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Abstract

Cardiotoxicity can be defined as any damage to the heart or cardiovascular
system that emerges from cancer treatment. It is a common side effect of various
classes of drugs used to treat cancer. Adverse effects can occur years after the
treatment, they can vary from high blood pressure to heart failure, leading to
increased mortality among patients. Cardiotoxicity has to be analysed during
drug development. For that purpose, human induced pluripotent stem cell-
derived cardiomyocytes (hiPSC-CMs) were designed and reprogrammed from
human somatic cells. The analysis of microscopy image data acquired from car-
diotoxicity studies can be time-consuming for experts because they can obtain
a significant amount of image data from high-throughput imaging. Many exist-
ing machine learning techniques are capable of identifying objects from images
for further analysis, such as Mask R-CNN. However, a considerable amount of
labelled data is necessary to train such models. In this paper, we propose a
semi-supervised learning method of iterative training. In this method, less an-
notated data is needed, as the model also trains on annotations predicted from
the model trained in previous iterations. The results of the iterative learning
method with the use of Mask R-CNN as an inner model had less accurate results
in terms of mAP and mF1 metrics, compared to supervised learning on Mask
R-CNN with all data annotated. However, thanks to the new iterative learning
method, we found out that Mask R-CNN trained on half of the data annotated
and half without annotations can achieve 98% of the precision compared to the
model trained on fully annotated data.
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1 Introduction
The major adverse effect of anticancer drugs is that they affect the cardiovascular
system and may cause damage to the heart, also known as cardiotoxicity. As these
effects can vary from myocardial dysfunction to death, it is necessary to observe and
evaluate the effects during drug development. Whereas the animal models are not
accurate enough for these processes, human induced pluripotent stem cell-derived car-
diomyocytes (hiPSC-CMs) [26, 3] can achieve great accuracy for toxicity screening,
including all significant genetic variants [9]. Using high-throughput fluorescent mi-
croscopy, we can obtain screenings of various conditions of drug-induced toxicity in
cells and examine their influence. The possible number of these microscopy images
can be high. Furthermore, manual analysis and evaluation of the microscopy image
data by experts are typically considerably time-consuming.

There are many different machine learning techniques to detect objects from biomed-
ical image data, mostly convolutional neural networks (CNN), such as Mask R-CNN
[16] or U-Net [23]. To be able to conduct further analysis of the cells from the mi-
croscopy images, such as comparing the morphological changes and quantifying the
measurements, we need to detect each cell instance in the image first. Therefore, we
are talking about the task of instance segmentation. Instance segmentation combines
the two main computer vision tasks, that is to say, object detection and semantic
segmentation. The first task is detecting each respective object and resulting in a
bounding box. The second one is a classification of each pixel into a given class [16].
Instance segmentation is a complicated task, especially when the cells under different
conditions are clustered together. That decreases the number of models that can be
used and increases the number of training data that is needed. The reliable accuracy
of the predictions is necessary for the given task, which represents a crucial step for
cardiotoxicity analysis.

Getting the data annotations (cell detections in microscopy images) for the training
of the models is demanding in terms of time and expense. Therefore, there have been
many attempts to improve the learning of the model on a smaller amount of labelled
data. We propose a semi-supervised learning model that is based on the work of [7].
In this model, only a smaller amount of labelled data is needed at the beginning, and
the model uses its own predicted labels for further training of the model.

In this paper, we introduce the iterative learning model incorporating Mask R-CNN
network architecture for instance segmentation. We train and test the proposed model
on the data from experiments imitating cardiotoxicity on hiPSC-CMs obtained from
fluorescence high-throughput imaging analysis [9]. We evaluate the proposed model,
and subsequently, we discuss the influence of the score predicted for each mask as the
label for further training. We compare the model with the supervised model trained
on fully labelled data. Lastly, we describe limitations and possible improvements.
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1.1 Biological Background
Chemotherapy is an anticancer therapy with the use of anticancer drugs that has great
potential for healing the patient. There are many different kinds of drugs that target
specific molecules in the organism to prevent the spread of cancer. Even though there
has been progress in the development of these drugs in the past years and the survival
rate of the patients has increased, a common issue appears - cardiotoxic side effect
[31]. It applies to a number of anticancer drugs from different classes, such as doxoru-
bicin [4], crizotinib [27], or sunitinib [30]. Hence, cardiotoxicity needs to be tested and
evaluated during the drug development process.

