable information about
professors and curators at Leiden University, such as birth and death details, education, and
career history. The central research question is: ‘How can we accurately extract and transform
historical records data from scanned historical documents and map it into a centralized
database?’ This question is addressed through three sub-questions: the accuracy of OCR
techniques, the use of AI for structured data extraction, and the mapping of this data into a
centralized database which is developed by the LUCD project and contains high-quality data
on professors and students associated with Leiden University.

The methodology begins with image preprocessing to enhance the quality of scanned
documents for better OCR performance. Tesseract OCR is then trained on a customized
training set to improve text recognition accuracy, especially for historical and language-specific
nuances. For structuring the extracted text, GPT-3.5 Turbo with function calling and Pydantic
is used, enabling us to generate valid JSON outputs aligned with our format requirements.
The final step involves modifying the database structure and creating an algorithm for optimal
person matching, considering various personal attributes to ensure accurate data linkage.

Results indicate that the OCR-generated text had a Character Error Rate (CER) of
1.08% and a Word Error Rate (WER) of 5.06%. Despite these errors, the generated text
provided a workable basis for further processing. The AI model’s JSON extraction perfor-
mance achieved an accuracy of 65.04% for JSONs generated using correct text as input,
and 62.72% for JSONs generated using OCR-generated text as input, indicating moderate
accuracy that is subject to improvement. The record linkage algorithm demonstrated robust
performance, linking correct JSON files created manually with an average accuracy of 93.67%
and linking JSON files made from OCR-generated text files with an average accuracy of 80.95%.

This research contributes to the field of digital humanities by providing a structured
approach to digitizing and analyzing historical records. The methodologies developed herein,
including advanced OCR and AI techniques, offer a framework for similar projects. Our study
highlights challenges such as page layout variability and terminology differences, suggesting
future work in advanced layout recognition, volume-specific JSON schemas, and implementing
more flexible linking algorithms using Levenshtein distance. Additionally, exploring multi-
modal AI models such as GPT-4o could enhance data extraction, potentially bypassing OCR
steps altogether.
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1 Introduction

1.1 Background

Historical records serve as invaluable sources of information for researchers and historians. Signifi-
cant research has been dedicated to converting these paper-based records into electronic formats, a
process known as digitization Pearce-Moses and Baty [2005]. Digitizing historical documents not
only helps to preserve them but also offers additional benefits, such as improved accessibility for a
broader audience and increased opportunities for discovering new links between the data Ooghe
et al. [2009].

The process of digitizing documents involves several steps. Initially, the paper-based document is
scanned to create a digital image. Subsequently, Optical Character Recognition (OCR) methods
are used to extract text from the scanned document. Once the OCR-generated text is acquired, we
can then apply information extraction techniques customized to meet our specific needs.

1.2 LUCD Project

This thesis is a part of the Linking University, City, and Diversity (LUCD) project1, which seeks
to illustrate the interactions between Leiden University and city of Leiden since 1575 using data
science techniques. One of the main focuses of this project is to capture the impact of students
and professors on this city. The LUCD project is a collaborative work between researchers and
students from LIACS and the Institute for History of Leiden University. The core team consists of
Ariadne Schmidt (Professor specializing in the History of Urban Culture), Wessel Kraaij (Professor
of Applied Data Analytics) Joost Visser (Professor of Large Scale Software and Data Science),
and Richard van Dijk (Research Software Engineer). In 2022, a few Bachelor’s projects, involving
contributors like Rick Schreuder, Liam van Dreumel, and Michael de Koning, supported the LUCD
project. Implementing a software architecture designed by Richard van Dijk, Liam van Dreumel
concentrated on visualizing data, Rick Schreuder tackled the design of the database, and Michael
de Koning took charge of software components, known as adapters, responsible for data extraction,
transformation, loading, and linking. Consequently, they developed a website enabling users to
discover more information on topics such as the origins of many of the students and professors at
Leiden University, as well as how the academic community at the university has grown over time.2

1.3 Objectives

Building upon previous research, this thesis focuses primarily on enriching the centralized database,
which contains high-quality data from various sources about students and professors of Leiden
University. Specifically, we aim to integrate the ’Leidse hoogleraren en lectoren 1575-1815’ dataset
compiled by A.A. Bantjes and L. van Poelgeest in 1983. This dataset, originally typed using a
typewriter, presents biographical data concerning professors and curators at Leiden University from

1https://www.universiteitleiden.nl/onderzoek/onderzoeksprojecten/wiskunde-en-natuurwetenschappen/

liacs-linking-university-city-and-diversity
2https://univercity.liacs.nl/dashboard/
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1575-1815 and is available in scanned format on the website of Leiden University3. More information
about this dataset is provided in section 3. The objectives of this thesis include designing and
implementing a pipeline to process scanned images, extracting highly accurate text, and converting
it into a structured format. This structured data will be integrated with existing datasets from other
sources, creating new entities and linking them with relevant entities in the database. Adapters will
facilitate collaboration between incompatible interfaces without requiring modifications to their
source code.
Given the significant research already conducted in the field of OCR, further extensive research is
unnecessary. Instead, we will use an off-the-shelf OCR package and only make modifications to the
parameters as needed. Consequently, the primary focus of this thesis is not centered on achieving
flawless OCR results. Instead, the objective is to generate text of sufficient quality to effectively
support information retrieval methods.
In case ’Leidse hoogleraren en lectoren 1575-1815’ contains new information not covered by the
centralized database and lacks corresponding tables, modification of the centralized database would
be necessary to encapsulate all additional information.

1.4 Research Questions

The main research question is: ’How can we accurately extract and transform historical records
data from scanned historical documents and map it into a centralized database?’ Sub-questions
include:

• How can we extract high-accuracy text from scanned historical documents using OCR
techniques?

• How can AI be used to analyze the OCR-generated text and obtain a structured format?

• How can we map the structured data into a centralized database?

1.5 Thesis overview

Section 2 reviews existing literature and methodologies related to our project. The description of
the dataset used and its historical context can be found in section 3. In section 4, we provide details
of our three-phase methodology: image preprocessing and OCR, AI-based information extraction,
and record linkage. Section 5 presents the evaluation metrics and results for each phase. Discusses
of the findings, challenges, and implications of the research are mentioned in section 6. Section
7 proposes future research directions to enhance the methodologies. Section 8 summarizes the
research contributions and outcomes.

3https://digitalcollections.universiteitleiden.nl/view/item/2078065/pages

2

https://digitalcollections.universiteitleiden.nl/view/item/2078065/pages


2 Related Work

2.1 Optical Character Recognition

Tesseract is a free and open-source OCR engine which is initially developed by Hewlett-Packard in
the 1980s and is now maintained by Google4. Tesseract has been adapted to recognize a wide range
of languages and scripts beyond its original design for English.
White [2012] has researched the process of training the Tesseract OCR engine to support Ancient
Greek. The paper covers general procedures involved in training a new language for Tesseract,
including training the script with common printed fonts and adding language-specific hints to
improve recognition. It highlights particular challenges due to Tesseract’s English language heritage
and describes strategies and programs developed to overcome these issues. In our project, we aim to
use Tesseract as well and improve its outcomes for processing historical records. By incorporating
additional training and introducing a wordlist of the most frequent words, we aim to enhance the
accuracy of Tesseract in generating the text.

2.2 Information Extraction

Information Extraction (IE) is an important early stage in the pipeline for various high-level tasks
such as question-answering systems Mollá et al. [2006]. Recent research has explored zero-shot IE,
which aims to build IE systems from unannotated text with minimal human intervention. This
approach significantly reduces the time and effort needed for data labeling. Wei, Cui, Cheng, Wang,
Zhang, Huang, Xie, Xu, Chen, Zhang, et al. [2023] have investigated the use of Large Language
Models (LLMs), such as GPT-3 and ChatGPT, for zero-shot IE. Inspired by this work, our project
also employs zero-shot methods to extract information using prompts and GPT models. By using
the capabilities of GPT, we aim to efficiently extract structured data from unstructured text with
minimal manual intervention.

