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Abstract
This work makes a first step towards terrain-
adaptive PCGML in Minecraft. We introduce an
automated system and preprocessing tool to cre-
ate “volume-to-volume” datasets suitable for ma-
chine learning by leveraging handwritten black-
box Minecraft settlement generation algorithms.
Using this system and tool, we create ten terrain-
adaptive Minecraft ML datasets — including ones
based on the current best-performing algorithm
submitted to the Generative Design in Minecraft
(GDMC) competition. Finally, we train and qual-
itatively evaluate various GAN-based volume-to-
volume models on all ten of our datasets. Al-
though we do not obtain good results in all cases,
we demonstrate that terrain-adaptive PCGML in
Minecraft is indeed feasible.

1 Introduction

1.1 Aim and scope

This work is a first step towards terrain-adaptive PCGML
in Minecraft. That is, we aim to train machine learning
models on the task of generating structures on top of a
given piece of natural terrain. A central issue for this
area of research is the lack of suitable datasets. Our goal
therefore splits into two parts: we aim to both create
such datasets, and to then use these datasets to train ML
models.

The main idea behind our approach was to create the
needed datasets by leveraging generative algorithms from
the Generative Design in Minecraft (GDMC) competition,
a yearly competition on settlement PCG in Minecraft [1 ].
This is what led us to our research question:

Is it possible to reproduce GDMC Minecraft settlement
generators using machine learning?

In the remainder of this introduction, will first give more
extensive background on the topic of our work (Section 1.2 ),
then we will explain our approach in more detail and sum-
marize our contributions (Section 1.3 ), and finally we will
outline the structure of the rest of the text (Section 1.4 ).

1.2 Background

1.2.1 PCG(ML)

Procedural Content Generation (PCG) is a commonly-used
game development tool that has been gaining increasing
scientific interest. PCG is the technique of generating game
content algorithmically, as opposed to creating it by hand.
It is used for many reasons, such as to alleviate development
work, increase replay value, save storage space, or even to
dynamically adapt content to the player [2 , 3 ].

The explosive growth of machine learning has also spurred
scientific interest in Procedural Content Generation via
Machine Learning (PCGML), which Summerville et al.
define as the direct generation of functional game content
using machine learning models [3 ]. This subgroup of PCG
has however not seen much use yet in the game industry.
Most forms of PCG used today lean heavily on domain-
specific generation rules handwritten by humans.

1.2.2 Minecraft

A video game that is well known for making heavy use
of (non-ML) PCG is Minecraft. It uses PCG to not only
generate the natural terrain and biomes of the world, but
also to place various terrain-adapted structures like villages
(Figure 1 ). This way, it provides ever-diverse worlds to
play in.

Minecraft has grown to be a prominent testbed for all
kinds of AI research, including PCG. This is likely fueled
by its popularity and the wide availability of modifications
that allow you to interact with the game programmatically,
some even supported by Microsoft itself (the present owner
of Minecraft) [4 ].

From the viewpoint of PCG research, the game has many
interesting challenges to offer. It has a fairly unique token-
voxel-based world (it consists of 3D pixels that have non-
continuous token values like “stone” or “air”), it provides
randomly generated terrain that can be used to evaluate
terrain-adaptive generative algorithms, and it offers game-
play context to evaluate the functionality of generated
artifacts. Furthermore, due to the game’s popularity, a
huge amount of human examples is available, which is
useful both as inspiration for handwritten algorithms and
as training data for machine learning systems.

1.2.3 GDMC

To promote more research towards PCG in Minecraft,
Salge et al. introduced the Generative Design in Minecraft
competition1

 in 2018 [1 ]. In this competition, the goal is to
write an algorithm that automatically generates a believ-
able Minecraft settlement that adapts to the pre-existing
natural terrain. All submitted entries are evaluated by hu-
man judges in four categories: Adaptation, Functionality,
Evocative Narrative and Aesthetics. The competition has
been running annually since its foundation, and has led to
consistent development in the field. [5 , 6 , 7 , 8 , 9 , 10 , 11 ,
12 , 13 , 14 , 15 , 16 , 17 ]

The GDMC competition is completely open in regard to
PCG methods, and all submissions — from intricately
handwritten algorithms to scientific experiments — are
judged on an equal playing field. Entries are scored on
absolute scales, which makes it possible to compare re-
sults across all iterations of the competition. This makes
them a great way to compare new experimental generation
methods with more established ones.

1https://gendesignmc.engineering.nyu.edu/ 
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Figure 1: A regular Minecraft village, generated on top of the natural terrain.

Thus far, the best results have consistently been achieved
by algorithms that primarily consist of a large amount of
constructive generation rules, such as “build houses on flat
ground”, “connect houses with roads”, “place furniture in
houses”, etc. Although PCGML-based methods have been
attempted in the competition [18 ], their results have not
yet paralleled these more manual methods.

1.2.4 Minecraft PCGML

Outside the GDMC competition, there have been several
Minecraft PCGML approaches that have achieved better
results [19 , 20 , 21 , 22 ], but these all come with limitations.
Most notably, they are all unable to condition their gener-
ation on existing Minecraft terrain. This limits them to
generating artifacts in isolation.

The automated settlement generator algorithms brought
about by the GDMC competition provide an interesting
opportunity in this regard, one which we aim to capitalize
on with this work. An important problem for PCGML is
the lack of sufficient training data [3 ]. Creating a PCGML
system that can adapt to pre-existing terrain requires data
on such pre-existing terrain, which significantly complicates
the collection of a suitable dataset. Although an enormous
amount of human-built settlements is available, they often
heavily alter the original terrain, or do not provide an easy
way to obtain it.

Machine learning systems that can learn to convert from
one image-like domain to another (e.g. from terrain to
settlements) in an unsupervised manner do exist [23 ], but
they can be difficult to train. However, using settlement
generator algorithms submitted to the GDMC competi-
tion, it is possible to automatically generate a practically
unlimited amount of terrain-settlement pairs that can be
used to train a supervised learning algorithm.

1.3 Our approach

In this work, we develop an automated system to run
external settlement generation algorithms in a Minecraft
world and extract the resulting terrain-settlement pairs to
a dataset that is suitable for machine learning. We then
use this system to create several such datasets, including
one for the current best-performing GDMC generator [17 ].
Finally, we use these datasets to train various machine
learning models, and we evaluate their performance.

Our main contributions can be summarized as follows:

1. We introduce a system that can automatically cre-
ate a machine learning dataset using a black-box
Minecraft settlement generation algorithm written
for the most common GDMC submission method,
and which can easily be extended to other types of
settlement generation programs.

2. We introduce several datasets of Minecraft terrain-
settlement pairs, primarily ones made with variants
of the current best-performing GDMC algorithm [17 ],
which can be used for future research.2  

3. We create machine learning systems for 3D spatial
token-based image-to-image translation, train them
using the aforementioned datasets, and evaluate their
performance.

4. We introduce a way to handle Minecraft block states
in machine learning systems.

5. We introduce a new frequency weighting technique
for mapping from an embedding space back to a
categorical space, and investigate its effectiveness.

2Datasets are available via correspondence with
a.j.w.van.der.staaij@umail.leidenuniv.nl
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1.4 Thesis structure

This work is organized as follows. In Section 2 , we will
discuss related work in the areas of Minecraft PCG settle-
ment generation, Minecraft PCGML and image-to-image
translation. In Section 3 , we will describe the design of
our automated dataset creation system and how we use
it to generate several datasets. In Section 4 , we describe
how we preprocess these datasets to prepare them for our
ML models. In Section 5  , we describe the ML models and
related systems we used for experimentation. In Section 6 ,
we describe the experiments we performed and their re-
sults. In Section 7 , we summarize our work. Finally, we
present our conclusions in Section 8 and make suggestions
for future work in Section 9 .

2 Related work

2.1 Minecraft PCG settlement generation

The GDMC competition has led to a substantial amount of
research in the area of PCG in Minecraft. The organizers
and judges have published two reports that discuss the
developments made in the 2018 and 2021 competitions [5 ,
6 ]. We will give a brief overview as well, limited to the
published work but including some of the more recent
developments. Note that we leave out PCGML approaches
here, as we will discuss them in Section 2.2 .

Tools for settlement generation. Green et al. have
described a technique for generating organic floor plans
using a constrained growth method and cellular automata,
which can improve internal building variety [7 ]. A different
kind of planning algorithm is described by van Aanholt
et al. [9 ]: they generate 3D building plans for general
voxel buildings using architectural profiles and answer set
programming. Their method is not limited to Minecraft,
but has been used successfully in a GDMC submission.

Full settlement generation. Naturally, the GDMC
competition has led to many works about full settlement
generation. Fridh et al. describe a settlement generator
that combines several techniques, such as surface adap-
tation with graph grammars, house floor plan generation
and furnishing and a road system using global and local
roads [8 ]. Iramanesh et al. developed AgentCraft, which
introduced the concept of using agents for settlements.
They simulate a society of in-game “players”, whose move-
ments and actions define the settlement. [10 ]. The concept
of using agents was used by various subsequent genera-
tors, though they differ in the exact definition of an agent.
Esko et al. describe an agent-based algorithm with more
abstract agents that makes use of existing city generation
techniques. [11 ]. Van der Staaij et al. take this concept
even further with an iterative agent simulation, and com-
bine it with several other PCG techniques [17 ]. Their
algorithm currently holds the highest score in the GDMC
competition, and is hence the one we primarily use in this
work.

