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Abstract

Machine learning is increasingly applied in various fields such as our environment, social
life, education, and healthcare. However, the diagnosis of diseases is still a challenging task.
This thesis focuses on improving the diagnosis of migraines using machine learning. To achieve
this, we use binary and multiclass classification techniques to classify patients as migraine
with aura, migraine without aura, or no migraine. Our data set includes multiple labels and
is based on a questionnaire used in a previous study. We aim to find the best model for
predicting migraines after the pre-processing of the data and the use of various models such
as Random Forest, Logistic Regression, and SVM. Our goal is to minimize false negatives
and improve the sensitivity, specificity and accuracy of migraine diagnosis in comparison
to the model used in the original study conducted by Oosterhout et al. By comparing the
performance of a multiclass classification with a combined binary classification, we aim to
improve the overall accuracy of migraine diagnosis for patients. The results show that for all
three classifications, three or more models have more accurate predictions than the Extended
Questionnaire predictions. In conclusion, it can be stated that the use of machine learning
techniques can result in an improved diagnosis of migraines compared to the current algorithm.
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1 Introduction

Automation and the use of artificial intelligence for medical diagnosis have received a lot of attention
in the past decade, supported by the increased knowledge and development of technology. This
development allows more complicated and multifactorial diseases to be approached that do not
have a clear cure or diagnosis [12]. Migraine is an example of this problem, with possible new
technological solutions for diagnosis.

There is a growing interest in the medical industry in improving the diagnosis of migraine using
machine learning. Machine learning algorithms can create models by analyzing large amounts of
data and identify patterns that humans may be unable to discern. These make machine learning
algorithms well suited for tasks such as diagnosis, which require the analysis of complex data and
numerous other factors [19].

Machine learning has many uses in the field of automation and optimization, which can be
applied to the problem of diagnosing headaches. Several studies, for example Oosterhout et al.
[26], have been carried out to automate the diagnosis of migraine by patients who have difficulty
clarifying the origin of their headaches.

1.1 Challenges and opportunities in the diagnosis of migraine

Headache is a phenomenon that every person feels or has felt at some point in their life. According
to the World Health Organization (WHO), last year, 50-75% of adults experienced some form of
headache [27]. The reasons for headaches can vary, from too much work pressure to being sick [24].
Headaches are a phenomenon that occurs in the brain, the most complex organ of the body. Due
to this fact, examining headaches is not an easy task.

The classification of headache disorders has two main categories: migraine without aura (MO)
and migraine with aura (MA). Migraine usually occurs in phases, as shown in Figure 6. The four
stages of a migraine attack are prodrome, aura, headache and postdrome. Before the headache, there
is a prodrome phase that can involve signs such as mood swings, exhaustion, irritability, stiff neck
and changes in appetite or thirst. The aura phase, which occurs only in people suffering migraine
with aura, is distinguished by unique neurological symptoms such as sensory or visual problems.
Moderate to severe pain, nausea, vomiting, and sensitivity to light and sound are hallmarks of the
headache phase. The postdrome phase, which is the last phase and follows the headache phase,
is characterized by exhaustion, disorientation, a sense of ”brain fog” or changes in mood. The
International Classification of Headache Disorders (ICHD) is a system for classifying different types
of headache disorders, including migraines with and without aura, which takes into account the
patient’s medical history, physical examination, and imaging studies [20].

The criteria for diagnosing a patient with migraine (with and without aura) can be supported
by the diagnostic criteria mentioned in Figure 4, based on the ICHD-3 criteria. The figure shows
that migraine with aura is distinguished by the presence of particular neurological symptoms,
such as sensory disturbances (tingling or numbness), visual disturbances (flashing lights, zigzag
lines, or blind spots), or other neurological symptoms that occur before or during headache. The
headache often follows these symptoms, which usually lasts for 5 to 60 minutes. On the other hand,
migraine without aura is characterized by recurrent headaches that are frequently accompanied
by other symptoms such as nausea, vomiting, and sensitivity to light and sound. These headaches
frequently cause moderate to severe pain and linger for 4-72 hours on average. There are no distinct
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neurological symptoms that manifest before or during the headache, unlike the aura migraine.
Diagnosis of migraine has been a difficult task since the discovery of this phenomenon, as the

cause of this condition cannot be classified. There is no clear biomarker that helps classify the
migraine that haunts a patient. There are many possible causes of headaches and it is still easy
to mark the differences between the types of headaches. To solve this problem, the International
Classification of Headache Disorders (ICHD) has created a list of criteria that defines a patient’s type
of headache from migraine without aura, migraine with aura, tension headache, cluster headache
and some others. But at least 14.7% of the entire world population [25] has symptoms that can
lead to any type.

During the current diagnosis of migraine, a physician will ask the patient about his symptoms
and search for physical indicators of migraine during a clinical interview and physical exam to
determine whether the patient has a migraine. Imaging tests such as CT scans or magnetic resonance
imaging can occasionally be used to eliminate other potential explanations of the patient’s symptoms
[8].

The fact that these techniques are primarily based on the patient’s ability to precisely explain
their symptoms and the healthcare professional’s capacity to understand those symptoms is one of
the main drawbacks. This can be difficult because patients may not always remember or be able
to describe their symptoms accurately and because migraines frequently have a range of different
symptoms that can vary from person to person.

These techniques can also be expensive and time consuming and may not always provide a clear
diagnosis. For example, imaging tests might show normal signs for people who suffer from migraine,
and clinical interviews might not always produce enough data to reach a reliable diagnosis. As a
result, there is a need for more precise and effective techniques to diagnose migraine.

The study by Oosterhout et al. [26] focuses on improving the medical diagnosis of migraine,
which currently needs a neurologist to physically examine. When the questionnaire used in the
study [26] is completed, the algorithm based on the ICHD-2 criteria was run on each diagnosis to
classify the patients. The algorithm had the possible outcomes: no migraine, migraine with aura
and migraine without aura. They successfully diagnosed migraine aura in self-reported migraineurs
with a low false positive rate, but only 80% of the cases were correctly diagnosed. This method was
based on the ICHD-2 criteria, which has already been updated to the ICHD-3 criteria showing much
better specificity and sensitivity (96% and 98%, respectively) [11]. Unfortunately, the application of
this study [26] has limitations and errors in the performance that may lead to falls diagnosis. For
example, the sample size of the study is relatively small, including a total of 2397 participants, of
which 1067 were selected to continue in the study, which limits the generalizability of the findings.
In addition to that, the study is based on self-reported data, self-reported migraineurs, which can
be affected by recall bias and social desirability bias. Similarly, Oosterhout et al. refers to them
as the ‘virtual Munchhausen syndrome’. The virtual Munchhausen syndrome refers to instances
where individuals self-refer to studies for which they do not meet the eligibility criteria, which can
potentially compromise the validity of the study’s results. [26] These limitations suggest that the
study [26] can be improved.

1.2 Aim and objectives

Our study aims to explore and improve the algorithms that Oosterhout et al. [26] has implemented,
using machine learning as the main tool to correctly classify patients whether they have migraine
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with aura or without aura, or no migraine. We try to achieve this by using classification methods
and create a predictive model based on the data set consisting of responses to the questionnaire
used in [26]. The data set is enhanced with labels that will be used to conduct supervised learning
in which training and testing of the algorithms are performed.

We will begin by pre-processing our data to enable us to perform multiple classification tasks
on it. Our initial model will aim to predict whether a patient has migraine or not. Following this,
we will perform a second binary classification to determine if a migraine patient has migraine with
or without aura. This approach will enable us to divide our labels into two sub-labels, each of which
will be used for binary classification tasks. We will also conduct a multiclass binary classification
and compare its sensitivity, specificity and accuracy with our previous model. Our objective is to
compare the performance of a multiclass classification with a combination of binary classification
tasks.

In order to accomplish this, we will incorporate several additional models such as Random
Forest, XGBoost, SVM and others on our dataset to evaluate their performance in comparison to
our initial binary classification models. Our ultimate goal is to identify the best model that can
accurately predict migraines with the least number of false negatives, compared to the model used
in previous studies [26].

How can machine learning improve the sensitivity and specificity of a model for predicting migraine
patients compared to the classification performed in the study by Oosterthout et al. [26]?

The following sections of this thesis are organized as follows. In Chapter 2, we review the relevant
literature on the use of machine learning for migraine diagnosis, including past studies that applied
machine learning methods. The vocabulary used in machine learning and migraine-related topics
will be explained in Chapter 3, along with the definition of the issue and potential pitfalls. In
Chapter 4, we give a detailed explanation of our research procedures and resources, including the
dataset, machine learning strategies, and evaluation metrics. Chapter 5 of the thesis presents the
results of our investigation, including the potency of the examined machine learning models. Finally,
Chapter 6 covers the implications of our findings for the diagnosis of migraines and future research
possibilities are discussed in this chapter.

1.3 Approach and contributions

First, our research expands the existing literature on the use of machine learning techniques to
improve disease diagnosis. Specifically, we will focus on the application of these techniques to the
diagnosis of migraine.

Second, this study examines the use of a binary classification in a multiclass problem by dividing
the problem into two binary classification problems. We evaluate both models to conclude if our
approach improves the predictions compared to the results of the previous study. We aim to explore
how using two binary classification tasks compares to using a multiclass classification. We will
perform a multiclass classification on the same data after performing our initial binary classification.
This will highlight the variations and perhaps indicate the approach that performs the best.

Third, we attempt to use multiple machine learning models and evaluate each of them on
accuracy, sensitivity and specificity. This will support our final conclusion on which model performs
the best.
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2 Related Work

As mentioned above, the study [26] has been conducted to improve the diagnosis of migraine. This
method was based on the ICHD-2 criteria, which has already been updated to the newer ICHD-3
criteria, showing much better specificity and sensitivity (96% and 98%, respectively) [11].