2.3 Record Linkage

Record linkage, also known as computerized matching, refers to the process of identifying and
matching records that correspond to the same entities (such as individuals or businesses) using
quasi-identifiers like names, addresses, and dates of birth Winkler [2014]. Winkler [2014] mentions
that the key factor to effective record linkage is the preprocessing of raw data, which involves
standardizing and parsing the data into a format suitable for applying statistical models.

Schraagen, Marijn and others [2014] research the complexities of record linkage within histor-
ical databases. His work incorporates methods from various scientific disciplines to tackle different
aspects of record linkage, such as handling name variations and exploiting information from related
records within the dataset.

4https://en.wikipedia.org/wiki/Tesseract_(software)
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3 Data

The ’Leidse hoogleraren en lectoren 1575-1815’ dataset is divided into seven volumes. Volumes 1 to
5 contain information about professors who worked in various faculties of Leiden University, while
volumes 6 and 7 contain information on other administrators and staff. For a detailed overview of
the information about each volume, refer to Table 1.

Table 1: Overview of Volumes in the ’Leidse hoogleraren en lectoren 1575-1815’ Dataset

Volume Subject Number of people Year

1 Professors at The Faculty of
Theology

64 1983

2 Professors at The Faculty of
Medicine

55 1983

3 Professors at The Faculty of Law 57 1984

4 Professors at The Faculty of
Mathematics and Natural Sciences

40 1984

5 Professors at The Faculty of Arts 73 1985

6 Addenda 51 1985

7 Curators 62 1985

Each volume provides information about approximately 57 individuals associated with Leiden
University from 1575 to 1815. The structure of each volume is consistent, including the following
sections: an introduction offering a general explanation of the professors and their respective
faculties, an alphabetical list of names of the individuals mentioned in the volume (detailed in
Appendix A ), detailed information about each person in alphabetical order (detailed in Appendix
B), and a list of sources used in the volume, organized numerically (detailed in Appendix C).

The information section about each person includes the following details:

• Date and place of birth and death

• Education

• Career history

• Additional positions

• Genealogical details (e.g., spouse(s), children, parents, grandparents)

• Special details (e.g., salary, memberships)

The dataset presents several inconsistencies across its volumes, which we have categorized into
distinct types. One prominent issue is incomplete information, where data entries lack uniformity.
While some records detail a person’s birth place, birth date, and even death details, others are
notably deficient in this regard. For instance, Figure 2a shows the birth year and birthplace of a
person indicated after ’Geb.’(’Geb.’ refers to ’Geboren’, which means ’born’ in Dutch.). However,
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information regarding their death, which is normally mentioned after ’Gest.’ (’Gest.,’ short for
’Gestorven’, meaning ’deceased’ in Dutch), is absent.

Another challenge is the variability in formatting within the dataset, where the format of in-
formation differs significantly from one entry to another. For example, some individuals’ birth
dates are recorded precisely as ’09-08-1673’, while others vary. Figure 2b illustrates this difference,
showing a birth year of either 1551 (as noted in sources 2, 6, and 7) or 1554 (as mentioned in
source 14). Additionally, the death date in this example is either the 16th or 28th (according
to source 7) or the 20th (according to source 14), with the death month and year being October 1559.

Furthermore, printing quality across the dataset can vary between volumes. Early editions were
printed with lower quality, resulting in blurred or distorted text and images. In contrast, later
volumes demonstrate significantly improved printing standards, ensuring clearer and more readable
content. The differences in printing quality can impact accessibility, as presented in Figure 2c.
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Table 2: Illustration of Inconsistencies in the Dataset

Inconsistency
Type

Example Images

Incomplete
Information

(a) Leidse hoogleraren en lectoren 1575-1815, Volume 1. This record
demonstrates the inconsistencies in information completeness, provid-
ing details such as birthplace and birth date (mentioned after ’Geb.’),
but lacking information about the person’s death (mentioned after
’Gest.’).

Variable
Formatting (b) Leidse hoogleraren en lectoren 1575-1815, Volume 1. This record

demonstrates the inconsistencies in data formatting, showing birth
years as either 1551 (sources 2, 6, and 7) or 1554 (source 14), and
death dates as the 16th, 20th, or 28th (sources 7 and 14), with a
death month and year of October 1559.

Printing
Quality

(c) Leidse hoogleraren en lectoren 1575-1815, Volume 1. This
record illustrates the low printing quality that might appear
in the earlier editions.
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4 Methods

The research methodology comprises three phases, each addressing a sub-question to systematically
and thoroughly examine the problem and evaluate it in detail. The phases are:

• Phase 1: PDF to PNG Conversion, Image Preprocessing, and Optical Character Recognition
(OCR) & Text Segmentation Per Person

• Phase 2: Text to JSON Extraction with AI

• Phase 3: Record Linkage and Database Enrichment

These phases are designed to facilitate the accurate extraction and transformation of historical
records data from scanned documents, ultimately. The process workflow diagram in Figure 1
illustrates all the steps involved in the methodology. The code used for these methods can be found
in the GitHub repository.5

Figure 1: Process flow for the three-phase process, including text extraction, AI-based JSON
generation, and record linkage for database enrichment.

4.1 Phase 1: PDF to PNG Conversion, Image Preprocessing, and OCR
& Text Segmentation Per Person

This phase addresses the first sub-question: How can we extract high-accuracy text from scanned
historical documents using OCR techniques? The focus is on preparing individual text files from

5GitHub repository: https://github.com/Leiden-University-City-Lab/BantjesAdapter.git
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the original PDFs. The steps involved are:

1. PDF to PNG Conversion: The first step is to prepare the right format for our processing
steps. We begin by downloading the PDF version of the scans from the website6. Since our
intended OCR program is Tesseract, and PDF is not a compatible input format for Tesseract,
conversion is necessary. The Tesseract OCR package supports various input formats, including
PNG, JPEG, TIFF, JPEG 2000, GIF, WebP, BMP, and PNM7.

When choosing the conversion format for the PDF files, the decision was between a lossless
and a lossy image format. Lossless means that the image compression preserves all original
data, maintaining pixel-based quality even after modification or resizing. On the other hand,
lossy compression removes some data during compression, potentially reducing image quality.
The choice was made for the lossless image format because it preserves pixel-based quality.
Among the lossless image options supported by Tesseract, TIFF, and PNG were considered.
PNG format was selected for the images because PNG files are smaller compared to TIFF
files.TIFF files tend to store a lot of information, while PNGs offer efficient compression
without sacrificing quality8. For PDF to PNG conversion a Python module called pdf2image9

is used.

2. Image Preprocessing: The next step is to preprocess the image. The raw scanned images
might not be ideal for the OCR algorithm, and preprocessing can improve their suitability.
This is especially important for historical documents, which are often degraded and cannot
be accurately detected by OCR without prior processing Badoiu et al. [2016].

We will be using Tesseract OCR, which performs various image processing operations internally
using the Leptonica library before doing the actual OCR. While most of the time Tesseract
does a good job, there are cases where its built-in processing isn’t sufficient, leading to a
substantial reduction in accuracy10. Because we are working with scanned historical records,
additional preprocessing is preferred. In Appendix D, we have included an example showing
the original images from the dataset, and in Appendix E, the images after preprocessing can
be seen. The preprocessing steps we plan to use are:

(a) Denoising: Noise reduction is crucial in OCR due to its significant impact on the overall
performance and accuracy of text recognition systems. Noise in images, such as specks,
smudges, or distortions, can severely hinder the OCR software’s ability to correctly
identify and interpret characters, leading to a cascade of issues throughout the text
processing pipeline Badoiu et al. [2016]. Therefore, removing as much noise as possible
is essential. For denoising, the OpenCV function fastNlMeansDenoisingColored was
used with specific parameters to reduce noise while preserving the details of the image.