As the animal models are not sufficient for modelling the cardiotoxic effects [29], a
system of reprogramming human somatic cells into induced pluripotent stem cells
(hiPSC) [26] was developed in 2007. In the following years, the development of dif-
ferentiation of hiPSC into different cell types improved the efficiency of these in vitro
systems [3]. Additionally, the cardiomyocytes derived from hiPSC (hiPSC-CMs) en-
hanced the screening and evaluation of cardiotoxicity with the possibility to include
different genetic variants in the population during the drug development [8, 25].

There is a variety of technologies available for the evaluation of experiments with
cardiotoxicity on hiPSC-CMs and detecting bio-moleculs. The most commonly used
technology is fluorescence readout that reflects electrical and calcium signals over time
[5]. Another one is high-throughput image analysis, which is an automated light mi-
croscopy and image analysis. It can identify changes in α-actinin signal in hiPSC-CMs
[12].

1.2 Overview
The paper is organised as follows. Firstly, the section 2 describes the data, and how
they were obtained and preprocessed. It introduces the models that were used and
how they work, and the metrics used to evaluate them. Next, the section 3 describes
algorithms, implementation choices, and experimental setup. Following, the section 4
introduces and interprets the results from the experiments. Lastly, in the section 5,
the knowledge from the previous chapters is summarized, and possible improvements
are suggested.

2 Background and Data
In this section, we will describe the background of models used for the training of
instance segmentation tasks, how the data that we worked with were obtained and
what metrics to evaluate the performance were used.
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2.1 Data
The data for this purpose were obtained by treating the hiPSC-CMs with different
concentrations of anticancer drugs. The density of the cells was 10 000 cells per well
on Corning 96-well cell culture plates. The cells were then treated with two anticancer
drugs - doxorubicin and crizotinib [9]. The dosing range was from 0.1µM to 10µM .
It resulted in 5 experiments captured under 12 different conditions. Subsequently,
the antibody was used on α-actinin binding protein to identify the structure of sar-
comeres inside cardiomyocytes. To detect the nuclei in cells, they were stained with
blue-fluorescent DNA substance - DAPI [9].

The images were captured by high-throughput BD pathway 855 microscopes. The
microscopes were equipped with an Olympus 20xLWD objective (NA 0.75) and a
Hamamatsu ORCA-AG CCD digital microscope camera. The first signal of nuclei
stained with DAPI was obtained using a 380/10 − nm excitation filter with 0.0078s
exposure time and the 435LP Chroma emission filter. The second signal of α-actinin
cells was obtained using a HQ548/20 excitation filter with 0.08s exposure time plus
2 gains and the 84101m Chroma emission filter. The cell cultures were scanned by a
7x7 montage setup resulting in images of size 4700x3600 pixels [9]. The example of
gained images can be seen in Figure 1.

Figure 1: Examples of images from different conditions acquired by BD pathway 855
microscope, 7x7 montage setup [9]. The red channel shows the α-actinin signal with
cell structures. The blue channel shows the DAPI signal with stained nuclei.

As we were not able to have data annotated by experts, we use the results from the
image analysis system proposed by [9], as ground truths for our model (labels). The
resulting masks achieve a precision of 0.83 and a recall of 0.93, compared to the original
manually segmented images. The segmented results come from an automated pipeline
designed in ImageJ software [2], as seen in Figure 2. It consists of preprocessing, such
as background subtraction, Gaussian smoothing filter or contrast enhancement. Then
it is divided into two parts. The first is nuclei detection - by using watershed seg-
mentation. The second is cell mask detection - mainly using the Otsu thresholding
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method. Then those two outputs are combined in the next step of seeded propagation
- using the nuclear propagation approach. It means using the nuclei mask as a seed
and then propagating in the mask of all cells (foreground) to determine the border of
each specific cell. This method resulted in instances of cell masks [9].

