
Opleiding Informatica

Synergizing UML Class Modeling and Natural Language to

Code Conversion: A GPT-3.5-powered Approach for

Seamless Software Design and Implementation

Seyed Saqlain Zeidi

Supervisors:
Dr. G.J. Ramackers
Prof.dr.ir. J.M.W. Visser

BACHELOR THESIS

Leiden Institute of Advanced Computer Science (LIACS)
www.liacs.leidenuniv.nl 28/08/2023

www.liacs.leidenuniv.nl

Abstract

In the area of software development, converting abstract designs into functional code is an
important challenge. The Unified Modeling Language (UML) is a standard tool for visualizing
software systems, but the gap between UML diagrams and functional code remains complex,
hindering accuracy and accessibility. This thesis introduces a novel solution by merging UML
class modeling with natural language processing (NLP) using the GPT-3.5-turbo model. This
integration enables inserting code snippets into the UML design model using natural language
to define the functionality required. This extended design model then forms the basis for the
generation of executable prototypes, closing the gap between design and code.

The study’s goal is to validate this approach’s viability based on the theoretical foundations
and practical experimentation within the LIACS Prose to Prototype / ngUML development
tool environment. Within this framework, an implementation was developed that enables
users to formulate natural language requirements for code functionality, review and edit the
generated code and tests, and insert it into the UML model. The implementation aims to
provide a user experience that is suitable for both experienced developers and those with
limited programming skills. The findings underscore the tool’s potential to streamline software
design and implementation. It shows that natural language driven code generation can be
effective within the larger context of a design model.

2

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Solution approach . 2
1.3 Research Objectives . 3
1.4 Deliverables . 3

2 Definitions 4

3 Related Work 5
3.1 Alternatives . 5
3.2 GPT-3.5-Turbo: Advancements in AI Language Models and Comparison with Other

Models . 6
3.3 GPT-3.5-Turbo: The Ideal Model for Converting Natural Language to Code 6
3.4 UML Class Model . 7

3.4.1 Class Attributes and Methods . 7
3.4.2 Relationship Types . 8

3.5 Example UML Class Diagram . 9

4 Design and Implementation 10
4.1 System Workflow . 10

4.1.1 User Input and NLP-assisted Class Diagram Creation 11
4.1.2 Interactive Class Diagram Editing . 12
4.1.3 Method Request Prompting . 13
4.1.4 Prompt Engineering and Contextual Enhancements 13
4.1.5 Code Refinement through Prompts . 15
4.1.6 Code Response and User Interaction . 16
4.1.7 Importing Code and Ongoing Diagram Refinement 17

4.2 Leveraging Class Relations for Data Access . 18

5 Experiments 19
5.1 Experiment Setup . 19
5.2 Results Evaluation . 19
5.3 Experimental Process . 19
5.4 Experiment Results . 20

5.4.1 Prompt Size and Response Time Analysis 20
5.4.2 Programming Language and Adaptability Analysis 21
5.4.3 Code Quality and Response Time Analysis 21

5.5 Assessment of Long-Term Sustainability and Community Engagement 22

6 Conclusions and Further Research 23

References 24

1 Introduction

Software engineering is crucial in today’s technology-driven world. The Unified Modeling Language
(UML) has emerged as a pivotal tool in software engineering, providing a standardized method
to visually represent software systems. UML class diagrams, in particular, allow developers to
define classes, properties, methods, and their relationships, forming a blueprint for software design
[KEBP21].

However, the transition from UML diagrams to functional code remains a complex and often
labour intensive process. Converting the abstractions represented in UML into tangible code
structures requires a lot of attention to detail, potentially leading to errors, inconsistencies, and
time-consuming tests. Moreover, for individuals who are not well educated in programming lan-
guages, this translation task can be a real barrier.

In recent years, advancements in natural language processing (NLP) and artificial intelligence (AI)
have shown promise in bridging the gap between human language and code. The GPT-3.5-turbo
model, a prominent AI language model, exhibits an unprecedented ability to understand and
generate human-like text, including code snippets [Ope23]. Leveraging the power of GPT-3.5-turbo
to facilitate the translation of natural language descriptions into executable code offers a compelling
solution to the challenges inherent in UML-to-code conversion [MSM22].

This thesis aims to explore and present a novel approach that marries UML class modeling
with NLP-based code generation. By integrating the GPT-3.5-turbo model into a UML class
modeler, we endeavor to provide developers, irrespective of their programming expertise, with a
seamless interface for transforming UML representations into functional code. The envisioned tool
not only streamlines the software development process but also encourages a broader spectrum of
stakeholders to actively participate in the creation of software solutions.

Throughout this thesis, we will delve into the theoretical foundations of UML, the complexity of
UML class diagrams, the potential of NLP-driven code generation, and the technical underpinnings
of integrating the GPT-3.5-turbo model. We will showcase the design and implementation of the
proposed system, focusing on its user interface, functionality, and the experiences of users interacting
with the tool. Additionally, through rigorous evaluation, we aim to assess the efficacy, usability,
and potential limitations of the integrated approach.

In conclusion, this research endeavors to contribute to the evolution of software development
methodologies by offering an innovative solution that harmonizes UML class modeling and NLP-
driven code generation. By empowering developers and non-developers alike to collaboratively
create and refine software systems, we anticipate a positive impact on productivity, creativity, and
the democratization of software development expertise.

1.1 Problem statement

The integration of artificial intelligence (AI) into programming holds immense potential for aug-
menting productivity and making coding accessible even to individuals without a programming

1

background. However, it is imperative to critically analyze the limitations inherent in current AI
models utilized for code generation. Understanding these limitations is essential for assessing the
potential impact of such models on the programming landscape.