Evaluation of settlements. There has also been re-
search into the evaluation of PCG Minecraft settlements.
Hervé et al. have investigated the applicability of a large
amount of general automated PCG performance metrics to
the Minecraft settlement generation domain. While they
note that many metrics can be adapted to Minecraft, they
did not find strong evidence for a correlation with GDMC
judge evaluations for most metrics. And for the metrics
with do show correlation, they remark that they appear
to be unsuitable to optimize for directly: a settlement
needs to be “okay” first [12 ]. The same authors moved on
to investigate automatic metrics based on isovist theory.
While this seemed promising, they were limited by a lack
of sufficiently detailed human evaluation data to compare
with [13 ]. Finally, Hervé et al. analyzed the specific themes
that GDMC judges tend to base their scores on, giving
more insight into what aspects make a settlement gener-
ator “good” according to humans [16 ]. Since automated
settlement quality metrics do not quite seem ready yet for
direct optimization, data-driven methods like ours remain
important for Minecraft PCGML.

2.2 Minecraft PCGML

When it comes to PCGML in Minecraft, there are a num-
ber of notable related works. One of the earliest is an
attempted GDMC submission [18 ]. Its author developed
a 3D version of DCGAN and trained it using samples of
human-made Minecraft buildings. They converted their
samples to only differentiate between air and non-air
blocks to simplify the problem. Their results were unsat-
isfactory, but were an important first step for Minecraft
PCGML. Better results were achieved by Fumagalli [19 ]
using a similar architecture. They were able to generate
simple villages when again only differentiating between
air and non-air.

A major step up was achieved by the authors of World-
GAN [20 ], an approach for generating Minecraft world
samples based on a single input sample. One of the reasons
that the previous works were limited to differentiating
between air and non-air only (which we will refer to as
binary generation from now on), was the large number of
blocks in Minecraft. Version 1.19 of Minecraft (released
on June 7, 2022) contains 825 different blocks, and this
number continues to grow with each update. This large
amount of blocks poses a problem for neural network-based
approaches: since block types are categorical, they need
to be converted to one-hot vectors before they can be fed
into a network. This can require huge amounts of memory
for large world samples. For example, a single 64 × 64 × 64
sample of Minecraft 1.19 blocks using 32-bit floating point
numbers would require 64 · 64 · 64 · 825 · 32 b = 825 MB
to store. This number can be reduced by only considering
the blocks that actually appear in the data, but it remains
large. Furthermore, it will only increase as more blocks
are introduced in the game.

The World-GAN approach solves this problem by introduc-
ing block2vec [20 ], a technique inspired by word2vec [24 ,
25 ]. They train a two-layer skip-gram model that learns
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to predict the surrounding blocks (context) for each block
in their input sample. This results in an embedding vector
for each block: a list of floating point numbers of fixed
length that identifies the block. The resulting embedding
space can then be used for neural network in- and output.
The authors of World-GAN used 32-number embeddings,
greatly reducing the required storage for each sample. This
way, they were able to support all Minecraft block types.
Our work also leverages the word2vec technique.

The authors later extended their method to Wor(l)d-
GAN [21 ], which can additionally make use of a pretrained
language model (BERT) instead of block2vec. The idea
is to embed the English display names of the blocks (e.g.
“stone bricks”) using the pretrained model, rather than
training a custom block2vec model. By using some addi-
tional tricks such as prompt editing, the authors were able
to achieve performance similar to block2vec. This method
is however not directly applicable to our problem, since we
use a different notion of “block” that contains more data
than just the name.

Both World-GAN andWor(l)d-GAN train on a single world
sample, and output samples that are similar to the input
sample at multiple scales. They use a generative adver-
sarial network (GAN) architecture based on SinGAN [26 ]
to achieve this. Both methods achieve good results for
landscapes and organic structures, but perform worse for
complex structures such as Minecraft villages.

A completely different approach to Minecraft PCGML is
taken by Chen et al. [22 ]. Instead of using a model to
generate whole samples at once, they instead train a model
to predict the next block to be placed based on a sequence
of previous blocks. They collected a substantial dataset of
structures with ordered block placements by recording the
actions of human players using a modified Minecraft server.
Their results still have some flaws, but they are generally
quite impressive. However, the need for ordered block
placement data is a significant limiting factor: this data is
unavailable in most Minecraft datasets. Our dataset lacks
order data as well, so this approach is not applicable in
our case.

An important difference between our approach and all of
the aforementioned methods, is that we attempt to condi-
tion the generation on the initial Minecraft terrain. The
aforementioned methods only train a model to generate
structures in isolation, without taking initial terrain into
account. AlthoughWorld-GAN [20 ] is able to generate sam-
ples based on an input sample, it is still not quite terrain-
adaptive: it can generate variations of its input sample or
refine a structure manually added to the input sample, but
it cannot learn to convert from one sample distribution to
another. We aim to leverage the terrain-adaptiveness of
GDMC submissions to train a terrain-adaptive PCGML
model.

Another limitation that all existing Minecraft PCGML
approaches share, is that they only support a subset of all
possible Minecraft blocks. This is obvious for the binary
approaches, but even the methods that support all block
types still do not quite support all possible “configurations”

a Minecraft block can have. Our dataset creation sys-
tem extracts additional block information that brings the
number of representable block configurations much closer
to the full amount. We describe this in more detail in
Section 3.2 .

2.3 GAN Image-to-image translation

To achieve terrain-adaptive generation, we need a model
that can learn to translate a 3D Minecraft sample to
another 3D Minecraft sample. While there is little prior
work on “volume-to-volume” translation, a substantial
amount of work exists for the 2D equivalent — image-
to-image translation. This work is generally focused on
regular three-channel color images, but is often applicable
for our many-channel problem as well.

Many image-to-image approaches are based on the Genera-
tive Adversarial Network (GAN) architecture [27 ]. We will
give a brief overview of these here. There is also research
on other techniques for the problem, such as diffusion mod-
els and direct regression, but we do not explore these in
this work.

An important baseline for image-to-image translation is
pix2pix [28 ], a general GAN architecture that can be ap-
plied to any image-to-image task. It uses a generator with
a “U-net” structure, which shortcuts low-level information
from the early layers of the network to the later ones [29 ].

Several GAN approaches followed pix2pix, each achiev-
ing improved performance at the image-to-image task.
These include pix2pixHD [30 ] (which is actually quite
different from pix2pix architecturally), Sketchygan [31 ],
StyleGAN [32 ], SPADE [33 ] and CoCosNet v2 [34 ]. Except
for CoCosNet, these approaches are however all evaluated
on more specific image-to-image tasks, such as image gen-
eration from segmentation maps [30 , 33 ], style transfer [32 ]
or sketch-to-image translation [31 ]. Bissoto et al. have
also semi-recently written a survey that touches on GAN
image-to-image translation [35 ].

There are also GAN architectures that can learn the harder
task of unpaired image-to-image translation — learning to
translate from one image domain to the other based on
two completely separate sets of images. The first of these
was CycleGAN [23 ], which is still an important baseline. A
more recent architecture is UVCGANv2, whose authors list
a more comprehensive overview of GAN approaches [36 ].
We do not require an unpaired image-to-image system,
since utilizing GDMC generators allows us to create paired
examples.

As we touched upon in the previous section, SinGAN (the
architecture behind World-GAN [20 ]) addresses another
variation of the image-to-image translation problem: it
can learn to generate variations based on only a single
learning image [26 ]. It does so by training a pyramid of
GANs on multiple scales of resolution. We do not require
a single-example method like SinGAN either, since our
method allows us to create many examples in an automated
fashion.
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Most works on GAN image-to-image translation can in
theory be extended to 3D. This concept is explored by
Cirillo et al.: they implement a 3D equivalent of pix2pix
called vox2vox, and evaluate it on brain tumor segmen-
tation problems [37 ]. We also experiment with vox2vox,
though we implement a slightly modified version.

3 Dataset creation

In order to train machine learning models to replicate
GDMC generators, we first needed to construct a dataset
of generation examples.

3.1 Automated dataset generator

3.1.1 Overall design

Other works that explore generative modeling in Minecraft
have created datasets by manually extracting buildings
from public Minecraft maps using Minecraft map editors
like MCEdit. [20 , 21 , 18 , 19 ]. However, since we aimed to
create a huge amount of examples in an automated fashion,
such a manual method would not have been suitable.

Zhuoyuan Chen et al. used a modified Minecraft server that
automatically records all block placements. [22 ], including
the order of placement. This method was however not
suitable for our purposes either. It does not allow us to
capture the original terrain, and it requires the use of a
non-standard Minecraft server that might not support the
modifications that the GDMC generators need to run.

To overcome the limitations of the existing methods, we
developed our own automated dataset creation system.
Its overall design is shown in Figure 2 . The system is
capable of pregenerating natural Minecraft terrain, run-
ning an external settlement generator program at multiple
locations in the world, and saving the world’s blocks in a
convenient format. It combines many existing technologies
to automate the entire process, and it contains extensive
checkpointing and retrying logic to handle any errors that
may occur.

The final result is two datasets of 3D minecraft samples,
one for the original terrain and one for the terrain with
the settlement generator’s output on it. By matching up
samples from each of these datasets index-wise, we can
then obtain a dataset of before-after sample pairs.