Figure 2: A pipeline for automated image analysis for instance segmentation of indi-
vidual cells [9].

2.2 Mask R-CNN
Mask R-CNN is the most commonly used method for instance segmentation in the
computer vision domain. Its implementation is rather simple, but very robust for all
kinds of tasks, and it outperforms most of the state-of-the-art methods. Specifically,
it claims to outperform all winners of the COCO challenge [20].

The implementation of Mask R-CNN is based on the architecture of the Faster R-CNN
[22]. Furthermore, the Faster R-CNN method is extended, more rapid adaptation of
the Fast R-CNN architecture [13], according to speed-accuracy study [17]. R-CNN
denotes Region-based CNN, which combines region proposals with standard CNN [14].

The architecture of Faster R-CNN consists of two main parts. The first one is Region
Proposal Network (RPN), which is an attention mechanism proposing the possible
candidate regions - resulting in bounding boxes [22]. As a backbone network, different
network models, such as ResNet, can be used. The second part comes from Fast R-
CNN architecture, where the goal is to extract features from each Region of Interest
(RoI) by RoIPool operation. Finally, it performs the regression on bounding boxes
and the classification of objects. Therefore, the two outputs from Faster R-CNN are
a bounding box and a classification label for each candidate object [13].

Mask R-CNN is a simple add-on branch to the Faster R-CNN architecture that predicts
the binary mask from the given RoI. Hence, it adds a third output in the form of a
mask to the bounding box and the class from the default architecture. For the Mask
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R-CNN training, the multi-task loss function is defined by

L = Lcls + Lbox + Lmask, (1)

where Lcls is classification loss and Lbox is loss of bounding box defined in [13]. Lmask

is defined as the average binary cross-entropy loss for the k-th mask on RoI of ground
truth class k [16].

A simplified scheme of the Mask R-CNN framework can be seen in Figure 3. The
crucial part is the newly proposed RoIAlign layer, which preserves and connects the
extracted features with the given input. It is a quantization-free layer that impacts
mask accuracy, as the quantization in the previous RoIPool layer would cause mis-
alignment between the feature map and RoI [16]. The RoIAlign layer removes the
quantization using bi-linear interpolation and aligns the features with the inputs [19].

Figure 3: A simplified visualization Mask R-CNN architecture for instance segmenta-
tion that extends the Faster R-CNN model [16].

2.3 Semi-Supervised Learning Using Sparse Labelling
Semi-supervised learning is an increasingly used method with the ability to maintain
model accuracy using fewer data. Hence, it saves time for data annotation without a
significant loss of accuracy and enhances time efficiency. Semi-supervised learning us-
ing sparse labelling was proposed in [11], where U-Nets were proved to be valid models
for such training. In the paper [7], they enhanced the model with an iterative training
approach combined with sparse labelling, which yields an accuracy of 90% compared
to training on fully annotated data.

The core model used for this method is U-Net, slightly modified for the purpose of
microscopy images [24]. U-Net, in general, is a CNN designed for the segmentation
of biomedical images that can be trained on a small number of samples [23]. In this
implementation, it is a 3-block architecture with a 32-size filter in the first block, where
encoder-decoder feature maps are concatenated [24].