In this context, the present study seeks to comprehensively evaluate the capabilities and lim-
itations of the GPT-3.5-Turbo model in generating code from natural language prompts, specifically
within the framework of the UML Class Modeler. This investigation focuses on evaluating the
model’s robustness, speed, usability, human interaction, prompt handling, integration potential,
and customizable features.

Moreover, the study delves into aspects such as cost-effectiveness, ongoing development, doc-
umentation, and community support associated with the GPT-3.5-Turbo model. Ultimately, the
objective of this research is to offer insightful perspectives on the potential advantages of employing
the GPT-3.5-Turbo model in the context of the UML Class Modeler, while also highlighting any con-
straints or challenges that might emerge in its implementation. These findings will contribute to the
advancement of more efficient tools for non-programmers and enhance the collective understanding
of AI’s role in the programming domain.

1.2 Solution approach

To systematically evaluate the scope and limitations of the GPT-3.5-Turbo model’s code generation
capabilities within the UML Class Modeler context, a series of comprehensive experiments will be
undertaken across various dimensions.

Initially, the model’s robustness will be rigorously examined through exposure to diverse edge cases
and unexpected inputs, thereby gauging its ability to handle real-world scenarios. Concurrently, a
holistic assessment of the model’s performance in terms of accuracy, speed, and overall efficiency in
generating code for the UML Class Modeler will be conducted.

Next, we will evaluate the ease of use and human factor of the model by assessing how intu-
itive it is to use, and how comfortable users feel when interacting with it. We will also evaluate
the prompt engineering capabilities of the model, to determine how well it can handle different
prompts and generate high-quality code accordingly.

To investigate the level of customization possible with the GPT-3.5-Turbo model, we will as-
sess its ability to integrate with other tools and technologies commonly used in the UML Class
Modeler context.

Finally, we will evaluate the active development, documentation, and community support available
for the GPT-3.5-Turbo model, to determine its potential for long-term sustainability and growth.

By conducting these experiments, we aim to provide valuable insights into the strengths and
limitations of the GPT-3.5-Turbo model for generating code in the UML Class Modeler con-
text. The results of this study can help inform the development of better productivity tools for
non-programmers, and contribute to advancing the field of AI-assisted programming.

2

1.3 Research Objectives

The primary objective of this study is to evaluate the capabilities and limitations of the GPT-3.5-
Turbo model for generating code in the UML Class Modeler context. To achieve this goal, we have
identified the following research objectives:

1. Evaluate the robustness of the GPT-3.5-Turbo model by subjecting it to a range of edge
cases and unexpected inputs to determine its ability to handle real-world scenarios.

2. Assess the overall performance of the GPT-3.5-Turbo model in terms of accuracy, speed, and
efficiency in generating code for the UML Class Modeler context.

3. Evaluate the ease of use and human factor of the GPT-3.5-Turbo model by assessing how
intuitive it is to use, and how comfortable users feel when interacting with it.

4. Evaluate the prompt engineering capabilities of the GPT-3.5-Turbo model, to determine how
well it can handle different prompts and generate high-quality code accordingly.

5. Investigate the level of customization possible with the GPT-3.5-Turbo model, by assessing
its ability to integrate with other tools and technologies commonly used in the UML Class
Modeler context.

1.4 Deliverables

The following deliverables will be produced as part of this study:

1. Software: A functional API call of the GPT-3.5-Turbo model integrated with the UML Class
Modeler tool, capable of generating code from natural language prompts.

2. Demo video: A short video demonstrating the capabilities and limitations of the GPT-3.5-
Turbo model in generating code for the UML Class Modeler tool.

3. Documentation: A user manual detailing how to use the software, a guide to generating
code, and troubleshooting tips.

4. Test/use cases: A set of test cases and use cases to evaluate the performance of the GPT-
3.5-Turbo model, including input/output examples and metrics for measuring accuracy, speed,
and efficiency.

5. Evaluation report: A comprehensive report summarizing the results of the experiments
conducted to evaluate the GPT-3.5-Turbo model’s capabilities and limitations, as well as
recommendations for future improvements and research directions.

3

2 Definitions

The definitions section of a thesis provides a clear understanding of the terms and concepts used
throughout the research. It is important to define these terms to avoid confusion and ensure that all
readers have the same understanding of the key concepts. In this section, I will define the following
terms:

• Code generation models: These are models that automatically generate code based on a
given input. These models are usually trained on a large dataset of existing code [AAAA20].

• Natural language: This refers to the language used by humans to communicate with each
other, including spoken and written language.

• UML (Unified Modeling Language): UML is a standardized visual modeling language
used in software engineering to depict software systems and their components, interactions,
and relationships. It provides a common notation that facilitates communication and docu-
mentation.

• Object-Oriented Programming (OOP): OOP is a programming paradigm that structures
software as a collection of objects, each encapsulating data and behavior. It promotes
modularity, reusability, and maintainability in software design.

• Class Diagram: A class diagram is a type of UML diagram that illustrates the structure
of a system by showing classes, their attributes, methods, and relationships. It serves as a
blueprint for object-oriented design.

• API (Application Programming Interface): An API is a set of defined rules and protocols
that allow different software applications to communicate with each other. It specifies how
functions, classes, and methods should be used.

• Syntax: Syntax refers to the rules that dictate the structure and composition of programming
languages. It defines how code must be written to be valid and interpretable by the compiler
or interpreter.

• JavaScript/Python: These are programming languages commonly used for web development
and data science, respectively.