Listing 1: Denoising the images using OpenCV

6https://digitalcollections.universiteitleiden.nl/view/item/2078065/pages
7https://tesseract-ocr.github.io/tessdoc/InputFormats.html
8https://www.adobe.com/nl/creativecloud/file-types/image/comparison/tiff-vs-png.html
9https://pypi.org/project/pdf2image/

10https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
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# Denoise image with OpenCV

denoise = cv2.fastNlMeansDenoisingColored(image, None, 5, 5, 7, 21)

(b) Grayscale: Grayscaling transforms a continuous tone image into varying shades of
gray. By converting a colored image to grayscale, it can often reveal more details than
the original colored version. This method is commonly applied in numerous real-time
scenarios, including CCTV and traffic light cameras Badla [2014]. During preprocessing
the images, we converted the images to grayscale using OpenCV.

# Convert image to grayscale

gray = cv2.cvtColor(denoise, cv2.COLOR_BGR2GRAY)

(c) Binarization: Binarization converts a grayscale image into a binary image, where
each pixel is set to either black or white, usually by applying a threshold. Pixels
above the threshold are turned white, while those below are turned black Sezgin and
Sankur [2004]. Choosing the right threshold is crucial since an incorrect one could
either remove parts of the letters or create unclear boundaries between characters
Jindal [2018]. This technique simplifies images for tasks like text recognition and image
analysis. Most modern techniques involve binarizing the image before extracting features,
reducing computational demands, and allowing for more straightforward analysis methods
Boiangiu and Dvornic [2008].

Listing 2: Binarizing the images using OpenCV

# Grayscale to binary with OpenCV threshold

th, image = cv2.threshold(gray, 200, 255, cv2.THRESH_BINARY)

3. Optical Character Recognition (OCR) & Text Segmentation Per Person: Extracting
text from images and segmenting the text by individual persons to ensure clarity and accuracy.
This step prepares individual text files that will be used in the next phase.

Optical Character Recognition (OCR): After properly preprocessing the images, the
next step is to extract the text using the OCR tool. For this, Tesseract OCR was chosen.
Originally developed at HP Labs between 1984 and 1994, Tesseract has evolved into a powerful
open-source tool for extracting text from images Smith [2007].
Tesseract offers great flexibility with a large number of parameters that can be tweaked to
optimize performance11. Experimenting with these parameters allows adaptation to different
fonts, styles, and document layouts. Here are the essential aspects considered:

• Training: We trained Tesseract using a dataset created from screenshots of different lines
of text from our dataset. For each screenshot, we generated a corresponding .txt file
with the correct text. After training, a trained language data file, .traineddata was
created to support the recognition of specific language elements and improve overall
accuracy. However, the documentation notes that retraining Tesseract may not improve

11https://tesseract-ocr.github.io/tessdoc/tess3/ControlParams.html
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results unless a very unusual font is used12.

• Language Configuration: Tesseract can recognize text in multiple languages. Specifying
the language(s) or script(s) is crucial for accurate recognition, as it adjusts the character
set and dictionary accordingly. In this case, the language was set to Dutch.

• Page Segmentation Modes (PSM): Tesseract provides 14 different PSMs, each optimized
for various layout scenarios. Choosing the right PSM ensures better text extraction
results. For this project, we set the PSM value to 4.

Text Segmentation Per Person: To manage and track errors effectively, the text is split
into separate .txt files for each person mentioned in the book. This approach allows for better
control over the files. An algorithm using regular expressions in Python was developed for
this purpose, based on specific characteristics of the books:

• The last name of each person is the only word in capital letters, and it appears on the
first line of the page.

• Each new person starts on a new page, although not every page contains information
about a new person.

• Each image corresponds to one page.

• Only personal images regarding the person’s information are used; other images, such as
sources or covers, have already been removed as explained in section 3.

The algorithm which is used in this step is shown in figure 2 and it operates as follows:

(a) Sorts the PNG files numerically based on the page number in the filename.

(b) Iterates through each image in the sorted list.

(c) Performs OCR on the image to extract text.

(d) Checks if the first few lines of the OCR text start with a last name (a sequence of three
or more capital letters).

(e) If a last name is found, it creates a new .txt file for the person to save the information
there and then continues with the next PNG.

(f) If no last name is found, it does not need to create a new .txt file. But it has to save the
information in the latest .txt file made and then continue with the next PNG.

(g) Once it has iterated through all the PNGs, the algorithm will stop.

See Appendix F for an example of a generated .txt file using this algorithm.

4.2 Phase 2: JSON Extraction from Text with AI

After creating separate text files for each individual, the next step is to extract all relevant informa-
tion from these texts into a structured format. We chose JSON as our structured format because it
is a key-value style lightweight data exchange format. Its simplicity makes JSON easy for humans

12https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
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Figure 2: Algorithm for extracting and saving text per person from scanned book images using
OCR.
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to read and write, and for computers to generate and parse Peng et al. [2011].

Initially, we explored using regular expressions in Python to extract information following specific
titles such as ’Opleiding’ (Education) and ’Loopbaan’ (Career) from the text. However, early
experiments revealed significant challenges due to OCR-related errors. These errors made it diffi-
cult to reliably capture and process data using regular expressions. Therefore, we transitioned to
using an AI model which is explained in the following sections. For further details on our initial
experimentation with regular expressions, refer to Appendix I, where the corresponding code is
documented.

4.2.1 Schema Definition

In Section 3, we described the types of information present in our dataset. To generate a consistent
output that contains all the necessary fields, we need to define a schema for our model. Given the
complexity of our desired output, which involves highly nested and extensive JSON files, this task
is challenging. To address this, we use Pydantic13, a Python library that allows us to define the
keys of our JSON as classes.
Pydantic provides data validation through Python type annotations. It simplifies the handling
of JSON responses, ensuring they match the specified schema without requiring intricate error-
checking code. Additionally, Pydantic can automatically generate JSON schemas based on the
defined models14. This approach significantly reduces complexity and makes the structure more man-
ageable. The complete JSON schema for the output JSONs can be found in our GitHub repository15.

Below is an example of a Pydantic class from our schema, which is used to extract informa-
tion related to the careers of the scholars in our dataset.

Listing 3: Example Pydantic Class for Career Information

class Career(BaseModel):

"""Identifying information about the persons career."""

job: Optional[str] = Field(None, description='The type of job',
examples=['Hoogleraar Geschiedenis'])

location: Optional[str] = Field(None, description='The location of the job',
examples=['Leiden'])

date: Optional[str] = Field(None, description='The date of the job.',
examples=['1601-10-20', '1601'])

source: Optional[str] = Field(None, description='The source of the info mentioned

in parentheses', examples=['6'])

class Person(BaseModel):

FirstName: str = Field(..., description="The first name of a person",

examples=['Cornelis', 'Johannes'])

13https://pydantic.dev
14https://docs.pydantic.dev/latest/concepts/json_schema/
15https://github.com/Leiden-University-City-Lab/BantjesAdapter/blob/main/AI/json_schema.json
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LastName: str = Field(..., description="The last name of a person",

examples=['EKAMA'])
BirthDate: Optional[str] = Field(None, description="Birth date, Usually found

after Geb.", examples=['1601-10-20', '1601', '1601-10'])
careers: List[Career]

4.2.2 Extraction Techniques

To extract the information, we use the GPT-3.5 Turbo model from OpenAI platform16 as our Large
Language Model(LLM). GPT-3.5 Turbo’s function calling feature enables us to define functions in
an API call and have the model intelligently output a JSON object with the necessary key-value
pairs. Instead of executing the function, the Chat Completions API produces JSON that can be
used to call the function in our code. This approach ensures that structured data is returned
more reliably17. OpenAI’s function calling capabilities, combined with Pydantic, allow for a more
structured and reliable approach to output parsing. Pydantic’s data models are defined with familiar
Python-type annotations, making them intuitive and easy to use. Below is the GPT prompt and
code used to generate the JSON objects:

Listing 4: GPT prompt for extracting structured data from OCR text using GPT-3.5 Turbo

def chat_completion(person_info):

return client.chat.completions.create(

model="gpt-3.5-turbo",

messages=[

{

"role": "system",

"content": '''You are an advanced data extraction system.