A scheme of the method of iterative learning can be seen in Figure 4. It shows how
the iterative training of the U-Net works. Firstly, the sparsely annotated dataset is
created by combining labelled and unlabelled data or extracting the labels from the
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annotated data. Then the U-Net is trained on this dataset, and the model is used to
predict labels from unlabelled data [7]. The next step is the postprocessing of the de-
tected labels. In [7], the detected labels are filtered according to the mean confidence
of each object, which must be higher than 0.8. For smoothing the boundaries, the
morphological closing with a 3x3 structuring element is applied. Then the unlabelled
data are overwritten with the postprocessed labels predicted from the previous model
and combined with originally labelled data for the next iteration of the training. On
this new dataset, an advanced model can be trained with U-Net, etc. One of the
steps of the method includes random augmentation to gain random noise and scale
so that the model is able to detect slightly different objects than the original labels [28].

Figure 4: A visualization of the iterative learning. The training starts with sparse
labels, and then the new labels are predicted from the trained model and included in
the next iteration of training in the loop [7].

2.4 Metrics
To evaluate and compare the models, we need to define the metrics used to calculate
the performance of the models. Firstly, we need to introduce an intersection over union
(IoU) score. It is a fraction between an intersection and union of the predicted mask
MP and ground truth (GT) mask MGT given by

IoU = area(MP ∩ MGT )
area(MP ∪ MGT ) . (2)

With IoU defined, we can also distinguish correct and incorrect predictions. Masks
that were predicted correctly are true positive (TP), which means that their IoU value
is higher than certain threshold t, IoU ≥ t. On the other hand, if IoU < t, the mask
is labelled as a false positive (FP). Also, if there are more predicted masks for one GT
mask, only one of them is considered TP and the remaining ones are FP. The number
of ground truth masks that were not predicted is equal to the number of false negative
(FN) masks [15].

Precision is a proportion between correctly labelled masks and all predicted masks
given by

precision = TP

TP + FP
, (3)

where TP+FP is the total number of all predicted masks. Recall is a proportion of
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the number of correctly labelled masks to all relevant masks given by

recall = TP

TP + FN
, (4)

where shortcuts TP+FN is the total number of ground truth masks. The F1 score is
a harmonic mean between precision and recall [21] and is defined as

F1 = 2 · precision · recall

precision + recall
. (5)

However, according to paper [13], the F1 score might not be accurate enough as the
metrics for an instance segmentation and a mean average precision metric (mAP )
is proposed. It is defined by precision-recall relation. The precision is interpolated
pinterpolation at all unique recall values spaced between 0 and 1. Where at each recall
value r, pinterpolation is the highest value found for any recall value higher than r. It is
given by the equation

pinterpolation(r) = max
r′≥r

p(r′). (6)

Then we can define average precision (AP ) as the area under an interpolated precision
curve given by

AP =
n−1∑
i=1

(ri+1 − ri)pinterpolation(ri+1), (7)

where ri is the i-th recall value, and n is the number of values. Then the mAP is the
mean of average precision for each class, which is only one in our case.

3 Methods
We decided to compare the two methods - fully supervised learning with our own im-
plementation of semi-supervised learning. In this section, we describe implementation
details, such as the algorithm, parameter choices or experimental setup.

To create a dataset for training the models, we cropped all images into square images
of size 512x512 pixels. Each microscopy image had 3 channels - red, green, and blue.
However, the green channel was set to zero in all images. Because we only worked with
the red and blue channels, depicting α-actinin and DAPI signal, respectively. Hence,
the dimension of the image was 512x512x3. Each microscopy image was complemented
by images of masks. Each mask bounded to the microscopy image was documented
separately in the form of a binary image, where only the foreground (mask) and back-
ground of the image were distinguished. Therefore, the number of images with masks
for each microscopy image was the same as the number of cells in the image. Subse-
quently, 1000 samples of these images were randomly chosen for training, 100 samples
for validation and 100 samples for testing the models.
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3.1 Supervised Learning
Supervised learning experiments were done with Mask R-CNN implementation based
on [1], which is an open-source project under the MIT licence, and it is based on
the deep learning framework Keras [10]. The details of the architecture of the Mask
R-CNN model can be found in the subsection 2.2. Each training of the Mask R-CNN
model used pre-trained COCO weights trained on data from [20]. It is a common prac-
tice of transfer learning used on complex models, where the training does not need to
start from scratch but has already encountered some real-world data.