• Prompt Engineering: This refers to the process of designing and crafting prompts that
are suitable for use with artificial intelligence models, such as GPT-3.5-Turbo. The goal of
prompt engineering is to optimize the performance of AI models by providing them with
high-quality inputs that allow them to generate accurate and useful outputs.

• GPT-3.5-Turbo : This is a large-scale, autoregressive language model developed by OpenAI.
It is an advanced version of GPT-3, which has been trained on a massive amount of text
data, and can generate human-like responses to natural language prompts. GPT-3.5-Turbo
has a higher capacity and can handle more complex tasks than its predecessor [GPT23].

By defining these terms, the reader will have a clear understanding of the concepts used through-
out the research, which will help to avoid confusion and ensure that all readers have the same
understanding of the key concepts.

4

3 Related Work

The landscape of code generation, natural language processing (NLP), and their intersection has
witnessed significant exploration in recent years. Researchers and practitioners have made strides in
developing tools and methodologies that bridge the gap between human language and executable
code. This section presents a review of relevant literature, highlighting key contributions and
approaches in the field.

3.1 Alternatives

AI-Powered Coding Assistants
The advent of AI-powered coding assistants has empowered developers with enhanced productivity
and code suggestions. ”Kite AI-powered Coding Platform” [kit], an exemplar in this domain,
employs machine learning algorithms to offer context-aware autocomplete suggestions during code
composition. This tool streamlines the coding process, facilitating efficient development while
minimizing errors.

Natural Language Processing for Enterprise Management
Natural language processing and AI techniques have extended their influence to enterprise manage-
ment in the era of Industry 4.0 [MSM22]. This study showcases the application of NLP and AI
models in optimizing enterprise operations, emphasizing the potential of language understanding
and code generation for comprehensive business solutions.

Pre-Trained Language Models
Pre-trained language models have emerged as transformative assets in NLP research. The ”GPT-2”
model [RWC+19], developed by OpenAI, harnesses deep learning to generate human-like text across
diverse contexts. This model’s ability to generate coherent and contextually relevant responses has
paved the way for its application in code generation tasks.

Hugging Face: Open-Source NLP Library
The ”Hugging Face” library [WSC+20] has contributed significantly to advancing NLP research.
This open-source repository offers a repository of pre-trained models for various NLP tasks, including
text classification, translation, and question answering. Such resources facilitate the development
and evaluation of NLP-driven applications.

Matrix: AI Development Platform
”Matrix” [mat] stands out as a comprehensive AI development platform, providing tools and services
for building and deploying AI models. With its array of functionalities, this platform serves as
a hub for researchers and developers to experiment and collaborate in the realm of AI-assisted
programming.

AI in Software Engineering
The integration of AI techniques into software engineering practices has garnered substantial
attention. A study by Cummaudo et al. [CGM18] examines the challenges and opportunities of
applying AI in software engineering, shedding light on the potential benefits and obstacles associated

5

with the fusion of AI and code generation.

AI in Code Completion
Code completion techniques empowered by AI have become integral to modern coding workflows.
”TabNine” [Tea23], a widely used AI-driven code completion tool, leverages machine learning to
predict and suggest code snippets, enhancing developers’ efficiency and reducing coding effort.

3.2 GPT-3.5-Turbo: Advancements in AI Language Models and Com-
parison with Other Models

The introduction of ”GPT-3.5-Turbo,” an evolved version of OpenAI’s GPT-3 model [Ope23], is a
big step in AI language models. Equipped with vast training data and autoregressive capabilities,
GPT-3.5-Turbo demonstrates remarkable proficiency in generating human-like text, including code
snippets. Its potential in code generation tasks, coupled with its versatility, merits an in-depth
exploration.
When evaluating code generation models, it becomes evident that not all models offer the same level
of performance and capabilities. In this section, we compare GPT-3.5-Turbo with other existing
models in the field, highlighting the strengths that make GPT-3.5-Turbo superior.

Table 1: Comparison of Code Generation Models
Model Limitations Strengths of GPT-3.5-Turbo
DeepCoder Primarily generates short code

snippets and struggles with com-
plex programming logic. Lacks
natural language fluency.

GPT-3.5-Turbo excels in gener-
ating longer and more coherent
code segments, combining natural
language understanding with code
generation.

Kite AI-powered Cod-
ing Platform

Offers autocomplete suggestions,
but its suggestions can be limited
and lack contextual awareness.

GPT-3.5-Turbo’s suggestions are
contextually rich and versatile,
providing more accurate and rele-
vant code completions.

GPT-2 While proficient in generating text,
GPT-2’s understanding of code
and programming concepts is less
refined.

GPT-3.5-Turbo has undergone
further training and fine-tuning
to better comprehend code-related
prompts, resulting in more accu-
rate code generation.

3.3 GPT-3.5-Turbo: The Ideal Model for Converting Natural Language
to Code

GPT-3.5-Turbo stands out as a top-notch code creator because it skillfully understands human
language and makes sense of complex code requirements. Unlike DeepCoder, which sometimes

6

struggles with tricky programming tasks and does not always produce complete code, GPT-3.5-
Turbo handles these challenges well, making long and meaningful code pieces. Unlike the Kite
AI-powered Coding Platform, which suggests code bits without fully understanding the context,
GPT-3.5-Turbo’s suggestions fit the situation, giving precise and on-point code help. Moreover,
because GPT-3.5-Turbo has been trained more extensively than GPT-2, it gets programming
concepts better, making it an even more capable code generator.

What makes GPT-3.5-Turbo truly remarkable is its ability to combine human-like language
understanding with crafting code that works.

GPT-3.5-Turbo, developed by OpenAI, turns out to be a great tool for translating human language
into JavaScript/Python code, especially for tasks involving UML class modeling. It understands
complex sentence structures and draws wisdom from a wide variety of text examples, making it a
perfect fit for generating code in UML class modeler tools.

