
Master Computer Science

Anonymization Algorithms for Privacy-Sensitive

Networks

Name: Xinyue Xie
Student ID: s3284778

Date: 25/08/2023

Specialisation: Data Science

Supervisors: Dr. Frank W. Takes
Rachel G. de Jong MSc
Dr. Mark P. J. van der Loo

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands2

Abstract

The widespread utilization of graph data across various domains has led
to increased data sharing. Consequently, as these data may contain sensi-
tive information, preserving privacy in graph data has become an important
concern. In this thesis, we explore how to preserve the privacy of individu-
als by maximizing anonymity within a given “budget”, i.e., allowed number
of modifications to the graph. We measure node anonymity by ego network
size and ego network structure and propose various so-called anonymization
algorithms to increase overall node anonymity. We introduce and apply the
proposed methods to five datasets and compare node anonymity, algorithm
runtime, and effect on network structure based on various metrics.

1 Introduction

In modern times, graph data are used for various fields, including social network
analysis, disease spread, and trade. There has been an important increase in interest
in graph data, leading to increasing demand for sharing graph data for research pur-
poses. However, some graph data may contain sensitive information, such as social
connections on platforms like Facebook [16, 22], resulting in the need to prioritize
privacy preservation in graphs. There are two major types of disclosure [15]: identity
disclosure, which involves identifying individuals, and attribute disclosure, which in-
fers specific individual traits. In this thesis, we focus on the former. One approach
to avoid identity disclosure is naive user identity (ID) removal. Unfortunately, the
work of Backstrom et al. [2] points out that simply removing the ID of the users
before publishing the data does not guarantee privacy because individuals can be
re-identified based on structural information of the graph.

Anonymization can prevent the identification of individuals under an assumed
certain attack scenario by removing or modifying data. Simultaneously, it should
preserve the structure and enable meaningful analysis. Research on anonymization
can be divided into two main aspects: anonymity measures and anonymization meth-
ods. Based on different anonymity measures, current anonymization methods can be
primarily categorized into three types: k-anonymity-based methods [5, 18, 31, 32],
clustering-based methods [13, 24], differential-privacy-based methods [9, 10]. The
anonymity method k-anonymity is commonly used in graph data, which ensures each
node in a dataset is indistinguishable from at least k− 1 other nodes with respect to
a certain amount of knowledge. The knowledge corresponds to attack scenarios and
to some extent influences anonymization methods.

The work of Liu and Terzi [18] proposed k-Degree Anonymity (k-DA) to measure
the anonymity of the graph. In k -DA, nodes are considered anonymous when there
are at least k − 1 nodes with the same degree. They provided an anonymization
method for this anonymity measure by generating a degree sequence and then adding
edges according to the degree sequence. Also based on k -DA, Lu et al. [19] proposed
an anonymization method that simultaneously adds edges to the graph and updates
the degree sequence. Chester et al. [6] also consider this anonymity measure. After
generating the degree sequence, they anonymize the graph by adding fake nodes and
adding edges between real nodes and fake nodes.

Zhou and Pei [31] focused on the structure of nodes’ neighborhoods and intro-
duced a novel anonymity measure known as k-Neighborhood Anonymity (k-NA). They
also developed a greedy method to resist the attack. Zou et al. [32] took all struc-
tural information into account and proposed k-automorphism to measure anonymity.
They also presented the k-Match algorithm to ensure the anonymity of nodes. The
k -Match algorithm first partitions the graph into blocks and divides similar blocks
into groups, and then adds edges to anonymize the blocks in the group. Similarly,
Cheng et al. proposed k-isomorphism [5] as an anonymity measure and explored

1

various methods to achieve k-isomorphism based on graph embeddings. Based on
k-NA, Romanini et al. [21] proposed using the uniqueness of neighborhoods as a
measure, giving a more macro-level perspective. They also explored the influence of
density in random networks on uniqueness, and proposed to anonymize the graph by
randomly deleting edges from the original graph. More recently, de Jong et al. [7, 8]
provided algorithms that efficiently measure d-k-anonymity, offering the flexibility to
adjust the scope of the neighborhood through the parameter d.

Most of the aforementioned anonymization methods focus on ensuring anonymity
for each node in the graph. However, in some scenarios, such methods may not be
efficient enough, especially when dealing with graphs that contain numerous unique
nodes. These methods could lead to a large amount of changes, affecting the network
structure and consequently influencing various analytical results. Therefore, we at-
tempt to introduce anonymization methods that anonymize the graph while limiting
the number of changes to the graph. In this thesis, our main research question is:

How can we efficiently anonymize a given network as much as possible, while
making as few changes to the graph structure as possible?

We present five methods for this main research question, addressing on the fol-
lowing sub-questions:

• Which graph modification operations are most useful for anonymizing graphs?

• Given a particular anonymity measure, which method of anonymization is most
effective at anonymizing a given network?

• How does the runtime of various network anonymization methods depend on
the structural properties of the considered networks?

• Deleting which types of edges is most useful to increase overall network anonymity?

A brief overview of privacy-preserving techniques in social networks is presented
in Section 2. In Section 3, we introduce definitions of some commonly used terms in
graph analysis and anonymity in networks. Section 4 discusses the methods we used.
Section 5 introduce the datasets we used. The experimental setup and the results
are included in Section 6. In the last section, a conclusion is provided.

2

2 Related Work

There are several graph anonymization techniques that are commonly used to protect
sensitive data, such as k-anonymity, differential privacy, and data aggregation. In
this section, we give a brief overview of current techniques for graph anonymization.

Clustering-based methods can also be considered generalization-based methods
or aggregation-based methods. It combines data at a higher level of granularity by
combining some similar nodes and edges to supernodes and superedges [4, 13, 29],
to protect privacy. Differential privacy is also used in graph anonymization. This
approach is usually applied by allowing users to query data without sharing the full
graph. Differential-privacy-based methods add noise in the query results or in actual
data [23]. They can be further divided into node differential privacy [20, 23] and edge
differential privacy [1, 12]. Another branch is k-anonymity-based methods. A graph
satisfies k-anonymity when each node in this graph is indistinguishable from at least
k − 1 other nodes. The k-anonymity-based methods modify the original graph to
ensure k-anonymity, and release the modified graph.

A comparison between a k-anonymity-based method [19] and a clustering method
[4] was conducted by Campan et al. [3]. According to the results, the k-anonymity-
based method can better preserve the local structure of the graph. Moreover, since
the differential-privacy-based methods do not release the full graph, analysis of the
data will be limited. Therefore, in this thesis, we focus on k-anonymity-based meth-
ods.

Two aspects need to be discussed for k-anonymity-based methods: the anonymity
measure and the anonymization algorithm. The level of attacker knowledge de-
termines what kind of nodes are indistinguishable, thus, affecting the measure of
anonymity. Liu and Pei [18] introduced k-DA, measuring anonymity by degree. Hay
et al. [14, 13] extended it to k-candidate, using the degree set of neighbors to model
the adversary’s knowledge. Zhou and Pei [31] introduced k-NA, which takes the
structure of the neighborhood of nodes into account. Zou et al. [32] not only consider
the structure of the neighborhood, but take all the graph structure into account and
presented k-automorphism. Similarly, Cheng et al. [5] and Wu et al. [26] proposed k-
isomorphism, which describes graphs containing k disjoint isomorphic subgraph, and
k-symmetry, which requires automorphism of node partition, respectively. Then, van
der Loo [25] proposed d-k-anonymity, which enlarges the size of the neighborhood of
k-NA. The radius of the neighborhood can be adjusted by parameter d.