2.1 The questionnaire by LUMINA

2.1.1 The SCREEN

To assist with early screening of headache patients, the LUMC Leiden Headache Group (LUMINA)
has created an online questionnaire with questions based on ICHD-3 criteria. The screening flow
for patients in the LUMINA program consists of two parts. The first part is a short screening
questionnaire (SCREEN) consisting of 32 questions, for example, if the patient had severe headaches
in the past 12 months and what the severity of the headache was. [26] The purpose of SCREEN is
to screen the participant for migraine, tension-type headache, and cluster headache. The group of
participants who potentially have migraine is forwarded to the second part of the screening. Of the
32 questions asked during SCREEN, 9 questions are used in the ICHD-2 algorithm, which has the
objective of classifying probable migraine patients. The algorithm used in the study is based on a
set of conditional logics that works its way through the questionnaire.

A previous project by a student about the LUMINA questionnaire resulted in a ’Mini Screen’
that is an abbreviated version of the original LUMINA SCREEN questionnaire. The Mini Screen
questionnaire, which is a shortened version of the original questionnaire, was created using the
results of the Lasso regression analysis. The validity of the Mini Screen was then evaluated using
diagnostic factors such as sensitivity and specificity by applying a confusion matrix. Furthermore,
this research also investigated three methods to reduce the lifetime depression screening process
[13].

The results of this study showed that the Mini Screen questionnaire includes eight questions
that have a high predictive value for migraine. The sensitivity and specificity of the Mini Screen
were found to be 89% and 84% respectively, compared to 95% and 35% for the original questionnaire.
The advantages of this study include a large study population and an accurate ”golden standard”
for migraine diagnosis. However, limitations include the lack of depression diagnoses made by a
physician in the second part of this research [13]. However, using more complex machine learning
algorithms would potentially result in more accurate predictions for the original SCREEN.

2.1.2 The Extended Questionnaire

The second part of the LUMINA questionnaire is the Extended Questionnaire (EQ), which
incorporates an additional 127 questions on migraine headache and aura characteristics. Compared
to SCREEN, the extended questionnaire has more detailed questions about the characteristics of
the patient, migraine headaches and aura characteristics. The purpose of the extended questionnaire
is to subpart the list of potential migraine patients to patients with migraine and patients without
migraine. The migraine group is further specified into patients who have migraine with aura (MA)
and migraine without aura (MO).
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Figure 1: The study created a Receiver Operating Characteristic (ROC) curve for the prediction
rule in the initial training sample of 838 patients and in the validation sample of 200 patients. The
ROC curve is used to evaluate the performance of a binary classifier. The area under the ROC curve
(C-statistic) for the prediction rule was 0.85 (95% confidence interval (CI) 0.83-0.88) in the training
sample and 0.87 (95% CI 0.82-0.92) in the validation sample. This indicates that the prediction
rule was able to accurately predict the outcome in both the training and validation samples [26].

2.2 The study by Oosterhout et al.

Van Oosterhout et al. conducted a validation study on the LUMINA questionnaire with a sample size
of N = 2397 participants. Participants in this study can be divided into two subgroups, participants
forwarded by the General Practitioner (GP) and participants who join voluntarily. The group
that is forwarded by the GP has a clinical diagnosis, which we will use as our golden standard for
evaluating the predictions generated by the algorithms. The study process is illustrated in Figure 3,
which will be explained in more detail later.

From the sample size of N = 2397, 1067 participants are randomly selected to be used in the
study [26]. These participants were first contacted by telephone and interviewed for 10 - 15 minutes
with detailed questions about the headache and aura criteria. Based on their answers to detailed
questions about headaches, a diagnosis is made for each participant and they are invited to a
digital form containing the EQ. The questions in the EQ are multiple choice. After completion of
the EQ, the answers are fed to the algorithm based on the ICHD-2 migraine criteria, which is an
older version of the ICHD-3 algorithm. From this algorithm individual diagnoses are predicted and
returned as no migraine, migraine without aura or migraine with aura [26]. The predictions made
by the algorithm also need to be validated. Oosterhout et al. split the data set into a sample group
(80% of the data, N = 838) and a validation group (20% of the data, N = 200). The sample group
is used to create a model based on logistic regression, which contains subcategories that predict
whether there is aura or not. The validation group is then used to check whether the predictions
made by the model are significant (p < 0,20). Sensitivity and specificity are used as metrics to
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evaluate the performance of a model.

Figure 2: Table describing the results and formula to calculate sensitivity and specificity. [21]

Sensitivity is the proportion of true positive cases (people with the disease who test positive)
out of all cases that actually have the disease. It is calculated as follows: Sensitivity = (True
positive) / (True positive + False negative). Specificity is the proportion of true negative cases
(people without the disease who test negative) out of all cases that actually do not have the disease.
It is calculated as follows: Specificity = (True negatives) / (True negatives + False positives), also
shown in Figure 2.

The study then determined the best cutoff point for the prediction score using a Receiver
Operating Characteristic (ROC) curve. The study identified the point on the ROC curve that had
the highest sensitivity and specificity and then used that information to establish the ideal cut-off
point, as shown in Figure 1

Unfortunately, the application of this study has limitations, as mentioned in Chapter 1.1, which
may lead to falls diagnosis.

2.3 Other studies

Another study by Kwon et al. [15] used more complex machine learning models, one of the first to
use machine learning with the ICHD-3 criteria, to automate headache classification. It achieved a
more accurate sensitivity and specificity of 88% and 94%, respectively, compared to the study [26],
which used the updated ICHD-3 criteria to make diagnoses using a questionnaire with a sample size
of n=2000. The interesting part of the study is the XGBoost classifier consisting of four layers, each
layer being a type of headache. This resulted in greater sensitivity and specificity for the prediction
of migraine. However, the diagnosis of other types of headaches was less significant, with scores less
than 50%. One of the limitations of this study was again the sample size, which was not sufficient
to classify other types of headaches as accurately as migraine.

Our study has a much larger sample size of n=4000, which could mean that we can count on a
better result when using machine learning to predict migraine diagnosis.
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Figure 3: Study flow conducted by van Oosterhout et al. using the SCREEN and extended
questionnaire [26].

3 Migraine with machine learning

3.1 Machine Learning

Machine learning refers to the use of algorithms that allow computers to improve their performance
on a task. By means of Artificial Intelligence (AI), people are able to train’models’ with historical
data to make accurate predictions for a problem. Classification is the process of determining,
depending on specific characteristics or traits, to which category or group an object or data point
belongs. In contrast, predicting is the act of analyzing data to produce forecasts or projections
about upcoming events or results. The goal of every classifier is to generalize well from a training
data set to some unseen test data set with a low bias and low variance. However, there are some
obstacles during this process, called overfitting. Overfitting occurs when a model is too well trained
on a given dataset. Figure 5 visualizes this issue. We can see that in the graph of ’overfitting’, the
red curve, representing the model, goes through each data point. This model is too fitted to the
training data and is unable to generalize well to new data. A model that cannot be generalized
will not classify or predict, as is intended to do [28]. The variance, spread of all data points to
the unseen data, is too high, and the bias too low. To limit the overfitting of a model, we use a
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Figure 4: ICHD-3 diagnostic criteria migraine with/without aura [6].

resampling technique called k-fold cross-validation, which makes multiple copies of the training set
and divides it into a train and validation set. This method allows one to estimate the accuracy of
the model on unseen data [5].

Classification techniques are often used to build models through training. To understand how
it operates and interpret its output, the final model should be both understandable and accurate.
Although models with better accuracy are typically easier to interpret, they could also be more
complex. Complex models can have a greater variety of parameters changed during training to
improve performance. This increase has a lower error rate during training with the dataset that is
used for it [10]. The trade-off between interpretability and complexity, shown in Figure 7, is visualized
for common algorithms used in classification. When an algorithm has a high interpretability, like
Decision Trees which are more interpretable, there is a decrease in the ability to learn complex
patterns in the data. In contrast to this, algorithms such as support vector machines and neural
networks, which are more complex models, will learn complex patterns easier but will make it
harder to understand the implementation [5]. There is a machine learning theorem called ’No Free
Lunch’, which implies that there is no single algorithm that outperforms all other algorithms in
all problems. That is why studies occasionally run multiple algorithms on a specific problem and
compare them to see which suits the best for our problem. A supervised learning technique tries to
determine the best linear fit between the dependent variable (the outcome) and the independent
variables (all the other features in the dataset).

When selecting a machine learning algorithm using Python libraries, we aim to find the most
interpretable and accurate model that can effectively solve our problem. Previous work [15] has
employed well-known models to accurately diagnose a range of medical conditions using the following
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Figure 5: Visualization of overfitting and underfitting of data [4].

machine learning methods:

• Decision trees (DT). This method is a type of machine learning algorithm that is used for
data classification. These algorithms, which are commonly used for tasks such as diagnosis
and prediction, build a tree-like model of decisions based on the characteristics of the data.
Their advantages include the ability to handle both categorical and numerical data, the ability
to handle multi-output problems, and the ability to be easily interpretable. Disadvantages
include their tendency to overfit, particularly with noisy or complex data, and the fact that
minor differences between instances in the data can result in a completely different tree.
The maximum depth of the tree and the minimum number of samples required to split an
internal node are two parameters. Decision trees can be used to classify objects into binary
and multiclass categories [2].

• Support vector machines (SVM). Another type of machine learning algorithm used for
classification tasks is SVM. They operate by locating the hyperplane in a high-dimensional
space that separates different types of data. Advantages include their ability to work with
non-linear decision boundaries, high-dimensional data, and infrequent data. The disadvantages
include their sensitivity to kernel selection and the need to tune hyperparameters. The kernel
(linear, polynomial, or radial basis function) and the regularization parameter C are among
the parameters [9].

