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Abstract

Genetic algorithms (GAs) are a popular optimisation strategy. Despite a lack of theoretical un-
derstanding of their behaviour, interactions, and dynamics, GAs are widely applied to real-world
problems. Network-driven analysis of GAs and other population-based algorithms can be used to
study population dynamics. We present a network representation, specific to real-valued GAs. We
show that we can study GA dynamics through the analysis of topological features of these network
representations. We analyse how changes in topological features relate to changes in GA param-
eters. Moreover, we present both a generative and a randomisation-based null model to quantify
the significance of the patterns we observe. We find that an increase in parent selection pressure
increases connectivity and decreases average path lengths in our representations. Unexpectedly,
this also decreases fitness assortativity. Our results show that network-driven analysis can greatly
improve our understanding of the selection of GA parameters. Finally, we propose several points of
interest for future research.
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1 Introduction

Population-based metaheuristic algorithms such as evolutionary algorithms and swarm-based algo-
rithms are used in different fields to solve complex optimisation problems. These algorithms are
often applied when finding an approximate optimum is favoured over an exact solution, usually due
to the computational complexity or computational time required to find exact solutions. However,
population-based algorithms sometimes exhibit unexpected and undesirable behaviour, like prema-
ture convergence, lack of convergence, or a bias towards part of the search space [1, 2]. Because the
causes of such behaviour are not well understood, it can be hard to select an appropriate algorithm
or parameters in real-world applications. Recently, researchers have tried modelling interactions
within population-based algorithms as networks in an attempt to gain a deeper understanding of
the dynamics in and behaviour of simulated populations [3, 4, 5, 6].

In these network-based approaches, the active population of an algorithm is represented as a
network. Exchanges of information that occur within these populations are expressed as connections
in the resulting network representation. Consequently, the population’s interactions can be analyzed
and quantified by calculating the topological features of the network representations. However,
compared to other population-based algorithms, GAs use a unique set of operators to create new
solutions. While previous methods of representation are able to express population interactions and
can be used to improve algorithm performance, they may not be suitable to express how genetic
information is inherited in GA populations.

In this thesis, we describe an approach to representing and analysing real-valued genetic algo-
rithms (GAs) as networks. We show that algorithmic behaviour is reflected in these networks by
quantifying and analysing topological features. We speculate that network-orientated approaches
will greatly improve our understanding of the consequences of algorithm and parameter selection.

The rest of this thesis is structured as follows:

• Section 2 summarises relevant background information and the state of the art in genetic
algorithms, network science, and the combination of the two fields.

• Section 3 describes the GA data that are analysed in this thesis.

• Section 4 details the methods used to create and analyse GA network representations.

• Section 5 presents and discusses the results of the GA network analysis.

• Section 6 discusses the strengths and weaknesses of the suggested approach and makes recom-
mendations for future research.

• Section 7 summarises the main arguments presented in this thesis.
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2 Background and Related Work

Before we explain and analyse our network representations of genetic algorithms, we review relevant
concepts, background information, and previous research in this section. Firstly, we explain the
theory behind genetic algorithms. Secondly, we summarise contemporary methods used to analyse
and improve GA performance. Thirdly, we explain how network theory can reveal the mechanisms
behind complex systems. Fourthly, we discuss how random networks are used as null models to
establish a baseline for network analysis. Finally, we discuss state-of-the-art methods that combine
methods of network science with genetic algorithms and other population-based algorithms to study
algorithm dynamics.

2.1 Genetic algorithms

Genetic algorithms (GAs) belong to a class of optimisation algorithms, inspired by biological pro-
cesses. GAs apply evolutionary operators like parent selection, mutation, crossover, and fitness
selection to a population of chromosomal representations of potential solutions to find new and
better solutions [7]. Depending on the properties of the problem, GAs can be applied either to
discrete problems where solutions are encoded using strings of bits or integers as chromosomes, or
to continuous problems with real-valued chromosomes.

More specifically, GAs belong to the class of evolutionary algorithms (EAs). These algorithms
are used in a heuristic setting where instead of searching for an exact solution of an optimisation
problem, one is looking for a solution that is good enough but not necessarily the global optimum.
Typically, such a setting is used for objective functions without an analytical expression, known as
black-box problems, or for functions that are to complex to solve exactly. EAs belong to an even
bigger class of population-based algorithms in which multiple candidate solutions are maintained
and updated, usually using some interaction between the solutions.

Figure 1 shows a general schematic representation of a discrete genetic algorithm. Each chromo-
some in an initial population is assigned a fitness based on the objective function. Every generation,
crossover, and mutation operators are applied to a selection of a population of chromosomes in an
attempt to produce more fit individuals. If successful, more fit individuals replace less fit individuals
in the population. Because GAs are often applied to optimise functions that are complex or expen-
sive to evaluate, the algorithm can either terminate after a maximum number of fitness evaluations
or when an individual of sufficiently good fitness has been generated. In this thesis, we only discuss
continuous GAs, which are described in more detail in Section 3.

Algorithm 1 shows a summary of a general genetic algorithm. It starts with the algorithm’s
initialisation (Line 2). An initial population is generated, typically randomly. The algorithm then
enters a loop where, each iteration, it typically selects two parents (Line 4-5) and creates a new

Figure 1: Schematic representation of a discrete genetic algorithm. Every iteration, the algorithm
performs parent selection, crossover, and mutation to create new individuals which replace bad
solutions in the population if their fitness is good enough. This schematic represents discrete GAs
in general. For a more complete description of the continuous GAs analysed in this thesis, we refer
to Section 3.2. Figure adapted from [8].
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Algorithm 1 General genetic algorithm to minimise an objective function f .

1: function Genetic Algorithm(f)
2: population← initialise()
3: while number evaluations < max evaluations do
4: p1 ← select parent(population)
5: p2 ← select parent(population)
6: child← crossover(p1, p2)
7: child← mutate(child)
8: if is invalid(child) then
9: child← correct(child)

10: end if
11: fitness← f.evaluate(child)
12: number evaluations← number evaluations+ 1
13: if fitness < lowest fitness then
14: population.find worst()← child
15: end if
16: end while
17: return population.find best()
18: end function

solution using crossover (Line 6) and mutation (Line 7) operators. If an invalid solution is created,
it is corrected (Line 9). Then, the fitness of the solution is evaluated (Line 11). In the final step,
fitness selection is performed (Line 14). If the new individual is better than the worst fitness in the
current population, the worst individual is replaced by the new individual, however other survivor
selections schemes are also possible. The algorithm terminates after a maximum number of fitness
evaluations (Line 3).

GA parameters have different functions. For example, crossover mixes solutions and enables the
algorithm to converge in a subspace, mutation increases the diversity and facilitates escaping from
local optima, and a large population size prevents one good solution from dominating reproduction
and causing premature convergence [9, 10]. However, in actual applications, changes in operators
and parameters can have a more complex impact on GA behaviour. To select appropriate settings,
it is important to understand how each choice impacts the GA’s behaviour.

Genetic algorithms have been successfully applied in many complicated real-world applications,
such as scheduling problems, forecasting, and image processing [7]. Although they are more specific,
real-valued genetic algorithms can also be applied in a wide range of problem-solving tasks. For
example, real-valued GAs have been successfully applied to optimise sensor placement in structural
health monitoring [11], predicting higher heating values in several materials [12], and in designing
electromagnetic devices [13].

GAs can be very efficient in finding a sufficiently good solution to a complicated problem [7].
They can explore non-linear domains without requiring information about the objective function’s
characteristics like the frequency of discontinuities and local optima, or its gradient. However, the
performance of a genetic algorithm on a specific problem is highly dependent on the formulation of
the fitness function, nature of the problem, and choice of parameters like population size, evaluation
budget, rate of mutation, rate of crossover or selection criteria [9, 14]. Appropriate parameter selec-
tion ensures that the algorithm converges efficiently to a good solution while thoroughly exploring
the search domain.

2.2 Tuning and Configuring Evolutionary Algorithms

There have been many studies focused on improving the performance of evolutionary algorithms.
The approaches studied can generally be classified into parameter tuning and parameter controlling
approaches [15]. In parameter tuning approaches, the best parameters for a given application are
determined in advance and kept constant during the run of the algorithms. Examples of tuning
approaches are applying a different model or a second EA to optimise parameters, or sampling
different sets of parameters. In parameter controlling approaches, parameters are allowed to change
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during a run. A popular example is allowing the mutation step size to change during a run [16]. In
evolution strategies with the 1/5 success rule, the mutation step size can be increased if the number
of successful iterations is too large or vice versa. This prevents an algorithm from searching too
locally or too globally. Even though many of these methods are effective in improving algorithms’
performance, they can make the algorithms much more complicated and often lack an insight in how
algorithm dynamics are impacted by these changes. In this thesis, we suggest additional instruments
based on methods from network science to help visualise and understand how changes in parameters
affect the dynamic behaviour of GAs.

2.3 Network Science

In many domains we can find large systems of interacting agents that exhibit complex behaviour.
The word complex refers to non-trivial behaviour that is neither completely random nor completely
regular [17]. By modelling these systems as graphs, we can quantify this non-trivial structure by
analysing the graph’s topological features. A graph is a mathematical representation of a network,
made of nodes or vertices that are connected by links or edges. In this thesis, we will use ‘network’
and ‘graph’ interchangeably.