Many methods were developed for graph anonymization. Some of them are
measure-agnostic, like randomly deleting [21] from the original graph, or deleting
edges and adding edges at the same time [14, 27, 28]. Many other anonymization
methods are measure-specific. For k-DA, Liu and Pei [18]’s method first construct a
degree sequence that ensures k-DA. Then, they calculate the difference between the
original degree sequence and the constructed degree sequence and add edges accord-
ing to the calculated results. Then, Zhang et al. [30] proposed an edge plausibility

3

metric and developed an improved edge-adding approach that extends Liu and Pei’s
method to some extent. Chester et al. [6] also focus on k-DA, and anonymized
the graph by adding fake nodes according to the degree sequence, and connecting
the fake nodes with real nodes. For k-NA, Zhou and Pei [31] first greedily group
the nodes with similar neighborhoods together. Then, they make nodes in the same
group equivalent.

In this thesis, we focus on k-anonymity-based edge deletion methods. The mea-
sures we considered are d-k-anonymity [7, 8, 25] and (n,m)-anonymity, introduced
in Section 4.1. We focus on graph uniqueness as used in the work of Romanini et
al. [21]. For the anonymization method, we propose to use four methods that are
measure-agnostic and one greedy method specific to (n,m)-anonymity.

4

3 Preliminaries

In this section, we summarize notation and definitions that are commonly used to
analyze graph data and describe anonymity in networks.

3.1 Graphs

Let a graph G = (V,E) be used to model the network, where V is the set of nodes
and E is the set of edges. Here, v ∈ V is used to represent the individuals in the
network, and {u, v} ∈ E is a connection between two individuals, with u, v ∈ V . The
number of nodes is denoted as |V |, and |E| ≤

(|V |
2

)
) denotes the number of edges.

For two nodes u, v ∈ V , the distance between u and v, denoted as dist(u, v), is
the minimum number of edges that need to be traversed to get from one node to
the other. Since our graphs are undirected, it follows that dist(u, v) = dist(v, u). If
there is no path between u and v, dist(u, v) is defined as ∞. For the node itself, it
follows that dist(v, v) = 0. The number of nodes for which the distance to v equals 1
is called the degree of v, denoted as deg(v).

When looking at the d-neighborhood of a node v, we look at the subgraph con-
taining all the nodes whose distance from it is not more than d and all edges between
these nodes, as defined below. When d = 1 we look at the 1-neighborhood, commonly
known as the ego network.

Definition 3.1 (d-Neighborhood). Given a graph G = (V,E) and a node v ∈ V , the
d -neighborhood of v, denoted as Nd(v), is defined as Nd(v) = (Vd(v), Ed(v)), where
Vd(v) = {u ∈ V |dist(u, v) ≤ d}, Ed(v) = {{u,w} ∈ E|u,w ∈ Vd(v)}.

For u, v, w ∈ V , we call the triplet {u, v, w} a triangle if {u, v}, {v, w}, {u,w} ∈ E.
The transitivity and average clustering coefficient (ACC) quantify the tendency of
nodes in a graph to form triangles. Transitivity is the ratio of actual triangles to the
potential triangles within the graph.

Transitivity(G) =
3 · |{{u, v, w}|{u, v}, {u,w}, {v, w} ∈ E}|

|{u ∈ V |{u, v}, {u,w} ∈ E}|
(1)

Given a node v ∈ V , the clustering coefficient CC(v) is defined as:

CC(v) =
2 · |{{u,w} ∈ E|{u, v}, {v, w} ∈ E}|

deg(v) · (deg(v)− 1)
(2)

The ACC of a graph is defined as:

ACC(G) =
1

|V |
∑
v∈V

CC(v) (3)

Another important term in graph analysis is ismorphism, which determines
whether two graphs are structurally indistinguishable.

5

Definition 3.2 (Graph isomorphism). Given two graphs G = (V,E) and G′ =
(V ′, E ′), G and G′ are isomorphic if there is a bijection ϕ : V → V ′, such that
{u, v} ∈ E, precisely when {ϕ(v), ϕ(u)} ∈ E ′.

3.2 Uniqueness of a graph

We say that a node is k-anonymous when it is indistinguishable from at least k − 1
other nodes using some measure for equivalence. The measure for equivalence used
corresponds to a scenario, where we assume an attacker has this information. When
two nodes are indistinguishable given a measure, denoted as v ≃ u for u, v ∈ V , they
are in the same equivalence class. A node is unique when no other nodes are in the
same equivalence class as this node. For v ∈ V , uniqueness of a node δm(v) is defined
as

δm(v) =

{
1, {u ∈ V |u ≃m v} = v
0, otherwise

(4)

The uniqueness of a graph is defined as the fraction of unique nodes.

Ua(G) =
Σv∈V δm(v)

|V |
(5)

where a denotes the chosen anonymity measure (see Section 4.1).

6

4 Approach

In this section, we introduce our approach in detail, which includes the two anonymity
measures and the five anonymization methods. The two anonymity measures we use
are (n,m)-anonymity and d-k-anonymity, which are introduced in Section 4.1. The
modification operations are presented in Section 4.2, consisting of random edge dele-
tion as baseline in Section 4.2.1, two heuristics combined with degree and unique-
ness properties of nodes in Section 4.2.2 and Section 4.2.3 respectively, a logistic-
regression-based method in Section 4.2.4 and a greedy method aimed at (n,m)-
anonymity in Section 4.2.5.

Table 1 gives a brief overview of these anonymization methods. The results of
random methods and the two heuristics based on random edge deletion are nonde-
terministic and the (n,m)-greedy method is specific to (n,m)-anonymity.

Table 1: The anonymization methods used in this thesis. The middle row indicates
whether this anonymization method is deterministic. The last column shows whether
the methods are measure-specific.

Method Deterministic Measure-specific

Random deletion/addition/rewiring ✗ ✗

Degree-based deletion ✗ ✗

UA-based deletion ✗ ✗

LR-based deletion ✓ ✗

(n,m)-greedy deletion ✓ ✓

4.1 Anonymity measures

We introduce anonymity measures based on two different levels of background knowl-
edge of the attackers.

4.1.1 (n,m)-Anonymity

Here we assume that in a social network, individuals can see the list of their own
friends and how many common friends they have. Suppose the attacker obtained
this information, then he or she can recognize a specific individual in the graph by
comparing the number of nodes and edges in the person’s ego network.

We define (n,m)-anonymity to describe the scenario that an attacker knows the
number of nodes n and the number of edges m in a node’s 1-neighborhood. The mea-
sure of (n,m)-anonymity can be extended to different distances of the neighborhood.
Here, we focus on ego networks and therefore refer to (n,m) as the ego state.

7

Definition 4.1 (Ego State). Given a graph G = (V,E) and a node v ∈ V , the ego
state of v, denoted S(v), is defined as S(v) = (n,m), where n = |V1(v)|,m = |E1(v)|.

Then, (n,m)-anonymity is defined as below.