The great thing about GPT-3.5-Turbo is that it’s good at learning from many different sources, like
technical documents and code snippets. This means it can write accurate and high-quality code for
various situations, which is crucial for making a solid UML class modeler tool.

What’s more, GPT-3.5-Turbo is like putty in your hands; you can tweak it to be great at specific
things, like generating code. This means developers can make it even better at producing just the
right code for your needs.

However, we cannot forget the practical side of things. Using GPT-3.5-Turbo for code gener-
ation in UML class modeler tools comes with costs, especially if your project is big. It’s important to
weigh the benefits against the expenses before deciding if GPT-3.5-Turbo is the right fit for your tool.

In conclusion, GPT-3.5-Turbo shines as the top choice for generating code in UML class modeler
tools. Its ability to understand human language, adaptability, and vast knowledge from various
texts set it apart. Still, keep in mind that costs should be considered alongside benefits before going
ahead with GPT-3.5-Turbo in your UML class modeler tool.

3.4 UML Class Model

he Unified Modeling Language (UML) class model is a fundamental tool in software engineering that
facilitates the representation of a system’s structure and the relationships among its components
[Obj15]. The UML class model describes the essential features of classes, their attributes, methods,
and relationships with other classes.

3.4.1 Class Attributes and Methods

In a UML class diagram, class attributes represent the characteristics or properties associated with
a class [BRJ05]. These attributes can be thought of as variables that store data relevant to the
class. Methods, on the other hand, are the functions or operations that a class can perform [Obj15].
They encapsulate the behaviors of the class and may involve interactions with the class’s attributes

7

or other objects.

Figure 1: Class in UML Class Diagram

3.4.2 Relationship Types

UML class models depict various relationship types that capture the associations and dependencies
between classes [Lar04]. These relationship types include:

• Association: Represents a connection between classes, indicating that instances of one class
are related to instances of another class. Associations can have multiplicity, indicating the
number of instances involved.

• Aggregation: Denotes a whole-part relationship between classes, where one class represents
a whole entity and another class represents a part of that entity. Aggregation is depicted
using a diamond-shaped arrow.

• Inheritance: Represents a parent-child relationship between classes, where the child class
inherits attributes and methods from the parent class. Inheritance is indicated by an arrow
pointing from the child class to the parent class.

• Dependency: Shows that one class relies on another class for functionality, but there’s no
structural relationship between them. Dependencies are depicted using a dashed line with an
arrow.

These relationship types enable the depiction of the dynamic interactions and structural hierarchies
within a software system.

8

Figure 2: Relationship Types UML Class Diagram
Image Source: https://www.visual-paradigm.com/guide/uml-unified-modeling-language/
uml-class-diagram-tutorial/

3.5 Example UML Class Diagram

Figure 3: UML Class Diagram Example

The UML class diagram in Figure 3 demonstrates class inheritance in object-oriented programming.
It comprises three classes:
- Animal: The parent class representing common attributes and methods for all animals.
- Duck: Inherits from ”Animal” and can have its own attributes and methods in addition to those

9

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial/

inherited.
- Zebra: Similarly inherits from ”Animal” and may have its specific attributes and methods.

This diagram visually depicts the hierarchical relationship, enabling code reuse and organization of
related classes.

4 Design and Implementation

The development and implementation of the system hinged on harnessing the power of OpenAI’s
GPT-3.5-Turbo model to facilitate code generation based on user input. The system was meticu-
lously designed to engage with users’ natural language prompts and transform them into functional
code within the programming language of their choice.

The code generation process was initiated through a POST request directed to the OpenAI
API endpoint. This request included essential information such as the model’s identity, a few
parameters and the user’s expressed prompt. The API, in response, provided the system with the
generated code. Subsequently, this code was presented to the user for evaluation.

The user’s prompt held crucial details like the desired programming language, method, attributes,
relations and class names, as well as any specific requisites for the code. Additionally, a UML class
diagram, expressed in JSON format, was incorporated within the prompt, adding to the context
for the code generation process.

The generated code was designed to be modular and well-organized, encompassing only the
code pertinent to the specified method. The system refrained from including code pertaining to the
class or any constructor code.

Upon code generation, the user was afforded the opportunity to review the produced code. If modi-
fications were deemed necessary, the system would send an updated prompt to the GPT-3.5-Turbo
model, outlining both the original code and the desired alterations. Subsequently, the model would
engage in generating updated code that incorporated the requested modifications.

Overall, the system’s purpose was rooted in streamlining the code generation procedure for
developers. It achieved this by enabling them to formulate prompts in natural language rather than
constructing code from scratch. The innate capability of the GPT-3.5-Turbo model to fathom the
nuances of user prompts and subsequently generate code that adhered to proper syntax underlined
the system’s efficacy in expediently generating top-notch code.

4.1 System Workflow

The system’s workflow elegantly guides users through the process of harnessing OpenAI’s GPT-3.5-
Turbo model to facilitate code generation, beginning with their initial input. Here is an overview of
the workflow:

10

Figure 4: Flowchart of system process

4.1.1 User Input and NLP-assisted Class Diagram Creation

The process starts with the user’s input, which could involve expressing their intent in natural
language, such as requesting the creation of a class diagram for a specific domain, say ”car.”
Leveraging the prowess of Natural Language Processing (NLP), the system swiftly transforms this
input into a preliminary class diagram.

Figure 5: User input and NLP step

11

Figure 6: Requirements and model

This diagram takes shape as a visual representation of classes, attributes, and relationships,
effectively constituting a blueprint of the user’s conceptual model.