Complex network theory can be found in and applied to many different fields. For example,
it can be used to detect vulnerabilities in an electricity grid, to study the spread of diseases or
information in a social network, and to develop drugs with minimal side effects by studying molecular
networks [18]. Interestingly, such networks tend to be governed by similar organising principles,
despite the differences in their origin. In particular, many real-world networks are scale-free, which
means that few highly connected hubs coexist with a large number of poorly connected nodes.
Moreover, they are small-world, which means that even in very large networks, the shortest distance
between any two nodes is unexpectedly small [18].

Of course there are also quantifiable differences between different classes of networks. Social
networks, for example, are often highly assortative [18]. Assortativity is the extent to which a
node tends to connect to similar nodes, e.g. similar in terms of degree, the number of connections.
High-degree hubs, individuals with many connections, often tend to connect to other hubs in social
networks. In contrast, protein-protein networks tend to be more disassortative, hub proteins avoid
each other. A power grid network is often more neutral [18]. By quantifying topological features
like a network’s scale-free property or assortativity, we are able to quantify and reveal the complex
underlying organising principles that shape these networks and interactions. A better understanding
of the behaviour of complex systems has many practical applications, such as identifying potential
drug target molecules in a metabolic pathway or identifying and fixing vulnerabilities in a power
grid or a server network. As shown in this thesis, by visualising and modelling genetic algorithms
as networks, we can apply similar analyses to those network representations to better understand
GA dynamics and interactions.

2.4 Random Networks as Null Models

Complex networks are partly governed by stochastic processes. As a consequence, most network
topology features are not particularly informative on their own [19]. Therefore, it is important
to determine whether trends in network features are due to chance or due to some underlying
organising principle. We can contextualise network features using random null models. Comparing
to null models allows us to draw conclusions on whether the values we observe are actually of interest,
caused by the algorithms we study, or whether these values are random deviations.

There are two common ways to create a random network model: generative methods that build a
random graph from scratch and randomisation-based methods that randomise an existing graph. The
choice of null model has important consequences for our analysis. We can design random networks
using known mechanisms to express specific topological properties [20]. When we compare these
to real-world networks, we can deduce the relevance of these hard-coded mechanisms for real-world
networks and to what extent topological features are correlated. Many network features depend on
other, simpler features, such as the number of nodes, the proportion of possible edges that exist,
and the number of edges incident on each node [21]. If we pick the right restrictions for our random
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networks, we can keep these basic properties fixed and determine if a certain feature is due to the
specific topology of our network rather than one of these basic properties.

For each topological feature we study, we can normalise its value with respect to the average
value in an ensemble of comparable random networks. This allows us to quantify the extent to which
each feature deviates from what would be expected from chance alone [19]. Moreover, normalising
different networks that have similar topological features with their respective random ensembles can
sometimes reveal differences that would not be apparent without normalisation. Section 4.3 explains
how we construct and apply random null networks in this thesis.

2.5 Applying Networks Analysis to Population-based Algorithms

Recently, researchers have turned to network analysis to deepen the understanding of the underlying
interactions and dynamics in population-based algorithms. For example, Zelinka et al. showed that
different population-based algorithms can be represented as complex networks [22]. In subsequent
work, it has been shown that complex network analysis can excellently represent interconnections
and dynamics within an EA population for differential evolution algorithms (DE) [5], self-organising
migrating algorithms (SOMA) [4], and genetic algorithms [6]. Such network analysis can contribute
to better control of these populations. More specifically, complex networks can be visualised as
coupled map lattice (CML) systems. Algorithm dynamics can be controlled based on the state
of the CML, which improves algorithm performance [23, 24]. For example, CMLs can be used to
identify individuals that are contributing the least to improvements, which can be regenerated into
more useful individuals.

A study by Metlicka et al. shows another example of how complex network analysis can improve
the performance of population-based algorithms, specifically the artificial bee colony (ABC) algo-
rithm [3]. In this study, the node centrality in the network is used as a measure of the transfer of
information between solutions. Solutions with a low centrality are considered unimportant to pop-
ulation development and are replaced. As a result, the new, adaptive ABC variants outperformed
the ABC algorithm, especially on higher-dimensional problems. Similar enhancements have been
applied to differential evolution algorithms using closeness centrality or node strength [25, 26, 27].

An important characteristic of the studies mentioned above is their philosophy of dynamics in
population-based algorithms. These studies do not focus on the philosophy that a bad parent is
replaced by a better offspring, but accept the philosophical interpretation that an individual is mov-
ing to the better position [6]. This interpretation seems preferable in algorithms like SOMA, ABC,
or DE, where each individual exchanges information with its peers to update into a better solution.
In these cases, the resulting network representation reflects the exchange of information during the
algorithm. However, this interpretation may not accurately reflect the exchange of information in
genetic algorithms. Such a representation would collapse the interactions of several individuals over
multiple generations into a single node in the network. As a result, this representation would fail to
present how genetic information can be inherited and spread throughout the network over multiple
generations of the algorithm. Instead of drawing links for each information exchange, we propose
adding a new node for each new solution and drawing a link for each parent-child pair. Moreover, in
their representation, Zelinka et al. seem to require a complex network structure for the visualisation
with a CML. Although it is not entirely clear by what criteria this is determined, they remark that
algorithm settings and objective function play an important role in whether or not a complex net-
work structure emerges [6]. In Section 4, we describe our method of representation that conserves
the hereditary patterns of GAs and can be used to analyse GAs with a large variety of settings and
objective functions.
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(a) GAcarcP(.)D30f0 (b) GAcardP(.)D30f0

(c) GAcarcP(.)D30f1 (d) GAcardP(.)D30f1

Figure 2: GA performance on a random function (f0) and a non-random function (f1). The figures
for all GA variants can be found in Appendix A. The legend labels containing regular expressions
that represent groups of GA variants are explained in Section 3.3. Every line is an average of 50
different runs. Drop shadows indicate the interquartile range of the different runs.

3 GA Data

In this thesis, we construct network representations from data that were gathered from several real-
valued GA variants run on two different test objective functions. In this section, we define the
objective functions, explain the differences between GA variants, and describe a variant-naming
system, used to refer to groups of variants in the rest of this thesis. The data were generated by Dr.
Fabio Caraffini at Swansea University.

3.1 Objective Functions

Multiple GA variants were used to minimise several objective functions. In this thesis, we create
and discuss the network representation for one random function (f0) and one non-random function
(f1). Figure 2 shows how a sample of GA variants progresses on both objective functions. Figures
for all GA variants can be found in Appendix A. As both functions are minimised, more fit solutions
will always have a lower fitness than less fit solutions. The number of dimensions (D) was 30 for
both functions.

Function f0 returns a uniformly random fitness from the interval [0, 1] for any input.

f0 : [0, 1]D → [0, 1] (1)

Function f1 is the sphere function from the BBOB suite [28]. The BBOB suite comprises a
number of benchmark functions each with different properties, designed to asses different algorithm
performance metrics and allows to compare the performance of many different algorithms. The
sphere function is useful to determine the optimal convergence rate of the optimising algorithm.

f1(x) = ||z||2 + fopt (2)

Here, ||z|| is the Euclidean norm of vector z = x− xopt with optimal solution xopt, which is drawn
uniformly from [−4, 4]D and input x ∈ [−5, 5]D. fopt is drawn from a Cauchy distribution with zero
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median and roughly 50% of the values between -100 and 100 [28]. The same random optimum is
used for all GA variants. The coordinates of the optimum can be found in Appendix F.

3.2 GA parameters

In this section, we explain how GA variants differ in their mutation operator, crossover operator,
method of parent selection, correction method, and population size. We introduced the general
framework of GAs in Algorithm 1. This section describes its detailed implementation.

3.2.1 Mutation

Two types of mutation operators are studied: Gaussian mutation and Cauchy mutation [29]. In real-
valued stochastic algorithms, a normal Gaussian distribution is typically used to mutate solutions.
The Gaussian probability distribution is given by

p(z) =
1

σ
√

2π
exp

(
−(z − µ)2

(2σ)2

)
where µ and σ2 are the mean and variance, respectively. The Cauchy distribution is similar to the
Gaussian distribution, however, it is a bit wider. This means that the probability of generating
larger values is slightly higher [29]. As a result, algorithms that apply Cauchy mutation are able
to shed local optima more easily and improve over a larger scope [30]. The Cauchy probability
distribution is given by

p(z) =
1

π

t

t2 + z2

where t > 0 is the proportion parameter.
In our setup, each coordinate is mutated individually with µ = 0 and σ = t = 0.01× r, where r

is the width of the search domain of the coordinate.

3.2.2 Crossover

We compare discrete and arithmetic crossover. In discrete crossover, every child coordinate has
a 50% chance to be from either parent. In arithmetic crossover, children are generated with the
following formula:

child = p1 + α× (p2 − p1)

Here, p1 and p2 are parent the two selected parents and α is a random number from the uniform
distribution U [−d, 1 + d] with d = 0.25.