- You can identify each person by surname

- The surname is always in uppercase letters, followed by

the middle and/or first name

- If you can't determine the field value, refer to the

examples'''
},

{

"role": "user",

"content": f'Please extract the data for the following person:

{person_info}'
}

],

response_model=Person,

max_retries=1,

tool_choice="auto"

)

16https://platform.openai.com/docs/models/gpt-3-5-turbo
17https://platform.openai.com/docs/guides/function-calling
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In the prompt shown above, the model attribute specifies which version of the GPT model to use
for generating responses. In this example, we use gpt-3.5-turbo. The messages attribute, a list of
dictionaries, defines the conversation context, where the system message provides instructions and
the user message contains the input data, including guidelines and examples for data extraction.
The response model attribute ensures the output adheres to the defined schema using a Pydantic
model, in this case, the Person class. The tool choice attribute, set to auto, controls the model’s
decision to either generate a message or call a specified function. The person info contains
OCR-obtained input text about individuals, passed through the user message content. Lastly, the
max retries attribute is set to 1, specifying the maximum number of retry attempts if the API
call fails. Appendix G shows an example of a generated JSON file using this technique.

4.3 Phase 3: Record Linkage & Database Enrichment

After obtaining the JSON files containing the extracted information, the next step involves enriching
the centralized database with this data. The centralized database, developed by the LUCD project,
already contains high-quality data on professors and students associated with Leiden University.
However, the original database structure is insufficient to encapsulate all our data. Therefore, we
modified the database schema by adding necessary tables and columns to accommodate the new
information from our JSON files.

Figure 3 shows the Entity-Relationship (ER) diagram of the updated database version. The
added tables are ’education’, ’career’, and ’particularity’. We have added three new columns to the
’person’ table: ’AlternativeLastName’, ’rating’, and ’faculty’. The ’rating’ column helps differentiate
between newly added and original data, using a system of three ratings. Original data is given a
rating of 3 for high quality, a rating of 2 is assigned if additional data matches an existing entity,
and a rating of 1 is for entirely new entities. This approach allows us to effectively distinguish data
quality levels, filter the newly added columns accordingly, and check the newly added data for
possible faults or misspellings. If we find a linked record in the database with a high score, we will
not overwrite the existing data of this instance. Instead, we will enrich this entity with new data if
the corresponding tables are empty.

4.3.1 Linking Algorithm

In implementing record linkage, quasi-identifiers play a crucial role. Quasi-identifiers are attributes
like names, addresses, and dates of birth that can be combined to uniquely identify a person Winkler
[2014].

To compare the values between two fields, we allow for partial matches. This technique ensures
that first names such as ’Casper Janszoon’ and ’Casper Johannes’ are considered a match. The
partial matching method used involves breaking down each name into substrings based on white
spaces and checking if any part of the first name or last name appears in the corresponding field of
the database records.

When linking two records together, we assess them against two specific conditions. If either
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Figure 3: Entity-Relationship diagram of the modified database which can encapsulate the new
data
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condition is satisfied, we consider the records as matching and proceed to integrate any additional
information from our JSON files into these records. The conditions are as follows:
First condition:

• First name and last name match.

• Either the birth year is the same or the birth city matches.

Second condition:

• Last name matches.

• Birth year matches.

• Either the birth city or the birth country matches.

These conditions were chosen because they use identifiers that are present for most people in our
dataset. Defining more matching conditions could result in fewer matches, as not all the people in
our dataset may have all the required information.
We also introduce a condition for uncertain matches, where the data does not perfectly align but
there is still a potential match. For these cases, the algorithm identifies records where the birth
year and birthplace do not match, but the names match. If such a match is found, we create a new
person in the database but introduce a relation between this newly added person and the person
from the database who we thought might be the same individual. This approach allows us to easily
identify uncertain cases and review them further.
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5 Evaluation

We adopted a systematic evaluation approach to assess the performance of each phase in our
methodology, ensuring a thorough analysis of our strategy’s effectiveness in achieving the expected
results at every step. Conducting our assessment per phase allowed us to address each research
subquestion effectively and gain insights into the performance of individual components of our
methodology.

For our evaluation, we selected a sample comprising 10% of the total number of individuals
in the dataset. This sample size was chosen to represent a diverse range of data across all volumes.
By evaluating this sample, we aimed to draw meaningful conclusions about the overall performance
of each phase in our digitization, information extraction, and enrichment process.

5.1 Phase 1 Evaluation: Quality Assessment of Generated Text

In our evaluation of Phase 1, we assessed the quality of the generated text. To ensure a comprehen-
sive evaluation, we created a labeled dataset comprising 10% of the total text files from all volumes.
This labeled dataset served as our ground truth for comparison with the OCR-generated text.

In evaluating the quality of the text recognition system, Character Error Rate (CER) and Word
Error Rate (WER) have been chosen as the primary metrics. These metrics are widely accepted
in the scientific community for assessing OCR systems, as they provide a clear and quantifiable
measure of errors at both the character and word levels Leifert et al. [2019].

In contrast, metrics such as precision, recall, and F-measure, commonly used in information
retrieval through the bag-of-words (BOW) model, were considered less suitable for this context.
The BOW model suffers from several drawbacks: with the main drawback being that the model
does not consider the reading order of words, failing to penalize permutations of recognized words
Leifert et al. [2019].

Given this context, CER and WER have been used to provide a comprehensive evaluation of the
OCR system.

To calculate these metrics, an algorithm based on the Levenshtein distance has been implemented.
The algorithm processes pairs of files: one from the OCR-generated text files and one from the
correct text files that we manually labeled. It computes the edit distance between the two texts
and normalizes it by the length of the reference text, thus obtaining CER and WER.

The steps involved in the algorithm are as follows:

• Normalization: Both texts are stripped of leading and trailing whitespaces and converted to
lowercase to ensure consistency in comparison.

• Levenshtein Distance Calculation: The edit distance is calculated using a dynamic program-
ming approach that fills a matrix with the minimum number of edits (insertions, deletions,
substitutions) required to transform one string into another.
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• Metric Computation: Both CER and WER are derived from the Levenshtein distance. CER
and WER normalize this distance by dividing the total number of edits by the number of
characters and words in the reference text, respectively, providing a standardized error rate.

CER, defined as the ratio of the sum of insertions, deletions, and substitutions to the total number
of characters in the reference text, offers an inverted measure of character accuracy. The CER is
calculated as follows18:

CER =
Sc +Dc + Ic

Nc

(1)

where:

• Sc is the number of character substitutions,

• Dc is the number of character deletions,

• Ic is the number of character insertions,

• Nc is the total number of characters in the reference.

WER extends this concept to the word level, providing insights into how well entire words are
recognized. The WER is calculated as follows19:

WER =
Sw +Dw + Iw

Nw

(2)

where:

• Sw is the number of word substitutions,

• Dw is the number of word deletions,

• Iw is the number of word insertions,

• Nw is the total number of words in the reference.

The evaluation involved comparing the OCR-generated text with our labeled dataset to compute
the Word Error Rate (WER) and Character Error Rate (CER). We then averaged these rates for
each volume. The results are presented in Figure 4.

The WER is consistently higher than the CER across all volumes. This difference is expected
because WER measures errors at the word level, which inherently accumulates more errors than
CER, which measures errors at the character level. A single word error in WER can correspond to
multiple character errors in CER, leading to higher overall WER values.