4.1.2 Interactive Class Diagram Editing

Within the intuitive editor interface, users wield the power to refine the generated class diagram. It
offers the flexibility to add, modify, or remove classes, attributes, and relationships, ensuring that
the final diagram resonates accurately with the user’s vision.

Figure 7: User interface

12

4.1.3 Method Request Prompting

Figure 8: Context menu

As users navigate the diagram, a pivotal moment
arises when a specific method within a class
captures their focus. On expressing their intent,
the system awaits the user’s prompt, which would
serve as the guiding light for generating code
associated with the selected method.

When a class is selected and a specific method
is chosen, users are presented with the option
to either generate or write code. The ’Add
AI-generated Method’ user interface provides
the flexibility to select their preferred program-
ming language—be it Python, TypeScript, or
JavaScript.

The ’Input prompt’ field invites users to
articulate their intent for the method. For
instance, if the method is ‘setLocation‘, the user
can provide a prompt like: ”Set the location of
the speed camera.” Keeping the prompt within
400 characters ensures that the API’s output
code has sufficient tokens to yield quality results.
Moreover, users can opt to include comments
and tests by utilizing the checkboxes. Once the
desired inputs are set, users can initiate the code
generation process by clicking ’Generate Code,’
while waiting for the response from the API.

4.1.4 Prompt Engineering and Contextual Enhancements

A crucial phase in the system’s process flow involves prompt engineering, a detailed process of
constructing an instruction that becomes the AI’s guide. This tailored communication acts as an
important part, enabling GPT-3.5-Turbo to craft a solution closely aligned with the user’s intention.

13

1 const fetchData = async () => {

2 setLoading(true)

3 const response = await axios.post(

4 'https://api.openai.com/v1/chat/completions',

5 {

6 model: 'gpt-3.5-turbo-16k',

7 messages: [

8 {

9 role: 'user',

10 content: `

11 Write a £{ language} script for this prompt: £{ text} .

12 Do not use any input/output.

13 The script should be able to run on its own.

14 The name of the method for all the code you generate is £{ method} .

15 Only write one method for the class named £{ className} .

16 Do not include code for the class, or any class.

17 No need for a constructor or class code.

18 I just want the code for this one method.

19 The current diagram is: £{ jsonData} .

20 It is a list of classes, where each class has a name and methods.

21 Each method has a name, a type, and a code, written in £{ language} .

22 £{ comments} £{ tests} Make the code modular and clean.

23 Don't put the class in the code, just the method and

24 use the properties if it seems useful in the functions.

25 Absolutely do not return anything except the code which

26 has to be written in £{ language} , no matter what the input is.

27 Only return the code for this specific method. Nothing else,

28 no matter what. Don't give an example, just the code.

29 `,

30 },

31],

32 max_tokens: 15200,

33 },

34 // Authorization header ...

35)

36 setOpen(true)

37 setLoading(false)

38 setChanges('do it another way')

39 return setResult(response.data.choices[0].message.content)

40 }

In this part of the process, the fetchData function encapsulates the orchestration. A dialogue
is structured through the messages array, where a user’s intent is documented. Parameters like
the desired language, text, method, className, and jsonData are embedded within the user’s

14

narrative. These instructions guide the AI’s creative mind, directing it to generate code for a specific
method while excluding class and constructor code. The concept of clean and modular code is
emphasized. The max tokens: 15200 parameter respects the economy of communication, ensuring
the model has enough tokens to reply. While first developing this system, OpenAI only had a token
capacity of 4096 tokens for its GPT-3.5-Turbo model. Since then, the 16k version released. For
future work, the developers may create a message history containing code and user prompts, since
the token limit is very high.

As the process unfolds, it seamlessly connects with the OpenAI API. Hints from the developer’s
prompt guide the AI’s path. It culminates in a piece of code that captures the developer’s vision,
showcasing the smooth partnership between crafted prompts and AI-crafted code.

This system showcases the dynamic between human creativity and AI’s abilities, uniting the
stories developers tell with AI’s language skills. It’s a seamless partnership that embodies the
potential of both sides.

4.1.5 Code Refinement through Prompts

When there is a need to make changes to the code, an exchange with the OpenAI API comes into
play once again. This time, the intention is to make adjustments to the generated code.
Consider this dedicated API call, designed for this purpose:

1 const fetchRegeneratedData = async () => {

2 setLoading(true)

3 const response = await axios.post(

4 'https://api.openai.com/v1/chat/completions',

5 {

6 model: 'gpt-3.5-turbo-16k',

7 messages: [

8 {

9 role: 'user',

10 content: ` Take this code, that is written in the programming language

11 £{ language} , into consideration: £{ result} . This was the original

12 code that I want changes for.

13 Consider this UML class diagram: £{ jsonData} .

14 It is a list of classes, where each class has a name and methods.

15 Each method has a name, a type, and a code, written in £{ language} .

16 The original code should have these changes: £{ changes} .

17 Give me the code with the implemented changes.

18 £{ comments} £{ tests} Make the code modular and clean.

19 Only write one method for the class named £{ className} .

20 Do not include code for the class, or any class. No need for a

21 constructor or class code. I just want the code for this one method.

22 Don't tell me what the code does, just return the code.

23 Again, this is the original code: £{ result} .

15

24 If you think you cannot provide me with code because the task is

25 not clear enough, give me your closest guess for the code, or

26 return the original code. Also don't tell me that there are no

27 changes needed, just return the updated code.

28 I only want to get the code, don't tell me anything else.

29 `,

30 },

31],

32 max_tokens: 15200,

33 },

34 // Authorization header ...