Definition 4.2 ((n,m)-Anonymity). Given a graph G = (V,E), two nodes u, v ∈ V
are in the same equivalence class, denoted as u ≃nm v, when S(u) = S(v). The size
of the equivalence class of a node is called its (n,m)-anonymity.

For example, in Figure 1a, V1(B) = {A,B}, E1(B) = {{A,B}}, thus, S(B) =
(nB,mB) = (2, 1). A ≃nm G, E ≃nm F ≃nm H because they have the same number
of nodes and edges in their ego networks.

4.1.2 d-k-Anonymity

The anonymity measure of d-k-Anonymity [25] extends k-NA to a larger neighbor-
hood size. Other than (n,m)-anonymity, d-k-anonymity considers the full structural
information of the neighbourhood. d-k-Anonymity is a stricter measure, as it assumes
complete attacker knowledge of the neighbourhood structure up to and including
distance d. The definition of d-k-anonymity is shown below. For nodes u, v ∈ V , if
u ≃dk v it follows that u ≃nm v.

Definition 4.3 (d-k-Anonymity). Given a graph G = (V,E) and two nodes u, v ∈ V ,
u and v are d-equivalent, denoted as u ≃dk v; there is an isomorphism ϕ : Nd(u) →
Nd(v), such that ϕ(u) = v. The size of the equivalence class of a node is called its
d-k-anonymity.

The parameter d can be used to define the knowledge of the attacker. In this
thesis, we assume the attacker only has information on the ego networks, therefore,
d is set to 1.

Figure 1b gives an example of a graph where nodes are partitioned based on d-k-
anonymity. Compared to Figure 1a, nodes A and G are not equivalent anymore, as
there is a degree 1 node B in N1(A) that no node in N1(G) can map to.

We use the two anonymity measures to determine which nodes are unique and to
calculate the uniqueness of the graph as a whole.

4.2 Edge deletion methods

In this section, we introduce the anonymization methods we used in this thesis. We
start with introducing three modification operations, addition, rewiring and deletion,
and the corresponding random algorithm in Section 4.2.1. Then, we focus on algo-
rithms using the edge deletion modification, and the random edge deletion as our
baseline. We propose two heuristics (see Section 4.2.2 and Section 4.2.3), an approach

8

(a) Equivalence classes based on (n,m)-
anonymity.

(b) Equivalence classes based on d-k-
anonymity.

Figure 1: Figure 1a and 1b show the equivalence nodes based on (n,m)-anonymity
(left) and d-k-anonymity (right), respectively. Nodes in the same color are in the
same equivalence class. The 2-tuple node labels in 1a denote the ego states of each
node.

using an LR model (see Section 4.2.4), and a greedy algorithm for (n,m)-anonymity
(see Section 4.2.5).

Algorithm 1 presents the overview of the deletion process. Unless stated oth-
erwise, the methods in the following section follow the same steps, with the only
difference being the algorithm for selecting the edges to be deleted, shown in line 5.
Variable G refers to the original graph, N refers to the number of edges modified in
total, M refers to the anonymization method discussed in the following section, and
a refers to the anonymity measure discussed in Section 4.1. Besides, all the meth-
ods, except the baseline, include calculating values corresponding to the anonymity
measure. Therefore, we need to recompute the anonymity of all the nodes during
deletion, which is time-consuming. At the same time, deleting a single edge or a few
edges often has little effect on the remaining edges, and hence on the selection proce-
dure, especially when the networks are large. Therefore, we compute the uniqueness
after g edge deletions. Parameter g, called the recompute gap, is used to balance the
performance and the running time. It describes how many edges are deleted before
we update the unique node set.

4.2.1 Random edge addition/deletion/rewiring

We perform graph modification by the three following random operations, where the
probability of deletion for all edges is uniform:

• Random edge addition. Given a graph G = (V,E), randomly add non-existing
edges to E.

• Random edge deletion. Given a graph G = (V,E), randomly delete existing
edges from E.

9

Algorithm 1 Graph anonymization by edge deletion

Input: original graph G = (V,E), budget N , method M , measure a, recompute gap
g

1: G′ ← G;
2: t← initialize(N, g); ▷ Initialize the number of iterations
3: Ua, Vunique ← unique(G′, a); ▷ Compute the uniqueness and the unique nodes
4: while t > 0 do
5: Edel ← select(G′, g,M, Vunique); ▷ Determine the g edges to be deleted
6: delete(G′, Edel);
7: t← t− 1;
8: Ua, Vunique ← unique(G′, a);
9: end while

Output: G′, Ua

• Random edge rewiring. Given a graph G = (V,E), randomly choose several
edge pairs, and replace each pair {u, v}, {u′, v′} by {u, v′}, {u′, v}.

Based on Romanini et al.’s [21] results and the preliminary experiment in Sec-
tion 6.2, which shows that edge deletion is by far the most efficient, we decided to
use random edge deletion as a baseline and explore how to make the edge deletion
process more effective.

The recompute gap g and the anonymity measure a have no impact on the edges
chosen by random edge deletion.

4.2.2 Degree-based deletion

Given our aim to anonymize the graph with a limited number of modifications, it
is important to note that not all nodes can be anonymized. To achieve the greatest
possible overall anonymity for the graph, it becomes necessary to disregard certain
nodes. In a social network, degree distributions typically follow a power law, which
means the majority of nodes have few edges, while a few nodes have a huge number
of edges connected to them. Thus, the degree can be very different if we choose two
high-degree nodes. Anonymizing these nodes can hence be difficult, as numerous
deletions are likely required. For example, given that nodes u, v are nodes with the
highest degree in a graph, e.g., deg(v) = 200, deg(u) = 150, if we want to anonymize
v, at least 50 edges need to be deleted, by which various analytical results of the
graph will likely be affected. However, low-degree nodes are usually more numerous
in social networks, with less various structures of ego networks. Hence, these low-
degree nodes are easier to anonymize.

Therefore, we want deletions to occur between low-degree nodes, as we expect
that these have more effect on anonymity. However, anonymous nodes are also more
common in nodes with lower degrees. Simply selecting edges to delete based on

10

degrees could significantly perturb nodes that are already anonymous, which is not
our expected outcome. Hence, we set a weight Wdeg = 0 here to make sure the
deletion will not touch the anonymous nodes.

The set of edges between unique nodes is denoted Eunique = {{u, v} ∈ E|u, v ∈
Vunique}. We introduce a heuristic based on the degree. For each edge, we assign a
weight according to Equation 6.

Wdeg(u, v) =

{
0, {u, v} /∈ Eunique, |Eunique| ≥ g

1
max(deg(u),deg(v))

, otherwise
(6)

As mentioned in Algorithm 1, we choose g edges to delete before updating the
uniqueness, hence, we need at least g positive weights. To avoid edges with positive
weights being insufficient, before calculating weights, we first determine |Eunique| is
not less than g.

With the weights of all edges, the probability of deleting an edge would be:

Pdeg(u, v) =
Wdeg(u, v)∑

i,j∈V Wdeg(i, j)
(7)

4.2.3 UA-based deletion

Another perspective is to consider what kind of nodes will be influenced when we
delete an edge. We use the number of affected unique nodes (U) and anonymous
nodes (A) to define the weight of edges.