Among these volumes, volume 2 exhibits significantly higher error rates than the others, with WER
and CER both notably elevated. This suggests that the OCR system encountered more difficulties

18https://en.wikipedia.org/wiki/Word_error_rate
19https://docs.kolena.com/metrics/wer-cer-mer
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(a) Average Word Error Rate (WER) per Vol-
ume.

(b) Average Character Error Rate (CER) per
Volume.

Figure 4: Comparison of Error Rates

with the text in this particular volume. The primary factor contributing to the poorer performance
observed in volume 2 is likely the quality of printing. Poor print quality can introduce noise and
distortions in the text, making it harder for the OCR system to accurately recognize characters
and words. For instance, faded ink, smudges, or uneven text alignment can significantly impact
recognition accuracy. Figure 5 to 11 show images from all volumes, illustrating the varying printing
quality.

Figure 5: An image showing the printing quality of Volume 1

5.2 Phase 2 Evaluation: Quality Assessment of Generated JSON

In Phase 2 of our evaluation, we aimed to assess the quality of the JSON files created by our AI
model. For 10% of the individuals in our dataset, we manually created correct JSON files that align
with our predefined schema. These files were checked against the original images to ensure their
accuracy.

To assess the impact of OCR-related errors and text quality on the generated JSON files, we created
two sets of JSON files for accuracy evaluation using GPT-3.5 Turbo as our AI model. The first set
used manually corrected text inputs. For each text file, we generated five JSON files to calculate
average accuracy, ensuring a comprehensive assessment and avoiding non-representative outcomes.
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Figure 6: An image showing the printing quality of Volume 2

Figure 7: An image showing the printing quality of Volume 3

Figure 8: An image showing the printing quality of Volume 4

Figure 9: An image showing the printing quality of Volume 5
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Figure 10: An image showing the printing quality of Volume 6

Figure 11: An image showing the printing quality of Volume 7

The second set was derived from OCR-generated text inputs. For each text file in this set, we also
generated five JSON files. Here, the objective was to gauge accuracy considering potential spelling
errors and OCR inaccuracies.

To evaluate these JSON files, we conducted a comparison between the AI-generated JSON files and
the correct JSON files:

1. Normalization by lowercasing: To ensure a consistent comparison, we converted all text
values to lowercase. This step helped in making the comparison case-insensitive, thereby
focusing only on content accuracy rather than case differences.

2. Value comparison: We compared each key-value pair in the AI-generated JSON files with
the corresponding pair in the correct JSON files. This comparison was performed separately
for two sets of AI-generated JSON files: those based on Correct Text Files and those based
on OCR-Generated Text Files.

3. Accuracy assessment: For each key, we calculated the accuracy by determining the
percentage of correct values generated by the AI.

4. Key categorization: Keys in the JSON files were categorized into meaningful groups such
as ’Main person’, ’Education’, ’Careers’, ’Particularities’, ’Spouses’, ’Parents’, ’Grandparents’,
’In-laws’, ’Children’, and ’Far family’. This categorization allows us to perform a focused
analysis of accuracy and helps us detect the error-prone areas in our JSON files.

Below is a comparison example of a small section from JSON files, focusing on keys related to
the ’Main person’ category. The first JSON is manually created and therefore is correct, while the
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second JSON is generated using our AI model. In our dataset, the type of person attribute, set
to 1, denotes that the individual is classified as a professor. Other types of persons that appear in
the database include students and curators.

Listing 5: Example of a correct JSON file containing the key-value pairs related to the ’Main person’
category

{

"first_name": "Caspar Janszoon",

"last_name": "COOLHAES",

"affix": null,

"gender": "Man",

"alternative_last_names": ["KOOLHAES", "KOOLHAAS", "COELAES"],

"type_of_person": 1,

"faculty": "Theologie",

"birth_country": "Duitsland",

"birth_city": "Keulen",

"birth_date": "1534-01-24",

"death_date": "1615-01-15",

"death_city": "Leiden"

}

Listing 6: Example of a JSON file, made using our AI model, containing the key-value pairs related
to the ’Main person’ category

{

"first_name": "Caspar Janszoon",

"last_name": "COOLHAES",

"affix": null,

"gender": "Man",

"alternative_last_names": [],

"type_of_person": 1,

"faculty": "Theologie",

"birth_country": null,

"birth_city": "Keulen",

"birth_date": "1534",

"death_date": "1615",

"death_city": "Leiden"

}

Table 3 shows the comparison results of the two JSON files above. The ’Accuracy’ score represents
the percentage of correct values generated by the AI for each key in the JSON file. For example,
the first name key has an accuracy of 100.00%, indicating that the AI correctly generated the
first name in all instances. In our evaluation, if the AI extracts ’1615’ but the correct complete
date is ’1615-01-15’, we consider it inaccurate even if the year information matches. This approach
ensures precision in our accuracy assessment by mandating exact date formats where necessary.
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Category Key Accuracy

Main Person first name 100.00% (1/1)

Main Person last name 100.00% (1/1)

Main Person affix 100.00% (1/1)

Main Person gender 100.00% (1/1)

Main Person alternative last names 0.00% (0/3)

Main Person type of person 100.00% (1/1)

Main Person faculty 100.00% (1/1)

Main Person birth country 0.00% (0/1)

Main Person birth city 100.00% (1/1)

Main Person birth date 0.00% (0/1)

Main Person death date 0.00% (0/1)

Main Person death city 100.00% (1/1)

Table 3: Example of accuracy scores for the main person category in the JSON file.

Category
Average accuracy of
JSON files made using
correct text files

Average accuracy of
JSON files made using
OCR-generated text files

Main person 73.53% 72.29%

Education 68.29% 63.22%

Careers 66.84% 64.05%

Particularities 58.34% 53.05%

Spouses 63.23% 61.85%

Parents 70.13% 67.48%

Grandparents 66.09% 57.33%

In-laws 54.46% 59.16%

Children 69.61% 66.53%

Far family 59.85% 62.27%

Total 65.04% 62.72%

Table 4: Overall accuracy results per category for JSON files generated from correct and OCR-
generated text files.

Table 4 displays the overall results per category, highlighting the differences in accuracy scores
between JSON files generated using correct text files and those generated using OCR text files.

The average accuracy scores are generally higher across most categories for JSON files gener-
ated using correct text files compared to those created using OCR-generated text files. This
difference is due to the inherent faults in the OCR-generated text, such as spelling errors or
misplaced recognized words. These inaccuracies in the OCR text can impact the AI’s ability to
generate correct JSON files, resulting in lower accuracy scores. Additionally, the total accuracy is
higher for JSON files generated using correct text files, reflecting the overall better performance
with accurate inputs.
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In both sets of JSON files, the ’Main person’ category, which consists of the keys shown in
table 3 shows the highest accuracy scores. This high accuracy might be because this information
primarily appears at the top of each page and thus at the beginning of each text file. The unifor-
mity of these personal details makes it easier for the AI to accurately extract and generate the
corresponding JSON values.

In contrast, the ’In-laws’ category in the JSON files generated using correct text files has the lowest
accuracy among all categories. This lower accuracy could be due to the variability and less consistent
format of the information in this category, making it more challenging for the AI to accurately
extract and generate the corresponding values. By variability, we mean that in some cases, the father
and mother-in-law are mentioned within the information about the spouses, as shown in Figure
12. In other cases, they have their dedicated section, as shown in Figure 13. This inconsistency in
format makes it difficult for the AI to consistently recognize and categorize the information correctly.

In the scenario shown in Figure 12, the AI may handle the information in several ways: 1)
it may not include the in-law information at all, 2) it might place it under the ’In-laws’ section, or
3) it could categorize it under ’Far family’. However, in our evaluation, we only consider the first
approach as accurate. This is because the correct JSON files, manually created, set the in-laws
values to null if not explicitly mentioned under ’ouders echtgenotes’. This scenario likely contributes
to the low accuracy scores observed in these categories.