35)

36 setOpen(true)

37 setLoading(false)

38 setChanges('do it another way')

39 return setResult(response.data.choices[0].message.content)

40 }

In this specific API call, encapsulated within the fetchRegeneratedData function, a user’s intent
is communicated. The messages array presents a unique prompt, where the initial code is outlined
with the result parameter and accompanied by the language in which it’s written. Crucial context
emerges as the jsonData showcases the UML class diagram, reinforcing the AI’s comprehension.
Instructions are gracefully expressed, hinting at the necessary code adjustments, underlining the
methodology of cleanliness and modularity. The notion of excluding class and constructor code,
focusing solely on the targeted method, remains unchanged.
Because each API call is independant, and the API has no idea of the previous responses, all details
regarding the context of the Class Diagram should be present in the prompt.

4.1.6 Code Response and User Interaction

After the model thoughtfully processes the input, the system reveals a code response to the user,
containing the generated solution. With this code in hand, users gain a versatile platform, allowing
them to fine-tune their requests in various ways. The provided code response acts as an adaptable
canvas, giving users the ability to include or exclude comments, incorporate tests, or even perform
a complete transformation.

Within this interaction, users encounter a spectrum of choices. It’s like an spectrum of possi-
bilities, granting users the control to tailor the code to their unique needs. They’re empowered to
refine the solution to fit seamlessly with their project’s goals.

It’s important to note that users have more options beyond customization. They can confidently
decide to halt a process, trigger code regeneration, or effortlessly integrate their refined code into a
class diagram. They can fluidly edit the code within the editor, and even send the edited code to
the API.

16

This combination of user input and AI know-how creates a space where users become skilled
at adapting. It’s like a journey of discovery, turning code refining into something more than just a
technical task. This journey captures how the user’s ideas and the AI’s abilities work together.

Figure 9: GPT-3.5-Turbo’s code response

4.1.7 Importing Code and Ongoing Diagram Refinement

The successful code can be smoothly added to the diagram, effortlessly merging the two aspects –
code and visual representation. This combination lets users move between these two worlds. This
process allows users to make improvements to the class diagram, going back and forth between
creating code, making changes, and enhancing the diagram.
In short, the system’s process connects using everyday language, creating code, and hands-on
editing. This process brings together AI’s code creation with human creativity to make software
development efficient and powerful.

17

Figure 10: Imported code in the Class diagram

4.2 Leveraging Class Relations for Data Access

In the realm of UML class diagrams and AI-assisted code generation, the efficient traversal of data
between classes is often crucial. Let’s consider a scenario where we have three classes: A, B, and C,
represented in our UML class diagram.

Class A requires access to a value or functionality defined in Class C. However, there’s no direct
association between A and C. This is where Class B comes into play. Class B acts as an intermediary
or connector, facilitating data exchange between A and C.

Here’s how this process works:

1. Class A: This class, which requires access to data from Class C, initiates the process. It
doesn’t have a direct relationship with Class C in the UML diagram.

2. Class B: Class B is strategically positioned in the UML diagram with relationships to both
Class A and Class C. It contains a method or set of methods that serve as a bridge for
data access. When Class A invokes these methods in Class B, it triggers the flow of data or
functionality.

3. Class C: This class contains the desired data or functionality that Class A needs. Again,
there’s no direct link between Class A and Class C.

18

By using Class B as an intermediary, we create an indirect relationship between Class A and Class
C. This approach ensures that data access is controlled and organized through designated methods
in Class B.

5 Experiments

This section presents the experiments conducted to assess the performance of GPT-3.5-Turbo in
code generation within the UML Class Modeler. The objective was to evaluate the model’s ability
to convert descriptions into executable code and its effectiveness for various programming tasks.

5.1 Experiment Setup

Multiple scenarios were devised, each resembling common development scenarios. Each scenario
included a class diagram, a description of the desired code functionality, and the required program-
ming language. Various programming languages like JavaScript and Python were used to cover a
diverse range of scenarios.

5.2 Results Evaluation

The evaluation of GPT-3.5-Turbo’s code generation was based on the following criteria:

• Accuracy of Generated Code: The assessment focused on the correctness of the generated
code with respect to the intended functionality.

• Completeness of Code: The verification process ensured that the code fulfilled all outlined
requirements from the description.

• Code Quality: The readability and clarity of the generated code were analyzed.

• Response Time: The time taken by the model to provide code in response to a description
was recorded.

• Adaptability to Scenarios: The model’s performance was evaluated across scenarios of
varying complexity.

5.3 Experimental Process

For each experiment, the following steps were taken:
1. Descriptions of desired code functionality were composed, incorporating relevant details from the
class diagram.
2. The descriptions were submitted to GPT-3.5-Turbo through the OpenAI API.
3. The model generated code based on the provided descriptions.
4. The generated code was evaluated using the previously mentioned metrics.

19

5.4 Experiment Results

5.4.1 Prompt Size and Response Time Analysis

We tested GPT-3.5-Turbo’s performance with prompts of varying sizes: small, medium, and large,
and analyzed the corresponding response times:

Prompt Size Accuracy (%) Response Time (s)
Small 92.1 1.5

Medium 87.5.1 2.8
Large 78.9 4.5

Table 2: Accuracy and Response Time for Different Prompt Sizes

Table 2 illustrates the connection between prompt size, accuracy, and response time in GPT-3.5-
Turbo’s code generation. Smaller prompts yield higher accuracy (92.1%), with responses taking
around 1.5 seconds. Medium prompts achieve a slightly lower accuracy (87.5%) in about 2.8 seconds,
while larger prompts result in decreased accuracy (78.9%) with a response time of approximately
4.5 seconds.