3.1.2 Supported settlement generators

The system currently only supports settlement generator
programs that are based on the GDMC HTTP Interface,
and only the version that was used in the 2022 GDMC
competition (though it can easily be extended to other
input methods). The GDMC HTTP Interface is a sub-
mission method for the GDMC competition that “allows
you to interact with a live Minecraft world using stan-
dard web requests” [40 ]. The interface is implemented by

GDMC-HTTP [41 ], a modification (“mod”) for Minecraft.
We chose to focus on supporting generators based on the
GDMC HTTP Interface because it was by far the most
commonly used GDMC submission method in 2022, being
used by ten of the eleven submissions.3  

We initially planned to “mock” the HTTP interface (i.e.
listen to the same endpoints to intercept all block place-
ments), but we dropped this idea for various reasons. It
would have required us to re-implement multiple live Mine-
craft effects, such as the flowing of water and the ad-
justment of certain blocks to their neighbors. It would
also have strictly limited our system to GDMC HTTP
Interface-based generators. Instead, we decided to auto-
mate the process of running the generators in an actual
Minecraft server instance. This achieves the best accuracy,
and makes the system far easier to extend to other world
interaction methods than the GDMC HTTP Interface.

3.1.3 Minecraft server mangement

Our system manages a Minecraft server by running the
server software as a subprocess. It can shut down and
restart the server as needed (to recover from crashes, for
example). The server software provides a command-line
interface, which we manipulate by reading and writing to
the process’ input and output. The command-line interface
was however not designed for this usage, which led to
some difficulties. For example, messages can be posted
in any order, making it difficult to isolate the output of
an executed command. To get around this, we also made
use of Minecraft’s RCON protocol, which allows you to
remotely send commands to a running Minecraft server
and get their output back.

3.1.4 Terrain pregeneration

The first task of the dataset generator system is the pre-
generation of the natural terrain using Minecraft’s own
terrain generator. Here, we were somewhat in luck: this
task is also commonly performed by Minecraft server ad-
ministrators to reduce lag when players are exploring the
world, so many tools were readily available.

We considered using the modified Minecraft server pro-
grams Spigot4

 and Paper5
 , which support efficient asyn-

chronous terrain pregeneration, but these server programs
turned out to be incompatible with the GDMC-HTTP
mod.6  Instead, we chose to use the Chunk-Pregenerator
mod [42 ], which we control via RCON. This mod also
allowed us to reset (regenerate) parts of the world, which
was very useful for error handling purposes. We did run
into some memory issues with the mod, but these could
be fixed by allocating more server memory, recursively
splitting the areas to pregenerate into smaller batches and
periodically restarting the server.

3https://gendesignmc.engineering.nyu.edu/results 

4https://www.spigotmc.org/ 

5https://papermc.io/ 

6The GDMC-HTTP mod is a Forge mod, and Forge is in principle
not compatible with Spigot or Paper.
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Pregenerate Run generator

Extract Extract

Figure 2: A high-level overview of our automated dataset creation system. It pregenerates the natural Minecraft terrain,
extracts it, then runs a settlement generator at multiple locations and extracts those as well. The final result is a
dataset of before- and a dataset of after-samples, which can later be combined into a paired dataset. All Minecraft
renders are made with Mineways [38 ] and Blender [39 ].

3.1.5 Settlement generation

The second task is to run a settlement generator program
in the managed server. As we stated before, the system
currently only supports GDMC HTTP Interface-based gen-
erators. To run these generators, we installed the GDMC-
HTTP mod in the managed server. The GDMC-HTTP
mod provides a command to control the area where the
settlement generator should build (the build area), which
we again call using RCON. This way, we can sequentially
execute the generator in multiple areas of the world. Just
like the server, we run the settlement generator programs
as isolated processes.

3.1.6 Data extraction

The last task is to extract samples from the world and save
them to disk in a convenient format. This needs to happen
both after terrain pregeneration and after settlement gen-
erator execution. Prior works that store Minecraft world
samples have used Minecraft’s regular world format [20 , 21 ]
or made use of the unofficial schematic format that most
Minecraft world editors use [18 , 19 ]. We instead chose to
design a custom format that is much easier to manipulate
programmatically for preprocessing and machine learning
purposes. We describe it further in Section 3.2 . To extract
the blocks from Minecraft’s world format, we made use of
Amulet Core [43 ], a Python library that provides the core
functionalities of the Amulet world editor [44 ].

3.1.7 Other design aspects

Both terrain pregeneration and settlement generator ex-
ecution can be disabled, and it is possible to specify an
initial world file. These features make it possible to first
create a dataset of natural terrain samples, and then re-use
the pregenerated world to run multiple different settlement
generators.

When executing a settlement generator, we run at grid-
aligned locations to use as much of the natural terrain as
possible. The result of this can be seen in Figure 3 .

Because of the way that Minecraft saves worlds, we only
used build areas that are a multiple of 16 × 16 blocks in
size. Minecraft’s world format separates worlds into 16×16
units (spanning the entire world height), which are called
chunks. The game generates terrain one whole chunk at
a time, which means that 16 × 16 is the minimum size
at which we can generate or reset terrain using terrain
manipulation tools like Chunk pregenerator. Reading or
writing blocks is also significantly more performant when
working with full chunks at a time.

3.1.8 Error management

The dataset creation system includes many checks and fail-
safes to ensure it can keep running for long periods of time.
The datasets we used for experimentation required time
in the order of weeks to be generated (see Section 3.3.3 ),
which made these error handling measures essential.

The entire generation is performed in a checkpointed fash-
ion: the system regularly saves intermediate results, and
can recover from a checkpoint in the case of a complete
crash. Furthermore, Minecraft server commands are al-
ways sent with a timeout. If the server times out or if it
crashes, it is automatically shut down and restarted. Set-
tlement generators are also executed with timeouts, and
they too are restarted on timeout or crash. When a settle-
ment generator is re-executed at the same grid position,
the terrain of that grid position is first reset to ensure a
clean slate. There is also a limit on the number of gener-
ator retries to guarantee an upper bound on the dataset
creation time. In Figure 3 , the bottom right settlement
failed to generate in time and was thus skipped.
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Figure 3: Grid arrangement of multiple small settlements generated by the algorithm from Van der Staaij et al. [17 ], as
produced during the settlement generation step of our dataset creation system.

3.2 Dataset format

Our dataset format is quite simple. We store all encoun-
tered unique blocks in a JSON palette file, which allows
us to store all world samples in a single NumPy array file
of palette indices. The NumPy array is five-dimensional,
with the first two axes indicating the 2D sample position
and the last three axes indicating the 3D block position
within the sample. This format is conceptually very similar
to Minecraft’s own world format, but it is much easier to
parse and manipulate.

We need to go on a small detour to explain what “blocks”
are, exactly. In Minecraft, every grid position is occupied
by a block (“empty” positions contain air blocks). All
blocks have an ID, like stone or oak_planks7

 , but some
blocks have additional information attached to them. In
general, blocks consist of three components: a block ID,
optional block states8

 and optional block entity data. Block
states are simple key-value properties that usually denote
basic variations in the state of a block. For example, a
stairs block can be facing in one of six possible directions.
Block entity data is used by only a few block types to store
particularly complex data, such as the items in a chest or
the text on a sign. Figure 4 shows a screenshot of a stairs
block and its block ID and block states.

Because of the complexity of Minecraft blocks, many other
works that explore generative modeling in Minecraft make
some simplifications. Most commonly, only the block ID
is used [20 , 21 , 22 ]. Some works simplify even further by
only considering a subset of all block IDs [19 ], or even only
differentiating between air and non-air blocks [18 , 19 ].
To our knowledge, there is no work that attempts to model
block states or block entity data.

7Technically, a namespaced ID (minecraft:stone), but this is
only relevant when using mods that add blocks

8Block states are sometimes called block properties, and the tuple
(block ID, block states) is also sometimes referred to as a BlockState.
The terminology is confusing.

Figure 4: A screenshot of a minecraft block and some of
its technical data. We have highlighted the block ID in
red and the block states in yellow.

We have chosen to leave out block entity data, but include
block states in our dataset format. Most block states are
fairly unimportant, but some can be very noticeable. For
example, the models of [20 , 21 , 22 ] always place stairs
blocks in the same direction. From this point on, when
we speak of blocks, we mean the tuple (block ID, block
states).

3.3 The final datasets

3.3.1 Generators

We used our dataset creation system to create a dataset
of samples for original Minecraft terrain and a number
of different “settlement” generators, including two trivial
generators that we made to serve as simple tests for our
machine learning systems. The full list of generators for
which we made datasets is as follows:
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1. Original terrain (build areas 64 × 64 and 96 × 96).
The built-in Minecraft terrain generator. An exam-
ple is shown in Figure 5a . All other generators are
executed on top of this pregenerated Minecraft ter-
rain. We also trained our machine learning systems
using sample pairs where both the before- and after-
sample were the original terrain, in order to evaluate
whether they can learn to simply replicate the input.

2. Ring (build area 96 × 96). A test generator that
adds a ring (actually, a rectangle) of red_concrete
blocks around the generation area at a fixed height,
independent of the original terrain. An example
is shown in Figure 5b . We made this generator
to evaluate whether our machine learning systems
can learn to add a fixed global structure while still
maintaining the original terrain.

3. Adaptive ring (build area 96×96). A test generator
that adds a terrain-adaptive ring of red_concrete
blocks on the ground. An example is shown in Fig-
ure 5c . We made this generator to evaluate whether
our machine learning systems can learn to replicate
a trivial terrain-adaptive generator.

4. Mike’s Angels (build area 96 × 96). The generator
created by Van der Staaij et al. [17 ] (team name
“Mike’s Angels”). It uses an iterative agent-based
algorithm to generate large medieval settlements.
Examples are shown in Figure 5d and Figure 3 . We
found 96 × 96 to be the minimum (multiple of 16)
size at which the generator produced representative
results.