3.2.3 Parent Selection

Two types of parent selection are compared in this thesis: random selection and tournament selec-
tion. In random selection, each individual has the same probability of being selected as parent. In
tournament selection, two individuals are randomly selected as candidates. The individual with the
best fitness is selected as parent.

3.2.4 Correction

Objective functions are typically constrained to a finite domain in optimisation problems. Previous
studies have shown that the strategy of dealing with solutions outside of the domain can introduce
structural bias and greatly impact algorithm performance [1, 2, 31]. In this thesis, we compare four
correction strategies for out-of-domain solutions [32].

Firstly, we consider the dismiss strategy, where an infeasible solution is simply discarded and a
new one is regenerated.

Secondly, any coordinate outside of the domain is reflected off the opposite domain boundary in
the toroidal correction strategy. This would be equivalent to periodic boundaries.

Thirdly, in the saturation strategy, coordinates are moved to the closest amongst their upper
and lower boundary.
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Finally, we consider the complete one-tailed normal correction strategy (COTN) [32]. Here,
an infeasible coordinate is moved towards the domain by a random number drawn from a one-
tailed normal distribution |N(0, 1

3 )|. This is done recursively until the coordinate falls within the
domain. The goal of this method is to map out-of-domain solutions back into the domain non-
deterministically, close to the domain boundaries.

3.2.5 Population Size

We compare GAs with three different population sizes: 5, 20, and 100.

3.2.6 Additional GA settings

For all GA variants, the maximum evaluation budget was 10000×D, where D = 30 is the function
dimensionality. Each GA was run 50 times on the same function to capture the stochastic variability
of the GA dynamics. Thus, for each variant, we create 50 different network representations, one for
each run.

Conventionally, duplicate solutions should be avoided. However, in this thesis, we only consider
real-valued GAs. As a result, we do not have to check if the newly generated solution is identical to
a pre-existing solution, as this is extremely unlikely.

3.3 GA Variant Names

The data comprise GA variants with two types of mutation operators, two types of crossover oper-
ators, two methods of parent selection, four methods of out-of-bound correction, and three different
population sizes. This results in 96 possible GA variants for each objective function we study. We
will often refer to groups of variants. For this, we use a notation based on regular expressions. Each
GA parameter is abbreviated as listed below:

• Mutation:

– c: Cauchy mutation [30]

– g: Gaussian mutation [29]

• Crossover:

– a: arithmetic crossover

– d: discrete crossover

• Parent selection:

– r: random selection

– t: tournament selection

• Correction [32]:

– c: COTN strategy

– d: dismiss strategy

– t: toroidal strategy

– s: saturation strategy

• Population size (popsize): P5, P20 or P100

• Objective function:

– f0: random objective function (Equation 1)

– f1: sphere function (Equation 2) [28]

8



The name of each variant group will have the following format:

GA(mutation)(crossover)(selection)(correction)(popsize)(function)

If two or more variants are combined in the same group, their parameters will be separated by a
vertical line (|). A wildcard (.) means that all possible variants are included in the group. For
example the following GA group name:

GAg.r(t|s)P5f0

The variants in this group have the following properties:

• g: They all use Gaussian mutation.

• .: They either use discrete or arithmetic crossover.

• r: They all use random selection.

• (t|s): They either use toroidal or saturation correction.

• P5: They all have a population size of 5.

• f0: They all optimise the random objective function f0.
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4 Methods

In this thesis, we analyse a dataset that comprises information from a variety of GAs used to
optimise different objective functions. We transform these data into network representations and
analyse their topological features. In this section, all procedures used to create and analyse GA
networks are explained. Firstly, in Section 4.1, we design a network representation that expresses
information on the dynamics and performance of the corresponding GA. Secondly, in Section 4.2, we
describe several network topological features to help us gain insight into the underlying algorithm
dynamics. Thirdly, in Section 4.3, we describe a rewiring process that we can use to create null
models to assess the significance of the patterns that emerge in our representations. Finally, in
Section 4.4, we construct a visualisation method to intuitively generalise and compare network
features and dynamics. All algorithms and calculations in this section were implemented using the
NetworkX Python package version 2.5 [33].

4.1 Constructing Networks from Genetic Algorithms

Table 1 shows an example of two consecutive rows of a GA data file. A single file corresponds to a
single run of a single GA variant and every row corresponds to a successful iteration of the algorithm
in which a new solution replaces an old solution in the population. For every row in the data file,
we create a new node (vi) in the network representation and store its fitness as a node attribute.
If the new node is not part of the initial population, we draw an edge from each parent to the
new node, or only one edge if the same parent was selected twice. When constructing the network,
it is important to assign each node a unique ID. This is needed for the chosen implementation of
random rewiring as explained in Section 4.3. Each network G has a set of vertices V and a set of
edges E ⊆ {(vi, vj)|(vi, vj) ∈ V 2 ∧ vi 6= vj}. The number of vertices and edges are |V | and |E|,
respectively. The set of nodes without incoming edges (M) are called maximal and the set of nodes
without outgoing edges (µ) are called minimal. Figure 3 shows an example of what such a network
representation looks like.

Many initial solutions are quickly replaced and are unable to create any edges. These solutions
do not contribute to topological features due to their lack of edges. Therefore, we use the nodes in
the largest component to calculate topological features. The largest component is the largest set of
vertices that is connected to each other by an undirected path.

We create a new network representation for each file. This means that we create 50 network
representations for each variant. Each row only corresponds to successful iterations; we ignore
iterations that did not generate a solution that was added to the GA’s population. As a result, each
data file can have a different number of rows. Consequently, the network representations we create
have a different number of nodes and edges for each run. In the rest of this thesis, when we use
the term ‘iteration’, we refer only to successful iterations that add a node to the GA network. By
analysing each representation and updating the network representation each iteration, we obtain a
time series for each run of each variant that reveals how its topological features evolve while the
algorithm is running.

Previous studies that employed dynamic network representations of population-based algorithms
used a fixed number of nodes and add links over time [6]. With this interpretation, new and good
solutions do not replace old solutions. Instead, the old solution is considered to move to a better
position. This approach allows for the comparison of a wide range of population-based algorithms.
Nevertheless, this representation may not express GA specific dynamics accurately.

There are three important differences between our method of analysis and the methods used
previous in previous studies. Firstly, instead of analysing the interactions and information exchange
between individuals, our analysis is more focused on how genetic information is inherited and passed
on between different generations. We expect that this approach is more suited to represent GA

Table 1: Example of two consecutive rows in a GA data file.

New ID Parent 1 ID Parent 2 ID Fitness Value Fitness Evaluation Number Replaced ID Coordinates

39 37 36 3.78574965e-05 24324 38 1.71738996e-01, ..., 2.66379118e-01
40 32 37 1.05745735e-04 28590 37 1.33588664e-01, ..., 2.46944369e-01
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Figure 3: One run of a genetic algorithm with population size 20 (GAgdtcP20D30f0 as explained
in Section 3.3) visualised as a network. Nodes are numbered and coloured by the iteration at which
they are added to the network. The 20 nodes that comprise the initial population are coloured blue.
The size of the nodes is proportional to their combined in and out-degree. The network has 211
nodes and 363 edges. Other visualisation examples can be found in Appendix B.

dynamics specifically. Secondly, we only consider successful iterations. In previous studies that
focus on exchange of information, iterations of algorithms that produce bad solutions are used to
decrease edge weights. Using edge weights in this way is beyond the scope of our analysis, however,
may present an opportunity to produce a more comprehensive network representation. Thirdly,
in this thesis, we focus on analysing and understanding trends in algorithm dynamics instead of
controlling and improving the algorithm while it is running. Nevertheless, the methods presented in
this thesis can be calculated in real-time and provide potential targets to control algorithm behaviour
while it is running.

In summary, the chosen method of network construction has several important consequences for
our analysis.

1. We only consider iterations where a good new solution was found. As a result, runs of the
same algorithm with an equal evaluation budget may produce networks of different sizes.

2. Our networks grow in edges and nodes over time. Especially in early iterations, we are dealing
with very small networks. The low number of nodes in early iterations can cause uninformative
artefacts, as most network analysis measures are only well defined for large networks. Proper-
ties such as assortativity and centralisation (explained in Section 4.2) are not very informative
when a network only has a handful of nodes and edges. We expect that most properties make
large jumps in the early iterations but stabilise over time.

3. Only a fixed number of nodes in the network can generate new children and edges. Every
iteration, a new solution replaces an old solution in the population and the old solution is
marked ‘dead’. Consequently, the dead node cannot create new children.

4. The networks produced with this method belong to the class of directed acyclic graphs (DAGs).
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The unique properties of this class of graphs open up new possibilities of network analysis
that were not considered previously. Specifically, leaf-leaf distance and treeness (explained in
Section 4.2) are unique to DAGs. In some cases, like leaf-leaf distances, it is also possible to
consider the networks as being undirected graphs.

4.2 Network Topological Features

Here, we define several topological features of our network representations. In our experiments,
we observe these properties and their evolution over time to attain an understanding of how these
properties relate to underlying algorithm dynamics.