As we focus on the ego network, deleting an edge will affect the two nodes that
are connected by it and the nodes that include the edge in a triangle. For example,
in Figure 1, if we delete edge {C,G}, the ego network of node C,G and D would be
changed. So we can get the set of the affected nodes Veff ({u, v}).

Veff ({u, v}) = {V1(u) ∩ V1(v)} (8)

This heuristic follows the intuition that the best edge to delete should affect as
many unique nodes as possible and as few anonymous nodes as possible. We use Ueff

and Aeff to denote the set of affected unique nodes and anonymous nodes.

Ueff = {v ∈ Veff |δm(v) = 1} (9)

Aeff = {v ∈ Veff |δm(v) = 0} (10)

Then, the weight of the edges is defined as

Wua(u, v) =
|Ueff |+ 0.01

|Aeff |+ 0.01
(11)

11

Here, we added 0.01 to the denominator and numerator respectively to prevent
division by zero in Equation 11 and Equation 12. We summarize the probability of
deleting and edge in Equation 12.

Pua(u, v) =
Wua(u, v)∑

i,j∈V Wua(i, j)
(12)

4.2.4 Logistic regression-based deletion

After having the degree and uniqueness properties of the edges as defined above,
we ask the question of how to combine them together to better determine which
edges should be deleted. This problem can also be considered a binary classification
problem. We have a set of edges, and the task is to classify them to either “delete”
or “not to delete”.

Logistic Regression (LR) is a commonly used technique for solving binary clas-
sification problems. It is a discriminative model based on probability theory and
maximum likelihood estimation.

Figure 2 presents the process of using the LR model for edge deletion. We start
with preprocessing the networks to generate training data. Then, we use these data
to train the LR model. Next, we utilize the trained model to predict which edges to
delete to anonymize the graph. Finally, deleting edges based on the predicted result,
we have a modified graph.

Figure 2: Steps of LR-based deletion.

For the data preprocessing step, we first identify the feature and the label. For
each edge {u, v} ∈ E, we use eight features to predict the effect of deleting it:

• |V |: the number of nodes;

• |E|: the number of edges;

• T : the number of triangles it is part of;

12

• max(deg(u), deg(v));

• min(deg(u), deg(v));

• |Ueff |: the number of affected unique nodes;

• |Aeff |: the number of affected anonymous nodes;

• δm(u) + δm(v): the number of unique nodes directed connected by {u, v}.

Then, we assign a label for each edge to indicate whether deleting this edge will
make the graph more anonymous. We compare the uniqueness before and after
deleting each edge from the original graph. If deleting it makes the graph more
anonymous, it would be included in the positive class (the label is True), otherwise,
it would be the negative class (the label is False).

Ideally, we prefer training a general model that could be applied to all possible
graphs. So the dataset should be diverse, as otherwise it would overfit to some specific
situation. We do not want training data to contain data from all the networks in
Section 5 because we cannot observe whether it can be applied to new networks.
Considering that d-k-anonymity is stricter than (n,m)-anonymity, we labeled the
edges based on d-k-anonymity. The final training data contains the 8-dimensional
feature vectors and labels of edges from the Copnet SMS, Copnet FB, and ca-GrQc
network (see Section 5) based on d-k-anonymity. The model is trained on three
different networks, with a total of 21,622 edges. We choose a small dataset (Copnet
SMS), a large dataset (ca-GrQc), and a dense dataset (Copnet FB).

The model was evaluated by the accuracy of the training dataset, i.e., the ratio
of correctly predicted labels to all labels. For the optimizer, we tried stochastic av-
erage gradient (SAG), conjugate gradient (CG), limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) [17] and liblinear [11]. We use a penalized LR, and
experimented L2 (ridge regression) norm penalty with all optimizer and L1 (lasso re-
gression) norm penalty with liblinear. The L1 norm penalty, combined with liblinear
was chosen with the highest accuracy of 0.902.

Given the trained model and the feature vectors of edges in the original graph,
we predict the effects of deleting an edge. Since our goal is to choose the most
efficient g edges to be deleted, we do not use the predicted labels but the probability
of each class instead. PL denotes the estimated probabilities of edges being in the
positive class. For example, PL = (0.1, 0.5, 0.9) means that in this 3-edge graph,
the probability that these three edges belong to the positive category are 0.1, 0.5,
and 0.9, respectively. Generally, a higher probability indicates deleting the edge is
more likely to lower the uniqueness of the graph. Then the edges would be evaluated
based on the predicted probabilities. The process is shown below. lines 5–8 consist
of a specialized selection function for LR-based deletion (see Algorithm 1, line 5).

13

Algorithm 2 LR-based edge deletion

Input: original graph G = (V,E), budget N , recompute gap g, trained classifier L,
measure a

1: G′ ← G;
2: t← initialize(N, g); ▷ Initialize the number of iterations
3: Ua, Vunique ← unique(G′, a); ▷ Compute the uniqueness and the unique nodes
4: while t > 0 do
5: FG ← feature(G′, Vunique); ▷ Calculate feature vectors of the edges
6: PL ← predict(FG, L); ▷ Predict probabilities
7: sort(PL);
8: Edel ← top(PL, g);
9: delete(G′, Edel);

10: t← t− 1;
11: Ua, Vunique ← unique(G′, a);
12: end while
Output: G′, Ua

4.2.5 (n,m)-Greedy Deletion

In this section, we propose a greedy approach for obtaining (n,m)-anonymity, with
the goal of iteratively obtaining the largest decrease in uniqueness.

First, we explore the precise effect of deleting an edge on ego states, i.e., the
number of nodes and edges in the ego network of a node. As we mentioned in
Section 4.2.3, deleting an edge will influence the anonymity of nodes included in
any triangle the edge is a part of. Given a graph G = (V,E), a node v ∈ V and
an edge {u,w} ∈ E, the exact effect of deleting {u,w} on ego state S(v), denoted
(∆n(v),∆m(v)), can be defined as follows

∆n(v) =

{
−1, v ∈ {u,w}
0, otherwise

(13)

∆m(v) =

1− |V1(u) ∩ V1(w)|, v ∈ {u,w}
−1, {u, v}, {v, w} ∈ E
0, otherwise

(14)

Using the equations, we can determine the next ego state of nodes without ac-
tually deleting an edge, thus, finding how many nodes remain in this equivalence
class. Only nodes in Veff , i.e., nodes directly connected by this edge or nodes that
contain this edge in their triangles, would be affected cf. Equation 13 and 14. Hence,
we check the number of nodes in the current and the new equivalence class for each
affected node, shown in Algorithm 3.

The variable eff denotes the change in the number of anonymous nodes in the
graph G after deleting an edge {u, v}. For each node in w ∈ Veff , we first move it out

14

Algorithm 3 Evaluate edge in (n,m)-greedy deletion

Input: original graph G = (V,E), edge e = {u, v}
1: Initialize the ego states S and equivalence classes CS;
2: eff ← 0;
3: Veff ← V1(u) ∩ V1(v); ▷ cf. Equation 8
4: for w ∈ Veff do
5: Remove w from its previous equivalence class CS(w);
6: if |CS(w)| = 0 then
7: eff ← eff + 1;
8: else
9: if |CS(w)| = 1 then

10: eff ← eff − 1;
11: end if
12: end if
13: S ′(w)← update(S(w), {u, v}); ▷ cf. Equation 13, 14
14: Add w to new the equivalence class CS′(w);
15: if |CS′(w)| = 1 then
16: eff ← eff − 1;
17: else
18: if |CS′(w)| = 2 then
19: eff ← eff + 1;
20: end if
21: end if
22: end for
Output: eff

from the previous equivalence class CS(w) because its ego state would be changed.
Then, check the number of remaining nodes in the previous CS(w). If no node
remains in CS(w) (line 6), i.e., w is originally unique, removing {u, v} would make
the number of unique nodes minus 1, thus eff plus 1. If exactly one node remains in
CS(w) (line 9), i.e., removing {u, v} makes the remaining node unique, eff minus 1.
Similarly, count the nodes in the new equivalence class CS′(w) (lines 14–18), and
update eff .