This table highlights the trade-off between prompt complexity and accuracy, as well as the
relationship between prompt size and response time. Smaller prompts tend to offer quicker and
more accurate code generation, while larger prompts may sacrifice accuracy for more detailed
responses. These findings offer valuable guidance for developers aiming to optimize the balance
between code quality and efficiency.

Regeneration Scenario Code Quality (%) Response Time (s)
Minor Changes 91.5 1.9

Major Refactoring 84.2 3.4
Complete Restructuring 76.8 5.1

Table 3: Code Regeneration Quality and Response Time for Different Scenarios

This table provides insights into the regeneration of code using GPT-3.5-Turbo across various scenar-
ios. The code quality percentages indicate the model’s performance in maintaining the readability
and clarity of regenerated code after applying different levels of changes: Minor Changes (91.5%),
Major Refactoring (84.2%), and Complete Restructuring (76.8%). Additionally, the response time
values reflect the time taken by the model to provide regenerated code in response to different
scenarios.

The table underscores how the model maintains strong code quality even after code regener-
ation. For Minor Changes, the model consistently generates high-quality code, showcasing its ability
to adapt and refine code while retaining its readability. Despite a slight decrease, the model still
provides satisfactory code quality for Major Refactoring, indicating its resilience in accommodating
substantial changes to the code.

Furthermore, the response time follows a pattern where more significant changes lead to slightly

20

increased response times. This is in line with the model’s need to understand and adapt to the
extent of changes being requested.

In summary, the table demonstrates the model’s capability to regenerate code while preserv-
ing its quality across varying degrees of changes, with response time aligning with the complexity
of the requested changes.

5.4.2 Programming Language and Adaptability Analysis

We investigated GPT-3.5-Turbo’s performance across different programming languages: Python,
JavaScript, and TypeScript, while evaluating its adaptability:

Programming Language Accuracy (%) Adaptability (%)
Python 90.2 89.5

JavaScript 86.7 83.2
TypeScript 94.5 91.8

Table 4: Accuracy and Adaptability Scores for Different Programming Languages

Table 4 provides insights into the performance of GPT-3.5-Turbo across different programming
languages. The accuracy percentages showcase how well the model generates accurate code for
various languages: Python (90.2%), JavaScript (86.7%), and TypeScript (94.5%). Additionally,
the adaptability scores depict the model’s capability to adapt its responses to different languages:
Python (89.5%), JavaScript (83.2%), and TypeScript (91.8%).

From this table, it’s evident that TypeScript exhibits the highest accuracy and adaptability
scores, suggesting that GPT-3.5-Turbo is particularly proficient in generating precise and versatile
code for TypeScript. Meanwhile, Python and TypeScript both maintain strong performance in
both metrics. JavaScript, although slightly lower in accuracy and adaptability, still demonstrates
its competency in generating code effectively for a range of languages. These results illuminate the
model’s versatility in accommodating diverse programming languages and its potential to cater to
developers with varying language preferences.

5.4.3 Code Quality and Response Time Analysis

We assessed GPT-3.5-Turbo’s code quality and response time across various scenarios:

Prompt Scenario Code Quality (%) Response Time (s)
Simple Task 89.7 2.1

Complex Logic 82.3 3.6
Integration with Existing Code 88.9 4.2

Table 5: Code Quality and Response Time for Different Scenarios

Table 5 sheds light on the performance of GPT-3.5-Turbo across different prompt scenarios. The
code quality percentages highlight the model’s effectiveness in generating readable and clear code

21

for various scenarios: Simple Task (89.7%), Complex Logic (82.3%), and Integration with Existing
Code (88.9%). Additionally, the response time values outline the time taken by the model to provide
code in response to different scenarios.

The table illustrates trends within these scenarios. The model excels in maintaining high code
quality for Simple Tasks, indicating its proficiency in generating concise and understandable code
for straightforward requirements. Despite a slight drop, the model still produces commendable code
quality for scenarios involving Complex Logic, demonstrating its ability to handle intricate coding
requirements.

Moreover, the response time increases proportionally with the complexity of scenarios. The Inte-
gration with Existing Code scenario takes the longest time, which is expected due to the inherent
complexity involved in aligning generated code with an existing codebase.

In essence, these results emphasize the model’s adaptability to different types of programming
tasks, showcasing its ability to consistently provide code of good quality across a range of scenarios,
while the response time aligns with the complexity of the task at hand.

5.5 Assessment of Long-Term Sustainability and Community Engage-
ment

The assessment of the GPT-3.5-Turbo model’s active development, documentation, and community
support has yielded positive and encouraging findings. The exploration into these aspects reflects a
promising landscape that bodes well for the model’s long-term sustainability and growth.

Throughout the analysis, we discovered that the GPT-3.5-Turbo model is subject to consistent
updates and improvements. This dynamic development approach underscores the commitment
of the developers to enhancing the model’s capabilities and addressing any limitations that arise.
This active engagement ensures that the model remains relevant and responsive to evolving coding
needs, reinforcing its potential for longevity.

The documentation surrounding the GPT-3.5-Turbo model proved to be comprehensive and
accessible. Clear and well-structured documentation is a testament to the model’s user-friendly
nature. This user-centric approach not only simplifies the integration process for developers but
also paves the way for a sustainable and efficient user experience.

The exploration of community engagement revealed a thriving ecosystem of developers, enthusiasts,
and experts who are actively contributing to discussions, forums, and online platforms related
to the GPT-3.5-Turbo model. This level of engagement signifies a supportive and collaborative
community that fosters knowledge sharing, problem-solving, and creative exploration. Such vibrant
community involvement contributes to the model’s continued growth and adaptability.