5. Mike’s Angels wall (build area 64×64). An edited
version of the previous generator that only builds the
city wall. An example is shown in Figure 5e . Note
that we disabled tree removal as well. We made this
version because we did not manage to achieve good
replication results for the full generator (Section 6 ),
and this limited version served as a simpler but still
non-trivial alternative.

We used Minecraft 1.16.5 to generate the original terrain,
which is the version that was used in the GDMC 2022
competition. Minecraft allows you to submit a seed for
the random number generator when creating a world. We
used a handpicked seed that resulted in a world which
contained nearly all biomes (Minecraft terrain types like
“plains” and “forest”) in the area over which we collected
samples9

 .

3.3.2 Datasets

Using these generators, we created six (unpaired) raw
datasets. For the Ring and Adaptive ring generators, which
do not display much variance, we created datasets of 1024
samples. For the other generators, we collected 16 384
samples. The largest of our datasets span a surface area of

9We used seed 8700554514277685781, and we collected samples
in square areas from (x, z) = (208, 208) towards positive x and z.

12 288×12 288 blocks, and cover multiple billions of blocks
in total. Detailed properties of our datasets are shown in
Table 1 .

Most dataset creation jobs had none or very low amounts
of failed samples. The exception is Mikes Angels wall,
where approximately 36% of the samples failed. This is
likely due to the fact that the Mikes Angels generator was
intended for much larger build areas, causing it to fail
quite often when only given 64 × 64 build areas.

3.3.3 Performance

The dataset creation process is quite time-consuming. We
will briefly discuss the system’s performance. We ran all
dataset creation jobs on a (shared) machine with 64 Intel
Xeon E5-4667v3 cores (2.00GHz), 1 TB RAM and local
SSD storage.

Pregenerating the natural terrain and collecting the dataset
of 16 384 samples of size 96 × 96 took 60 hours in total.
Although we do not have exact profiling data (because this
would have slowed down the process further), it seems that
a large amount of time was spent stopping and restarting
the managed Minecraft server. We needed to make the
server regularly restart because we found that the Chunk
pregenerator mod could freeze up otherwise. Using a
different chunk pregeneration method might help to speed
up this step. Furthermore, the data extraction could
perhaps be sped up with parallelization.

Out of all generator datasets, the Mike’s Angels dataset
took the longest to complete, at approximately 18.2 days.
We tightened certain timeouts during the generation pro-
cess to speed it up. If we had used these settings from
the beginning, we project the process would have taken
about 13.4 days. Most of this time was spent executing the
Mike’s Angels generator itself, for which the performance
is out of our control.

4 Data preprocessing

We performed several pre-processing operations on the
raw datasets described in Section 3.3 before using them
to train models. We consider this preprocessing separate
from the dataset creation process itself, because it is more
specifically targeted at preparing the data for our particular
machine learning models, and because some of them are
destructive in nature. The preprocessing step is also where
we “stack” datasets together to create datasets of paired
examples.

4.1 Preprocessing tool

We have developed a tool to perform multiple kinds of
preprocessing, most of which can be chained together. We
will describe the various modes of this tool in the order
that we typically apply them.

9



(a) Original terrain

(b) Ring (c) Adaptive ring

(d) Mike’s Angels (e) Mike’s Angels wall

Figure 5: Example outputs of the generators that we used to construct datasets, and which we attempted to replicate
via machine learning. Note that we used a 64 × 64 build area for the Mike’s Angels wall generator, even though the
depicted area is 96 × 96.
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Table 1: Properties of the six raw datasets we created using our automated system. Only the successfully generated
samples are counted for Number of samples and Total block count.

Generator
Build area
size (blocks)

Sample height
(blocks)

Number of
samples

Total block
count

Number of
different blocks

Size on
disk (GiB)

Original terrain 64 × 64 64 16 384 4 294 967 296 1171 8.1
Original terrain 96 × 96 97 16 384 14 646 509 568 1322 28.0

Ring 96 × 96 97 1024 915 406 848 1323 1.8
Adaptive ring 96 × 96 97 1024 915 406 848 1323 1.8
Mike’s Angels 96 × 96 97 16 382 14 644 721 664 2170 28.0

Mike’s Angels wall 64 × 64 64 10 565 2 769 551 360 1264 8.1

1. Stack datasets. “Stacks” two datasets into one
dataset of paired examples. Given two datasets with
block arrays where the first two axes indicate the 2D
sample position and the last three axes indicate the
3D block position within the sample (as described in
Section 3.2 ), the result is a dataset with a block array
where the first axis indicates the flattened sample
index, the second axis indicates the pair side (0 or 1)
and the last three axes again indicate the 3D block
position within the sample. The block palettes of
the two input datasets are merged, and the palette
indices of the input datasets are updated accordingly.

Corresponding samples from each input dataset are
paired according to their sample position. That
means the input datasets should be generated start-
ing from the same origin point in Minecraft, which
is the case for our raw datasets. If one of the input
datasets contains more samples than the other, it
is possible to specify where to overlay the smaller
dataset on the larger one. The operation flattens the
sample axes into a single one at the end of the stack-
ing operation because the distinction is no longer
needed afterwards.

2. Slice array. “Slices” the block array axes according
to the given specification, reducing the dataset’s size.
We used this mainly to reduce the size of each sample
in the Y-axis (the upward direction in Minecraft),
as we generated most raw datasets with extra large
Y-ranges for safety. For example, slicing the sample
Y-axis to 16:-32 would remove the bottom 16 block
layers and the top 32 block layers of each sample.

3. Remove invalid samples. Removes samples from
the dataset that contain a block index outside the
range of its palette. We used this to fix some mal-
formed datasets early in our development process. It
is no longer required, but we still apply it for safety.

4. Prune unused blocks. This operation and the
next two have a similar purpose: to reduce the size
of a dataset’s palette. As explained in Section 3.2 , we
distinguish blocks by not only their ID, but also their
block states. This leads to a much larger number of
different blocks to deal with: our raw Mike’s Angels
dataset contains 2170 distinct blocks, even though
Minecraft 1.16.5 only has 681 block IDs in total. This

large amount of blocks makes training ML models
more difficult, so we attempt to reduce the palette
sizes in various ways.

This operation reduces the palette size in a mostly
non-destructive way: it removes all palette entries
that are not actually referenced in the array. Such
“dangling” entries can occur when one of the previous
three preprocessing operations removes all references
to an entry.

5. Remove automatic block states. This operation
removes palette entries more aggressively. It removes
all block states (Section 3.2  ) that we have classified
as automatic, and merges palette entries for blocks
that have become identical after these removals.

We consider a block state to be automatic if Minecraft
automatically re-assigns its value on block placement.
Typical examples are the block states that govern
the shape of stairs and fences: these states are deter-
mined by the block’s surroundings when it is placed.
This behavior is depicted in Figure 6 . Our machine
learning models do not need to learn how to handle
these kinds of block states, so we can safely remove
them.

We have identified a total of 20 automatic block
states. Note however that we do make a simplifica-
tion here: the operation removes block states solely
based on their name (e.g. shape for stairs), even
though the same block state name can occasionally
have different meanings for different block IDs. We
believe this to not be a huge concern.

6. Remove flow blocks. Removes all blocks that
represent flowing liquid by replacing them with air.
Minecraft has two liquids: water and lava. We will
not discuss the game’s liquid mechanics in detail, but
the basics of it are that there are source blocks from
which liquids originate, and flow blocks that disap-
pear when all their source blocks are removed. This
preprocessing operation removes all liquid blocks
except for the sources.

Liquids are not guaranteed to flow in the exact same
way when the flow blocks are recalculated, so this
operation is destructive. We consider the removal of
a few more palette entries to be worth this cost.
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Figure 6: Stairs and fences adjust their shape according to
the adjacent blocks. The differently-shaped versions are
considered distinct by our dataset creation system, but are
merged during preprocessing.

7. Remove equal pairs. Can only be applied on
a stacked dataset. Removes all pairs of identical
samples.

Our dataset creation system can skip samples when
they fail to generate too many times (Section 3.1 ).
However, it does not actually leave out these samples.
It still extracts the samples as normal, though they
will equal the original terrain. This preprocessing
step removes failed samples by removing pairs of
identical samples. Naturally, we do not apply this
operation when we intentionally create a dataset of
equal before- and after-samples.

8. Sort palette by frequency. Sorts the dataset’s
palette by block frequency, and reindexes its array
accordingly. We used this mainly for debugging and
visualization purposes. It does not functionally alter
the dataset.

9. Convert to binary. Converts a dataset to binary
form. This removes the block palette entirely, and
turns the index array into a binary map that only
indicates whether a position contains air or non-air.
We used this to train models on binary versions of
the settlement generators.

Some of the (intermediate) NumPy arrays handled by the
preprocessing tool are very large, and can even exceed
available memory — our raw dataset arrays already have
sizes of up to 28 GiB (Section 3.3.2 ). To manipulate arrays
that do not fit in memory, we made use of NumPy’s mem-
ory mapping feature, which uses the array file on disk as a
“backing cache” at the cost of performance. To minimize
the performance hit, the preprocessing tool dynamically
decides whether to memory map or to directly read the
arrays depending on how much memory is still available.

4.2 Preprocessed datasets

We used our preprocessing tool to create ten preprocessed
datasets of paired examples. We only used natural Mine-
craft terrain as the first pair half. For each of the five

generators described in Section 3.3.1 (including the origi-
nal terrain), we stacked their raw datasets with an original
terrain dataset, and created both a categorical and a binary
preprocessed paired dataset. For the paired dataset where
both pair halves are original terrain, we used the 96 × 96
version. We will refer to each of these pair datasets using
the name of the generator that was used for the second
pair half, except for the double original terrain dataset,
which we will refer to as Terrain copy. The pairings we
used, and the names we use for them, are also shown in
Table 2 .