For the Mask R-CNN implementatisuccessfully on, hyper-parameter tuning is a very
difficult task due to the computational complexity and the duration of the training.
Therefore, most of the hyper-parameters were used as suggested in [16], as they are
claimed to be robust enough for most of the tasks. Hence, only a few parameters were
examined. A simple grid search was done to find suitable parameters for learning with
respect to the time complexity. We examined the number of epochs from the interval
[10, 60], the number of images per GPU from the interval [1,8], and the learning rate
from values [0.0001, 0.001, 0.01]. The best performance was achieved with the number
of epochs set to 50, 6 images per GPU and the learning rate lr set to 0.001. Regarding
the number of data samples for training and validation and the number of images per
GPU, the number of steps per epoch and validation steps were set to 166 (1000/6) and
16 (100/6), respectively. It is the number of samples available for each process divided
by the number of images per GPU. As a backbone network, we used ResNet50 with a
depth of 50 layers. The mask was considered TP when an IoU score reached a higher
value than 0.5.

3.2 Semi-Supervised Learning
Semi-supervised method using iterative learning by adding newly predicted labels to
the ground truth labels using U-Net as the inner model represents a promising method
for the data that are difficult to annotate [7]. Even though U-Net CNN is a valid model
for biomedical images and can be trained from only a few samples of data [23], it is
not applicable to our dataset. The U-Net CNN is a model for semantic segmentation.
Furthermore, the cells in our image data are highly clustered. Therefore, the U-Net
CNN is not a suitable model for our task of instance segmentation. It can be noticed
in Figure 5, where we can see that the U-Net distinguished the background and fore-
ground but failed to label each instance of the cell separately.

Based on [7], we propose an iterative learning model using the Mask R-CNN [16] as
the inner model. The scheme of this training can be seen in Figure 6. We begin the
training of the model with half of the data (500 samples) randomly chosen to keep
the mask labels, and for the rest of the data (the other 500 samples) the annotations
are removed. After each training iteration, the data that are not labelled are used to
create a prediction of new masks by the trained model. The predictions are then post-
processed and filtered according to their score. Each cell mask is filtered separately.
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(a) An input image for the U-Net (b) Predicted mask

Figure 5: An example of usage of the U-Net model to predict masks on a sample image
from our dataset cropped to 512x512 pixels.

We experiment with three different thresholds for this score. We start at a score of
0.8, which is suggested in [7]. However, it is a slightly different score, coming from a
different method, but with the same meaning - confidence in the prediction. Moreover,
we are increasing the threshold to 0.9 and 1.0. Chosen masks are then added to the
originally labelled data for the training of a new model, same as in [7].

Figure 6: A visualization of the iterative learning incorporating Mask R-CNN as an
inner backbone model based on the iterative learning method proposed in [7]. The
Mask R-CNN is trained at each iteration on the labelled data, and the unlabelled data
or data with predicted labels.

Postprocessing techniques are applied to all predicted masks from the Mask R-CNN
model as well as those from the iterative learning model. Postprocessing is applied
on each mask separately so that no mistakes are done on predictions, e.g. connecting
two different masks by postprocessing method. We apply the morphological closing
with structuring element 3x3 to smooth the boundaries as in [7]. Afterwards, we fill
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the holes in predictions, as we know the masks should be in one piece with integrity
intact. Lastly, we filter the masks that are too big, to be real. For example, masks
that cover most of the image are filtered, because they are mistakes made by faulty
data or model errors.

3.3 Experimental Setup
All experiments were done with three repetitions. They were running on 2 NVIDIA
GeForce RTX 2080 Ti with 16 Intel Xeon E5-260 cores and a processor base frequency
of 2.00 GHz. Most of the parameters for the Mask R-CNN were set to values suggested
in [16]. Some of the most important ones can be found in Appendix A.

4 Results
In this section, we provide results from experiments on the supervised model - Mask
R-CNN and semi-supervised model - iterative learning.