4.2.1 Assortativity

The assortativity coefficient (r ∈ {R ∩ [−1, 1]}) is the correlation coefficient of a specific attribute
between pairs of nodes [34]. It measures the extent to which nodes tend to connect preferentially
to other nodes that are like them in some way. If the assortativity of a network is 1, there is
perfect assortative mixing. An assortativity of 0 indicates that there is no specific form of mixing
and an assortativity of −1 means that there is a perfect negative correlation between connected
nodes. Commonly, the Pearson correlation coefficient is used to calculate assortativity. However,
the Pearson correlation has two big disadvantages. Namely, it does not compare well between
networks of varying sizes and it does not quantify non-linear correlations accurately. In this thesis,
we use Spearman’s correlation coefficient instead. Spearman correlation is able to quantify non-
linear correlations in networks of different sizes more accurately [35]. To calculate Spearman’s
correlation coefficient, values for source nodes and values for target nodes are ranked individually.
The Spearman correlation is calculated by calculating the correlation between the rankings. For a
formal definition of Spearman correlation, we refer to Kokoska et al. [36]. In this thesis, we consider
both degree and fitness assortativity.

Degree assortativity is a common tool in network analysis. It is informative of the type of
graph and its underlying forming mechanisms. For example, many social networks are found to
have a positive degree assortativity, while biological and technological networks tend to be slightly
disassortative [34]. A notable property of networks with a high degree assortativity is their resilience
to the removal of nodes. A high degree assortativity in a GA network could indicate that the
algorithm is able to progress through many different paths and solutions. On the other hand, a low
degree assortativity could indicate that the algorithm heavily relies on one or a few nodes with a
high degree that act as a bottleneck in the algorithm’s progression. We expect that GAs express
a higher degree assortativity on objective functions with a smooth fitness landscape, compared to
objective functions with a rugged fitness landscape. On a fitness landscape with many discontinuities
and local minima, GAs can make sudden big jumps in fitness. The new and good solution provides
access to a new part of the search space. If the jump in fitness is big enough, this may result in a
substantially high selection frequency of this individual and a low degree assortativity.

We also calculate fitness assortativity. Fitness assortativity can be an indicator of the average
rate of improvement and convergence of the algorithm’s solutions. A low assortativity means that
low fitness nodes are connected to high fitness nodes. Thus, the algorithm is progressing at a high
rate. In general, we expect that fitness assortativity increases over time, as new solutions are closer
together in fitness as the algorithms converge.

4.2.2 Centralisation

Network centrality measures determine the relative importance of each node. These measures can be
used to identify nodes that are disproportionately important to the structure of the network. In order
to generalise centrality for an entire network, we use the Freeman centralisation (C ∈ {R∩[0, 1]}) [37]
given by

C =

∑|V |
i=1 |C(v∗)− C(vi)|

max
∑|V |
i=1 |C(v∗)− C(vi)|

Here, C(vi) is one of the node centrality measures for node vi and C(v∗) is the largest value for

any node in the network. max
∑|V |
i=1 |C(v∗)− C(vi)| is the largest possible sum of differences in
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node centrality for any network of N nodes. In other words, the Freeman centrality determines
the dominance in centrality of the most central node with respect to all other nodes, relative to a
network of the same size where this dominance has the largest possible value. In our calculations,
this means that we compare our most central node to the dominance of the most central node in a
star graph.

There are many different choices for centrality measures, each quantifying different structural
network properties. We examine three centrality measures: degree centrality, out-degree centrality,
and betweenness centrality.

Degree centrality uses the number of edges connected to a node as its centrality measure. The
degree centralisation can be used as an indicator of convergence. High values show exploration of a
single solution which can be a sign of premature convergence if this occurs in early iterations. We
expect that GAs with high selection pressure will generally have higher degree centralisation.

Out-degree centrality is the fraction of all total nodes the outgoing edges of one node are connected
to. Although this measure is similar to degree centrality, we expect out-degree centrality to have a
slightly different relation to network size.

Betweenness centrality measures the relative number of shortest paths that pass through each
node [38]. Betweenness centralisation can be used as an indicator of bottlenecks. In other words,
high values suggest that many evolutionary pathways are directed through only one or a couple of
nodes. We expect that GAs that are able to make large jumps in fitness will have a large increase
in betweenness centralisation. Such a large jump could be caused, for example, by an objective
function that contains discontinuities or local minima instead of a smooth fitness landscape.

Low values of both degree and betweenness centralisation mean that all nodes are equally cen-
tralised. This can be a sign of exploration because each node is contributing equally to newly added
solutions.

4.2.3 Laplacian Eigenvalues

Eigenvalues of the Laplacian matrix of networks can contain a lot of information about the structure
of the network. We use the adjacency matrix to calculate the Laplacian matrix (L). L is given by
subtracting the adjacency matrix (A) from the diagonal matrix of node degrees (D):

L = D −A

The normalised Laplacian is then given by:

N = D−1/2LD−1/2

The eigenvalues of this matrix (λi) can be used for several topological metrics [39]. We consider two,
namely, the second smallest non-zero eigenvalue, also called the algebraic connectivity (λ2 ∈ R+)
and the difference between the two largest eigenvalues, also called the spectral gap (λ|V | − λ|V |−1 ∈
R+) [40]. Both of these are measures for the network’s degree of connectivity. Connectivity indicates
the robustness of a network. The higher the connectivity, the more nodes need to be removed to split
a network into two isolated networks. Connectivity offers a more generalised measure of a network
robustness compared to degree assortativity.

4.2.4 Leaf-leaf Distance

In order to gauge the exploitation of GAs, we measure the lengths of undirected paths between
all leaf nodes. Leaf nodes are nodes with no outgoing edges. If exploitation is dominating the
optimisation, we expect low leaf-leaf distances as we expect many common ancestors between newly
added solutions. We calculate both the maximum leaf-leaf distance (max (dleaf ) ∈ Z+) and the mean
leaf-leaf distance (d̄leaf ∈ R+). The maximum leaf-leaf distance conveys to what extent the most
distant new solutions are separated. The mean leaf-leaf distance will do the same for the average.
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Figure 4: Example of how treeness is calculated in a network. A: A forward tree network with a
treeness of 1. B: A backward tree network with a treeness of −1. C: A non-hierarchical network
with a treeness of 0. E-G: Each network has four paths (π1, π2, π3, π4) from the top nodes (M)
to the bottom nodes (µ). E: The forward uncertainty of paths is Hf = log 4 while there is no
uncertainty when the paths are reversed. F: The opposite of E: Hf = 0 and Hb = log 4. G: Forward
and backward uncertainties are equal: Hf = Hb = log 2. Figure adapted from [41].

4.2.5 Treeness

Treeness (T ∈ {R ∩ [−1, 1]}) expresses how pyramidal the structure of a graph is or how reversible
a graph is [41]. The reversibility is defined as the difference between the forward and the backward
uncertainty of a graph. Treeness compares the creation of alternative paths in a forward exploration
of a graph to the uncertainty in reversing those paths. In other words, if a random walker was
to traverse the network, the uncertainty to follow a given path is compared to the uncertainty of
following the reversed path. If the forward uncertainty is greater than the reversed or backward
uncertainty, the graph shows a pyramidal structure. Figure 4 shows an example of three different
networks and the calculation of their treeness.

For a directed acyclic graph (G) with maximal nodes M and minimal nodes µ, the uncertainty
(h(vi)) to follow a given path (πk) from vi ∈M to a node in µ is given by [42]

h(vi) = −
∑

πk∈ΠMµ

P(πk|vi) logP(πk|vi)

Here, P(πk|vi) is the probability that the path πk is followed starting from node vi. The average
uncertainty to follow a path from some node vi in the group of nodes M is

Hf (G) =
1

|M |
∑
vi∈M

h(vi)

The treeness is then given by the normalised difference between the forward and backward entropies:

T =
Hf −Hb

max (Hf , Hb)
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Due to our method of network construction, we know that each newly added node is the leaf node of
a backward tree (Figure 4B). Because the entire network is a union of several backward trees, we can
expect a negative treeness. Nodes that produce a lot of children increase the forward uncertainty in
the network and, consequently, they also increase the treeness of the network. Therefore, we expect
similar trends between the betweenness centralisation and treeness.

4.2.6 Shortest Path Length

Shortest path lengths can be used to identify small-world networks. The small-world property is
ubiquitous in real-world networks [18]. In small-world networks, the average shortest path length
(d̄ ∈ R+) scales logarithmically with the number of nodes [43]. As a result, even when the number
of nodes becomes very large, the average distance between nodes can stay surprisingly small. An
average shortest path length that scales less than linearly with the number of nodes and stays small,
is an indication that shortcuts are created between distant nodes or distant neighbourhoods of nodes.

We also calculate the longest shortest path length (max (d) ∈ Z+) or diameter. The diameter
gives an indication of the network’s scale. For our newtorks specifically, the diameter is the largest
minimum number of generations involved in the creation of each solution.

4.2.7 Subtree Size

At each iteration, we create a subtree with the best node (vopt) and all its predecessors. The best
subtree size (|Vvopt | ∈ Z+) is the number of different solutions used to generate the current best
solution.

4.3 Random Null Models

When creating a network representation of a genetic algorithm, the objective function and choice
of algorithm settings can have a large effect on the structure of the network. When analysing the
network structure, it is important to determine whether topological features are caused by a specific
algorithm setting, a property of the objective function, a combination of the two, or can simply be
explained by chance. We use a generative model to assess the effects of an objective function on
network structure and a randomisation-based model to assess the effects of algorithm settings.