Furthermore, a possible reason why the ’In-laws’ and ’Far family’ categories scored lower in JSON
files generated from correct text compared to those made using OCR-generated text could be due
to the higher incidence of inaccuracies in OCR text. JSON files generated from OCR text, which
often contain more errors, may lead the AI to leave the ’In-laws’ and ’Far family’ values empty. In
contrast, JSON files made based on correct text, with fewer errors, may enable the AI to extract
more of these relationships which are not necessarily correct.

Additionally, in the JSON files generated using OCR text files, the ’Particularities’ category
shows significantly lower accuracy scores. This category is particularly affected by OCR errors,
which challenges the AI’s performance.

5.3 Phase 3 Evaluation: Quality Assessment of Linking Algorithm

To evaluate the enrichment algorithm, we used sample data consisting of two sets of JSON files.
The first set was generated using OCR text, and the second set was manually created to ensure
correctness. By comparing these two sets of JSON files, we can better understand the impact of
potential OCR errors and the errors introduced by the AI model on the record-linking process.

To measure the performance, we executed our algorithm on these two sets of JSON files and
calculated the results for each volume. Below is the schema of the JSON file created specifically
for our evaluation, which contains information on the performance of our database enrichment
algorithm. Each JSON file contains objects corresponding to an individual from our dataset. If
the linking algorithm finds a person in the database, the new person attribute is set to false, and
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Figure 12: Leidse hoogleraren en lectoren 1575-181, Volume 1, Page 44. The image shows an
example in which the names of the in-laws are mentioned within the spouse’s section (in Dutch,
’echtgenotes’).

Figure 13: Leidse hoogleraren en lectoren 1575-181, Volume 2, Page 11. The image shows an
example in which the father and mother-in-law have their sections in the document under ’ouders
echtgenotes’, meaning parents of spouses.
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the person id represents the unique ID of the identified person from the database. If no person
is found, a new person will be added to the database and therefore the new person attribute is
set to true, and the person id shows the ID of the newly added record. The maybe same person

attribute is set to true when there is insufficient evidence for the linking algorithm to match two
records definitively but identifies a potential match. In such cases, a new record is created under
the ID specified by person id.

Listing 7: JSON schema for evaluating database enrichment

{

"name_of_file": {

"person_id": int,

"new_person": bool,

"maybe_same_person": bool

}

}

The accuracy results of the linking algorithm using correct JSON files are shown in Table 5, and
Table 6 shows the results using OCR-generated JSON files. The ’Person ID Accuracy’ measures
how often the algorithm correctly identifies existing individuals. Using correct JSON files, accuracy
ranges from 71.43% to 100%. With OCR-generated files, accuracy drops, ranging from 57.14%
to 100%, indicating OCR errors impact the algorithm’s ability to correctly identify individuals.
The ’New Person Accuracy’ measures how accurately the algorithm identifies new individuals.
Using correct JSON files, accuracy is generally high (85.71% to 100%). With OCR-generated files,
accuracy is lower, ranging from 57.14% to 100%. The ’Maybe Same Person Accuracy’ measures
how often the algorithm correctly flags uncertain matches. This metric consistently shows high
accuracy (75% to 100%). The comparison shows the impact of OCR errors on the linking algorithm.
While the algorithm performs well with manually created JSON files, its accuracy decreases with
OCR-generated files, particularly for identifying existing individuals and new entries.

Volume
Accuracy
Person ID

Accuracy
New Person

Accuracy
Maybe Same Person

Accuracy
Average

Volume 1 71.43% 85.71% 100% 85.71%

Volume 2 80% 80% 100% 86.67%

Volume 3 100% 100% 100% 100%

Volume 4 100% 100% 100% 100%

Volume 5 87.5% 87.5% 100% 91.67%

Volume 6 100% 100% 75% 91.67%

Volume 7 100% 100% 100% 100%

Total 91.28% 93.32% 96.43% 93.67%

Table 5: Accuracy scores of the linking algorithm using correct JSON files created manually

Table 7 compares the counts of new persons generated by the linking algorithm across different
volumes when using correct JSON files versus OCR-generated JSON files. The table includes the
number of instances in each volume, the correct count of new persons that should have been created,
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Volume
Accuracy
Person ID

Accuracy
New Person

Accuracy
Maybe Same Person

Accuracy
Average

Volume 1 57.14% 57.14% 100% 71.43%

Volume 2 60% 60% 80% 66.67%

Volume 3 83.33% 83.33% 100% 88.89%

Volume 4 66.67% 66.67% 100% 77.78%

Volume 5 62.5% 62.5% 100% 75%

Volume 6 100% 100% 75% 91.67%

Volume 7 100% 100% 85.71% 95.24%

Total 75.66% 75.66% 91.53% 80.95%

Table 6: Accuracy scores of the linking algorithm using JSON files made from OCR-generated text
files

and the actual counts generated by the algorithm for both sets of JSON files.
In volumes 6 and 7, a significantly higher number of new people were generated compared to volumes
1 to 5. This difference is because the central database only contains information on professors and
students of Leiden University while volumes 6 and 7 contain data on curators of Leiden University.
As a result, the linking algorithm was unable to find matches for curators because they were not
present in the centralized database, thus identifying more new individuals in these volumes.

Volume
Instance
Count

Correct
New Person Count

Generated
New Person Count
(Correct JSON)

Generated
New Person
Count (OCR
JSON)

Volume 1 7 0 1 3

Volume 2 5 0 1 2

Volume 3 6 1 1 2

Volume 4 3 1 1 2

Volume 5 8 2 3 5

Volume 6 4 3 3 3

Volume 7 7 7 7 7

Table 7: Comparison of New Person Counts between Correct JSONs vs. the JSON file made using
OCR-generated text files
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6 Discussion

In this study, our focus has been on enhancing the quality of OCR-generated text, optimizing infor-
mation extraction using AI models, and refining the performance of our record linkage algorithm.
However, several persistent challenges continue to impact the accuracy and comprehensiveness of
our results, highlighting the need for ongoing refinement.

Despite efforts to enhance OCR text quality, residual issues impact downstream processes, particu-
larly in JSON generation. Variability in page layouts across our dataset poses a challenge. Instances,
where information from separate columns is interpreted as a single line, disrupt context continuity
and coherence, potentially leading to inaccuracies in JSON outputs.

During information extraction, we employed a uniform JSON schema across all volumes, as-
suming document structure consistency. However, subtle variations between volumes, such as
different terminologies (’Carrière’ vs. ’Loopbaan’ for job information), suggest that volume-specific
JSON schemas might enhance model accuracy. Tailoring schemas to unique volume characteristics
could improve the contextual relevance and reliability of extracted data.

In some cases, certain information appears in the data that we have not considered as sepa-
rate JSON keys. For instance, a person’s salary is sometimes mentioned in the ’Particularities’
section (’Bijzonderheden’ in Dutch). The reason for not including these as fixed JSON keys is that
they are not consistently mentioned for all individuals, which would result in many null values.
However, these specific details can be added to the JSON schema if they frequently appear and are
deemed necessary.

The linking algorithm in this study uses specific criteria such as first name, last name, birth
city, and birth year to link records. Our approach employs partial matching for names to accommo-
date variations within names. While first names such as ’Casper Janszoon’ and ’Casper Johannes’
are considered a match, it does not accommodate variations such as ‘Coolhaas’ vs. ’Koolhaes’ due
to stricter matching rules. This decision was made to reduce the number of incorrect matches while
maintaining precision. Implementing techniques like Levenshtein distance could enhance the al-
gorithm’s flexibility, allowing for less strict matching criteria and potentially reducing false negatives.

For our evaluation, we selected a sample consisting of 10% of the total people in the dataset,
amounting to 40 individuals. We did not choose a larger sample because manually creating the
ground truths for the evaluations was an exhaustive and time-consuming task. However, from a
statistical standpoint, to achieve a confidence level of 95% with a 5% margin of error, the ideal
sample size for a population of 400 individuals would be 196. This represents approximately 49% of
the total population. Calculations were performed using an online sample size calculator, which
takes into account the population size, margin of error, and desired confidence level20.