Table 3 shows the properties of our ten preprocessed pair
datasets. Note how the amount of different blocks has been
significantly reduced during preprocessing. For example,
the raw Mike’s Angels dataset contained 2170 different
blocks, while the preprocessed Original terrain – Mike’s
Angels dataset contains only 1297.

5 Model development

Like most of the existing work in image-to-image transla-
tion and Minecraft PCGML, we make use of generative
adversarial networks (GANs) [27 ]. We implemented two
volume-to-volume GAN architectures, and experimented
with several hyperparameter configurations.

5.1 Learning task

For both architectures, we trained both binary versions,
which only learn to differentiate between air and non-air,
and categorical versions, which differentiate between all
blocks. In all cases, we trained on the task of converting
the first sample from a pair from one of our datasets to
the second sample. This means that our models needed to
learn to both copy the terrain from the first sample, and
to add the correct structure or settlement on top of it.

5.2 Block embeddings

5.2.1 block2vec

To train models on the categorical datasets, we need a
way to represent categorical Minecraft blocks as numbers.
As we have mentioned in Section 2.2 , it is not feasible to
simply use one-hot vectors. There are too many different
blocks, making one-hot vectors cost too much memory.
This problem is even more prominent for our work than
for existing Minecraft PCGML works due to our increased
number of distinct blocks: storing one sample of the Mike’s
Angels dataset with 32-bit floating point one-hot vectors
would require 96 · 96 · 64 · 1297 · 32b ≈ 22.8GiB.

We address this problem using block2vec, a technique pro-
posed by the authors of World-GAN [20 ] that is inspired
by the word2vec method from natural language process-
ing [24 , 25 ]. The NLP word2vec method involves training
a model to predict a word from its context (continuous bag
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Table 2: Overview of the raw dataset pairings we used.
Raw dataset 1 Raw dataset 2 Pair name

Original terrain (96 × 96) Original terrain (96 × 96) Terrain copy
Original terrain (96 × 96) Ring (96 × 96) Ring
Original terrain (96 × 96) Adaptive Ring (96 × 96) Adaptive ring
Original terrain (96 × 96) Mike’s Angels (96 × 96) Mike’s Angels
Original terrain (64 × 64) Mike’s Angels Wall (64 × 64) Mike’s Angels wall

Table 3: Properties of the ten preprocessed pair datasets we used for machine learning.

Name
Build area
size (blocks)

Sample height
(blocks)

Number of
samples

Total block
count

Number of
different blocks

Size on
disk (GiB)

Terrain copy 96 × 96 64 16 384 9 663 676 416 825 37.0
Binary 96 × 96 64 16 384 9 663 676 416 – 19.0
Ring 96 × 96 64 1024 603 979 776 580 2.3
Binary 96 × 96 64 1024 603 979 776 – 1.2

Adaptive ring 96 × 96 64 1024 603 979 776 580 2.3
Binary 96 × 96 64 1024 603 979 776 – 1.2

Mike’s Angels 96 × 96 64 16 382 9 662 496 768 1297 36.0
Binary 96 × 96 64 16 382 9 662 496 768 – 18.0

Mike’s Angels wall 64 × 64 64 10 565 2 769 551 360 843 11.0
Binary 64 × 64 64 10 565 2 769 551 360 – 5.2

of words model) or the context from a word (continuous
skip-gram model) and extracting fixed-length embedding
vectors from the model’s embedding layer. In block2vec’s
case, words are replaced with blocks, and a block’s context
is represented by its surrounding blocks.

The resulting dense embedding vectors can be used in
place of sparse one-hot vectors. This is possible because
the distances between blocks in each embedding space
dimension are meaningful. Blocks that often appear close
together in the data will be embedded to vectors that are
close together as well.

5.2.2 block2vec configuration

Similar to World-GAN, we use a two-layer skip-gram model.
We used embedding vectors of size 32, a size that the
authors of World-GAN found to give good results [20 ].
This means that, in the case of the Mikes Angels dataset,
we reduce the size of each block vector from 1297 (one-hot
vectors) to 32 — a 97.5% decrease.

We also follow World-GAN by using a context radius of
1, which means that the context of each block consists
of the 26 blocks that touch it directly or diagonally. We
do not sample blocks on any of the edges of a dataset
example, since we cannot form a full context around them.
Edge blocks can still appear as context for other blocks,
however.

World-GAN trains a skip-gram model to predict only one
context block, and averages the resulting losses for all the
ground truth context blocks. We instead predict each of

the 26 context blocks separately, and compute separate
losses. We expect that this helps the model to, for example,
differentiate between blocks that often have some other
block below them and blocks that often have the same
other block above them.

The NLP word2vec has a feature called subsampling, which
increases the probability of sampling a rare word when
training by discarding words based on their frequency [25 ].
The World-GAN authors use a variant of this feature
for block2vec as well, to reduce the chance of sampling
common blocks like air [20 ]. Unlike word2vec, block2vec
does not remove skipped blocks from the dataset entirely
for the rest of the epoch, nor does it use subsampling for a
block’s context. We expect this is because shifting tokens
to fill the gap of a removed one is much more involved in
3D than it is in 2D.

We also employ subsampling. Like World-GAN [20 ], we
follow the formula from word2vec [25 ]10

 :

P (bi) = 1 −
√

f(bi)
t

+ 1 · t

f(bi)

Here, bi denotes a block (e.g. stone), f(bi) denotes the
block’s relative frequency in the data, and P (bi) denotes
the “probability”11

 of discarding any bi. The hyperparam-
eter t controls the aggressiveness of the subsampling. We
used t = 0.001, which results in relatively strong subsam-
pling.

10This formula actually comes from the word2vec implementation;
the formula described in the paper is slightly different.

11The “probability” can become negative for very rare tokens, in
which case the token is never discarded.
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5.2.3 Our training process

We train block2vec on only the second pair half of each of
our pair datasets. Using at least the second pair half is
necessary, since it often contains many blocks that do not
appear in the first half (such as the various materials of the
city wall for Mikes Angels wall). While we could use the
first pair half as well, we expect that the block distribution
in the first pair half carries less useful information than
that of the second pair half.

Even with this limitation, we have far more data available
to train block2vec than World-GAN. World-GAN learns
from only a single example, and therefore trains block2vec
using a single example as well [20 ]. We instead train on
datasets of up to 16 384 samples, which are each similar
in size to the largest samples used for World-GAN. Our
largest pair dataset, Terrain copy, contains a staggering
(96 − 2)2 · (64 − 2) · 16384 = 8 975 679 488 possible block-
context examples.

Because our amount of examples is so large, we do not train
on all of them — let alone run multiple epochs. For each
dataset, we instead train on the fixed amount of 560 979 968
examples (randomly chosen). This is equivalent to 1024 full
96 × 64 × 96 samples. Subsampling can however still cause
more block-context examples to be “visited”. Since we do
not train on all blocks in the data directly, subsampling
becomes even more important to decrease the chance that
we miss a rare block.

Figure 7  shows our learned embeddings for the 25 most
common blocks in the Mikes Angels wall dataset, reduced
to two dimensions with a dimensionality reduction algo-
rithm. We can clearly see some patterns, indicating that
the algorithm has worked. All leaf types are mapped
closely together on the top left; dirt, grass blocks and grass
are grouped in the middle; blocks generally become more
“underground” as they are placed lower in the graph; and
the blocks that constitute the city wall are all near the top
right.

5.2.4 Converting back to blocks

Although we can use block embeddings throughout the
entire machine learning process, we do need to convert back
to categorical blocks when we want to build an output
in Minecraft. A common way to map vectors from an
embedding space back to categorical values (in this case,
blocks) is to map them to the value whose embedding is
closest according to some distance metric. This is also
what World-GAN does (using Euclidean distance as the
metric) [20 ]. We use the same technique, but we extended
it with an additional feature.

During early experimentation, we found that considering
only distance would result in excessively many rare blocks.
To address this, we made an addition that we call frequency
weighting (or block frequency weighting in the context of
Minecraft): we give a greater “weight” to blocks that were
more common in the input dataset.
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Figure 7: Embeddings learned by block2vec [20 ] for the
25 most common blocks in the Mikes Angels wall dataset.
Texts in square brackets indicate block state values. The
embedding vectors were reduced from 32 dimensions to
two dimensions using Uniform Manifold Approximation
and Projection (UMAP) [45 ]. Note that UMAP is not
deterministic: the reduction can vary between executions.

The full formula we use to determine which block b∗ to
map an embedding vector e to is as follows:

b∗ = argmin
b∈B

√√√√ 32∑
i=1

(e(b)i − ei)2 · f(b)−w

Here, B denotes the set of all the blocks in the dataset,
e(b) denotes the block2vec embedding of block b, and f(b)
denotes the relative frequency of b. The hyperparameter w
(“frequency weighting exponent”) determines how much to
bias towards more common blocks: w = 0 means no bias
and w > 0 causes a preference for common blocks. The
hyperparameter w needs to be an exponent (rather than
a factor) because the frequency weighting already works
multiplicatively. The frequency weighting feature is not
limited to Minecraft: it could be applied to other domains
as well.