• Artificial neural networks (ANN). This method is a type of machine learning algorithm
that mimics the way the brain functions and is structured. These models consist of a network
of interconnected artificial neurons that are capable of receiving, processing, and transmitting
information. ANNs are commonly used in various machine learning applications, such as
classifying and predicting outcomes [23].

However, other algorithms that will be mentioned and used in our study can be explained as
follows:

• Logistic Regression. This method is a supervised learning algorithm for problem solving.
It is a linear model that employs a logistic function to estimate the probability that a given
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Figure 6: Visualization of the different phases of a migraine attack [1].

input falls into a specific class. The model’s benefits include its easy interpretability, good
performance on a wide range of problems, and the ability to regularize the model to avoid
overfitting. One disadvantage is that it lacks complexity and cannot handle non-linear decision
boundaries. Regularization strength and optimization are two parameters that are used in
Logistic Regression. The model is applicable to binary and multiclass classification problems
[14].

• Naive Bayes. This method is part of probabilistic algorithms that apply Bayes’ theorem
with the ’naive’ assumption that every pair of features is independent. Advantages include
their simplicity, good performance with high-dimensional data, and their ability to handle
continuous and discrete data. Disadvantages include the unrealistic assumption of feature
independence and poor performance with small amounts of data. Parameters include the type
of distribution used for each feature (e.g. Gaussian or Bernoulli). Gaussian Naive Bayes can
be used to classify both binary and multiclass problems [29].

• Random Forest. This method is built upon the Decision trees. From a randomly chosen
subset of the training set, a set of decision trees is built. The final test object class is then
defined by averaging the votes from various decision trees. Decision trees have a propensity
to overfit their training set, which Random Forest corrects. Advantages include their ability
to handle large data sets with higher dimensionality, their ability to handle unbalanced and
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Figure 7: The trade-off between interpretability and accuracy of machine learning Algorithms [18].

missing data, and their ability to estimate feature importance. Disadvantages include their
complexity and their longer training time. The parameters are: number of trees in the forest
and the number of features taken into account at each split. Random Forest can be used for
binary and multiclass classification problems [3].

• K-Nearest Neighbors (KNN). KNN is a nonparametric technique for classification and
regression. The closest k training examples in the feature space compose the input. Depending
on the kind of issue, the output can either be a class membership or a continuous value.
Advantages of KNN include that it is simple to implement, works well with a small number
of features, and can handle multiclass problems. Disadvantages include the fact that it can
be computationally expensive and sensitive to the scale of the data. The value of k, which
determines how many nearest neighbors will be taken into account when making a prediction,
is the main parameter when using KNN.

• XGBoost. EXtreme Gradient Boosting, is an ensemble learning method for gradient boosting
decision trees. Large datasets can greatly benefit from its effective and scalable implementation
of the XGBoost algorithm. The algorithm works by iterating to build a decision tree model
and adding new models to the set to correct the errors of the previous models. The final
ensemble model is a weighted combination of all individual decision trees [7].

Advantages of XGBoost include its ability to handle large datasets, its high accuracy, and its
ability to handle missing data. It also includes a number of regularization parameters that
can be used to prevent overfitting.

Disadvantages include its complexity, which can make it difficult to interpret the results, and
the fact that it can be sensitive to the choice of parameters.

XGBoost can be used for both binary and multiclass classification problems. The parameter
“num class” can be set to 2 for binary classification or to the number of classes in a multiclass
problem.
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3.2 Problem Statement

Currently, the automatic diagnosis of migraine patients program has a disadvantage. The current
model used in the program labels patients who have a clinic diagnosis stating that they suffer from
migraine, as nonmigraine patients (Table 1, ’B’). This is also called a “False Negative” and can be
explained in Figure 2. The EQ has a sensitivity of 79% and a specificity of 69% [26]. A sensitivity of
79% and a specificity of 69% for the model in the study tells us that the model performs relatively
well in identifying patients with migraine (true positive rate) and those without migraine (true
negative rate), respectively. A sensitivity of 79% means that the model correctly identifies 79%
of migraine patients (true positives) among all patients with the disease (true positives + false
negatives). This means that the model is likely to miss around 21% of the patients who actually
have migraine. A specificity of 69% means that the model correctly identifies 69% of the patients
who do not have migraine (true negatives) among all patients who do not have the disease (true
negatives + false positives). This means that the model is likely to incorrectly identify around 31%
of the patients who do not have migraine as having the disease. A diagnostic test should have high
sensitivity because this reduces the risk of missing a patient who has the condition, but it must
also have high specificity, as this reduces the risk of false positive results.

The main question of the project is as follows: Can machine learning improve the classification of
probable migraine patients compared to the current algorithm?

Before answering our main question, we need more specification about the performance of the
algorithms we will use. We can also investigate if the groups which our dataset consists of, the GP
group and the voluntary group, show differences when trained on the model.

So, a secondary objective is: How does the classification of migraine and no migraine compare
to the classification of no migraine, MO and MA?

However, a prediction problem remains. Table 1 shows the various possible outcomes of the
LUMINA questionnaire and the outpatient diagnosis. Currently, the predictions of the Mini-screen,
questionnaire and outpatient diagnosis for groups A and D have shown accurate predictions. If
the questionnaire predicts that a patient has migraine, this will also be detected during outpatient
diagnosis. However, not every patient who actually suffers from migraine is labeled a possible
migraine patient by the questionnaire, group B in Table 1.

Table 1: A table with predictions: migraine or no migraine from the LUMINA-questionnaire and
clinic-diagnosis.

LUMINA-questionnaire

Migraine No migraine
Clinic-diagnosis Migraine A B

No migraine C D
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Figure 8: Roadmap for machine learning systems [22].

4 Methodology

4.1 Methods

To carry out our study efficiently and find an answer to our research question, we have a roadmap,
as shown in Figure 8, which describes the order in which to carry out the study. The process of
creating machine learning models involves several steps, including preprocessing, learning, and
evaluation.

• Preprocessing includes tasks such as feature selection and feature extraction, which involve
selecting and extracting relevant information from the data to be used in the model.

• Learning involves model selection, cross-validation, and parameter optimization. Model
selection is the process of choosing a suitable model for the task at hand. The models that
we will use are mentioned in 3.1. Cross-validation is used to evaluate the performance of the
model, and parameter optimization is used to adjust the parameters of the model to improve
its performance.

• Evaluation of the model is done by testing it on a set of data that was not used in the training
process, it is called Test Data. This step is used to evaluate the performance of the model
using various evaluation metrics, such as sensitivity, specificity, accuracy, and f1 score. These
metrics are used to evaluate how well the model can correctly classify or predict the results
of the data.

We will conduct our experiment in two phases. The first phase involves using binary classification
to train seven models, as mentioned in the chapter 3.1, and to predict whether patients have migraine
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or not. Patients labeled with migraine will then be entered into a second binary classification process,
using the same seven algorithms, which will be retrained on data from patients with migraine, this
time to predict whether the patient has migraine with aura (MA) or migraine without aura (MO).
In the second phase of the experiment, we will use multiclass classification to retrain the seven
models, this time with labels: no migraine, MA and MO, for multiple classes. We will compare
the performance of the two phases using metrics such as sensitivity, specificity, accuracy, and f1
score to determine whether there is a difference between two binary classification tasks and a single
multiclass classification. The clinic-diagnosis will act as the target of the model. We will create the
models by first training them in our data set, which will be used to make predictions about the
diagnoses of patients. We will use machine learning models, including Random Forest Classifier,
Decision Tree Classifier, Support Vector Machine, Logistic Regression, K-Nearest Neighbor, Naive
Baye, and XGBoost to train our data. We will train all of the mentioned algorithms, even if some of
them perform well on large datasets and some do not. Knowing that some models perform poorly
on multiclass classification or some on binary classification tasks, as mentioned in Section 3.1, gives
us the ability to examine whether the other models actually perform as promised according to their
specifications.

To train our models, we will use k-fold cross-validation, which is a method to evaluate the
performance of machine learning models. The idea behind k-fold cross-validation is to divide the
data into k ’folds’ or subsets, train the model k times and then evaluate it k times, using a different
fold as the test set and the remaining k-1 folds as the training set each time. This makes it possible
to train the model on a variety of data subsets, making it less susceptible to overfitting. After going
through all the folds, we end up with the averaged sensitivity, specificity, accuracy, and f1 score
that is averaged over the k-fold (5 times) of the model. This is important as it allows us to check
the stability of the model, especially if the data is small or the model’s performance varies a lot
depending on the training set. By evaluating the model multiple times on different subsets of the
data, we can get a better understanding of how well the model will perform on unseen data.

Another important analysis we will conduct is the feature importance analysis for each model
in each classification. Feature importance analysis assesses the significance of specific features in a
dataset, helping us understand which elements are crucial for predictions or classifications. In our
study, we will use feature importance to:

• Enhance the sensitivity and specificity of migraine diagnosis by identifying the most relevant
features, we can focus on the data that contribute the most to accurate predictions, ultimately
improving our machine learning models’ performance in diagnosing migraines.

• Guide model selection by comparing the interpretability and relevance of features across
different algorithms, we can better understand their decision-making processes. Models
showing low interpretability are less sensible to use in situations that require understanding
of the underlying decision making of a model. For example, models used in healthcare should
be easy for doctors to read and understand to confirm the accuracy of a prediction. Less
interpretable models are not favorable, as not understanding the reasoning of a prediction
can result in a fatal outcome if the prediction is not correctly revised by a doctor. Models
that have high interpretability are easier to handle in cases of false predictions.