We create a generative null model by running the GA variants on a random objective function.
A random objective function randomises fitness selection and allows us to capture the behaviour of
our GA variants without the influence of the fitness landscape of a non-random function.

We also create a randomisation-based model by randomly rewiring our network representations.
This disrupts the structure caused by the parent selection of the genetic algorithm and allows us to
determine a base line that is inherent to our method of representation.

A common way to compare null models and actual networks is normalisation [19]. Here, every
data point is divided by the average value of a corresponding null model that has been matched for
the relevant properties. To prevent dividing by 0, we normalise treeness and assortativity features
using valueo+1

values+1 , where value0 and values are the original value and the shuffled value, respectively.
We propose a rewiring algorithm that conserves edge degrees and the typical directed acyclic

graph (DAG) structure of our GA networks (Algorithm 2). The rewiring process is based on Maslov-
Sneppen rewiring [44]. Maslov-Sneppen rewiring preserves size, connection density, and degree
distribution. With such a rewiring process, the shuffling can be constrained to achieve a better match
between the properties of the empirical and null networks. This algorithm is a directed adaptation
of an undirected edge shuffling function found in the NetworkX package [33]. The original version
was modified to create directed edges and conserve a DAG structure.

Every iteration, two random edges (u → v and x → y) are selected, weighted by the degree of
their respective source nodes (Line 8-11). The endpoints of edges are swapped in a way that conserves
the network structure (Line 15-18). As shown in Figure 3, nodes are ordered by the iteration at
which they are added to the network. This makes it trivial to check whether the DAG structure is
conserved during rewiring. As long as edges are connected from lower-order to higher-order nodes,
the network conserves its DAG structure.

During every iteration, we calculate network properties for every network and a shuffled instance
of the same network where edges have been swapped 100 × |E| where |E| is the number of edges
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Algorithm 2 Algorithm to randomly rewire directed network edges, adapted from the undirected
version implemented in the NetworkX package [33].

1: function DirectedDoubleEdgeSwap(graph G, n swaps, max tries)
2: pdf ← normalize(G.out degrees())
3: while swap count < n swaps do
4: if n tries ≥ max tries then
5: return G
6: end if
7: n tries← n tries+ 1
8: u← select random(pdf)
9: x← select random(pdf)

10: v ← select random(G.neighbors(u))
11: y ← select random(G.neighbors(x))
12: if u == x ∨ v == y then
13: continue
14: end if
15: sux = min{u, x}
16: tux = max{u, x}
17: svy = min{v, y}
18: tvy = max{v, y}
19: if (sux, tux) /∈ E ∧ (svy, tvy) /∈ E then
20: E ← E \ {(u, v), (x, y)}
21: E ← E ∪ {(sux, tux), (svy, tvy)}
22: swap count← swap count+ 1
23: end if
24: end while
25: return G
26: end function

in the original network. According to previous studies, this should be enough iterations to create
sufficiently random versions of most graphs [19, 45].

4.4 Visualisation of Topological Time Series

We measure network properties for each iteration of the growing networks, resulting in 50 time
series for each run of each genetic algorithm. The stochastic nature of these data leaves us with
some important choices to make in order to compare algorithm variants directly, as we have to
consider extreme outliers and variations in algorithm progression.

Firstly, due to the stochastic nature of the algorithms, not all networks have an equal number of
iterations which result in producing a solution fitter than a solution already present in the population.
To align different time series, we resample the time series using linear interpolation, implemented
with the interp function of Numpy version 1.20.3 [46]. This allows us to compare GAs directly,
with respect to the relative run progression, despite the possible introduction of artefacts due to
resampling. All trajectories start on the iteration where the first edges are added to the network
because many topological features are not well-defined for a network without edges. This effectively
reduces the number of function evaluations by the algorithm’s population size.

Secondly, we generalise the results of 50 runs by visualising median values and error bars in-
dicating the interquartile range, the range between the median of the lower half of the values and
the median of the higher half of the values. This allows us to compare general GA behaviour while
simultaneously taking stochastic variation into account without excessive impact of extreme outliers.
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(a) Largest component size.

Figure 5: Median largest component size time trajectories for different population sizes on random
objective function f0 (Equation 1). The legend labels containing regular expressions that represent
groups of GA variants are explained in Section 3.3. The error bars show the interquartile range of
each group of variants included in the plot and the trajectories are rescaled to reflect run progress,
as explained in Section 4.4. Each line shows the median and spread of 1600 time trajectories from
32 variants, each comprising 50 runs.

5 Results

Here, we analyse times series of the topological features of our network representations of differ-
ent genetic algorithm variants that are created using the procedures described in Section 4. In
Section 5.1, we analyse the random objective function f0 (Equation 1) without reference to a null
model. In Section 5.2, we compare and normalise a limited sample of GA variants run on f0 with
respect to their shuffled counterparts. Finally, in Section 5.3, we analyse how topological features
differ between random objective function f0 and non-random objective function f1 (Equation 2) for
a limited sample of GA variants.

5.1 Random Function f0

In this section, we analyse the time trajectories of features we calculate for network representations
of GAs that optimise a random objective function f0 (Equation 1). We compare different GA
parameters and their impact on the network features described in Section 4.2. We discuss the figures
that present discernible trends and interesting outliers in GA behaviour. The figures containing all
other calculated time trajectories can be found in Appendix C. We discuss the impact on topological
features of the following factors:

1. Network size

2. Population size

3. Parent selection strategy

4. Mutation operator

5. Crossover operator

6. Correction strategy

5.1.1 Effect of Network Size

Before we analyse network features with respect to different algorithm parameters, it is important
to realise that our network representations grow in size over time (Figure 5). As a consequence, it is
expected that measures that scale with network size, increase with population size. Moreover, with a
larger network size, each added node has a smaller impact on averaged and network-wide measures.
Unsurprisingly, our trajectories often show more deviations and larger jumps in early iterations
than in later iterations. Variants with a smaller population size and thus a smaller number of nodes
produce less smooth trajectories and more variance in between different runs.
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(a) Average shortest path length. (b) Longest shortest path length.

(c) Maximum leaf-leaf distance. (d) Mean leaf-leaf distance.

Figure 6: Median path length time trajectories for different population sizes on random objective
function f0. Each line shows the median and spread of 1600 time trajectories from 32 variants, each
comprising 50 runs.

5.1.2 Effect of Population Size

Figures 6a and 6b show how shortest path lengths are related to population size. As the networks
increase in size, nodes are farther away from each other which results in higher shortest path lengths.
Figures 6c and 6d show the maximum and mean distances between leaf nodes. Interestingly, these
distances seem to converge to similar values for each population size. Despite of larger network sizes,
the leaf nodes are still densely connected with larger population sizes. In contrast to shortest path
lengths, leaf-leaf distances decrease after an initial spike for larger population sizes. This behaviour
can be explained by exploration and exploitation competing to dominate the optimisation process.
When leaf-leaf distances are increasing, different branches of the network are developed individually,
increasing the distance between leaf nodes of each branch. This is a characteristic of exploration.
When the leaf-leaf distances are decreasing, different branches are connected together to exploit
their shared search space. This creates new, shorter paths between leaf nodes in different branches.
The opposing forces of exploration and exploitation appear to reach a similar dynamic equilibrium
between 9 and 12 for the maximum leaf-leaf distance and around 5.5 for the mean leaf-leaf distance
for all population sizes.

Figure 7a shows that degree centralisation tends to be lower in larger population sizes compared to
smaller population sizes. According to Figure 7b, there is hardly any assortative mixing with respect
to node degree. The negative values indicate slight trend of disassortative mixing in population size
5, even though the spread in the time trajectories is very large. Figure 7c shows that all population
sizes are highly assortative with respect to fitness. As expected, over time, as the algorithms progress,
fitness assortativity converges to very high values.

While the trajectories of GA variants with different population size behave differently in early
iterations, the value of the algebraic connectivity converges to similar values for each population
size (Figure 8). Together with Figure 6, this shows that the degree of connectivity is constant with
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(a) Degree centralisation. (b) Degree assortativity.

(c) Fitness assortativity.

Figure 7: Median centralisation and assortativity time trajectories for different population sizes on
random objective function f0. Each line shows the median and spread of 1600 time trajectories from
32 variants, each comprising 50 runs.

respect to population size and quite low, as shortest path lenghts do scale with respect to network
size.

As expected, our network representations produce negative values for treeness (Figure 9a). Even
so, some trajectories report positive values for a big part of the algorithms’ lifetime before reaching
negative values. This shows that in early iterations, the production of new branches is dominating
the optimisation process, similar to the peak in leaf-leaf distances in Figures 6c and 6d. In later
iterations, the consolidation of separate branches into common end points dominates the represen-
tation’s extension, consequently lowering the treeness into negative values. Unsurprisingly, we can
see that the best subtree sizes increase with population and network size (Figure 9b).

Algebraic connectivity.

Figure 8: Median algebraic connectivity time trajectories for different population sizes on random
objective function f0. Each line shows the median and spread of 1600 time trajectories from 32
variants, each comprising 50 runs.
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(a) Treeness. (b) Best subtree size.