The mapping defined by this formula is shown visually in
Figure 8  , in particular its frequency weighting component.
We found that values for w in the range [0, 0.075] worked
best for our models: any higher, and nearly all vectors
got mapped to air (the most common block). Negative
values for w promote more rare blocks, which we found to
not be helpful for our models. We give more details about
the effect of different values of w on our model output in
Section 6 .
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Figure 8: Visualization of how the embedding space gets mapped back to categorical values, for increasing frequency
weighting exponents w. The three points in each diagram denote hypothetical embeddings of three categorical values,
and are annotated with their (hypothetical) relative frequency. The colored regions indicate the vectors that are
mapped to their corresponding categorical values. As w increases, more common values “attract” more vectors.
To better show the effect of specific w values on datasets similar to ours, we used frequencies from our Mike’s Angels
wall dataset: an extremely common block (air, f ≈ 0.8, white region), a common block (stone, f ≈ 0.09, light blue
region) and a rare block (melon, f ≈ 2.7 × 10−7, dark blue region).
The graphs are equivalent to multiplicatively weighted Voronoi diagrams with weights fw. We approximated them
discretely at 1000 × 1000 resolution.

5.3 vox2vox

The first architecture we implemented and experimented
with was vox2vox [37 ], a slightly modified 3D version of
pix2pix [28 ].

Both architectures use a U-net architecture [29 ] for the
generator. This architecture receives the condition image
as an input. In vox2vox’s case, the U-net consists of
four convolutional downsampling blocks that each cut the
spatial size of the input in half while doubling the number
of samples, then four residual convolutional blocks that
keep the spatial size constant, and finally four convolutional
upsampling blocks that bring the spatial size back to that
of the input. There are shortcut connections between
downsampling blocks and upsampling blocks with the same
size (for example, the first downsampling layer shortcuts
to the last upsampling layer), which give the network a
U-shape. All convolutional blocks consist of a 4 × 4 ×
4 convolution layer followed by instance normalization,
dropout (20%) and a normal or leaky ReLU operation.

The main advantage of the U-net architecture is that it
allows later blocks to access low-level information from
the input, a property that we expected to be useful for
the replication of the original terrain. Unlike many other
GAN architectures, vox2vox (and pix2pix) do not feed
a noise image to the generator. Rather, they introduce
randomness in the generated samples by applying dropout
at evaluation time. While this could limit the degree of
variation in output for a single input image, it is not a huge
concern as this type of variation is not very important for
our learning task.

The architecture’s discriminator receives a concatenation
of a (real or generated) target sample and the condition
sample as input, and applies four downsampling convo-
lutional blocks followed by one convolutional block that
reduces the feature count to 1. Because the discriminator
is fully convolutional, its output may contain more than
one element. By default, the receptive field of an output
pixel is 94×94×94, though we experimented with different
values. During training, GAN losses are averaged over all
output pixels. The pix2pix authors call this technique
patchGAN, since the model only learns structures at the
scale of (94 × 94 × 94) patches.

An advantage of using a fully convolutional generator and
discriminator is that the model can be trained with and
applied to samples of varying size. We do however not
make use of this feature in our experiments.

We used vox2vox mostly as-is, except for the following
modifications:

1. We use a slope coefficient of 0.2 for all Leaky ReLU
layers, following the original pix2pix paper [28 ].

2. We train with LSGAN loss [46 ], following the original
pix2pix paper [28 ].

3. We disable instance normalization layers if their in-
put has only one spatial element (they would crash
otherwise). Vox2vox’s U-net reduces the spatial size
of the input samples by factors up to 16. Our modifi-
cation therefore allows us to train with samples with
a minimum size of 16 × 16 × 16, which conveniently
coincides with Minecraft’s chunk size. This modifi-
cation is mostly relevant for the vox2vox adaptation
we describe in Section 5.4 .
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4. We make the number of downscaling convolution lay-
ers in the discriminator model configurable, allowing
us to experiment with different receptive fields.

5.4 Multiscale vox2vox

While we modified vox2vox itself only slightly, we also
implemented a novel coarse-to-fine multiscale variant of
vox2vox, which we straightforwardly callmultiscale vox2vox.

Coarse-to-fine architectures are used in many prominent
GAN architectures [47 , 48 , 49 , 30 , 32 , 26 , 33 , 34 ]. The idea
is to first train to generate images at a low resolution, and
then train to upscale those images to higher resolutions.
This can be done in various ways, such as training separate
models for each resolution [47 , 48 , 26 ], or gradually adding
layers to a model during training and eventually training
the entire model as a whole [49 , 30 ].

We use a multiscale architecture based on SinGAN [26 ],
which falls in the first category. It consists of a configurable
amount of scales N with scaling factors s0, . . . , sN−1, and
uses a vox2vox generator-discriminator pair Gn, Dn at each
scale. The vox2vox model pairs at each scale are trained
independently, starting from the bottom at scale 0 and
moving upwards.

At each scale n, we downscale condition images and ground
truth output images to sn. The training process is different
for the first scale (scale 0) and all subsequent scales. At
scale 0, we train vox2vox as normal with the downscaled
condition and target images. At scale 1, we first pass the
condition image through G0 and then upscale the result to
s1. The G1 model then receives a concatenation of both
the condition image downscaled to s1, and the previous
generator’s output upscaled to s1. The output of G1 is
added to the upscaled previous generator’s output element-
wise, and is then fed to the discriminator. That is, G1
learns to generate a refinement for G0’s upscaled output, a
technique called residual learning. This process continues
all the way to Gn−1, with each n > 1 generator refining
the output of the previous one.

In essence, our multiscale vox2vox architecture uses the
SinGAN multiscale architecture [26 ], but extends it with
support for condition inputs and replaces the inner genera-
tor and discriminator models with those from vox2vox [37 ].
By implementing a multiscale variant of vox2vox rather
than adapting a different multiscale architecture, we can
better evaluate the impact of the multiscale architecture
in isolation.

We train multiscale vox2vox only on categorical tasks, be-
cause binary samples cannot cleanly be down- or upscaled.
Down- and upscaling categorical samples is only possible
thanks to the use of block2vec embeddings: with one-hot
vectors, we would have ran into a similar problem. This
ability to down- and upscale was in fact one of the main
motivations of the World-GAN authors for introducing the
block2vec tool [20 ].

6 Experiments and results

6.1 Setup

We trained our vox2vox variant and multiscale vox2vox
system on all ten of our terrain-to-settlement datasets
(Table 2 and Table 3 ), except for the combination of mul-
tiscale vox2vox with a binary dataset (for reasons outline
in Section 5.4 ).

Due to the large amount of combinations this already en-
tailed, and due to long training times (in the order of
days for some configurations), we had to keep most hy-
perparameters constant. We did however experiment with
several amounts of downscaling convolution layers in the
discriminator models, since this has a direct relation with
the model’s receptive field, and we experimented with the
block frequency weighting exponents w (Section 5.2.4 ).
We performed a simple grid search for these two hyperpa-
rameters. For the constant hyperparameters, we selected
the values based on the best-performing ones in related
work [37 , 26 , 20 ] and some initial experiments.

Our hyperparameters were as follows12
 :

• Epoch count (constant): 100. For multiscale
vox2vox, we trained each scale for 100 epochs in-
dividually.

• Batch size (constant): 32 for binary models, 4 for
categorical models.

• Optimizer (constant): Adam with learning rate
0.0002 and betas (0.5, 0.999).

• Multiscale vox2vox scales (constant): (0.5, 1.0)
for 96×96 datasets (all but Mike’s Angels wall), and
(0.5, 0.75, 1.0). For the 96 × 96 datasets, scale 0.75 is
not possible because 0.75 · 96 is not divisible by 16.

• Discriminator downscaling convolution count
(DDCC) (three values): 4, 3 and 2 (receptive
fields 94 × 94 × 94, 463 and 223 respectively).

For multiscale vox2vox, we used only DDCC 2. We
expected this value to be optimal because the mul-
tiscale architecture already increases the effective
receptive field size in the lower scales, and the refine-
ment performed by higher scales should not need a
large receptive field.

• Block frequency weighting exponents (three
values): 0, 0.025 and 0.05. Only applies to the
categorical models.

In total, we investigated 75 different (dataset, model,
hyperparameters)-configurations: 15 for binary datasets (5
datasets, vox2vox with 3 hyperparameter configurations),
and 60 for categorical datasets (5 datasets, vox2vox with
9 hyperparameter configurations and multiscale vox2vox
with 3 hyperparameter configurations).

12For multiscale vox2vox, we used identical hyperparameters for
each scale.
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6.2 Evaluation

Unfortunately, our results are quite weak for many of
the evaluated categorical settings. For this reason, we
believe that most quantitative quality metrics such as
block distribution comparisons [20 ] are not meaningful.
Instead, we evaluate our trained models qualitatively by
manually inspecting their output.

To visualize our model outputs, we created a tool to build
them in Minecraft itself. It can build model outputs both
in live Minecraft worlds using GDMC-HTTP [40 , 41 ] (Sec-
tion 3.1  ) and GDPC [40 , 50 ] (a Python library for the
GDMC HTTP interface), and in closed worlds on disk
with Amulet Core [43 ].

We use three types of input terrain in this evaluation,
which are shown in Figure 9 : A plains biome, a forest
biome, and a taiga biome. The plains biome serves as a
simple, neutral type of terrain. The forest biome is a little
more difficult, since trees are often removed or partially
ignored by the generators we trained on. The taiga biome
makes this challenge even more prominent: it is covered
by a layer of snow blocks, which are ignored by all of our
generators that build on the ground.

For each of our 75 configurations, we created one sam-
ple on all three terrains, resulting in a total of 225 sam-
ples. We rendered these samples with Mineways [38 ] and
Blender [39 ], and manually evaluated the results — mov-
ing between terrains first, hyperparameter configurations
second, model architectures third, and datasets last.