After checking all the affected nodes, we get the exact effect for each edge dele-
tion. By sorting the effects in descending order, the edge with the largest impact on
uniqueness is chosen. The pseudocode is shown in Algorithm 4. Array UG∆ is used
to evaluate the impacts of deleting each edge, which is the output by Algorithm 3.
Lines 5–9 consist of a specialized selection function for (n,m)-greedy deletion (see
Algorithm 1, line 5).

15

Algorithm 4 Greedy Edge Deletion

Input: original graph G = (V,E), budget N , recompute gap g, measure a
1: G′ ← G;
2: t← initialize(N, g); ▷ Initialize the number of iterations
3: Ua, Vunique ← unique(G′, a); ▷ Compute the uniqueness and the unique nodes
4: while t > 0 do
5: for e ∈ E do
6: UG∆[e]← evaluate(G′, e); ▷ see Algorithm 3
7: end for
8: sort(UG∆);
9: Edel ← top(UG∆, g);

10: delete(G′, Edel);
11: t← t− 1;
12: Ua, Vunique ← unique(G′, a);
13: end while
Output: G′, Ua

16

5 Datasets

This section includes an introduction of the dataset used in this thesis. Considering
a desire for diversity in size, density, level of clustering, and the original overall
uniqueness, we choose five datasets. A brief description of datasets is given below.

• Copnet SMS, Copnet FB [22]: The first two networks are based on the Cop-
nethagen Networks Study [22]. The data was collected from more than 700
university students over a period of four weeks, including information on Blue-
tooth signal strength, phone calls, text messages, and Facebook friendships.

The information of text messages are used for the Copnet SMS dataset, where
the nodes are the senders and the recipients, and edges mean sent text messages.
We ignore edge direction and timestamps. The Facebook friendships are used
for Copnet FB, in which nodes are users and edges indicate friends on Facebook.

• CollegeMsg [16]: This dataset comprises private message exchange information
from an online social platform at the University of California, Irvine. Within
this platform, users can search for others, view their profiles, and initiate con-
versations. In this network, nodes are users, and an edge exists if two users
had a conversation.

• ca-GrQc [16]: This network covers the co-authorship of papers submitted to
the General Relativity and Quantum Cosmology (GR-QC) category on the e-
printer arXiV. The dataset includes papers published between January 1993
and April 2003, spanning a period of 124 months. Nodes in this network are
authors, and edges indicate the authors had a co-author experience.

• ego Facebook [16]: This dataset consists of Facebook friend lists, with the data
collected from survey participants utilizing the Facebook app. It includes users
profiles, connections, and some features of the ego networks in 10 separated
subnetworks. We used all connections in the 10 subnetworks to generate the
graph. Nodes in this graph are the users, and edges are the connections on
Facebook.

All the graphs are undirected after processing. Some general properties for these
networks are shown in Table 2. The datasets have varying numbers of nodes and
edges. The graph of ca-GrQc is denser than CollegeMsg, as they have a similar num-
ber of edges, but ca-GrQc has significantly more nodes than CollegeMsg. However,
the density does not lead to a higher clustering level. In this table, the ACC and
transitivity of ca-GrQc and ego Facebook are high, whereas those of Copnet SMS
and CollegeMsg are low. Additionally, the initial uniqueness of Copnet SMS and
ca-GrQc is relatively low.

17

Table 2: Information of the original graphs. The second column to the fourth column
present the number of nodes, the number of edges, and the number of triangles in the
graphs, respectively. The fifth and sixth columns describe the ACC and transitivity
of the graph, and the last two columns are the uniqueness of the original graph.

Dataset |V | |E| Triangles ACC Transitivity Unm Udk

Copnet SMS 568 697 97 0.139 0.154 0.026 0.044
Copnet FB 800 6,429 13,698 0.315 0.244 0.472 0.817
CollegeMsg 1,899 13,838 14,319 0.109 0.057 0.239 0.401
ca-GrQc 5,242 14,496 48,260 0.530 0.630 0.055 0.135

ego Facebook 4,039 88,234 1,612,010 0.606 0.519 0.587 0.812

18

6 Experiments

In this section, we present the experimental setup and results. First, we present our
experimental settings in Section 6.1. Then, we applied the aforementioned methods
to the chosen datasets, reporting the outcomes across subsequent sections. In Sec-
tion 6.2, we discuss which modification operation should be used. In Section 6.3 we
explore how these methods affect the uniqueness during the whole deletion process.
In Section 6.4, we explore how the runtime varies depending on the structural prop-
erties of networks. In Section 6.5 we delete edges with a fixed budget and discuss
which anonymization method is most effective. In Section 6.6, we analyze the fea-
tures for the LR model, to find out what kind of edges contribute most to graph
anonymity.

6.1 Experimental setup

The five methods in Section 4 were applied to the datasets mentioned in Section 5. In
Section 4.2, we mentioned the recompute gap g, which is dependent on the number
of edges |E| of the network. In each iteration, g edges will be deleted, and the
uniqueness will be recomputed. We set g = ⌊0.01|E|⌋. The used g for each network
can be found in Table 3.

The approaches are implemented in Python, using packages such as iGraph
and Scikit-learn. Code can be found at: https://github.com/christine99x/

networkAnonymization. For computing d-k-anonymity, we use code from de Jong
et al. [7]: https://github.com/RacheldeJong/dkAnonymity.

To account for randomness in methods, and to get a better estimation of the
runtime, the experiments were repeated 10 times and the average values were taken.
All the experiments were run on a Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz.

6.2 Anonymization operations

Before diving into specific algorithms, we ran a preliminary experiment to find out
which modification operation we should focus on. We compared the results of ran-
domly deleting, adding, and rewiring edges on the Copnet FB dataset with two
anonymity measures, shown in Figure 3.

These results show that random deletion is by far the most effective operation.
The reason is that nodes with lower degree are more likely to be equivalent to each
other because the possible structures of their ego network are limited. Edge deletion
lowers the average degree of nodes, resulting in simple ego networks, and thus fewer
unique nodes in the graph. On the contrary, adding edges will increase the average
degree of nodes, and therefore, can increase the uniqueness of the graph.

For random rewiring, the uniqueness first drops and then stabilizes. We believe
this happens because after some rewiring operation, the graph becomes similar to a

19

https://github.com/christine99x/networkAnonymization
https://github.com/christine99x/networkAnonymization
https://github.com/RacheldeJong/dkAnonymity

(a) (n,m)-Anonymity (b) d-k-Anonymity

Figure 3: Overall uniqueness (vertical axis) of different edge perburbation methods
on Copnet FB for (n,m)-anonymity (left) and d-k-anonymity (right). The horizontal
axis is the number of deleted edges.

random graph generated by the original graph’s degree distribution, so the uniqueness
will remain stable around a certain value.