This analysis allows us to compare different machine learning algorithms in terms of their
relevance and interpretability by identifying the most relevant features and gaining insight into
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each model’s decision-making process. The insights gained from feature importance can be applied
to feature selection, feature engineering, and the removal of redundant or irrelevant features. Tech-
niques such as Decision Tree Classifier, Random Forest Classifier, Logistic Regression, XGBoost,
and Naive Bayes can be used to measure feature importance, while the Support Vector Machine
and K-Nearest Neighbors are excluded from this analysis due to the lack of an implemented method
in Python.

4.2 Prediction and Evaluation

After training and fitting our model, we will make predictions by running the test set on each
model and comparing it with the target, the clinic-diagnosis. Our predictions should match the
outcome of the clinic-diagnosis. We will use the formulas in Figure 2 to calculate the sensitivity,
specificity, accuracy, and f1 score of each model. The accuracy and f1 score can be calculated using
the available method ‘accuracy score’ in Python. To evaluate each model, we will use the calculated
sensitivity, specificity, accuracy and f1 score of each model and plot these metrics on a bar graph for
the seven models that will be used. To compare our models more visually, we will create a confusion
matrix, as shown in Table 2 and Table 3, to summarize the results of the predictions. This will
make the number of false positives and false negatives clearer. We will show the two matrices for
each model and then compare the two matrices to interpret the performance of each model. The
model with the highest sensitivity, specificity, accuracy and f1 score will be presented as the best
model for our experiment.

Table 2: An example of a confusion matrix is presented to evaluate the accuracy of migraine
predictions made by different algorithms. The clinic-diagnosis, taken as the ground-truth value, is
compared to the predictions made by the current ICHD-2 algorithm (EQ) and the predictions made
by the various models (Prediction). This matrix allows for a clear comparison of the number of
false positive and false negative results for each algorithm, providing insight into the performance
of each model.

LUMINA-questionnaire

Clinic-diagnosis + Clinic-diagnosis -
Algorithm EQ/Prediction + A/E B/F

EQ/Prediction - C/G D/H
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Table 3: An example of a confusion matrix is presented to evaluate the accuracy of the second binary
classification predictions made by different algorithms. The matrix compares migraine predictions
with aura (MA) and migraine without aura (MO) with the predictions made by the current ICHD-2
algorithm (EQ) and the predictions made by the various models (prediction). This matrix provides
a clear comparison of the number of false positive and false negative results for each algorithm,
giving insight into the performance of each model.

LUMINA-questionnaire

MA MO
Algorithm EQ/Prediction + A/E B/F

EQ/Prediction - C/G D/H

Table 4: Parameters describing the data with A (first binary classification: migraine or no migraine),
B (second binary classification: aura or no aura) and C (multiclass classification: no migraine,
migraine with aura or migraine without aura). The two dataframes for the separate filling methods
do not differ in the values for the given parameters.

A B C
Number of participants 4629 2946 4629
Number of features 124 124 124
Averaged age 24 24 24
Number of men/women 1230/3398 - 1230/3398
Number labeled as no migraine 1683 - 1683
Number labeled as migraine 2946 - -
———— Migraine without aura - 1094 1094
———— Migraine with aura - 1852 1852

5 Experiments

5.1 Preprocessing

Before training our models, we need to clean and preprocess the data to make sure they are ready
for use in each classification. This includes handling missing values, eliminating empty columns,
and keeping only the numerical columns that are needed for our analysis. We will also remove
any columns that contain non-numerical data, such as strings, as the algorithms we will be using
can only process numerical data. This preprocessing step is important to ensure the accuracy and
effectiveness of our models.

As for the source of our data, we will use an existing dataset provided by LUMINA, which
consists of two separate datasets, AA and BB. These datasets will be used to train our models.
The AA data set is based on the SCREEN questionnaire, which participants filled out before
participating in the study. This dataset contains 37 features and 4444 patients, of which 31 features
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have data used to diagnose migraine. There are five key characteristics that cannot be excluded
from the data set that will be used for training, which are based directly on the ICHD-3 criteria,
as a LUMC student mentioned [17]. These are SCREENA, SCREENC, SCREENE, SCREENJ,
SCREENM and FAMC. The BB data set is based on the extended questionnaire, which is given to
patients after completing the SCREEN questionnaire. This dataset consists of 252 features and
4650 patients. The extended questionnaire contains more features that provide additional data for
diagnosing patients. The extended questionnaire has a larger number of patients than the data set
that contains the SCREEN questionnaire. The difference in the number of patients is due to the
fact that there are two types of participants in the LUMINA study: patients referred to the study
by polyclinics, who first complete the SCREEN questionnaire and then the extended question-
naire, and are identified in both data sets by the ID number 105; and patients who participate in
the research, who only need to complete the EQ, and receive an ID number of 104 or another number.

To combine these two datasets, we need to create a unique ID for each patient to match the
columns in the two datasets. We can do this by combining the ID and IDAA columns in both
datasets to create a unique ID, and then use this unique ID to merge the two datasets into a single
dataset called Merged DF.

To define our label for training our models, we will use the predictions of the LUMINA study
described in [26]. The study made three diagnoses for each patient: the first after the SCREEN
questionnaire (CRIT01HPIJN), the second after a phone call with a caller (CRIT02HPIJN) and the
third by a headache specialist (CRIT03HPIJN). The most accurate diagnosis among these three is
subsequently placed in a separate column, designated CRIT04HPIJN. We will use CRIT04HPIJN
as our primary label source, as it represents the most accurate value among the three diagnoses.
First, the value of CRIT03HPIJN is assigned to CRIT04HPIJN. If this column is empty, the
value of CRIT02HPIJN is used to populate CRIT04HPIJN. If CRIT02HPIJN also has no value,
CRIT01HPIJN is utilized to fill the gap. This process results in a completely populated label
column named CRIT04HPIJN.

We observed that several columns contain missing values and some even have zero values. The
total number of missing values in our merged df amounts to 645,852, which represents 49% of the
total cell count (1,315,000) in our data set. Missing values are problematic because the models
cannot effectively handle them. The models may discard rows with missing values, substantially
reducing our sample size and leading to sub-par performance. To address the missing values in
these columns, we removed all zero-valued columns from the merged DataFrame. This resulted in
the elimination of 39 columns. Additionally, since the models we plan to use only process numerical
data, we excluded 20 columns containing strings from the merged df, leaving us with 419,543
missing values.

Addressing missing values in categorical data can be more complex than in numerical data,
as numerical imputation methods such as mean or median imputation cannot be applied. There
are several methods to handle missing values in categorical data, including multiple imputation,
constant imputation, mode imputation, and deletion [16]. Deletion involves removing rows with
empty values, but this can decrease the data set sample size.

Constant imputation involves replacing missing values with a fixed value, such as ”unknown” or
”other.” Mode imputation replaces missing values with the most frequent value (mode) in the column.
Multiple imputation utilizes various imputation models to fill in missing values. These models are
trained on available data and generate multiple imputed data sets. The results of the different data
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sets are combined to create a final data set with imputed values. This approach can be more effective
than single-imputation methods, as it accounts for the uncertainty introduced by imputing missing
values. To employ the multiple imputation technique, we used the IterativeImputer() method from
the fancyimpute library. The IterativeImputer method fits an imputation model for each column
with missing values and iterates the process until all missing values are replaced with new values.
However, this method can be computationally demanding, particularly for datasets with a high
number of missing values, which may require hours to fill the missing values in a dataset.

To ensure that we understand which features and patients cause a large amount of missing
values, we analyzed the percentage of missing data for columns and rows. This resulted in Table
5. We observed that at least 132 columns have over 10% missing data and 98 columns have over
40% missing data. This amount does not differ much, but 82 columns have more than 40% missing
data, indicating that a small number of columns share the same rows with missing values in specific
columns. The Extended Questionnaire contains columns that a small percentage of patients have
completed. The number of rows that have over 40% missing data is 2295, supporting that columns
with more than 40% missing data cause the large number of missing values. We will exclude these
98 columns from our dataset to prevent any overfitting can be caused by handeling missing values.
6 columns that are important for the ICHD-3 criteria, mentioned to us by a fellow researcher from
the migraine department at the LUMC, are not removed from the dataset. This leaves us with
a remaining 145 columns, as shown in Table 9. After the deletion, we are left with only 72,066
missing values, which is 6% of our total data set.

% missing values >10% >20% >30% >40% >50% >60% >70% >80% >90%
n columns 132 126 115 98 82 79 78 67 43
n rows 4641 4569 4196 2295 580 21 4 2 0

Table 5: Table describing number of columns and rows containing missing values for percentages in
the merged df dataset

In this chapter, multiple methods are mentioned that help fill in the missing values. However,
two other methods are used for handeling missing values, called the Forward and Backward fill,
supplied by the fillna() method. The fillna() method can locate missing values in the DataFrame
and replace them with other values in the same column. The fillna() method can fill the values in
two ways: bfill (backward fill) and ffill (forward fill). Bfill uses the most recent valid observation in
the previous row to fill in missing values, while ffill uses the next valid following row. Both methods
can be used to fill missing values in a DataFrame or Series by calling the method on the data. In
our experiment, we will use both of these filling methods to fill missing values in our data. By using
both methods, we can understand the performance difference and overfitting that the two methods
potentially bring with them. Filling in the missing values with fillna() resulted in some rows that
still contained missing values. The two dataframes had separate rows that contained the missing
values, which resulted in removing these rows (20) from both dataframes to create an equality
between the two.

To gain further insight into how the models have predicted the outcomes, we compare the
predictions of the models with the diagnosis predicted by the ICHD-2 algorithm, also known as the
EQ, mentioned by Oosterhout et al. [26]. We have created confusion matrices for each classification.
The first binary classification has only two labels, no migraine or migraine. A dataframe is created
with only the no migraine and migraine, MO and MA combined, from the CRIT01HPIJN features
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that are based on the EQ predictions. Using this dataframe, the confusion matrix is compiled
and used for Tables 6 and 8. The same method is used to create the dataframe for the confusion
matrices for the second binary classification and the multiclass classification. The second binary
classification has a dataframe that has two labels: MO and MA, and the data frame for the
multiclass classification keeps all the labels without excluding any.