Figure 9: Median treeness and subtree size time trajectories for different population sizes on random
objective function f0. Each line shows the median and spread of 1600 time trajectories from 32
variants, each comprising 50 runs.

(a) Average shortest path length. (b) Longest shortest path length.

(c) Maximum leaf-leaf distance (d) Mean leaf-leaf distance

Figure 10: Median path length time trajectories for different parent selection strategies on random
objective function f0. Each line shows the median and spread of 800 time trajectories from 16
variants, each comprising 50 runs.
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(a) Degree centralisation. (b) Degree assortativity.

(c) Fitness assortativity.

Figure 11: Median centralisation and assortativity time trajectories for different parent selection
strategies on random objective function f0. Each line shows the median and spread of 800 time
trajectories from 16 variants, each comprising 50 runs.

5.1.3 Effect of Parent Selection

The method of parent selection affects to which nodes new links are added. Figure 10 shows how
the choice between random or tournament selection can change distances within our network rep-
resentation, even if the network size hardly changes (Appendix Figure C.2i). Tournament selection
correlates with smaller shortest path lengths (Figure 10a). A possible explanation is that, during
tournament selection, highly fit nodes have a higher probability of being selected. As a result these
nodes are able to accumulate more connections. Compared to random selection that would explore
each branch of the network more equally, tournament selection reduces the diameter of the network
(Figure 10b). A similar effect is observed in leaf-leaf distances. However, despite tournament se-
lection causing lower maximum leaf-leaf distances compared to random selection in early iterations,
both methods of selection still converge to similar values (Figure 10c). In contrast, mean leaf-leaf
distances are lower with tournament selection throughout the entire duration of the algorithms’ runs
(Figure 10d).

The centralisation trajectories confirm how parent selection affects the distribution of edges in the
network representations (Figures 11a). Random selection produces consistently lower centralisation
scores, indicating a flatter centrality distribution for random selection. This confirms that higher
parent selection pressure correlates with higher degree centralisation. Unintuitively, tournament
selection also seems to lower fitness assortativity (Figure 11c). With tournament selection, more fit
nodes are selected as parents than in random selection. As a result, it would be expected that the
new, fitter node is connected to more fit parents, thus increasing the fitness assortativity compared to
random selection. It is unclear what mechanisms cause the lower fitness assortativity in tournament
selection.

In correlation with the smaller distances and greater centralisation, tournament selection causes
greater algebraic connectivity (Figure 12).

Parent selection strategy has a big impact on the treeness of the network representation (Fig-
ure 13a). The representations resulting from tournament selection resemble the structure of a back-
wards tree more than those resulting from random selection. This implies that random selection is
continuously creating new branched paths, while tournament selection reduces forward uncertainty
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Algebraic connectivity.

Figure 12: Median algebraic connectivity time trajectories for different parent selection strategies
on random objective function f0. Each line shows the median and spread of 800 time trajectories
from 16 variants, each comprising 50 runs.

(a) Treeness. (b) Best subtree size.

Figure 13: Median treeness and subtree size time trajectories for different parent selection strategies
on random objective function f0. Each line shows the median and spread of 800 time trajectories
from 16 variants, each comprising 50 runs.

(as explained in Section 4.2.5) by combining nodes into a common child. Tournament selection also
decreases the best subtree size (Figure 13b). When more fit nodes are selected more frequently with
the increased selection pressure, only the subtrees containing those nodes are involved in creating
new solutions. This may explain the smaller number of nodes in the best subtrees.

5.1.4 Effect of Mutation

As expected, we did not see a difference in trajectories for GAs using Cauchy or Gaussian mutation
on a random objective function. When comparing the mutation operators, the trajectories seem
almost identical (Figure 14, Appendix C.3).

5.1.5 Effect of Crossover

Similar to the mutation operators, we did not observe the crossover method to have a noticeable
impact on our time trajectories for a random objective functions (Figure 15, Appendix C.4).
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(a) Average shortest path length.

Figure 14: Median average shortest path length time trajectories for different mutation operators
and different population sizes on random objective function f0. Each line shows the median and
spread of 800 time trajectories from 16 variants, each comprising 50 runs. There is no discernible
difference caused by changing mutation operators.

(a) Average shortest path length.

Figure 15: Median average shortest path length time trajectories for different crossover operators
and different population sizes on random objective function f0. Each line shows the median and
spread of 800 time trajectories from 16 variants, each comprising 50 runs. There is no discernible
difference caused by changing crossover operators.

5.1.6 Effect of Correction

As expected, a change in correction strategy did not change the trajectories of topological features
for GAs on a random objective function (Figure 16, Appendix C.5, C.6, C.7).
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(a) Average shortest path length for population
size 5.

(b) Average shortest path length for population
size 20.

(c) Average shortest path length for population
size 100.

Figure 16: Median average shortest path length time trajectories for different correction strategies
and different population sizes on random objective function f0. Each line shows the median and
spread of 400 time trajectories from 8 variants, each comprising 50 runs. There is no discernible
difference caused by changing correction strategies.

(a) Average shortest path length. (b) Normalised average shortest path length.

Figure 17: Median average shortest path length time trajectories on random objective function f0

before and after normalisation. Every data point is divided by the mean of its respective shuf-
fled counterpart. Each line shows the median and spread of 30 time trajectories from 1 variant,
comprising 30 runs.
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5.2 Shuffled Networks on Function f0

For each GA variant run, we shuffle the edges of its network representations 100×|E| times, where |E|
is the number of edges, to produce a randomised null model, as explained in Section 4.3. We compare
the topological features of our networks to their respective null model to verify whether the features
we observe are caused by algorithm dynamics or simply caused by our method of representation. Due
to computational and time constraints, we were unable to shuffle and analyse all GA variants. In this
section, we selected two GA variants for which 30 runs were shuffled. Because of this limited analysis,
we cannot generalise our conclusions for general GA behaviour. However, this preliminary analysis
offers some interesting insights into the degree to which our network representations resemble random
behaviour. Figure 17 shows how we normalise each variant with respect to its shuffled version. All
plots without normalisation can be found in Appendix D.

Figures 17 and 18 show normalised trajectories of path lengths. While path lengths keep increas-
ing as the network representations grow for both the original and shuffled networks, path lengths
seem to increase at a higher rate in the original representations than in the shuffled representa-
tions. This suggests that the original network representations are less small-world-like than would
be expected from the random models.

Figure 19a shows that, even though there is a large spread, median centralisation scores are sim-
ilar between shuffled and original networks. This is expected as the shuffling is designed to preserve
degree distribution. Degree assortativity increases when the networks are shuffled (Figure 19b),
implying that shuffling increases the robustness and connectivity of the representations. Fitness
assortativity is higher in the original networks, compared to the shuffled networks (Figure 19c) as
pairs of highly fit nodes are broken up and connected to less fit nodes by the shuffling process.

In congruence with the longer path lengths and degree assortativity, the algebraic connectivity is
lower in the original representations than in their shuffled counterparts (Figure 20). Together with
the increased best subtree size (Figure 21b), these topological features show that shuffling increases
the connectedness and decreases the scale of the network representations.

Shuffling our network representations seems to remove its hierarchical structure as the treeness

(a) Longest shortest path length. (b) Maximum leaf-leaf distance.

(c) Mean leaf-leaf distance.

Figure 18: Normalised median path length time trajectories on random objective function f0. Every
data point is divided by the mean of its respective shuffled counterpart. Each line shows the median
and spread of 30 time trajectories from 1 variant, comprising 30 runs.
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(a) Degree centralisation. (b) Degree assortativity.

(c) Fitness assortativity.

Figure 19: Normalised median centralisation and assortativity time trajectories on random objective
function f0. Every data point is divided by the mean of its respective shuffled counterpart. Each
line shows the median and spread of 30 time trajectories from 1 variant, comprising 30 runs.

of shuffled representations stays close to 0 (Appendix Figure D.1o). Figure 21a shows that the GAs
cause negative treeness in our representations.

(a) Algebraic connectivity.

Figure 20: Normalised median algebraic connectivity time trajectories on random objective function
f0. Every data point is divided by the mean of its respective shuffled counterpart. Each line shows
the median and spread of 30 time trajectories from 1 variant, comprising 30 runs.
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(a) Treeness. (b) Best subtree size.

Figure 21: Normalised median treeness and subtree size time trajectories on random objective
function f0. Every data point is divided by the mean of its respective shuffled counterpart. Each
line shows the median and spread of 30 time trajectories from 1 variant, comprising 30 runs.

(a) Fitness assortativity. (b) Normalised fitness assortativity.

Figure 22: Median fitness assortativity time trajectories on objective function f1 before and after
normalisation. Every data point on f1 is divided by the mean of its respective f0 counterpart. Each
line shows the median and spread of 198 time trajectories from 6 variants, comprising 33 runs. The
normalisation reveals differences between random and tournament parent selection.

5.3 Sphere Function f1

We use our GAs run on random objective function f0 as a null model to compare to non-random
objective function f1, as explained in Section 4.3. Due to computational and time constraints, we
were unable to analyse all GA variants on objective function f1. In this section, we selected two
groups of GA variants for which 33 runs were completed. Even with this limited analysis, we can still
observe some interesting effects that the choice of objective functions has on the topological features
of our network representations. All plots without normalisation can be found in Appendix E.