Because of the results above, we focus on edge deletion.

6.3 Comparison of anonymization algorithms

Figure 4 shows the uniqueness during the deletion process for each of the five meth-
ods. We analyze the results by comparing their performance on the two discussed
anonymity measures, and throughout the deletion process.

First, for the whole deletion process, we discuss whether the methods perform
consistently on both of the measures. Comparing the trends of the curves in the left
and right columns of Figure 4, the LR model (red) and (n,m)-greedy deletion (purple)
perform differently on the two anonymity measures, while the other methods behave
similarly for both of the measures. The method of (n,m)-greedy deletion does not
show any advantages over d-k-anonymity, decreasing steadily, and performs similarly
to random, or worse after a large number of edge deletions. An explanation is that
the (n,m)-greedy deletion is specific to (n,m)-anonymity, so it would not be effective
when we measure the graph using d-k-anonymity. Similarly, since our training data
for our LR model is created based on d-k-anonymity, the LR-based deletion does
not have that much advantage in (n,m)-anonymity. Therefore, although, as we
mentioned, when a network satisfies d-k-anonymity, it must satisfy (n,m)-anonymity,
it does not mean that a method performs well on d-k-anonymity must perform well
on (n,m)-anonymity.

20

Figure 4: Overall uniqueness (vertical axis) of different anonymization methods on
five datasets for (n,m)-anonymity (left) and d-k-anonymity (right). The horizontal
axis is the number of deleted edges.

21

Then, considering the different stages of deletion, at the start of the process,
almost all the methods are better than the baseline (blue). For (n,m)-anonymity
(left), by evaluating the effects precisely, (n,m)-greedy deletion (purple) becomes the
most effective method. While, for d-k-anonymity (right), the most effective method
is the LR-based deletion (red), because it combines the information of degree and
uniqueness of nodes, and utilizes the prior knowledge from the training data. So if we
only have a small budget of edges to be deleted, it is better to choose (n,m)-greedy
deletion for (n,m)-anonymity and LR-based deletion for d-k-anonymity.

At the end of the deletion process, when many edges are deleted, the UA-based
deletion method has a stable performance and outperforms all other measures. Con-
trary to the start of the process, (n,m)-greedy deletion (purple) performs badly for
most of the networks. The main reason is that the (n,m)-greedy deletion is always
looking for a locally optimal choice, anonymizing the network by deleting one edge.
However, anonymization is a continuous process, and edges are dependent. The opti-
mal choice in the case of deleting one edge may not be the optimal option throughout
the global deletion process. In addition, we have the recompute gap g, which would
affect the accuracy of evaluating the edges, as the unique nodes set would not be
updated immediately after deleting an edge. This affects (n,m)-greedy deletion the
most, since a small misevaluation can lead to a large difference in edge selection. As
a consequence, if our goal is to choose a method that can make the uniqueness of the
graph lower than an extremely low predefined threshold with the fewest deletions,
the best choice is UA-based deletion (green). The method of (n,m)-greedy deletion
(purple) is the worst of these methods for most of the networks.

6.4 Anonymization runtime

In this section, we compare the runtime of the five methods under two measures
to gain a rough understanding of their time consumption. Additionally, we explore
how the network’s structural features, like size and clustering, influence the runtime
of these methods by contrasting the runtime on different networks. The results are
shown in Table 3.

According to Table 3, the three non-deterministic methods run much faster than
LR-based deletion and (n,m)-greedy deletion. For these non-deterministic methods,
the UA-based deletion is more time-consuming than the degree-based deletion, which
is in turn more expensive than random deletion. In most of the networks, LR-based
deletion costs more time than the (n,m)-greedy deletion.

For the runtime of the LR-based deletion and (n,m)-greedy deletion, ca-GrQc
is an exception for the aforementioned conclusion. This might be caused by the
relatively high ACC and transitivity, which means many triangles are contained in
this graph. It greatly increases the runtime of the evaluation process in Algorithm 3.
Therefore, the (n,m)-greedy deletion method would be more time-consuming on this
dataset.

22

Table 3: Average runtime of the whole deletion process for different datasets. The
second column presents the methods. The third column is the recompute gap g =
⌊0.01|E|⌋. The last two columns are average runtimes for (n,m)-anonymity and (d-
k-anonymity).

Dataset Method Recompute gap g
Time(s)

nm dk

Copnet SMS

Random

6

0.487 1.125
Max-degree 0.530 1.167

U/A 0.573 1.240
LR 9.079 10.205

Greedy 4.010 4.909

Copnet FB

Random

64

1.022 2.283
Max-degree 1.499 2.871

U/A 2.813 4.049
LR 98.143 99.465

Greedy 39.672 41.472

CollegeMsg

Random

138

2.299 3.955
Max-degree 4.022 6.723

U/A 8.616 10.424
LR 280.606 289.227

Greedy 184.870 186.642

ca-GrQc

Random

144

5.471 3.866
Max-degree 8.098 6.999

U/A 10.957 10.125
LR 346.113 308.993

Greedy 662.962 638.086

ego-Facebook

Random

882

13.023 24.731
Max-degree 218.198 282.679

U/A 277.080 291.480
LR 7908.942 7932.515

Greedy 3010.817 3033.524

For the measures, generally, measuring d-k-anonymity is more expensive than
(n,m)-anonymity. However, compared to the difference in running time among the
methods, the difference between measures is not obvious, because, in each iteration,
the selecting process is more time-consuming than computing uniqueness.

6.5 Anonymization with a fixed budget

In the experiments above, we deleted up to all edges for each network. As our goal
is to explore how to anonymize a given network with fewer changes, in this section,

23

we present more experiments to explore the performances of the methods with a
1% fixed budget. In addition, we present the ACC and transitivity of the graphs
after edge deletion, providing a reference to the impact of the methods on the overall
network structure.

The results of (n,m)-anonymity and d-k-anonymity are presented in Table 4 and
Table 5, respectively. In the tables, GO is the original graph, and for its corresponding
time, we record the running time of measuring the uniqueness. We show the lowest
uniqueness values of each network in bold.

Table 4: Uniqueness Unm, ACC, and transitivity of different datasets after delet-
ing 1% of the edges, and the corresponding runtimes. The third presents the data
for the original graph (GO), followed by values for random edge deletion (Grandom),
degree-based deletion (Gdegree), UA-based deletion (GUA), LR-based deletion (GLR),
and (n,m)-greedy method (Ggreedy).