20https://www.qualtrics.com/uk/experience-management/research/determine-sample-size/?rid=ip&

prevsite=en&newsite=uk&geo=NL&geomatch=uk
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7 Further Work

This study introduces an approach to digitizing historical data using OCR and AI technologies.
Moving forward, several avenues for future research can improve the sophistication and efficiency of
these methodologies. Future research could explore using advanced multi-modal AI models, such as
GPT-4o, developed by OpenAI21. GPT-4o can handle text and image inputs to generate structured
text outputs, making it suitable for automated data extraction from historical documents. By
using GPT-4o’s capabilities, there is potential to simplify workflows and improve accuracy in gen-
erating JSON-formatted outputs directly from document images, potentially eliminating OCR steps.

Additionally, the study identified challenges in the current linking algorithm, particularly in
accommodating variations within names. Implementing techniques like Levenshtein distance could
enhance the algorithm’s flexibility, allowing for less strict matching criteria and potentially reducing
false negatives.

Future research should also consider the use of volume-specific JSON schemas to account for
subtle differences in document structures across volumes.

Furthermore, exploring prompt engineering could lead to better results in information extrac-
tion. By refining and experimenting with different prompts, future research could optimize the
performance of AI models in generating accurate and comprehensive JSON outputs.

21https://platform.openai.com/docs/models/gpt-4o
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8 Conclusion

To answer the main research question, ’How can we accurately extract and transform historical
records data from scanned historical documents and map it into a centralized database?’ we
introduced a systematic 3-phase methodology, each designed to answer specific sub-questions.

Our first sub-question was: ’How can we extract high-accuracy text from scanned historical
documents using OCR techniques?’ We began by converting PDF files to PNG format to facili-
tate compatibility with Tesseract OCR. Subsequent image preprocessing steps included denoising,
grayscale conversion, and binarization to optimize OCR accuracy for historical documents. The
Tesseract OCR engine was then employed to extract text from the preprocessed images.

In the second phase, our attention turned to structuring the data into JSON format, addressing
the sub-question: ’How can AI be used to analyze the OCR-generated text and obtain a structured
format?’ Using Pydantic, a Python library, we defined schema models to ensure consistency and
facilitate data validation. Information about each individual was structured into nested JSON
objects. Integration with OpenAI’s GPT-3.5 Turbo model enabled intelligent function calling,
providing structured JSON outputs aligned with our schema definitions.

In the final phase, we focused on database enrichment and record linkage, answering the sub-
question: ’How can we map the structured data into a centralized database?’ We enriched a
centralized database originally developed by the LUCD project with extracted JSON data. Modifi-
cations to the database schema introduced new tables (’education’, ’career’, ’particularity’) and
columns (’AlternativeLastName’, ’rating’, ’faculty’) to encompass comprehensive dataset attributes.
The record linkage algorithm used quasi-identifiers such as names and birth details, incorporating
partial matching conditions to accurately link records across datasets.
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A Example Page: Alphabetical List of Names

Figure 14: Leidse hoogleraren en lectoren 1575-1815. Volume 5. Page 9.
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B Example Page: Detailed Information About a Person

Figure 15: Leidse hoogleraren en lectoren 1575-1815. Volume 5. Page 11.
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C Example Page: List of Sources Used in the Volume

Figure 16: Leidse hoogleraren en lectoren 1575-1815. Volume 5. Page 133.
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D Example Person: Original Images

Figure 17: Leidse hoogleraren en lectoren 1575-1815. Volume 1. Page 45.
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Figure 18: Leidse hoogleraren en lectoren 1575-1815. Volume 1. Page 46.
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E Example Person: Preprocessed Images

Figure 19: Leidse hoogleraren en lectoren 1575-1815. Volume 1. Page 45.
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Figure 20: Leidse hoogleraren en lectoren 1575-1815. Volume 1. Page 46.
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F Example Person: OCR-Generated Text

Listing 8: Text file generated using a trained Tesseract OCR engine, detailing the education and
career of Franciscus (Francois) GOMARUS.

9

GOMARUS (GOMAIR), Franciscus (Francois)

Geb. Brugge 30-01-1563 (14)

Gest. Groningen 11-01-1641 (14)

Opleiding:

Stud. Litt., Phil., en Theol. Straatsburg 1577 (a,33)

Stud. Theol., Phil., Oosterse .

en Klassieke Talen Neustadt 1580 #

Stud. Oxford najaar 1582 (6

BA Magdalene Col1. Camnbridge 02-03-1583 (19)

MA Cambridge 22-03-1583 (19)

Stud. Theol. Heidelberg 03-06-1585 23)

Doct. TFheol. Heidelberg 14-06-1594 (a)

Carrire :

Pred. Ned. Gemeente Frankfurt a/d Main 13-11-1586 (a)

Pred. Ned. Gemeente Hanau 1594 (54)

Hoogleraar Theol. Leiden 25-01-1594 (14)

Geref. Pred. Leiden 1594/02-1598 (6,a)

Rector Magnificus Leiden 1897=-1598

1598-1599

Ontslag genomen Leiden 21-04-1611 (14)

Geref. Pred. Middelburg 28-05-1611 (54)

Hoogleraar Theol. en Hebreeuws

Collegium Theologdcum Middelburg 28-05-1611 (952t1e)

6

Hoogleraar Theol. Saumur 1614-1618 62

Rector Magnificus Saumur 1615.1617 (6

Hoogleraar Theol. en Hebreeuws Groningen 28-02-1618 (54)

Rector Magnificus Groningen 1618

1624

1630

1635 (6)

Nevenfuncties: (6)

Revisor Bijbelvertaling Syn. Den Haag 1598

Praeses Classis Vlissingen 1612 (a)

Afgev. Univ. Groningen bij

Synode Dordrecht 1618

Echtgenotes:

1. Anna Emerentia Musenhole (Muysenhol) (6,a)
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Getr. Frankfurt a/d Main 1588 (a)

Gest. 1592 (54)

Vader: Gilles Muysenhol uit Antwerpen (a)

2. Jonkvrouwe Maria L'Hermite

Getr. Frankfurt a/d Main zomer 1593 (a)

Gest. 1621 (8)

Vader: Simon l'Hermite, Schepen Antwerpen (adellijk)s Moeder: Johanna de

3. Anna Maria la Noye (Lannoy, de Lannoy) (6,a,54) splijtere (a)

Getr. Middelburg 1622 (a)

Kinderen: (a)

1. Franciscus

Geb. 1594

Getr. 1620 Agneta Wermeri

Getr. 1622 Maria Nissingh

2. Johannes

Geb. 1599

Gest. 1613

3. Maria

Geb. 1597

Getr. J. Bosman

Gest. 1618

4. Johanna

Getr. 1621 David de la Haye

Waalse pred. Groningen

Ouders:

Franciscus (Fransoys) Gomarus (4a,6)

Gegoede koopman, eigenaar herberg
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Johanna Moermans (6)

Bijzonderheden:

Salaris: bij aanvang 7 800 (6)

a) G.P. van Ttterzon, Franciscus Gomarus 's-Gravenhage, 1930.
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G Example Person: AI-Generated JSON

Listing 9: This JSON file, generated using GPT-3.5 Turbo based on OCR-generated text as
input, provides detailed information about Franciscus (Francois) GOMARUS, including his names,
education, careers, particularities, spouses, parents, and children.