Figure 22 shows how normalisation of results on function f1 with respect to function f0 can
sometimes reveal differences that are not apparent without normalisation. In Figure 22a, the fitness
assortativity seems almost identical between variants with random or tournament parent selection.
While both groups of variants produce higher values of fitness assortativity on f1 compared to f0,
the increase for the variants with tournament selection is higher as the original expectation was lower
(Figure 22b). In other words, according to Figure 22, objective function f1 has a greater impact on
algorithm dynamics for variants with tournament selection. In general, we observe the same pattern
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(a) Largest component size. (b) Normalised largest component size.

Figure 23: Median largest component size time trajectories on random objective function f1 before
and after normalisation. Every data point on f1 is divided by the mean of its respective f0 counter-
part. Each line shows the median and spread of 198 time trajectories from 6 variants, comprising
33 runs. The normalisation reveals differences between random and tournament parent selection.

for other topological features (Appendix E). If a network feature increases or decreases between f0

and f1, the change is more dramatic for the variants using tournament selection. This shows that
the increased parent selection pressure caused by tournament selection interacts more dramatically
with the fitness landscape of function f1.

The network representations of GAs run on f1 are larger (Figure 23), even less small-world-like
(Figure 24) and less densely connected (Figure 25) than the networks for f0. This difference is not
very pronounced in the earlier iterations when the algorithms progress very quickly (Figure 27c,
Appendix A.2). However, in later iterations, when progress slows down, the representations lose
their hierarchical structure (Figure 26) and express much higher path lengths (Figure 24), much
lower connectivity (Figure 25) and much lower centralisation (Figure 27a). This indicates that
during the iterations with slow progress, regardless of the choice of parent selection, the solutions
are contributing equally to the fitness improvements and exploration is dominating the minimisation
process. We expected an increase in degree assortativity for a smooth objective function such as f1.
Even though there is an increase, it is not very large (Figure 27b).
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(a) Average shortest path length. (b) Longest shortest path length.

(c) Maximum leaf-leaf distance. (d) Mean leaf-leaf distance.

Figure 24: Normalised median path length time trajectories on sphere function f1. Every data point
on f1 is divided by the mean of its respective f0 counterpart. Each line shows the median and spread
of 198 time trajectories from 6 variants, comprising 33 runs.

(a) Algebraic connectivity.

Figure 25: Normalised median Laplacian time trajectories on sphere function f1. Every data point
on f1 is divided by the mean of its respective f0 counterpart. Each line shows the median and spread
of 198 time trajectories from 6 variants, comprising 33 runs.
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(a) Treeness. (b) Normalised Treeness.

Figure 26: Median treeness time trajectories on sphere function f1 before and after normalisation.
Every data point on f1 is divided by the mean of its respective f0 counterpart. Each line shows the
median and spread of 198 time trajectories from 6 variants, comprising 33 runs. f1 time trajectories
lose their hierarchical structure during the run.

(a) Degree centralisation. (b) Degree assortativity.

(c) Fitness assortativity.

Figure 27: Normalised median centralisation and assortativity time trajectories for different popu-
lation sizes on sphere function f1. Every data point on f1 is divided by the mean of its respective
f0 counterpart. Each line shows the median and spread of 198 time trajectories from 6 variants,
comprising 33 runs.
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6 Discussion

In this thesis, we constructed network representations for a variety of genetic algorithms. The topo-
logical features of these representations are able to express the dynamic behaviour of the underlying
GAs. However, there are several limitations to the analysis presented in this thesis.

For example, because there are no contemporary random network models with a structure similar
to our GA networks, we compared our networks to randomly rewired networks, as explained in
Section 4.3. It is important to realise that these shuffled networks are not extensively studied and
may have their own biases. For instance, it has been shown before that the impact of shuffling edges
depends on the structure and size of the original networks [47]. Without further investigation, it is
not necessarily clear whether the networks are shuffled enough to remove the structure imposed by
the GAs and to create a sufficiently random null model to compare against.

Another limiting factor in our analysis was the computational cost of calculating topological
features and shuffling networks. Because our representations grow for each successful iteration, they
are able to grow in size. Theoretically, the number of nodes can grow up to the number of function
evaluations. Even though our representations are sparse, i.e. the number of edges is relatively small,
the computation time of some topological features, such as treeness, scale badly with network size.
Moreover, edge shuffling can become very slow for large networks, as the amount of shuffling needed
depends on the size of the network. For these networks, it may be advantageous to implement a
more efficient shuffling algorithm [48].

The analysis of only successful iterations is another limitation for three reasons. Firstly, un-
successful iterations may provide valuable information about the interactions inside the GA pop-
ulation [6]. Secondly, these unsuccessful iterations provide information about algorithm runtime
and convergence speed. Thirdly, this choice produces networks and time series that differ in size.
Including unsuccessful iterations would prevent the need to interpolate and align time series of dif-
ferent lengths (Section 4.4). Interpolating may introduce noise or artificial data points that are not
representative of the actual feature values. We considered several methods of aligning time series
of different lengths. We decided not to discard data points to match the shortest run because this
may result in a loss of valuable information. We also decided not to time series to match the length
of the longest run. Our time series express similar highly random behaviour in the early iterations.
In addition, the final iteration of each time series corresponds to the termination of each algorithm
run. If we were to append values either to the beginning or end of our shorter time series, we would
undo the alignment of these similar periods in different runs. Therefore, we opted to preserve the
alignment of the beginning and end of our series by scaling and interpolating the time series to be
equal in length.

In our experiments, we only analyse network-wide features and disregard their distribution with
respect to individual nodes. As shown, these network-wide generalisations of features can easily be
compared and used to identify trends, even if they exhibit large deviations. Because of the spread
in network representation sizes, it becomes complicated to visualise and analyse distributions of
individual node values. Unfortunately, by analysing network-wide abstractions, we may be discarding
informative details. Especially centrality measures can be very informative when analysed as a
distribution. For example, the degree distribution of nodes in a network can be used to identify
scale-free networks [18]. Other centrality measures can be used to identify and count hub nodes
in networks [5]. Analysing the change of distributions over time and comparing between variants
may reveal more details about GA dynamics. Including node distributions may be an interesting
opportunity for future work to create even more comprehensive network representation analyses.

In this thesis, we focused on the analysis of network topological features, but there are more
features in our data that can be analysed. For example, using the real-valued chromosomes as
coordinates (Table 1) of each solution, it is possible to calculate pairwise distances between solutions
as an indicator of step size, or it is possible to calculate the size of the subdomain that is being
explored. Furthermore, there are potential correlations between features that can be explored,
e.g. the correlation between fitness and centrality measures. These additional features may be an
interesting avenue for future research.
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7 Conclusion

Genetic algorithms (GAs) and other population-based algorithms use an interacting population of
solutions to optimise complicated objective functions. Even though they are widely applied to com-
plex real world problems, their dynamic behaviour is not yet thoroughly understood. Recent research
uses analysis of network representations of these algorithms to gain insight into the interactions and
dynamics of population-based algorithms. While this approach has been used successfully to improve
parameter selection or for real-time performance improvements, previous network representations
may not accurately capture GA dynamics.

In this thesis, we constructed network representations, specifically for real-valued genetic algo-
rithms, designed to capture the spread and inheritance of genetic information in GA populations.
We defined a set of network topological features and related these features to GA dynamics by
comparing their values for different GA parameters and objective functions. We showed how the
effect of GA parameters can be quantified by analysing the temporal evolution of these features.
We created ensembles of random graphs to use as null models using a random objective function or
random rewiring. Next, we used these null models to observe to what extent changes in topological
features differ from what can be expected by chance.

On a random objective function, we found that increasing population size increases the number
of nodes and increased path lengths in the network representations, while connectivity decreased.
Tournament parent selection decreased path lengths and treeness, and increased connectivity and
centralisation of the networks compared to random parent selection. These effects can be explained
by the higher parent selection pressure in GAs with tournament selection. Unexpectedly, tournament
selection also decreases fitness assortativity. As expected, we did not observe any effect of changing
mutation operators, crossover operators or correction strategy on a random objective function.

We found that GAs increase path lengths and fitness assortativity, while they decrease degree
assortativity, connectivity, and treeness of their representations, compared to their randomly shuffled
counterparts for some variants. This shows that the topological features we observe are not caused
by our method of representation or by chance, but can be attributed to the underlying genetic
algorithm.

The network representations increased in size, path lengths, and treeness while decreasing in con-
nectivity, centralisation, and degree assortativity when the GAs optimised a non-random objective
function, compared to a random objective function. While we observed these effects for GA variants
using both parent selection methods, these differences were greater for variants with tournament
selection than for variants with random selection.