Dataset Metrics GO Grandom Gdegree GUA GLR Ggreedy

Copnet SMS

Unm 0.026 0.026 0.016 0.012 0.016 0.004
ACC 0.139 0.137 0.136 0.138 0.136 0.131

Transitivity 0.154 0.152 0.150 0.154 0.143 0.144
Time (s) 0.007 0.035 0.038 0.045 1.159 0.039

Copnet FB

Unm 0.472 0.469 0.443 0.419 0.444 0.274
ACC 0.315 0.312 0.312 0.314 0.310 0.313

Transitivity 0.244 0.242 0.241 0.240 0.241 0.242
Time (s) 0.018 0.103 0.133 0.374 12.978 4.770

CollegeMsg
Unm 0.239 0.239 0.216 0.201 0.207 0.147
ACC 0.109 0.108 0.108 0.109 0.107 0.107

Transitivity 0.057 0.056 0.056 0.056 0.156 0.154
Time (s) 0.042 0.187 0.271 0.892 34.139 17.675

ca-GrQc

Unm 0.055 0.054 0.044 0.044 0.040 0.036
ACC 0.530 0.521 0.526 0.529 0.523 0.525

Transitivity 0.630 0.625 0.624 0.638 0.628 0.627
Time (s) 0.081 0.356 0.376 0.832 39.537 62.584

ego-Facebook

Unm 0.587 0.586 0.569 0.569 0.548 0.518
ACC 0.606 0.600 0.601 0.603 0.596 0.592

Transitivity 0.519 0.515 0.515 0.506 0.518 0.520
Time (s) 0.359 1.701 6.753 15.876 1157.716 334.088

For (n,m)-anonymity, all the newly proposed methods are more effective than
random edge deletion in the uniqueness value. The most effective method is always
(n,m)-greedy deletion for the included networks. However, it is also the most destruc-
tive method to ACC and transitivity for most of the datasets. Especially for ACC,

24

in three datasets, the impact on ACC is greater than 0.005. For the two datasets
with relatively low transitivity, Copnet SMS and CollegeMsg, their transitivity is
also affected.

Table 5: Uniqueness Udk, ACC, and transitivity of different datasets after deleting 1%
of the edges, and the corresponding runtimes. The third presents the data for the
original graph (GO), followed by values for random edge deletion (Grandom), degree-
based deletion (Gdegree), UA-based deletion (GUA), LR-based deletion (GLR), and
(n,m)-greedy method (Ggreedy).

Dataset Metrics GO Grandom Gdegree GUA GLR Ggreedy

Copnet SMS

Udk 0.044 0.043 0.022 0.022 0.016 0.025
ACC 0.139 0.137 0.137 0.139 0.136 0.131

Transitivity 0.154 0.154 0.148 0.154 0.143 0.144
Time (s) 0.018 0.112 0.112 0.121 1.208 0.518

Copnet FB

Udk 0.817 0.816 0.805 0.812 0.775 0.819
ACC 0.315 0.311 0.313 0.311 0.304 0.313

Transitivity 0.244 0.242 0.242 0.239 0.243 0.242
Time (s) 0.037 0.233 0.280 0.543 16.861 5.396

CollegeMsg

Udk 0.401 0.397 0.393 0.393 0.365 0.391
ACC 0.109 0.108 0.109 0.108 0.106 0.107

Transitivity 0.057 0.056 0.056 0.055 0.056 0.054
Time (s) 0.086 0.413 0.527 1.232 43.077 23.250

ca-GrQc

Udk 0.135 0.138 0.127 0.128 0.116 0.134
ACC 0.530 0.522 0.524 0.529 0.520 0.525

Transitivity 0.630 0.624 0.630 0.638 0.629 0.627
Time (s) 0.100 0.466 0.522 0.996 35.625 67.425

ego-Facebook

Udk 0.812 0.816 0.808 0.812 0.765 0.819
ACC 0.606 0.600 0.601 0.602 0.596 0.592

Transitivity 0.519 0.515 0.516 0.508 0.515 0.520
Time (s) 0.632 2.904 9.159 17.907 1172.720 324.253

Then, for d-k-anonymity, presented in Table 5, the LR-based deletion is the most
effective approach to lower the uniqueness. It is more harmful to ACC compared to
deletion under (n,m)-anonymity with the same method, but it performs better on
transitivity. The degree-based deletion and UA-based deletion are still better than
random edge deletion in lowering the uniqueness, and degree-based deletion is better
for the involved networks.

For ACC and transitivity, although we did not consider them when designing the
approaches, all the methods have no obvious disadvantages compared to the baseline.

In general, we find that the best method for (n,m)-anonymity is (n,m)-greedy

25

deletion, and the best method for d-k-anonymity is LR-based deletion. Both methods
are harmful to ACC. Additionally, we also provide the data of ACC, transitivity, and
runtime as references in case one is interested in specific criteria. For example, if we
want to choose a method with an impact on ACC less than 0.005, according to Table
4, the best choice would be the UA-based deletion, because graphs anonymized by
the UA-based deletion has the lowest Unm among the methods meeting this criterion.

6.6 Analysis of the results of logistic regression

From the trained LR model, we can look at the coefficient for each feature to un-
derstand which types of edges are effective to delete for anonymization. When the
p-value is more than 0.05, the feature is considered to be significant. The coefficients
of the LR model and the significance are presented in Table 6. Values |Ueff |, |Aeff |
and T are related, as the number of triangles influences which nodes are affected.
According to the results, they all do not significantly relate to the labels (contribute
to anonymization or not) of edges, while the remaining features are all significantly
correlated with labels. The coefficient shows that |V | and δ(u) + δ(v) are positively
correlated with the label and other features are negatively correlated. Therefore, in
a more sparse graph, deleting edges seems more likely to make the graph anonymous.
Edges connecting nodes with lower degrees are more likely to contribute to graph
anonymization. The greater the number of unique nodes directly connected by an
edge, the more likely it is that deleting it will make the graph anonymous.

Table 6: Coefficients of the trained LR model. The middle column presents the coef-
ficient for each feature. The last column presents whether the feature is significant.

Features Coefficient Significant

δm(u) + δm(v) 1.862e+00 ✓

min{deg(u), deg(v)} -1.793e-01 ✓

T 1.658e-01 ✗

|Aeff | -6.459e-02 ✗

|Ueff | -3.532e-02 ✗

max{deg(u), deg(v)} -3.436e-02 ✓

|V | 7.853e-04 ✓

|E| -3.143e-04 ✓

26

7 Conclusion

In this thesis, we explored methods to anonymize a given graph as much as possible
with as few changes as possible. To evaluate anonymity, we used the previously
proposed measure d-k-anonymity and newly proposed (n,m)-anonymity, accounting
for the ego network size rather than precise structure. We first investigated which
modification operation is most useful. Preliminary experiments showed that random
deletion is the most effective among random edge addition, deletion, and rewiring. It
was chosen as our baseline. Additionally, we proposed four anonymization methods:
degree-based deletion, UA-based deletion, based on the number of unique nodes of
the affected nodes, LR-based deletion, based on logistic regression, and (n,m)-greedy
deletion. We evaluated the uniqueness after deleting 1% of the nodes. Our results
show that LR-based deletion is the most efficient anonymization method for d-k-
anonymity and (n,m)-greedy method is the best method for (n,m)-anonymity.

Another question we discussed is the runtime of the algorithms. In most cases,
the time consumption of these methods is as follows: random edge deletion < degree-
based deletion < UA-based deletion < (n,m)-greedy deletion < LR-based deletion.
However, for a graph with a high clustering level, (n,m)-greedy deletion might take
more time than LR-based deletion. The results of LR show that deleting edges with
the following features is more likely to increase the overall anonymity of the graph:
1) edges connecting two low-degree nodes; 2) edges connecting one or more unique
nodes. Additionally, edge deletion appears more efficient in sparse networks.