{

"FirstName": "Franciscus (Francois)",

"LastName": "GOMARUS",

"Affix": "(GOMAIR)",

"Gender": "Man",

"second_names": [

"Gomair"

],

"alternative_last_names": [],

"education": [

{

"subject": "Stud. Litt., Phil., en Theol.",

"location": "Straatsburg",

"date": "1577",

"source": "33"

},

{

"subject": "Stud. Theol., Phil., Oosterse en Klassieke Talen",

"location": "Neustadt",

"date": "1580",

"source": null

},

{

"subject": "Stud. Oxford",

"location": "najaar 1582",

"date": "1582",

"source": null

},

{

"subject": "BA",

"location": "Magdalene Col1. Camnbridge",

"date": "1583-03-02",

"source": "19"

},

{

"subject": "MA",

"location": "Cambridge",

"date": "1583-03-22",

"source": "19"

},

{

"subject": "Stud. Theol.",
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"location": "Heidelberg",

"date": "1585-06-03",

"source": "23"

},

{

"subject": "Doct. TFheol.",

"location": "Heidelberg",

"date": "1594-06-14",

"source": "a"

}

],

"careers": [

{

"job": "Pred. Ned. Gemeente Frankfurt a/d Main",

"location": "Frankfurt",

"date": "1586-11-13",

"source": "a",

"is_side_job": 0

},

{

"job": "Pred. Ned. Gemeente Hanau",

"location": "Hanau",

"date": "1594",

"source": "54",

"is_side_job": 0

},

{

"job": "Hoogleraar Theol.",

"location": "Leiden",

"date": "1594-01-25",

"source": "14",

"is_side_job": 0

},

{

"job": "Geref. Pred.",

"location": "Leiden",

"date": "1594-02",

"source": "6,a",

"is_side_job": 0

},

{

"job": "Rector Magnificus",

"location": "Leiden",

"date": "1597-1598",

"source": null,

"is_side_job": 0

},

{
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"job": "Geref. Pred.",

"location": "Middelburg",

"date": "1611-05-28",

"source": "54",

"is_side_job": 0

},

{

"job": "Hoogleraar Theol. en Hebreeuws",

"location": "Collegium Theologdcum Middelburg",

"date": "1611-05-28",

"source": null,

"is_side_job": 0

},

{

"job": "Hoogleraar Theol.",

"location": "Saumur",

"date": "1614-1618",

"source": "62",

"is_side_job": 0

},

{

"job": "Rector Magnificus",

"location": "Saumur",

"date": "1615-1617",

"source": null,

"is_side_job": 0

},

{

"job": "Hoogleraar Theol. en Hebreeuws",

"location": "Groningen",

"date": "1618-02-28",

"source": "54",

"is_side_job": 0

},

{

"job": "Rector Magnificus",

"location": "Groningen",

"date": "1618-1635",

"source": null,

"is_side_job": 0

}

],

"particularities": [

{

"particularity": "Salaris: bij aanvang 7 800",

"location": "s 'Gravenhage",
"date": null,

"source": "6"
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}

],

"spouses": [

{

"FirstName": "Anna Emerentia",

"LastName": "Musenhole",

"Affix": null,

"Gender": null,

"source": "6,a",

"second_names": [],

"alternative_last_names": [],

"BirthCountry": "Duitsland",

"BirthCity": "Frankfurt",

"BirthDate": null,

"DeathDate": "1592",

"DeathCity": null

},

{

"FirstName": "Jonkvrouwe Maria",

"LastName": "L'Hermite",
"Affix": "(adellijk)",

"Gender": null,

"source": "8",

"second_names": [],

"alternative_last_names": [],

"BirthCountry": "Belgi\u00eb",

"BirthCity": "Antwerpen",

"BirthDate": null,

"DeathDate": "1621",

"DeathCity": null

},

{

"FirstName": "Anna Maria",

"LastName": "la Noye",

"Affix": "(de Lannoy)",

"Gender": null,

"source": "6,a,54",

"second_names": [],

"alternative_last_names": [],

"BirthCountry": "Nederland",

"BirthCity": "Middelburg",

"BirthDate": "1622",

"DeathDate": null,

"DeathCity": null

}

],

"parents": [

{
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"FirstName": "Franciscus",

"LastName": "GOMARUS",

"Affix": null,

"Gender": null,

"source": null,

"second_names": [],

"alternative_last_names": [],

"BirthCountry": null,

"BirthCity": null,

"BirthDate": null,

"DeathDate": null,

"DeathCity": null

},

{

"FirstName": "Johanna",

"LastName": "Moermans",

"Affix": null,

"Gender": null,

"source": null,

"second_names": [],

"alternative_last_names": [],

"BirthCountry": null,

"BirthCity": null,

"BirthDate": null,

"DeathDate": null,

"DeathCity": null

}

],

"grand_parents": [],

"in_laws": [],

"children": [

{

"FirstName": "Franciscus",

"LastName": "GOMARUS",

"Affix": null,

"Gender": null,

"source": null,

"second_names": [],

"alternative_last_names": [],

"BirthCountry": null,

"BirthCity": null,

"BirthDate": "1594",

"DeathDate": null,

"DeathCity": null

},

{

"FirstName": "Johannes",

"LastName": "GOMARUS",

46



"Affix": null,

"Gender": null,

"source": null,

"second_names": [],

"alternative_last_names": [],

"BirthCountry": null,

"BirthCity": null,

"BirthDate": "1599",

"DeathDate": "1613",

"DeathCity": null

},

{

"FirstName": "Maria",

"LastName": "GOMARUS",

"Affix": null,

"Gender": null,

"source": null,

"second_names": [],

"alternative_last_names": [],

"BirthCountry": null,

"BirthCity": null,

"BirthDate": "1597",

"DeathDate": "1618",

"DeathCity": null

},

{

"FirstName": "Johanna",

"LastName": "GOMARUS",

"Affix": null,

"Gender": null,

"source": null,

"second_names": [],

"alternative_last_names": [],

"BirthCountry": null,

"BirthCity": null,

"BirthDate": "1621",

"DeathDate": null,

"DeathCity": null

}

],

"far_family": [],

"type_of_person": 1,

"faculty": "Theologie",

"BirthCountry": null,

"BirthCity": "Brugge",

"BirthDate": "1563-01-30",

"DeathDate": "1641-01-11",

"DeathCity": "Groningen"
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}
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H Example Person: Performance of the Record Linking

Algorithm

Listing 10: This JSON file demonstrates the algorithm’s ability to link the example person to a
person in the database. The file ’21.vol1.txt’ contains the OCR-generated text for this example
person. The algorithm successfully identified a person with ID 485, indicating that the additional
information found in our dataset about this person will be appended to this ID.

{

"21.vol1.txt": {

"person_id": 485,

"new_person": false,

"maybe_same_person": false

}

}
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I Regular Expressions Patterns for Information Extraction

Listing 11: Regular expressions patterns used to extract information from text

# Define regular expressions for each part

name_pattern = r'^([^,]+(?:\s+\([^)]+\))?)(?:,\s*(.*?(?=\s+\(|,|$)))?'
birthdate_pattern = r'1\.Geb\..*?(\d{2}-\d{2}-\d{4})'
deathdate_pattern = r'Gest\..*?(\d{2}-\d{2}-\d{4})'
education_pattern = r'2\.Opleiding:(.*?)3\.Loopbaan:'
career_pattern = r'3\.Loopbaan:(.*?)4\.Nevenfunctie:'
extra_work_pattern = r'4\.Nevenfunctie:(.*?)5\. Bijzonderheden:'
additional_info_pattern = r'5\. Bijzonderheden:(.*)6\.Ouders:'
parents_pattern = r'6\.Ouders:(.*)7\.Ouders Vader:'
parents_father = r'7\.Ouders Vader:(.*)8\.Ouders Moeder:'
parents_mother = r'8\.Ouders Moeder:(.*)9\.Echtgenotes:'
spouses = r'9\.Echtgenotes:(.*)10\.Ouders Echtgenotes:'
parents_spouses = r'10\.Ouders Echtgenotes:(.*)11\Kinderen:'
children = r'11\Kinderen:(.*)'
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