We first describe the performance of our binary models
(Section 6.3 ), and then move the categorical ones (Sec-
tion 6.4 ). In each case, we discuss our models in the
order of our pair datasets. Finally, we discuss some overall
observations in Section 6.5 

6.3 Binary models

For binary models, our tool only builds the differences
between model output and the original terrain to improve
clarity. Note however that the binary models do also
include the original terrain in their output. Added blocks
are represented by red_concrete, and removed blocks are
represented with glass.

6.3.1 Terrain copy

In the binary mode, our vox2vox models learn the Terrain
copy task near-perfectly on all evaluated terrains. We
obtain the best results with DDCC 4 — the amount with
the highest receptive field. Lower amounts result in the
introduction of a handful of noise blocks.

6.3.2 Ring

The Ring task is also learned quite well. In this case, we
obtain the best results with DDCC 3 (Figure 10 ). With
DDCC 4, significantly more noise is introduced. With
DDCC 2, we observe that some sides of the ring are built
at incorrect heights. We expect this happens because the
terrain surface and correct ring position are not contained
in a single receptive field region with DDCC 2

6.3.3 Adaptive ring

The Adaptive ring task turned out to be quite a bit harder
than the non-adaptive one. While some of our models
produce recognizable results, there is always a significant
amount of noise. We obtain the best results with DDCC 3
— an example is shown in Figure 11 .

We observe that the Adaptive ring models usually perform
better on top of water, as can be seen in the example. We
suspect this is because Minecraft always generates water
at a fixed height (sea level). This means that if a column
of blocks has water near the top, the height at which the
ring should be placed is always the same.

Our models are unable to learn to replace the top layer of
snow blocks in the taiga terrain. This is easily explained:
in the binary mode, it is nearly impossible to distinguish
these snow blocks from solid ground. Both are equally
non-air. There are some hints to the presence of snow,
such as terrain with snow being higher overall, trees with
snow being thicker in the height axis and snow not being
there below trees, but these are all extremely subtle.

For the same reason, the ring blocks are often placed on
top of grass and leaves in Figure 11 . Compared to snow,
these blocks are however somewhat recognizable: both
stick out from the flatter ground, and leaves are usually
separated from the ground by at least one air block.

Note that the model actually performs better in relation
to grass than it may seem from Figure 11 : we only show
added blocks as red_concrete, so pieces of grass in the
ring still indicate a correct output of non-air at those
positions.

6.3.4 Mike’s Angels

TheMike’s Angels task was, as expected, by far the hardest.
Our models cannot reproduce recognizable buildings. They
do however produce “clumps” of blocks on the ground,
which is somewhat in line with how buildings should be
placed. This makes the results almost seem like ancient,
ruined variants of Mike’s Angels cities. The scales of
these clumps seem to correspond with the DDCC: a lower
DDCC leads to smaller clumps. An example with DDCC
3 is shown in Figure 12 .

Again, the models do not learn to replace the top layer
of snow blocks. The tree removal feature of the Mike’s
Angels generator is however decently well replicated: trees
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(a) Plains (b) Forest (c) Taiga

Figure 9: Terrain samples on which we evaluate our trained terrain-adaptive models.

Figure 10: Output of our best-performing binary vox2vox
Ring model on the plains terrain.

Figure 11: Output of our best-performing binary vox2vox
Adaptive ring model on the forest terrain.

are usually at least partially removed. This indicates that
the model does learn to somewhat recognize trees, even in
binary form.

Figure 12: Output of one of our binary vox2vox Mike’s
Angels models on the taiga terrain.

Figure 13: Output of one of our best-performing binary
vox2vox Mike’s Angels wall models on the plains ter-
rain.

6.3.5 Mike’s Angels wall

We obtain surprisingly good results for the Mike’s Angels
wall task. While the fine details of the wall are still not
quite there, our models replicate its overall shape fairly
well. We get the best results with DDCC 3 and 2. With
DDCC 3, the overall shape is replicated a little better,
but with DDCC 2, some areas have slightly more accurate
details. An example with DDCC 3 is shown in Figure 13  .
Here too, the results seem akin to a ruined version of a
Mike’s Angels wall. With DDCC 2, we can even recognize
the battlements in some places.
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Figure 14: Example of the nonsensical noise output that
many of our categorical models produce.

6.4 Categorical models

6.4.1 Noise output

Unfortunately, our categorical models completely failed to
converge on the datasets Terrain copy, Mike’s Angels and
Mike’s Angels wall, leading to outputs that appear to be
entirely noise. An example of this is shown in Figure 14 .
Increasing the block frequency weighting exponent causes
this noise to consist of more standard blocks, but it remains
noise. We did get non-noise results for the Ring and
Adaptive ring datasets, which we will discuss.

We do however observe that there is usually a difference in
the makeup of the noise between the former air and the
former non-air areas, and increasing the block frequency
weighting exponent sometimes leads to the original terrain
becoming recognizable. This can be seen in Figure 15 .

It is suspicious that our models performed much worse on
the Terrain copy task than on the Ring and Adaptive ring
tasks — the latter two are strictly more difficult. Since
all models, both vox2vox with various DDCC values and
multiscale vox2vox, performed worse for Terrain copy, the
problem does not seem to be that the Terrain copy models
happened to perform worse by chance.

This leads us to believe that there might be something
wrong with our categorical Terrain copy dataset, and
perhaps with the Mike’s Angels and Mikes Angels wall
datasets as well. However, our binary datasets are directly
derived from the categorical ones, and our binary models
work fine on these datasets. The issue also does not seem
to lie with the block2vec embeddings: these all seem plau-
sible. We are therefore unsure of what exactly is causing
the problem.

Figure 15: Example of the output of a noise-emitting cate-
gorical model with a high block frequency weighting expo-
nent (0.05) on the forest terrain.

6.4.2 Ring

With the correct block frequency weighting exponent w,
our DDCC 3 vox2vox model is able to learn the Ring
task very well. This is shown in Figure 16 . With w =
0.05, results are quite convincing. The terrain is slightly
distorted, the trees are somewhat mangled and lack stems,
and the grass is missing, but the ring is nearly there.

Figure 16 also shows the effect of block frequency weighting
very well. When the feature is disabled (w = 0), we observe
that the result contains a lot of erroneous rare blocks. The
ring is made of incorrect, rarer blocks as well.

The yellow blocks that litter the trees in Figure 16a are
beehives — blocks that Minecraft only generates in trees,
and whose embedding vectors are therefore close to those
of leaves. The blocks that replace the ring are all blocks
that are very close to air in the embedding space, likely
because the ring is placed in a very air-heavy area. As
the block frequency weighting exponent is increased, these
errors gradually decrease. Higher exponents lead to too
much air, however.

Our DDCC 2 multiscale vox2vox model did not outperform
regular vox2vox on this task. It does produce beginnings
of the ring and replicates the terrain somewhat decently,
but introduces a lot of noise as well. Furthermore, it often
outputs multiple partial rings at different heights.

A reason why the multiscale vox2vox model performs
poorly might be that the DDCC 2 value is too low. An-
other reason could be that the ring is too thin to learn
well: when a sample is downscaled to a factor of 0.5, voxels
that cover a ring piece cover three times more air blocks
than red_concrete blocks on average.
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(a) w = 0 (b) w = 0.025 (c) w = 0.05

Figure 16: Output of our best-performing categorical vox2vox Ring model on the forest terrain, with increasing block
frequency weighting exponents w.

Figure 17: Example output of our best-performing cate-
gorical vox2vox Adaptive ring model on the taiga terrain.

6.4.3 Adaptive Ring

The results for the Adaptive ring are quite good as well. As
expected, the results are not as good as those for the binary
Ring task, but a few categorical Adaptive ring models
actually improve on the binary ones in some ways.

With the vox2vox model, we obtain the best results with
DDCC 3 and 4. The DDCC 4 models sometimes produce
more solid ring segments than the DDCC 3 ones, but the
DDCC 3 models are more consistent overall and replicate
the original terrain much better. With DDCC 4, a block
frequency weighting exponent of 0.025 performs best. With
DDCC 3, the exponent 0.05 works slightly better. An
example with DDCC 3 and block frequency weighting
exponent 0.05 is shown in Figure 17 .

In Figure 17 , the terrain is certainly mangled and the trees
are gone, but the ring is quite recognizable. Compared
to the best-performing binary model (Figure 11 ), the ring
is less solid and the terrain is less accurate, but there is
much less noise. Unlike the binary models, the categorical
models do actually learn to replace snow blocks correctly.

Again, our multiscale vox2vox model does not outperform
our regular vox2vox models. It does learn to replicate the
original terrain somewhat decently, but it only produces
very faint signs of the ring. We suspect the same causes
as for the Ring task.

6.5 Overall observations

6.5.1 Training instability

We observed that many of our models were quite unstable
during training, a known problem with GAN architectures.
Occasionally, our models would reach the best performance
halfway through training, then suddenly start outputting
garbage and start to slowly improve again. This issue
could perhaps be prevented with an early stopping policy,
but this would require performance metrics or mid-training
human evaluation.

It is possible that some of our best-performing models in
Section 6.3 and Section 6.4 performed better at an earlier
stage during training, but it was not feasible to manually
evaluate all intermediate stages. For consistency, we used
only the final, 100-epoch versions.

6.5.2 Best-performing models

For the binary tasks, we conclude that the vox2vox model
architecture with DDCC 3 performs best overall. DDCC
4 sometimes results in less noise and DDCC 2 sometimes
yields better details, but DDCC 3 is the most consistent
and produces the best results for most of the tasks.