As we will have two binary and a multiclass classification tasks, with each classification having
other needs, we have created three separate datasets for use for the matching classification.

First binary classification: Migraine or not Migraine

To start with the first binary classification, we need to use only two labels: 0 for no migraine and 1
for migraine. The column CRIT04HPIJN in our dataset contains three labels that are gathered
using the diagnosis in CRIT03HPIJN, CRIT02HPIJN, and CRIT01HPIJN. To simplify, we will
keep the 0 label that refers to no migraine or no diagnosis and combine labels 1 and 2 into one label:
1 for migraine. Currently, we have assumed that label 0 refers to the diagnosis that there is no
migraine. We have created a new column called CRIT04HPIJNCLASS in our merged dataframes
to store these new labels.

However, it is important to remember that we do not want to use any of the labels from
other columns that contain diagnosis information for our classification, not even the new column
CRIT04HPIJNCLASS, as it may negatively impact the accuracy of our model. So, to achieve
this, we have created two new datasets (bf and ff), by dropping the first 17 columns, the columns
that contain labels such as CRIT0X, CRIT0XHPIJN and UITSLAG, and the newly created
CRIT04HPIJNCLASS column from the merged (for both bf and ff variants). This will ensure that
our model is trained only on the relevant data. Table 4 shows the parameters of the dataset.

Second binary classification: aura or no aura

The first binary classification task was to differentiate between no migraine and migraine for
the diagnosis of patients. The second binary classification is to distinguish between migraine with-
out aura and migraine with aura. To achieve this, we created a column called ”CRIT04HPIJNAURA”
that contains all the values from the column ”CRIT04HPIJN”, excluding those that are labeled
as no migraine. We have made the label ”0” to store the MO-labeled patients and the label ”1”
to store the MA patients. However, removing the no-migraine label from our prediction label
resulted in fewer instances (2346 instances compared to 4929 in the first binary classification),
which may increase the risk of overfitting and poor performance on unseen data. Nevertheless, a
smaller dataset may benefit models that perform well on smaller datasets, such as Support Vector
Machines. After creating a separate column for our two labels, the process is similar to the one
performed in the first binary classification, by remving any labels that originate from a diagnosis
and called this dataset binary2 (for both bf and ff variants). Table 4 shows the parameters of binary2.

Multiclass classification: not Migraine, Migraine with aura or Migraine without aura

We have prepared two data sets for multiclass classification by removing any labels that originate
from a diagnosis. This includes 17 columns that contain possible diagnosis labels and ID numbers,
as well as other columns without categorical values. The datasets we will use for training our models
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are: the bf-variant where missing values are filled using the backfill method and the ff-variant for
which the forwardfill method is used to fill the missing values. Also summarized in Table 4.

5.2 Results

Table 6: In this confusion matrix, seven different algorithms are being used for a first and second
binary classification tasks: the Random Forest Classifier (RFC), the Decision Tree Classifier (DTC),
the Support Vector Machine (SVM), the Logistic Regression (LR), the K-Nearest Neighbor (KNN),
the Naive Bayes (NB), and the XGBoost (XGB). The EQ is the diagnosis predicted by the algorithm
in the study by Oosterhout et al. [26], column CRIT01HPIJNof the two merged dataframes, shown
as (‘backfilled’ - ‘forwardfilled’) next to the ‘/’ inside the confusion matrices. The ‘Prediction’ is
the diagnosis predicted by the model, which is compared to the Clinic-diagnosis labels of (A) no
migraine (-) and migraine (+), and (B) migraine without aura (MO) and migraine with aura (MA)
from the binary2 data set. The total number of predictions is (A) 4629 and (B) 2946.

A
Clinic-diagnosis - Clinic-diagnosis +

Algorithm Prediction/EQ - (1614—1613) / 1070 (69—70) / 597
RFC Prediction/EQ + (38—40) / 613 (2908—2906) / 2349

B
MO MA

Algorithm Prediction/EQ MO (972—973) / 776 (122—121) / 530
RFC Prediction/EQ MA (24—26) / 318 (1828—1826) / 1322

A
Clinic-diagnosis - Clinic-diagnosis +

Algorithm Prediction/EQ - (1593—1593) / 1070 (90—90) / 597
DTC Prediction/EQ + (135—112) / 613 (2811—2834) / 2349

B
MO MA

Algorithm Prediction/EQ MO (992—990) / 776 (102—104) / 530
DTC Prediction/EQ MA (74—84) / 318 (1778—1768) / 1322

A
Clinic-diagnosis - Clinic-diagnosis +

Algorithm Prediction/EQ - (1124—1123) / 1070 (559—560) / 597
SVM Prediction/EQ + (228—223) / 613 (2718—2723) / 2349

B
MO MA

Algorithm Prediction/EQ MO (513—524) / 776 (581—570)/ 530
SVM Prediction/EQ MA (101—113) / 318 (1751—1739)/ 1322

A
Clinic-diagnosis - Clinic-diagnosis +

Algorithm Prediction/EQ - (1110—1113) / 1070 (573—570) / 597
LR Prediction/EQ + (350—360) / 613 (2596—2586) / 2349

B
MO MA

Algorithm Prediction/EQ MO (569—596) / 776 (525—498) / 530
LR Prediction/EQ MA (254—270) / 318 (1598—1582) / 1322

A
Clinic-diagnosis - Clinic-diagnosis +

Algorithm Prediction/EQ - (1611—1614) / 1070 (72—69) / 597
XGB Prediction/EQ + (47—53) / 613 (2899—2893) / 2349

B
MO MA

Algorithm Prediction/EQ MO (994—995) / 776 (100—99) / 530
XGB Prediction/EQ MA (49—51) / 318 (1803—1801) / 1322

A
Clinic-diagnosis - Clinic-diagnosis +

Algorithm Prediction/EQ - (1084—1091) / 1070 (599—592) / 597
NB Prediction/EQ + (429—428) / 613 (2517—2518) / 2349

B
MO MA

Algorithm Prediction/EQ MO (619—649) / 776 (475—445) / 530
NB Prediction/EQ MA (408—431) / 318 (1444—1421) / 1322

A
Clinic-diagnosis - Clinic-diagnosis +

Algorithm Prediction/EQ - (982—982) / 1070 (701—701) / 597
KNN Prediction/EQ + (264—270) / 613 (2682—2676) / 2349

B
MO MA

Algorithm Prediction/EQ MO (599—607) / 776 (495—487) / 530
KNN Prediction/EQ MA (279—284) / 318 (1573—1568) / 1322
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5.2.1 The two Binary Classification

First Binary Classification

Figure 9: In our first binary classification task, we evaluated the performance of the models:
the Random Forest Classifier (RFCA), the Decision Tree Classifier (DTCA), the Support Vector
Machine (SVMA), the Logistic Regression (LRA), K-Nearest Neighbor (KNNA), Naive Baye (NBA),
and XGBoost (XGBA) using two datasets, forward (ff) and backward (bf) filled, containing two
labels: migraine and no migraine. The performance of these models was measured using four metrics:
Accuracy, F1 score, Specificity, and Sensitivity.

Initially, we started by initializing our models for the first binary classification. The default
parameters of all models will be kept the same during our first experiment, except for Logistic
Regression, for which, we will increase the maximum iteration number from 100 to 10000. This is
necessary as the model was unable to complete the analysis of our dataset when using the default
setting. By increasing the maximum iteration number to 10000, we aim to ensure that the model
can fully analyze our dataset.

We have used our training function including all our seven models, and for each model, the
loop goes through the different 5-fold of data that is created. For each fold, we get the indices of
the data that are used for training and testing and assign them to the corresponding variables
X train, X test, y train, and y test. Then, using these variables, we fit the model and calculate
its sensitivity, specificity, accuracy, and, as an extra metric, the f1 score and take the mean over
the 5-folds and save it in metricsdf. The reason for using the f1 score is that it takes into account
both the number of true positive and the number of false positive results. It is best used when both
precision and recall are important and have a balance with the problem. The other three metric
each only focus on one of the properties of the confusion matrix, for example, sensitivity looks at
the true positive from all positive results, and sensitivity at the percentage of true negative from
all negatives. The F1 score can give a more weighted picture of the performance of a classifier than
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the accuracy.
All metrics mentioned above are generated from the two separate merged dataframes (backfilled

and forwardfilled) and stored in a new one, shown in Table 7, and used to visualize and analyze
the models further. In our case, a bar chart is a great way to visualize the results of a comparison
between multiple models in terms of sensitivity, specificity, accuracy and f1 score. Each of the seven
models is represented by a separate bar, and the length of the bar corresponds to the value of the
metric for that model in percentages, resulting in figures such as Figure 9. The figure contains
two overlay plots, the first representing the models trained with the backfilled dataframe, and the
second one trained on the forwardfilled dataframe. In this way, the difference between the two
filling methods can be compared and examined.

The process of analyzing the importance of different features in a dataset is known as feature
importance analysis. It is used to understand which features are most significant when making
predictions or classifications, as well as how each feature affects the performance of the model as
a whole. However, only some of these models have the capability to save the feature importance,
such as Random Forest Classifier, Decision Tree Classifier, Logistic Regression, Naive Baye, and
XGBoost. For these models, we will save the feature importance for each iteration through the
fold, taking the mean over the 5-folds. This information will then be used to create a bar chart to
visualize the top 10 most important features and the least 10 important features, making it easier to
understand which features are most relevant to the problem. However, the Support Vector Machine
and K-Nearest Neighbor do not have an easily accessible method to save feature importances using
the coefficients of the model, so they will not be included in the feature importance analysis.