4.1 Supervised Learning Results
Results in Table 1 mainly serve as a benchmark to compare the results of semi-
supervised iterative learning. The score of mAP and mF1 are relatively high, and
the results seem to be stable because the standard deviation is very low. The number
of predicted masks from the test set was, on average, 929, of which 904 predicted masks
have a high certainty. The test set consisted of 1075 masks in total, which means that
the model predicted around 86% of the masks, from which 97% were of high confidence.

Table 1: Results from the supervised learning experiments. We note the mean and
standard deviation for each metric. n means the number of cell masks predicted by the
model, and ≥ 0.8 denotes how many of these masks have scored higher than threshold
0.8.

metrics mAP mF1 n ≥ 0.8

mean 0.7477 0.5935 929 904

std 0.0155 0.0069 29 30

4.2 Semi-Supervised Learning Results
Results of mAP and mF1 scores from semi-supervised learning experiments can be
found in Table 2. It shows results from four iterations of the iterative learning model.
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We experimented with three different thresholds of the score (0.8, 0.9, 1.0), according
to which the predicted masks that should be involved for the next iteration of training
the model are filtered. Results from the same experiments counting the number of
predicted cells in general or above the threshold are noted in Table 3.

In Table 2, we can observe that the highest mAP is in the first iteration in all three
experiments. In the case of the score of 0.8, it decreases rapidly with each iteration.
For the score of 0.9, it also decreases but less rapidly. In the case of the score of 1.0,
the mAP score has some increasing tendencies between the second and third itera-
tions. However, it is still much lower in iterations II, III, and IV than in iteration I.
In all three experiments, the mAP score decreased from 0.73 in the first iteration I to
around 0.65-0.67 in iteration IV.

The same can be observed when looking at the mF1 score. With one exception in iter-
ation III and the experiment with the score of 1.0, the model reached the highest value
of mF1 0.65, which exceeded the mF1 score from the first iteration I and even the score
of mF1 from supervised learning (where it reached 0.59). However, the value 0.65 has
a standard deviation of 0.08, which is a very high value. Hence, we can conclude that
the training of this model was unstable, and repetitions differed significantly. Except
for that, the mF1 score decreased with each iteration resulting in the lowest values in
iteration IV for all scores.

The value of the number of cell masks predicted fluctuated in all iterations and all
experiments, which can be seen in Table 3. On average, the number of predicted cells
was the highest in the experiment where we used the score of 0.9. It was, on average,
943 cell masks. The test dataset obtained 1075 masks in total. Hence, it predicted
around 87% masks regardless of the accuracy.

4.3 Prediction Examples
The examples of model predictions can be found in Appendix B. We chose two samples
of data with a high density of cells and cells clustered together, which are challenging
cases for the model to predict the mask instances properly. Figure 7 - Figure 11 show
the results from the best trained models. In Figure 7, we can see examples of prediction
from supervised learning, where Mask R-CNN was trained on all annotated data.
Figure 8 shows examples of prediction from a model trained on half-annotated/half-
unannotated data, which is the first iteration of iterative learning. Figure 9 - Figure 11
show the examples of predictions from models of iterative learning, where different
values of the score were used to filter the masks - 0.8, 0.9 and 1.0. All predictions
come from the model trained in iteration IV.
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Table 2: Results of mAP and mF1 scores from semi-supervised learning experiments.
It notes four iterations of iterative learning for three different thresholds (0.8, 0.9, 1.0)
of score to filter the masks for the next training. The means and standard deviations
for each metric are noted.