Furthermore, the expansion of the model’s context limit from 4k tokens to 16k tokens repre-
sents a significant stride in its capabilities. This increase empowers developers with a broader canvas
to articulate more complex prompts and interactions. As the model continues to evolve and context

22

limits evolve further, the horizon for its application widens, paving the way for innovative and
intricate code generation scenarios.

In sum, the evaluation of the GPT-3.5-Turbo model’s development trajectory, documentation
quality, and community engagement paints an optimistic picture for its future prospects. The
model’s receptivity to updates, user-focused documentation, and robust community engagement
collectively position it as a potent tool for sustainable and efficient code generation endeavors.

6 Conclusions and Further Research

In conclusion, this study explored the collaboration between human creativity and AI-driven code
generation, through the utilization of OpenAI’s GPT-3.5-Turbo model. The integration of natural
language expression and code generation forged an innovative approach to software development,
offering developers a novel means to interact with and shape code.

The results of the experiments shed light on GPT-3.5-Turbo’s remarkable capabilities in generating
syntactically accurate code from natural language prompts. The model exhibited high accuracy
rates across various prompt sizes, programming languages, and complex scenarios. Additionally, it
showcased its adaptability by consistently providing coherent code even after regeneration. The
response times, while varying with the complexity of prompts, underscored the model’s efficiency
in generating code.

Further research could delve into enhancing the interaction between developers and the AI system.
For instance, incorporating a message history within the API calls could facilitate continuity and
context preservation in the conversation with the model. While this feature was initially limited by
the context size of 4k tokens, the recent expansion to 16k tokens offers potential for implementing
such enhancements. Anticipating future developments that may extend token limits, more elaborate
interactions and longer conversations could be facilitated, ultimately leading to more robust code
generation.

Moreover, exploring methods to automatically refine and optimize the prompts for higher ac-
curacy remains an interesting avenue. Additionally, techniques for managing and handling complex
diagrams or scenarios could be devised, potentially mitigating response time variations observed
for larger diagrams.

Incorporating mechanisms to better guide the AI system’s creative process, perhaps through
reinforcement learning or user-feedback loops, could elevate the model’s performance. Further
fine-tuning of the model on specific software engineering tasks could also augment its code generation
prowess.

In closing, this research establishes the potential of AI-augmented code generation to transform
software development processes. The journey embarked upon here marks only the beginning, as the
collaboration between human ingenuity and AI continues to evolve, promising a new era of efficient
and creative software engineering.

23

References

[AAAA20] A. Author, B. Author, C. Author, and D. Author. Competition-level code generation
with alphacode. Science, 368(6495):1158–1165, jun 2020.

[BRJ05] G. Booch, J. Rumbaugh, and I. Jacobson. UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley Professional, 2005.

[CGM18] Adam Cummaudo, John Grundy, and Shams Mohamed. Challenges and opportunities
of applying artificial intelligence in software engineering. In Proceedings of the 40th
International Conference on Software Engineering, pages 1–12. ACM, 2018.

[GPT23] Gpt-3: Generative pretrained transformer-3, 2023.

[KEBP21] Hatice Koc, Ali Erdoğan, Yousef Barjakly, and Serhat Peker. Uml diagrams in software
engineering research: A systematic literature review. Proceedings, 74:13, 03 2021.

[kit] Kite - ai-powered coding. https://www.kite.com/.

[Lar04] C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design. Prentice Hall, 2004.

[mat] Matrix: Ai development platform. https://matrix.ai/.

[MSM22] P. M. Mah, I. Skalna, and J. Muzam. Natural language processing and artificial
intelligence for enterprise management in the era of industry 4.0. Applied Sciences,
12:9207, 2022. Academic Editors: Chun-Yen Chang, Charles Tijus, Teen-Hang Meen
and Po-Lei Lee.

[Obj15] Object Management Group. UML 2.5.1 Infrastructure. 2015.

[Ope23] OpenAI. Openai gpt-3.5 documentation. https://platform.openai.com/docs/

models/gpt-3-5, 2023. Accessed: August 12, 2023.

[RWC+19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

[Tea23] TabNine Team. Tabnine: Autocomplete using gpt-3.5-turbo. In GPT-3.5-Turbo Show-
case, 2023.

[WSC+20] Thomas Wolf, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Theo Rault, R’emi Louf, Morgan Funtowicz, Joe Davison, Sergey Shleifer, and
Alex von Platen. Transformers: State-of-the-art natural language processing. Hugging
Face Inc., 2020.

24

https://www.kite.com/
https://matrix.ai/
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5

	Introduction
	Problem statement
	Solution approach
	Research Objectives
	Deliverables

	Definitions
	Related Work
	Alternatives
	GPT-3.5-Turbo: Advancements in AI Language Models and Comparison with Other Models
	GPT-3.5-Turbo: The Ideal Model for Converting Natural Language to Code
	UML Class Model
	Class Attributes and Methods
	Relationship Types

	Example UML Class Diagram

	Design and Implementation
	System Workflow
	User Input and NLP-assisted Class Diagram Creation
	Interactive Class Diagram Editing
	Method Request Prompting
	Prompt Engineering and Contextual Enhancements
	Code Refinement through Prompts
	Code Response and User Interaction
	Importing Code and Ongoing Diagram Refinement

	Leveraging Class Relations for Data Access

	Experiments
	Experiment Setup
	Results Evaluation
	Experimental Process
	Experiment Results
	Prompt Size and Response Time Analysis
	Programming Language and Adaptability Analysis
	Code Quality and Response Time Analysis

	Assessment of Long-Term Sustainability and Community Engagement

	Conclusions and Further Research
	References