Figure 9 shows that the metrics of the K-Nearest Neighbor (KNN) model are generally the
lowest among the other six models, with a sensitivity of 88% and specificity of 44% according to
Table 7. The ff variant shows a smaller sensitivity, 87%. This aligns with the findings in 3.1 that
K-Nearest Neighbor does not perform well on larger datasets and many features, which is evident
in our case. The specificity of the KNN model is particularly low, indicating that the use of this
model for prediction could lead to more false positives, resulting in misdiagnosis of people without
migraine as having migraine. Additionally, Figure 7 illustrates that KNN is a model with a lower
accuracy, which can result in overfitting of the data and thus making predictions less accurate and
resulting in more false positives. However, it should be noted that the KNN model has a higher
true sensitivity, which refers to a high number of true positives in the predictions, as shown in
Table 6, where the false negatives of the KNN models are higher than the predictions of the EQ.
However, the model succeeds in predicting fewer false positives than the EQ. The trade-off between
true sensitivity and specificity is evident in this case.

However, the other models have a higher specificity than the KNN model but still with a
lower accuracy for their predictions than expected. The Random Forest Classifier (RFC) shows
the highest accuracy value of 84%, with the XGBoost (XGB) model close to it with a value of
83%. The sensitivity of the RFC model is yet again higher than the specificity, respectively 91%
and 68%, with a clear trade-off between the two metrics. Table 6 shows that the RFC model has
600 more true positives and true negatives, compared to the EQ. The bf variant shows a small
difference in one or two more true positives and negatives and one or two less false positives and
negatives. False negatives and false positives of the model are the lowest among the other six models.
The RFC shows that it performs as it promises to, in Section 3.1, where it is mentioned that the
model can handle large datasets with higher dimensionality, which is valid in our dataset with
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147 features. The scores for the four metrics for RFC and XGB are close to each other, with the
same ability to handle large datasets as RFC, mentioned in Section 3.1. However, if we look at the
importance of the features of the two models, Figure 10 we can see that some features that have a
high coefficient in the two models are visible in both models. The feature that has a high influence
in the RFC, HPIJND, is not in the top 10 most important features of XGB, but the features related
to BESCHRX have a high importance in both models. This means that these features are highly
related to the diagnosis of migraine by our models. Something that stands out is the influence of
the LEEFTIJD feature in the RFC model, as it is one of the most important features. The DTC
and NB models seem to share the same importance for the LEEFTIJD feature, as shown in Figures
17 and 18.

The features related to CAFEINEX seem to have low importance in the RFC and XGB models.
These features do not assist the model’s process of trying to find the correlation between features.

Figure 10: The feature importance in coefficients for the models Random Forest Classifier (RFA)
and XGBoost (XGBA) in the first binary classification. The bf variants of both models are used, as
the most and least important features of both variants do not differ in the parts where we examine.

The Decision Tree Classifier (DTC), Logistic Regression (LR), Support Vector Machine (SVM)
and Naive Bayes (NB) seem to perform similarly on the four performance metrics, with a slight
exception for the SVM model where the trade-off between sensitivity 89% and specificity 56% (bf
variant) is clearly visible. SVM with high sensitivity but low specificity will lead to a high number
of false positives, as seen in Table 6, where the SVM model has a high number of false positives,
compared to the other models, but still fewer false positives compared to the EQ. The DTC model
shows in Figure 9 a performance similar to the other three models, but Table 6 indicates otherwise.
The model performed well, with a good balance between sensitivity and specificity. It predicted
the third highest number of true positives and true negatives among all models, with a sensitivity
of 79% and specificity of 64% (using the ff variant of the dataframe). This means that the model
correctly identified a high proportion of positive cases while also avoiding many false positives.

When comparing the models trained on the forward (ff) and backward (bf) variants of the
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dataframe, variant ff showed a higher specificity, with 2% more correct identifications of positive
cases compared to variant bf. This resulted from the fact that variant ff had fewer false positives
than variant bf, as shown in the confusion matrix table.

Furthermore, the DTC model trained on the ff variant of the dataframe correctly predicted 23
more patients compared to the bf variant. This suggests that the ff variant may have been more
suitable for the model, possibly due to its ability to better preserve the temporal structure of the
data or capture the underlying patterns in the missing values. This suggests that the choice of
imputation technique should depend on the specific characteristics of the data and the problem
being solved.

In general, according to Figure 9 and Table 6, it appears that both the Random Forest Classifier
(RFC) and XGBoost (XGB) show the best performance compared to the other models, with
sensitivity 91% and specificity 68% for RFC, and for XGB sensitivity 90% and specificity 70%.

Table 7: The performance of the models for the backfilled (left table) and forward filled (right
table) dataframes measured in percentages using four metrics: accuracy, f1 score, specificity, and
sensitivity. We evaluated the performance of the models: the Random Forest Classifier (RFC),
the Decision Tree Classifier (DTC), the Support Vector Machine (SVM), the Logistic Regression
(LR), K-Nearest Neighbor (KNN), Naive Baye (NB), and XGBoost (XGB) for the first binary
classification (XXXA), the second binary classification (XXXB) and the multiclass classification
(XXXC)

Algorithm Accuracy F1 score Sensitivity Specificity
DTCA 73 73 79 62
DTCB 70 70 76 60
DTCC 58 58 71 82
NBA 77 77 84 63
NBB 66 66 73 56
NBC 60 60 75 80
KNNA 72 72 88 44
KNNB 61 61 74 39
KNNC 50 50 61 77
LRA 79 79 88 60
LRB 70 70 82 51
LRC 62 62 70 87
RFCA 83 83 91 68
RFCB 78 78 90 58
RFCC 70 70 75 94
SVMA 78 78 89 56
SVMB 71 71 90 38
SVMC 63 63 63 92
XGBA 83 83 90 70
XGBB 78 78 86 66
XGBC 71 71 83 90

Algorithm Accuracy F1 score Sensitivity Specificity
DTCA 74 74 79 64
DTCB 69 69 75 58
DTCC 57 57 71 81
NBA 77 77 84 63
NBB 67 67 75 56
NBC 61 61 77 79
KNNA 72 72 87 44
KNNB 61 61 72 41
KNNC 49 49 62 78
LRA 78 78 87 61
LRB 70 70 82 50
LRC 62 62 71 88
RFCA 84 84 92 68
RFCB 78 78 91 56
RFCC 70 70 76 93
SVMA 78 78 89 57
SVMB 71 71 89 39
SVMC 62 62 63 93
XGBA 83 83 90 69
XGBB 78 78 85 66
XGBC 71 71 84 90

Second Binary Classification

We again start with initializing our model, so the previously trained model does not interfere
with our new classification. We will keep the same parameters as described in the first binary
classification for all the models.

The results are shown in Figure 11, which illustrates the impact of the decreased data set size
on the performance of specifically the SVM and KNN models, with 2361 instances in the second
binary classification shown in Table 4 compared to 4629 in the other classification. The KNN model
has decreased from 88% to 74& in sensitivity. The specificity has also decreased by 5%, as shown
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Figure 11: In our second binary classification task, we evaluated the performance of the models: the
Random Forest Classifier (RFB), the Decision Tree Classifier (DTB), the Support Vector Machine
(SVMB), the Logistic Regression (LRB), K-Nearest Neighbor (KNNB), Naive Baye (NBB), and
XGBoost (XGBB) using two datasets, forward (ff) and backward (bf) filled, containing two labels:
migraine with aura (MA) and migraine without aura (MO). The performance of these models was
measured using four metrics: Accuracy, F1 score, Specificity, and Sensitivity

in Table 7. This decrease can be explained by the smaller sample size that is fed to the model.
The model during the first binary classification may have been overfitted on the larger dataset,
resulting in higher sensitivity and specificity. However, a smaller dataset may be harder to train
on, resulting in less accurate predictions, supported by Table 7 which shows a decrease of 12% in
the accuracy of the model. The specificity of the SVM model shows a really low score of 38% but
a really high sensitivity of 90%, but a similar decrease compared to the KNN, from 56% to 38%,
suggesting that the smaller dataset may not be sufficient to generalize the data set well. The less
representative data set may have led to lower specificity for the model.

The LR and NB models seem to score slightly better than the previous two models, according
to Table 7 and 6. The LR model with a sensitivity and specificity of respectively 82% and
51%, compared to NB with 73% and 56% seems to perform slightly worse than the first binary
classification. The smaller sample size seems to affect the performance of the LR and NB models.
The NB model predicts far more people falsely with MA than the LR model, which makes the LR
model in this case better than the EQ predictions and the NB model worse. When we examine the
feature importance of the two models, shown in Figure 12, none of the most important features
seem to match, suggesting that the models do not recoginize the same pattern during training.
What they do have in common, are the ROKEN1 and INTOX02 features that share the same
position of being among the least important features in both models.

The RFC and XGB models show identical accuracy, f1 score scores, 78%, without leaving out
that the sensitivity and specificity trade-off of these models are the highest, the sensitivity of the
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Figure 12: The feature importance in coefficients for the models Naives Bayes (NB) and Logistic
Regression (LR) in the second binary classification. The bf variants of both models are used, as the
most and least important features of both variants do not differ in the parts where we examine.

RFC and XGB are respectively 91% and 86%, and the specificity respectively 56% and 66%. The
RFC model with the higher sensitivity classifies 1828 (bf variant) people truly with MA, as shown
in Table 6. The higher specificity of the XGB model is also a result of the model predicting fewer
false positives compared to the RFC model. When we look at the feature importance in Figure 13,
the most important features of the two models are quite similar, referring to features that contain
AURAX in them, referring to the fact that both models seem to find relations in the data that are
close to each other.