iter I iter II iter III iter IV

score mAP mF1 mAP mF1 mAP mF1 mAP mF1

0.8 mean 0.7336 0.5900 0.7157 0.5789 0.6575 0.5534 0.6563 0.5549

std 0.0112 0.0083 0.0265 0.0137 0.0466 0.0210 0.0165 0.0086

0.9 mean 0.7336 0.5900 0.7171 0.5815 0.6893 0.5711 0.6792 0.5605

std 0.0112 0.0083 0.0130 0.0060 0.0315 0.0179 0.0342 0.0177

1.0 mean 0.7336 0.5900 0.6261 0.5402 0.6798 0.6467 0.6546 0.5508

std 0.0112 0.0083 0.0419 0.0177 0.0268 0.0820 0.0274 0.0166

Table 3: Results of a number of cells n from semi-supervised learning experiments. It
notes four iterations of iterative learning for three different thresholds (0.8, 0.9, 1.0) of
score to filter the masks for the next training. The means and standard deviations for
each metric are noted. n means the number of cell masks predicted by the model, and
≥ 0.8 denotes how many of these masks have scored higher than threshold 0.8.

iter I iter II iter III iter IV

score n ≥ 0.8 n ≥ 0.8 n ≥ 0.8 n ≥ 0.8

0.8 mean 946 918 956 932 901 874 901 875

std 15 6 31 33 52 58 18 17

0.9 mean 946 918 946 923 943 916 936 908

std 15 6 18 30 61 59 21 14

1.0 mean 946 918 732 692 848 814 815 782

std 15 6 118 124 88 100 86 79
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5 Discusssion
It could not be proven that the iterative learning model with added predicted labels
can have comparable precision to the Mask R-CNN model trained on labelled data, as
the model was not improving with more iterations of learning. On the other hand, we
can conclude that the model trained on half of the labelled and half of the unlabelled
data (the first iteration of iterative learning) performed almost as well as the model
trained on the data where all labels were assigned. The iterative learning model (iter-
ation I) achieved around 98% of mAP and around 99% of mF1 score compared to the
supervised learning model.

The possible reason why iterative learning (with adding new predicted annotations
among the data to train the model) worked with the U-Net model and not with the
Mask R-CNN model, is that the performance comparable to the fully supervised train-
ing was already proved with a fraction of sparse or dense annotated data used to train
the U-Net in [6]. However, we could not find a similar study for the Mask R-CNN
model. Also, semantic segmentation tasks done by U-Net differ greatly from instance
segmentation tasks performed by the Mask R-CNN model.

Another possible reason is that the predicted mask score from the Mask R-CNN model
is not measured accurately. It is vaguely defined as confidence score [16], and it is re-
turned from the Keras framework of neural networks [10]. Moreover, the score does
not seem to be correlated to the IoU score metrics according to [18]. The predicted
score is quite important for the iterative learning model. Based on the score value,
the predicted masks are included in or excluded from the data for the next training.

This is the reason why a new scoring mechanism is proposed to return more adequate
results in [18]. Moreover, the score values aligned to each predicted cell mask are usu-
ally very high, as can be seen in Table 1 and Table 3. The total number of predicted
cell masks is very close to the number of masks with the score ≥ 0.8. It might also
be given by the fact that only one class can be predicted in our data, which is the
cell. It allows the Mask R-CNN model to be quite confident about its predictions.
Therefore, the model returns high scores of masks. However, by adding the framework
of better predictions of confidence score using [18], we could only include masks with a
more precisely determined value of confidence for the next iteration of training. Hence,
training the model on better masks could yield better results.

6 Conclusion
In this paper, we proposed the semi-supervised iterative learning model. The model
contained the Mask R-CNN model as a backbone network architecture that is appro-
priate for instance segmentation tasks. During the iterative learning, the model used
predicted labels from the previous iteration to improve the precision of the model. We
compared the proposed semi-supervised model to the fully supervised model, which
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was Mask R-CNN trained on all labelled data.

We proved that training a semi-supervised model with half of the data annotated and
half without annotations (meaning only the first iteration of iterative learning) has
comparable results to a supervised learning model trained on fully annotated data,
using Mask R-CNN as the model. More precisely, the model achieved around 98% of
mAP compared to the supervised learning model trained on all labels.