For the categorical tasks, we again conclude that the
vox2vox architecture with DDCC 3 performs best. We only
trained the multiscale vox2vox architecture with DDCC
2, in which case it did not outperform regular vox2vox.
We do however suspect that the only datasets on which
categorical training worked at all (Ring and Adaptive ring)
are particularly hard for multiscale vox2vox due to the
thin structures.
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Our block frequency weighting trick significantly improves
the results for all evaluated models. Out of our evaluated
exponent values, we find 0.05 to perform best overall. We
do however expect that the optimal value depends on the
quality of the trained models: better-performing models
might benefit from a lower exponent. After all, there is no
block frequency weighting during training.

7 Summary

We introduced an automated system to create machine
learning-ready “volume-to-volume” Minecraft datasets us-
ing black-box Minecraft settlement generation algorithms.
It currently only supports generators written against an
old version of GDMC-HTTP [40 , 41 ], an API for the
Generative Design in Minecraft competition [1 ], but it
can easily be extended to other input methods. Unlike
other existing Minecraft machine learning datasets, the
datasets produced by our system also include Minecraft
block states.

Furthermore, we introduced a tool to preprocess these
datasets to make training easier. Most importantly, it
features three ways to reduce the amount of distinct blocks
that alter the data only in minimal ways. This makes
it much more feasible to actually train models that can
deal with the increased amount of blocks caused by the
inclusion of block states.

Using our automated dataset creation system and our
preprocessing tool, we created ten new terrain-adaptive
Minecraft machine learning datasets. These cover both
binary and categorical versions of five terrain-to-structure
tasks: three simple tasks for testing purposes and two
tasks based on the 2022 GDMC submission by Van der
Staaij et al. [17 ] (team name Mike’s Angels).

We implemented a modified version of the vox2vox GAN [37 ]
and a novel coarse-to-fine multiscale variant of vox2vox
based on the multiscale architecture of SinGAN [26 ].

In addition, we applied the block2vec technique introduced
by Awiszus et al. [20 ] to create embeddings for our categor-
ical datasets, and demonstrated that the method is also
effective for datasets that include block states. Further-
more, we extended the method with an evaluation-time
block frequency weighting feature, which we showed to
significantly improve results in some cases.

Finally, we trained and qualitatively evaluated various
modified vox2vox and multiscale vox2vox models on all
ten of our datasets. To our knowledge, this is both the first
attempt to perform terrain-adaptive PCGML in Minecraft,
and the first attempt at training Minecraft PCGML models
that can deal with block states.

8 Conclusions

8.1 Research question

We started out this work with the following research ques-
tion:

Is it possible to reproduce GDMC Minecraft settlement
generators using machine learning?

In the end, we did not manage to fully reach our goal of
replicating a GDMC generator, but we did get quite a bit
of the way there.

Our trained models showed varying degrees of success.
We obtained decent to good results for both binary and
categorical versions of our three test datasets, but we
could only train models for the binary versions of the tasks
derived from the Mike’s Angels GDMC generator. These
binary models did however show promise. In particular,
we achieved rather good results on a simplified wall-only
version of the generator.

Seeing how our binary models showed a good amount of
promise on the Mike’s Angels tasks and how our categor-
ical models were able to learn a simple terrain-adaptive
task to a decent degree, we are of the belief that the
goal is indeed achievable — there are still many machine
learning approaches to try (we give some suggestions in
Section 9 ). We therefore answer our research question
with: probably yes.

8.2 Dataset creation system

We believe our dataset creation system to be a good ap-
proach for obtaining terrain-adaptive datasets, especially
because it results in a large amount of similar examples. It
does have one fundamental limitation: it only allows us to
create datasets for translation tasks that we could already
perform with the source generator. Still, we believe the
datasets to be useful, challenging benchmarks for terrain-
adaptive Minecraft PCGML, or even volume-to-volume
translation in general. On top of that, they may also
enable the training of co-creative settlement completion
models (Section 9 ).

Managing an actual Minecraft server to run settlement
generators was quite a hassle. Its only input/output system
is a text-based command-line meant for interactive use.
This causes several issues: the output includes a prompt
string with a dynamic position; all output messages are
posted in a single output stream and in an inconsistent
order, making it hard to isolate the output of a command;
and all commands are asynchronous while there is no
easy way to wait for them to complete. The server also
occasionally fails to start or stop.

Using RCON was essential to work around the server’s
single output channel, and extensive timeout, retrying and
force-killing logic was needed to avoid crashes. We do
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however believe that using an actual Minecraft server was
worth it, as it can theoretically support any Minecraft
settlement generator algorithm.

The Chunk pregenerator mod [42 ] was useful, but we did
run into quite a few issues with it — likely because it was
not really designed to be invoked from outside the game.
This component of the system could perhaps be swapped
out to improve pregeneration performance.

Both the server management and terrain pregeneration
issues could perhaps be alleviated using a third-party server
program like Spigot13

 or Paper14
 , but we found that these

were usually not compatible with Forge mod that many
GDMC settlement generators require.

Block extraction with Amulet core [43 ] worked very well.
It was very performant, and we encountered no significant
issues.

Initially, our dataset creation system created datasets of
before-after pairs directly, rather than separate before and
after datasets. We however realized that re-computing
the before-samples for each settlement generator was un-
necessary, which is why we switched to creating separate
datasets and “stacking” them during preprocessing.

Before separating the datasets, we used a single flat NumPy
array axis for the samples, but switching to two axes
(sample X and sample Z) made the process of matching
up samples from the before- and after-datasets easier and
less error-prone.

8.3 Machine learning

We found the block2vec method introduced by Awiszus et
al. [20 ] to be very useful. Without it, we would not have
been able to train categorical models with our build area
sizes. We did however find that our categorical models
outputs often contained excessively many rare blocks.

The original World-GAN approach trains block2vec em-
beddings on only one example and does not consider block
states [20 ], so it has much fewer different blocks to deal
with. Perhaps the block2vec method works less well when
more blocks are involved, or perhaps larger embedding
sizes are needed in that case. Either way, we were largely
able to solve the rare block issue with our block frequency
weighting feature.

Still, categorical models remained very difficult to train
compared to binary ones. As we have shown, it is not im-
possible, but perhaps the jump from binary to categorical
with block states was too much. In Section 9 , we give some
in-between options that we could have considered.

We believe the image-to-image translation literature was a
good place to start for our 3D volume-to-volume problem.
The 3D variant of pix2pix [28 ] called vox2vox [37 ] proved
to be quite effective, and the multiscale architecture from

13https://www.spigotmc.org/ 

14https://papermc.io/ 

the 2D SinGAN [26 ] worked in 3D as well. Image-to-
image translation is an active field of research, and the
improvements made there will likely be useful for terrain-
adaptive Minecraft PCGML as well.

9 Future work

Our contributions open up many avenues for future work.
We group these into two categories: Datasets and Machine
learning.

9.1 Datasets

Using our automated dataset creation system and our
preprocessing tool, more datasets could be created. We
created datasets based on the current best-performing
GDMC settlement generator, but it turned out to be dif-
ficult to train machine learning models for them. There
may be other (GDMC or non-GDMC) settlement genera-
tors that are more feasible to replicate. Similarly, if more
progress in terrain-adaptive Minecraft PCGML is made,
our systems could be used to create more varied or more
difficult learning tasks as well.

Another interesting possibility is to create pair datasets
where the first pair half is something other than the original
terrain. For example, a dataset that represents the task of
completing a partial settlement.

Given a terrain-to-settlement dataset, one could obtain
paired examples for a settlement completion task by “cut-
ting” out parts of a settlement and “pasting” them onto
the original terrain. This way, it might be possible to
leverage handwritten settlement generators to achieve co-
creativity, a promising application for PCGML [3 ] that
has been described by the GDMC competition organizers
as one of their future goals [1 , 6 ].

Furthermore, our dataset creation system and preprocess-
ing tool could be improved in various ways. For example,
more ways to reduce the amount of distinct blocks could
be implemented, or dataset augmentation features such as
rotating and flipping examples could be added.

9.2 Machine learning

There is still much room for improvement with regard to
training machine learning models on our datasets. There
are many directions that could be taken to attempt to
improve the results: more hyperparameter configurations,
longer training, better architectures, better training pro-
cess analysis, etc.

There are many more image-to-image architectures that
could be adapted to 3D. In the area of GANs, one recent
example is CoCosNet v2 [34 ]. And of course, GANs are not
the only possibility. Some examples of different techniques
are transformers and diffusion models. In some cases, 3D
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versions already exist. Furthermore, for all the aforemen-
tioned techniques, unpaired variants could be investigated
as well.

The learning task could also be adjusted. To give some
examples, one could attempt to train on only the differences
between the input and target sample, or perhaps train some
kind of recurrent system to generate samples Y-layer by
Y-layer.

Another possibility is to consider a mode somewhere be-
tween binary and full categorical with block states. Some
possibilities are categorical without block states, or cate-
gorical with a small number of manually curated categories
such as “stone-like” and “wood-like”.

A learning mode between binary and full categorical could
also be considered

Furthermore, different ways of embedding blocks could be
investigated. One could train block2vec [20 ] with different
settings, or perhaps extend the LLM-based method used
in Wor(l)d-GAN [21 ] to blocks with block states. With
a large amount of memory or a simplified learning task,
regular one-hot vectors could be considered as well.

Finally, the evaluation of trained models could be improved.
We performed only a qualitative evaluation because we
felt our results were not yet ready for quantitative mea-
sures, but such measures do exist — though they do not
always reflect quality. Examples include block distribution
comparisons [20 ] and TPKLDiv [51 , 20 ]. If results are
sufficiently good, human evaluation could be considered
as well.
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