Future work might explore innovative approaches that integrate the preservation
of network structure and anonymization more effectively. Moreover, newly designed
approaches should consider the dependencies among edges when modifying the net-
work. Additionally, steps can be made to improve the LR-based deletion, including
using more effective features or moving towards more advanced machine learning
models, like random forest and neural networks.

27

References

[1] Abdullah Al-Rabeeah and Mohammed Hashim. Social network privacy models.
Cihan University-Erbil Scientific Journal, 3(2):92–101, 2019.

[2] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou
r3579x? Anonymized social networks, hidden patterns, and structural steganog-
raphy. In Proceedings of the 16th International Conference on World Wide Web,
pages 181–190, 2007.

[3] Alina Campan, Yasmeen Alufaisan, and Traian Marius Truta. Preserving com-
munities in anonymized social networks. ACM Transactions on Data Privacy,
8(1):55–87, 2015.

[4] Alina Campan and Traian Marius Truta. Data and structural k-anonymity in
social networks. In Proceedings of the 2nd International Workshop on Privacy,
Security, and Trust in Knowledge Discovery in Databases, pages 33–54, 2009.

[5] James Cheng, Ada Wai-chee Fu, and Jia Liu. K-isomorphism: Privacy pre-
serving network publication against structural attacks. In Proceedings of the
ACM Special Interest Group on Management of Data International Conference
on Management of Data, page 459–470, 2010.

[6] Sean Chester, Bruce Kapron, Ganesh Ramesh, Gautam Srivastava, Alex Thomo,
and Venkatesh Srinivasan. K-anonymization of social networks by vertex ad-
dition. In Proceedings of the 15th East-European Conference on Advances in
Databases and Information Systems, pages 107–116, 01 2011.

[7] Rachel G. de Jong, Mark P. J. van der Loo, and Frank W. Takes. Algorithms for
efficiently computing structural anonymity in complex networks. ACM Journal
of Experimental Algorithmics, 2023.

[8] Rachel G. de Jong, Mark P.J. van der Loo, and Frank W. Takes. Beyond the ego
network: The effect of distant connections on node anonymity. arXiv preprint,
arXiv:2306.13508, 2023.

[9] Cynthia Dwork. Differential privacy. In Proceedings of the 33rd International
Colloquium on Automata, Languages, and Programming, pages 1–12, 2006.

[10] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In
Proceedings of the 24th Annual International Conference on The Theory and
Applications of Cryptographic Techniques, pages 486–503, 2006.

28

[11] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen
Lin. Liblinear: A library for large linear classification. Journal of Machine
Learning Research, 9:1871–1874, jun 2008.

[12] Yumeng Fu, Wei Wang, Hao Fu, Wu Yang, and Dan Yin. Privacy preserving
social network against Dopv attacks. In Proceedings of the 19th International
Conference on Web Information Systems Engineering, pages 178–188, 2018.

[13] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp Weis.
Resisting structural re-identification in anonymized social networks. Proceedings
of the Very Large Data Base Endowment, 1(1):102–114, 2008.

[14] Michael Hay, Gerome Miklau, David Jensen, Philipp Weis, and Siddharth Sri-
vastava. Anonymizing social networks. Computer Science Department Faculty
Publication Series, page 180, 2007.

[15] Diane Lambert. Measures of disclosure risk and harm. Journal of Official
Statistics, 9:313–313, 1993.

[16] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, 2014. Accessed Date:
22 Nov, 2023.

[17] Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large
scale optimization. Mathematical Programming, 45(1-3):503–528, 1989.

[18] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In
Proceedings of the ACM Special Interest Group on Management of Data Inter-
national Conference on Management of data, pages 93–106, 2008.

[19] Xuesong Lu, Yi Song, and Stéphane Bressan. Fast identity anonymization on
graphs. In Proceedings of the 23rd International Conference on Database and
Expert Systems Applications, pages 281–295, 2012.

[20] Youyang Qu, Shui Yu, Wanlei Zhou, Shiping Chen, and Jun Wu. Customizable
reliable privacy-preserving data sharing in cyber-physical social networks. IEEE
Transactions on Network Science and Engineering, 8(1):269–281, 2020.

[21] Daniele Romanini, Sune Lehmann, and Mikko Kivelä. Privacy and uniqueness
of neighborhoods in social networks. Scientific reports, 11(1):20104, 2021.

[22] Piotr Sapiezynski, Arkadiusz Stopczynski, David Dreyer Lassen, and Sune
Lehmann. Interaction data from the copenhagen networks study. Scientific
Data, 6(1):315, 2019.

29

http://snap.stanford.edu/data

[23] Shafaq Shakeel, Adeel Anjum, Alia Asheralieva, and Masoom Alam. k-NDDP:
An efficient anonymization model for social network data release. Electronics,
10(19), 2021.

[24] Brian Thompson and Danfeng Yao. The union-split algorithm and cluster-based
anonymization of social networks. In Proceedings of the 4th International Sympo-
sium on Information, Computer, and Communications Security, page 218–227,
2009.

[25] Mark van der Loo. Topological anonymity in networks. Technical report, Statis-
tics Netherlands, 2022.

[26] Wentao Wu, Yanghua Xiao, Wei Wang, Zhenying He, and Zhihui Wang. K-
symmetry model for identity anonymization in social networks. In Proceedings
of the 13th International Conference on Extending Database Technology, pages
111–122, 2010.

[27] Xiaowei Ying, Kai Pan, Xintao Wu, and Ling Guo. Comparisons of randomiza-
tion and k-degree anonymization schemes for privacy preserving social network
publishing. In Proceedings of the 3rd Workshop on Social Network Mining and
Analysis, pages 1–10, 2009.

[28] Xiaowei Ying and Xintao Wu. Randomizing social networks: a spectrum pre-
serving approach. In Proceedings of the 8th Society for Industrial and Applied
Mathematics International Conference on Data Mining, pages 739–750. SIAM,
2008.

[29] Jinquan Zhang, Xiao Wang, Yanfeng Yuan, and Lina Ni. RcDT: Privacy preser-
vation based on R-constrained dummy trajectory in mobile social networks.
IEEE Access, 7:90476–90486, 2019.

[30] Yang Zhang, Mathias Humbert, Bartlomiej Surma, Praveen Manoharan, Jilles
Vreeken, and Michael Backes. Towards plausible graph anonymization. arXiv
preprint, arXiv:1711.05441, 2019.

[31] Bin Zhou and Jian Pei. Preserving privacy in social networks against neighbor-
hood attacks. In 2008 IEEE 24th International Conference on Data Engineering,
pages 506–515. IEEE, 2008.

[32] Lei Zou, Lei Chen, and M. Tamer Özsu. K-automorphism: A general framework
for privacy preserving network publication. Proceedings of the Very Large Data
Base Endowment, 2(1):946–957, 2009.

30

	Introduction
	Related Work
	Preliminaries
	Graphs
	Uniqueness of a graph

	Approach
	Anonymity measures
	(n,m)-Anonymity
	d-k-Anonymity

	Edge deletion methods
	Random edge addition/deletion/rewiring
	Degree-based deletion
	UA-based deletion
	Logistic regression-based deletion
	(n,m)-Greedy Deletion

	Datasets
	Experiments
	Experimental setup
	Anonymization operations
	Comparison of anonymization algorithms
	Anonymization runtime
	Anonymization with a fixed budget
	Analysis of the results of logistic regression

	Conclusion