The study can be extended with other ratios of the amount of annotated data and
how it affects the results compared to fully annotated data. Moreover, it can define
the ratio of annotated/unannotated data that still has profitable results without losing
accuracy. It could save the time of the experts for unnecessary annotations.

Iterative learning model [7] combined with the Mask R-CNN framework [16] could
not yield comparable results to the supervised learning with only annotated data.
However, a possible improvement for the iterative learning model could be combining
the Mask R-CNN architecture with the Mask scoring R-CNN [18] framework. Such a
combination has a higher chance of delivering better results in future work.
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A Appendix A

Table 4: Hyperparameters used in experiments of iterative training and the most
important hyperparameters for Mask R-CNN model. Some of them are tuned by
simple grid search, but most of the values are as suggested in paper [16].

Parameter Value Meaning

score [0.8, 0.9, 1.0] value needed to filter mask for next training

backbone ResNet50 backbone architecture of Mask R-CNN

img per gpu 6 number of images loaded per GPU

img shape [512,512,3] shape of images to train on

lr 0.001 learning rate

lm 0.9 learning momentum

wdecay 0.0001 the decay of weights

Lweight 1 loss weights from multi-task loss are equal

num classes 2 there are two classes - cell and background

epoch 50 number of epochs

steps per epoch 166 number of steps per epoch

val steps 16 number of validation steps

Most of the parameters in Table 4 are set to values recommended in [16]. Some of the
parameters were tuned, such as learning rate lr, number of epochs, steps per epoch or
validation steps. We experimented with various values for the score parameter in the
iterative learning model.
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B Appendix B
In this section, images of predictions of the best models from each experiment are
shown on chosen test data. The data were chosen according to the difficulty of detec-
tion for the model so that the differences between models are visible. We chose two
samples that contain a high number of cells mainly clustered together.

B.1 Supervised Learning
Figure 7 shows the results from the best-trained model from the supervised learning
experiments. The Mask R-CNN model was trained on 1000 samples of annotated data.

(a) (b)

Figure 7: Examples of predictions of Mask R-CNN trained on all annotated data.
The green coloured lines note the ground truth masks, and the red coloured lines the
predictions from the model. The score of the prediction and IoU value are also noted
for each cell mask prediction [score/IoU].
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B.2 Semi-Supervised Learning
Figure 8 - Figure 11 show the results from the best-trained models from the semi-
supervised learning experiments. Figure 8 shows examples of prediction from a model
trained on 500 samples of annotated and another 500 samples of unannotated data,
which is the first iteration of iterative learning. Figure 9 - Figure 11 show the examples
of predictions from models trained in iteration IV of iterative learning. Each model
used a different threshold value of the score to filter the masks - 0.8, 0.9 and 1.0.

(a) (b)

Figure 8: Examples of predictions of Mask R-CNN trained on half of the annotated
data and half unannotated. This is the first iteration of iterative learning. The green
coloured lines note the ground truth masks, and the red coloured lines the predictions
from the model. The score of the prediction and IoU value are also noted for each cell
mask prediction [score/IoU].
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(a) (b)

Figure 9: Examples of predictions of iterative learning model with the score threshold
for filtering the mask of 0.8. The predictions come from the model trained in iteration
IV. The green coloured lines note the ground truth masks, and the red coloured lines
the predictions from the model. The score of the prediction and IoU value are also
noted for each cell mask prediction [score/IoU].

(a) (b)

Figure 10: Examples of predictions of iterative learning model with the score threshold
for filtering the mask of 0.9. The predictions come from the model trained in iteration
IV. The green coloured lines note the ground truth masks, and the red coloured lines
the predictions from the model. The score of the prediction and IoU value are also
noted for each cell mask prediction [score/IoU].
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(a) (b)

Figure 11: Examples of predictions of iterative learning model with the score threshold
for filtering the mask of 1.0. The predictions come from the model trained in iteration
IV. The green coloured lines note the ground truth masks, and the red coloured lines
the predictions from the model. The score of the prediction and IoU value are also
noted for each cell mask prediction [score/IoU].
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