In this classification, the RFC and XGB models perform, again, the best among the seven
models.

5.3 Multiclass Classification

When initializing the models before starting the training, we use the same parameters as described in
previous classifications, except for the Logistic Regression and XGBoost. The multiclass classification
classifies the data set with three labels. For Logistic Regression to handle this, the mult class
parameter is set to “multinomial” to allow the model to handle multiple labels. XGBoost’s
parameter “num class” is also set to 3 for the same reason. Other models can already handle
multiclass classification.

To compare the results and performance of the binary and multiclass classification, we will
use the same models: Random Forest Classifier (rf), Decision Tree Classifier (dt), Support Vector
Machine (svm) and Logistic Regression (lr). As predict data, we will use the CRIT04HPIJN column
from our merged dataset. The CRIT04HPIJN label, as previously discussed, contains three labels
based on the other three CRIT0XHPIJN diagnoses. To give more insight on the distribution of the
labels in the data, we will report the count of each label included in the data.
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Table 8: In this confusion matrix, seven different algorithms are being used for a multiclass
classification task: the Random Forest Classifier (RFC), the Decision Tree Classifier (DTC), the
Support Vector Machine (SVM), the Logistic Regression (LR), the K-Nearest Neighbor (KNN), the
Naive Bayes (NB), and the XGBoost (XGB). The EQ is the diagnosis predicted by the algorithm in
the study by Oosterhout et al. [26], column CRIT01HPIJN of the two merged dataframes, shown
as (‘backfilled’ - ‘forwardfilled’) next to the ‘/’ inside the confusion matrices. The ‘Prediction’ is the
diagnosis predicted by the model, which is compared to the Clinic-diagnosis labels of no migraine
(-), migraine without aura (MO), and migraine with aura (MA) from the CRIT04HPIJN dataset of
the merged dataframe. The total number of predictions is 4629.

Clinic-diagnosis - Clinic-diagnosis MO Clinic-diagnosis MA
Prediction/EQ - (1631—1637) / 1070 (6—7) / 173 (46—39) / 424

Algorithm Prediction/EQ MO (36—39) / 147 (933—933)/ 530 (125—116)/178
RFC Prediction/EQ MA (45—35) / 466 (24—22) / 391 (1783—1795)/1250

Clinic-diagnosis - Clinic-diagnosis MO Clinic-diagnosis MA
Prediction/EQ - (1593—1580) / 1070 (25—34) / 173 (65—69) / 424

Algorithm Prediction/EQ MO (50—50) / 147 (952—947)/ 530 (92—97)/178
DCT Prediction/EQ MA (89—80) / 466 (69—63) / 391 (1694—1709)/1250

Clinic-diagnosis - Clinic-diagnosis MO Clinic-diagnosis MA
Prediction/EQ - (1277— 1268) / 1070 (65—52) / 173 (341—363) / 424

Algorithm Prediction/EQ MO (196—194) / 147 (401—406)/ 530 (497—494)/178
SVM Prediction/EQ MA (274—266)/ 466 (86—97)/ 391 (1492—1489)/1250

Clinic-diagnosis - Clinic-diagnosis MO Clinic-diagnosis MA
Prediction/EQ - (1234—1222) / 1070 (120—111) / 173 (329—350) / 424

Algorithm Prediction/EQ MO (181—191) / 147 (483—495)/ 530 (430—408)/178
LR Prediction/EQ MA (297—295) / 466 (218—227) / 391 (1337—1330)/1250

Clinic-diagnosis - Clinic-diagnosis MO Clinic-diagnosis MA
Prediction/EQ - (1623—1625) / 1070 (20—15) / 173 (40—43) / 424

Algorithm Prediction/EQ MO (26—21) / 147 (974—980)/ 530 (94—93)/178
XGB Prediction/EQ MA (38—39) / 466 (36—45) / 391 (1778—1768)/1250

Clinic-diagnosis - Clinic-diagnosis MO Clinic-diagnosis MA
Prediction/EQ - (1067—1058) / 1070 (231—254) / 173 (385—371) / 424

Algorithm Prediction/EQ MO (150—140) / 147 (522—565)/ 530 (422—389)/178
NB Prediction/EQ MA (234—228) / 466 (305—329) / 391 (1313—1295)/1250

Clinic-diagnosis - Clinic-diagnosis MO Clinic-diagnosis MA
Prediction/EQ - (1240—1229) / 1070 (164—187) / 173 (279—267) / 424

Algorithm Prediction/EQ MO (250—225) / 147 (550—576)/ 530 (294—293)/178
KNN Prediction/EQ MA (361—342) / 466 (301—313) / 391 (1190—1197)/1250
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Figure 13: The feature importance in coefficients for the models Random Forest Classifier (RFC)
and XGBoost (XGB) in the second binary classification. The bf variants of both models are used, as
the most and least important features of both variants do not differ in the parts where we examine.

• 0 (no migraine) : 1683 labels

• 1 (MO) : 1094 labels

• 2 (MA) : 1852 labels

We have a total of 4629 diagnoses that were used to train the multiclass classification, including
three labels: no migraine, migraine with aura, and migraine without aura. For each model, two
separate models are trained using the bf and ff dataframes. The classification resulted in the bar
chart in Figure 14.

Looking at Figure 14, we can see that all models score better for specificity than the sensitivity
value. This means that there will be more false negatives compared to false positives in the
predictions of the models. A reason for this could be that the data is unbalanced, making it harder
for the models to identify the least common class among the three classes. Table 8 shows that the
LR, NB, and KNN models have many false predictions, while the RFC and XGB models have fewer
false negatives, as they have a higher accuracy. According to Table 7, the sensitivity and specificity
of the RFC are 75% and 94%, while those of the XGB are 83% and 90%. This means that the RFC
model has fewer false predictions compared to the XGB model.

The RFC, DCT, and XGB models are the only ones that predict the three labels more accurately
than the EQ predictions, as shown in Table 8. When we compare the important features of the RFC
and XGB models in Figure 15, we can see that the RFC and XGB models have HPIJND, AURA,
BESCHRA/K as important features. The other features don’t tell us much about the similar scores.
An interesting feature is BESCHRH, which is important for the RFC model, but not for the XGB
model. This could mean that the RFC model uses this feature more to find a pattern, while the
XGB model finds other features more important for training.
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Figure 14: In our multiclass classification task, we evaluated the performance of the models: the
Random Forest Classifier (RFC), the Decision Tree Classifier (DTC), the Support Vector Machine
(SVMC), the Logistic Regression (LRC), K-Nearest Neighbor (KNNC), Naive Baye (NBC), and
XGBoost (XGBC) using two datasets, forward (ff) and backward (bf) filled, containing three labels:
no migraine, migraine with aura (MA) and migraine without aura (MO). The performance of these
models was measured using four metrics: Accuracy, F1 score, Specificity, and Sensitivity.

The models with the lowest accuracy are the DCT (58%) and NB (61%) models. The DCT
model can easily overfit when the data is noisy and complex, which can result in a completely
different tree that performs poorly on the data.

Table 8 shows that predictions for no migraine and MA labels are more than the EQ predictions
in all cases, except for the NB and KNN models. However, the models do not perform as well in
predicting the MO labels. This could be because the model cannot effectively identify instances of
the minority class if the features used to train the model are not helpful enough for the minority
class. Additionally, the model might be overfitting to the majority class, causing high specificity
but poor performance in the minority class.

When we compare the bf and ff variants in the multiclass classified models, the DTC and NB
models appear to have higher accuracy and the f1 score when trained with the ff variant of the
dataframe, as shown in Figure 14. On the other hand, the sensitivity and specificity of this variant
show lower scores compared to the bf variant. The sensitivity and specificity of SVM and KNN
are boosted by the ff variant, but this results in worse accuracy in the models. Overall, there is no
variant that outperforms the other variant.

In conclusion, the choice of the algorithm can greatly affect the overall performance and accuracy
of the predictions in a multiclass classification task. The RFC and XGB models perform the best,
followed by the DTC model, while the LR, NB and KNN models have the lowest performance
among all algorithms, with accuracies of 61%, 66%, and 58%, respectively. The high specificity
and low sensitivity observed in the models can be attributed to the unbalanced nature of the
data, referring to the importance of mentioning the imbalance of the classes in the multiclass
classification.
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Figure 15: The feature importance in coefficients for the models the Random Forest Classifier
(RFC) and the XGBoost (XGBC) in the multiclass classification. The bf variants of both models
are used, as the most and least important features of both variants do not differ in the parts where
we examine

Binary versus Multiclass Classification

We conducted two types of classification experiments to test the hypothesis that separating a
classification problem into multiple binary classification tasks improves accuracy. To evaluate this,
we performed two binary classification tasks and one multiclass classification. Comparing the results
of these classifications shows that both binary classification tasks and multiclass classification
produce really different performance scores, as shown in Figure 16 and Table 7. The Support Vector
Machine and K-Nearest Neighbor models performed poorly in both classifications, particularly in
terms of specificity in the second binary classification. However, in the multiclass classification, the
specificity of these two models was more accurate than its sensitivity and accuracy. This suggests
that the Support Vector Machine and K-Nearest Neighbor may only be able to correctly predict
one class, in particular the classification for having migraine or not, shows higher scores compared
to the aura classification, and identify other classes less accurately. The Decision Tree Classifier,
Logistic Regression, and Naive Baye had for both classification their ups and downs, but showed the
lowest accuracy in the multiclass classification, leaving us with an overall lower performance than
the remaining two models. Both binary classification tasks have a higher score in the accuracy, f1
score, and sensitivity for almost all models, compared to the multiclass classification. This suggests
that classification tasks with more than two classes are less accurate than classifications with only
two classes.

All models, shown in Table 7, have lower accuracies in multiclass classification compared to
the two binary classification tasks. The remaining two models used in both classifications that
yielded similar results were the Random Forest Classifier and XGBoost performing the best in both
classifications, but with XGBoost when averaged over the three classifications, having the highest
sensitivity and specificity compared to the other models.
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Figure 16: The figures compare the performance of our models: Random Forest Classifier (RFC),
Decision Tree Classifier (DTC), Support Vector Machine (SVM), Logistic Regression (LR), K-
Nearest Neighbor (KNN), Naive Baye (NB), and XGBoost (XGB) on two different tasks using
two datasets, forward filled (ff). The first figure contrasts the binary classification task (migraine
or no migraine) with the multiclass classification task (no migraine, migraine with aura (MA),
and migraine without aura (MO)), while the second figure contrasts the binary classification task
(migraine with aura (MA) or migraine without aura (MO)) with the multiclass classification task.
In both figures, striped bars represent multiclass classification performance, and solid bars represent
binary classification performance. Performance was evaluated using four metrics: Accuracy, F1
score, Specificity, and Sensitivity.
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6 Conclusions and Discussion

After thorough experimental evaluation of different machine learning models, we were able to
evaluate their performance and compare them based on accuracy, f1 score, sensitivity, and specificity.
The results of this study have highlighted the potential of machine learning techniques in improving
the diagnosis of diseases, particularly in the case of migraine.

We found that the binary classification approach is a feasible method to use on a multiclass
problem, our study shows that the results obtained by using two binary classification problems
are comparable to the results 5.2 obtained by using a multiclass classification problem. However,
when comparing our results from machine learning models with the results that were given by the
extended questionnaire of [26], our models showed visible differences, more accurate predictions,
and less false negatives. This leads us to affirm that machine learning can indeed improve the
diagnosis of migraine compared to the current algorithm. There were, however, some limitations
due to shortcomings in computational power and data. The data label provided by LUMINA
has labeled the diagnosis that referred to no migraine or did not have clear results, such as no
migraine. This left us with a label that may not be as accurate as we think. These labels need
some control before further research can be done on them. Another limitation is the lack of
computational power to run the imputation on the large number of missing values. To fill this gap,
we used other filling-missing-values methods, which obviously should not be the case. Moreover, it
is important to consider the potential effect of imbalanced classes in our data set, mainly during
multiclass classification, as it could have affected the performance of the models. Techniques such
as oversampling and undersampling could be considered to address this issue and potentially lead
to better model performance, especially in terms of sensitivity for the minority class.

One potential direction for further research could also be to analyze the feature importances
and variable interactions which could be used to identify the most relevant factors that influence the
prediction of the diagnosis of migraine and to gain deeper insights into the underlying mechanisms
of the disease, more specifically. To improve the models, the features that have the least importance
could be excluded from the data set that is given to the models. Another approach could be to
consider the use of ensemble techniques such as stacking, bagging, and boosting that combine the
predictions of multiple models to improve overall performance. This can be done by training several
models and then combining their predictions in a way that enhances the performance on unseen
data.

In general, this study contributes to the growing body of research on the implementation of
machine learning techniques in the medical field and provides valuable insights into the potential of
these techniques for the prediction of migraine. We believe that these results will serve as a catalyst
for further research and the development of new and improved diagnostic tools for this condition.
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Figure 17: The importance of features for binary and multiclass classification in the Decision Tree
Classifier (DTC) model, represented by coefficients, is determined for both backfilled (bf) and
forwardfilled (ff) dataframes. The analysis includes the first binary, second binary, and multiclass
classification scenarios.
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Figure 18: The importance of features for binary and multiclass classification in the Naives Bayes
(NB) model, represented by coefficients, is determined for both backfilled (bf) and forwardfilled
(ff) dataframes. The analysis includes the first binary, second binary, and multiclass classification
scenarios.
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Figure 19: The importance of features for binary and multiclass classification in the Logistic
Regression (LR) model, represented by coefficients, is determined for both backfilled (bf) and
forwardfilled (ff) dataframes. The analysis includes the first binary, second binary, and multiclass
classification scenarios.
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Figure 20: The importance of features for binary and multiclass classification in the Random Forest
Classifier (RFC) model, represented by coefficients, is determined for both backfilled (bf) and
forwardfilled (ff) dataframes. The analysis includes the first binary, second binary, and multiclass
classification scenarios.
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Figure 21: The importance of features for binary and multiclass classification in the XGBoost
(XGB) model, represented by coefficients, is determined for both backfilled (bf) and forwardfilled
(ff) dataframes. The analysis includes the first binary, second binary, and multiclass classification
scenarios.
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Table 9: This table describes the final, pre-processed dataset with names, the domain values
(minimum and maximum), and the data types of the 145 columns in the merged df.

Name column Min-value Max-value Dtype
RECORD 1 4445 float64
CASEID 1 4445 float64
ID 101 601 float64
IDAA 1 9243 float64
GEBJAAR 1926 2013 float64
GESLACHT 0 1 float64
SCRDIAGEIND 0 20 float64
CRIT01HPIJN 0 8 float64
CRIT02HPIJN 0 12 float64
CRIT03HPIJN 0 12 float64
CRITTEMPHPIJN 0 1 float64
CRIT04HPIJN 0 2 float64
CRIT05HPIJN 0 1 float64
SCREENA 1 1 float64
SCREENC 0 10 float64
SCREENE 0 9 float64
SCREENJ 0 9 float64
SCREENM 0 9 float64
FAMC 0 9 float64
UITSLAG 0 1 float64
CRIT01 0 8 float64
CRIT03 0 12 float64
CRIT04 0 2 float64
HPIJNA 1 2 float64
HPIJNB 0 3 float64
HPIJNC 0 9 float64
HPIJND 1 7 float64
HPIJNE 1 6 float64
HPIJNF 0 93 float64
HPIJNG 0 93 float64
HPIJNAV 0 2 float64
BESCHRA 0 4 float64
BESCHRB 0 9 float64
BESCHRC 0 9 float64
BESCHRD 0 9 float64
BESCHRE 0 9 float64
BESCHRF 0 9 float64
BESCHRG 0 9 float64
BESCHRH 0 9 float64
BESCHRI 0 9 float64
BESCHRJ 0 9 float64
BESCHRK 0 9 float64
BESCHRL 0 9 float64
BESCHRM 0 9 float64
HUIDA 0 9 float64
HUIDB 0 9 float64
HUIDC 0 9 float64
HUIDD 0 9 float64
HUIDE 0 9 float64
HUIDF 0 9 float64
HUIDG 0 9 float64
HUIDH 0 9 float64
HUIDI 0 9 float64
HUIDJ 0 9 float64
HUIDK 0 9 float64
HUIDL 0 9 float64
BESCHBOBSOLETE 0 8 float64
BESCHBC 0 9 float64
BESCHBD 0 9 float64
BESCHBE 0 9 float64
BESCHBF 0 9 float64
BESCHBG 0 9 float64
BESCHBH 0 9 float64
BESCHBI 0 9 float64
BESCHBJ 0 9 float64
BESCHBK 0 9 float64
BESCHBL 0 9 float64
SYMPB 0 9 float64
SYMPC 0 9 float64
SYMPD 0 9 float64
SYMPE 0 9 float64
SYMPF 0 9 float64
SYMPG 0 9 float64
SYMPH 0 9 float64

Name column Min-value Max-value Dtype
SYMPI 0 9 float64
SYMPJ 0 9 float64
SYMPL 0 9 float64
SYMPK 0 9 float64
SYMPM 0 9 float64
SYMPN 0 9 float64
SYMPO 0 9 float64
SYMPP 0 9 float64
SYMPQ 0 9 float64
SYMPR 0 9 float64
MEDICA 0 2 float64
MEDICBA 0 1 float64
MEDICBJ 0 1 float64
MEDICBB 0 1 float64
MEDICBP 0 1 float64
MEDICZ01 0 31 float64
MEDICZ02 0 31 float64
MEDICZ03 0 31 float64
MEDICZ04 0 31 float64
INTOX01 0 1 float64
INTOX02 0 1 float64
INTOX03 0 1 float64
INTOX04 0 1 float64
INTOX05 0 1 float64
ROKEN1 0 2 float64
ROKEN5 0 2 float64
ROKEN9 -3.7 153.1 float64
CAFEINE1 0 1 float64
CAFEINE2 0 15 float64
CAFEINE3 0 1 float64
CAFEINE4 -1 20 float64
CAFEINE5 0 1 float64
CAFEINE7 0 1 float64
CAFEINE9 -3 28 float64
ALCOHOL01 0 1 float64
DRUGS01 0 2 float64
LEEFTIJD 0 83 float64
FAMILA 0 9 float64
FAMILB 0 9 float64
FAMBA 0 11 float64
FAMBB 0 7 float64
FAMBC 0 9 float64
FAMBD 0 6 float64
FAMBG 0 11 float64
AURA 0 9 float64
AURAB 0 9 float64
AURAC 0 9 float64
AURAD 0 9 float64
AURAE 0 9 float64
AURAF 0 9 float64
AURAG 0 9 float64
AURAH 0 9 float64
AURAI 0 9 float64
AURAJ 0 9 float64
AURAK 0 9 float64
AURAL 0 9 float64
AURAM 0 9 float64
AURAN 0 9 float64
AURAO 0 9 float64
AURAAV 0 9 float64
AURAEV 0 9 float64
AURAEA 0 9 float64
AURAFA 0 9 float64
AURAFB 0 9 float64
AURAFC 0 9 float64
AURAFD 0 9 float64
AURAFE 0 9 float64
AURAGA 0 99 float64
AURAHA 0 3 float64
AURAHB 0 9 float64
CRITFINAL 0 2 float64
CRIT04HPIJNCLASS 0 1 float64
CRIT04HPIJNAURA 0 1 float64
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