We suggest the following points of interest for future research: Firstly, the analysis of the time
evolution of node degree and node centrality distributions can be used to perform a more detailed
analysis of network representations. Secondly, the network representations in this thesis could be
extended to include unsuccessful iterations. Thirdly, we suggest increasing the scope of analysis
by analysing solution coordinates or correlations between topological features. Fourthly, a deeper
analysis of shuffled or other random network null models may be needed to validate the significance
of GA network features. Finally, we suggest expanding this method of analysis to more GA variants
and objective functions to further characterise GA behaviour. We think that our network-based
approach will help improve the understanding of GAs and may contribute to GA performance
improvements by providing additional opportunities for real-time control in future work.
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Appendices

Appendix A GA Performance Plots

A.1 GA Performance on f0

(a) GAcarcP(.)D30f0. (b) GAcardP(.)D30f0.

(c) GAcarsP(.)D30f0. (d) GAcartP(.)D30f0.

(e) GAcatcP(.)D30f0. (f) GAcatdP(.)D30f0.

Figure A.1: Performance of GAs with Cauchy mutation on f0. The legend labels containing regular
expressions that represent groups of GA variants are explained in Section 3.3.
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(g) GAcatsP(.)D30f0. (h) GAcattP(.)D30f0.

(i) GAcdrcP(.)D30f0. (j) GAcdrdP(.)D30f0.

(k) GAcdrsP(.)D30f0. (l) GAcdrtP(.)D30f0.

(m) GAcdtcP(.)D30f0. (n) GAcdtdP(.)D30f0.

Figure A.1: Performance of GAs with Cauchy mutation on f0.

38



(o) GAcdtsP(.)D30f0. (p) GAcdttP(.)D30f0.

Figure A.1: Performance of GAs with Cauchy mutation on f0.

(a) GAgarcP(.)D30f0. (b) GAgardP(.)D30f0.

(c) GAgarsP(.)D30f0. (d) GAgartP(.)D30f0.

(e) GAgatcP(.)D30f0. (f) GAgatdP(.)D30f0.

Figure A.2: Performance of GAs with Gaussian mutation on f0.
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(g) GAgatsP(.)D30f0. (h) GAgattP(.)D30f0.

(i) GAgdrcP(.)D30f0. (j) GAgdrdP(.)D30f0.

(k) GAgdrsP(.)D30f0. (l) GAgdrtP(.)D30f0.

(m) GAgdtcP(.)D30f0. (n) GAgdtdP(.)D30f0.

Figure A.2: Performance of GAs with Gaussian mutation on f0.

40



(o) GAgdtsP(.)D30f0. (p) GAgdttP(.)D30f0.

Figure A.2: Performance of GAs with Gaussian mutation on f0.
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A.2 GA Performance on f1

(a) GAcarcP(.)D30f1. (b) GAcardP(.)D30f1.

(c) GAcarsP(.)D30f1. (d) GAcartP(.)D30f1.

(e) GAcatcP(.)D30f1. (f) GAcatdP(.)D30f1.

Figure A.3: Performance of GAs with Cauchy mutation on f1. The legend labels containing regular
expressions that represent groups of GA variants are explained in Section 3.3.
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(g) GAcatsP(.)D30f1. (h) GAcattP(.)D30f1.

(i) GAcdrcP(.)D30f1. (j) GAcdrdP(.)D30f1.

(k) GAcdrsP(.)D30f1. (l) GAcdrtP(.)D30f1.

(m) GAcdtcP(.)D30f1. (n) GAcdtdP(.)D30f1.

Figure A.3: Performance of GAs with Cauchy mutation on f1.
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(o) GAcdtsP(.)D30f1. (p) GAcdttP(.)D30f1.

Figure A.3: Performance of GAs with Cauchy mutation on f1.

(a) GAgarcP(.)D30f1. (b) GAgardP(.)D30f1.

(c) GAgarsP(.)D30f1. (d) GAgartP(.)D30f1.

(e) GAgatcP(.)D30f1. (f) GAgatdP(.)D30f1.

‘

Figure A.4: Performance of GAs with Gaussian mutation on f1.
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(g) GAgatsP(.)D30f1. (h) GAgattP(.)D30f1.

(i) GAgdrcP(.)D30f1. (j) GAgdrdP(.)D30f1.

(k) GAgdrsP(.)D30f1. (l) GAgdrtP(.)D30f1.

(m) GAgdtcP(.)D30f1. (n) GAgdtdP(.)D30f1.

‘

Figure A.4: Performance of GAs with Gaussian mutation on f1.
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(o) GAgdtsP(.)D30f1. (p) GAgdttP(.)D30f1.

‘

Figure A.4: Performance of GAs with Gaussian mutation on f1.
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Appendix B Network Pictures

Figure B.1: One run of GA variant GAcarsP5D30f0 (as explained in Section 3.3) visualised as
a network. Nodes are numbered and coloured by the iteration at which they are added to the
network. The 20 nodes that comprise the initial population are coloured blue. The size of the nodes
is proportional to their combined in and out-degree. The network has 57 nodes and 88 edges.
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Figure B.2: One run of GA variant GAcatsP5D30f0 visualised as a network. Nodes are numbered
and coloured by the iteration at which they are added to the network. The 20 nodes that comprise
the initial population are coloured blue. The size of the nodes is proportional to their combined in
and out-degree. The network has 61 nodes and 93 edges.
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Figure B.3: One run of GA variant GAgdrcP20D30f0 visualised as a network. Nodes are numbered
and coloured by the iteration at which they are added to the network. The 20 nodes that comprise
the initial population are coloured blue. The size of the nodes is proportional to their combined in
and out-degree. The network has 190 nodes and 326 edges.
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Figure B.4: One run of GA variant GAgdtcP20D30f0 visualised as a network. Nodes are numbered
and coloured by the iteration at which they are added to the network. The 20 nodes that comprise
the initial population are coloured blue. The size of the nodes is proportional to their combined in
and out-degree. The network has 211 nodes and 363 edges.
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Figure B.5: One run of GA variant GAcdrtP100D30f0 visualised as a network. Nodes are numbered
and coloured by the iteration at which they are added to the network. The 20 nodes that comprise
the initial population are coloured blue. The size of the nodes is proportional to their combined in
and out-degree. The network has 897 nodes and 1574 edges.
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Figure B.6: One run of GA variant GAcdttP100D30f0 visualised as a network. Nodes are numbered
and coloured by the iteration at which they are added to the network. The 20 nodes that comprise
the initial population are coloured blue. The size of the nodes is proportional to their combined in
and out-degree. The network has 899 nodes and 1592 edges.
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Figure B.7: One run of GA variant GAgdtcP20D30f1 visualised as a network. Nodes are numbered
and coloured by the iteration at which they are added to the network. The 20 nodes that comprise
the initial population are coloured blue. The size of the nodes is proportional to their combined in
and out-degree. The network has 1466 nodes and 2786 edges.
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Appendix C Plots for Random Function f0

C.1 Effect of Population Size

(a) Added fitness. (b) Algebraic connectivity.

(c) Average shortest path length. (d) Best subtree size.

(e) Betweenness centralisation. (f) Degree assorativity.

Figure C.1: Median time trajectories for different population sizes on random objective function f0.
Each line shows the median and spread of 1600 time trajectories from 32 variants, each comprising
50 runs.
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(g) Degree centralisation. (h) Fitness assorativity.

(i) Largest connected component size. (j) Longest shortest path length.

(k) Maximum leaf-leaf distance. (l) Mean leaf-leaf distance.

Figure C.1: Median time trajectories for different population sizes on random objective function f0.
Each line shows the median and spread of 1600 time trajectories from 32 variants, each comprising
50 runs.
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(m) Out-degree centralisation. (n) Spectral gap.

(o) Treeness.

Figure C.1: Median time trajectories for different population sizes on random objective function f0.
Each line shows the median and spread of 1600 time trajectories from 32 variants, each comprising
50 runs.
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C.2 Effect of Parent selection

(a) Added fitness. (b) Algebraic connectivity.

(c) Average shortest path length. (d) Best subtree size.

(e) Betweenness centralisation. (f) Degree assorativity.

Figure C.2: Median time trajectories for different parent selection strategies on random objective
function f0. Each line shows the median and spread of 800 time trajectories from 16 variants, each
comprising 50 runs.
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(g) Degree centralisation. (h) Fitness assorativity.

(i) Largest connected component size. (j) Longest shortest path length.

(k) Maximum leaf-leaf distance. (l) Mean leaf-leaf distance.

Figure C.2: Median time trajectories for different parent selection strategies on random objective
function f0. Each line shows the median and spread of 800 time trajectories from 16 variants, each
comprising 50 runs.
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(m) Out-degree centralisation. (n) Spectral gap.

(o) Treeness.

Figure C.2: Median time trajectories for different parent selection strategies on random objective
function f0. Each line shows the median and spread of 800 time trajectories from 16 variants, each
comprising 50 runs.
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C.3 Effect of Mutation

(a) Added fitness. (b) Algebraic connectivity.

(c) Average shortest path length. (d) Best subtree size.

(e) Betweenness centralisation. (f) Degree assorativity.

Figure C.3: Median time trajectories for different mutation operators on random objective function
f0. Each line shows the median and spread of 800 time trajectories from 16 variants, each comprising
50 runs.
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(g) Degree centralisation. (h) Fitness assorativity.

(i) Largest connected component size. (j) Longest shortest path length.

(k) Maximum leaf-leaf distance. (l) Mean leaf-leaf distance.

Figure C.3: Median time trajectories for different mutation operators on random objective function
f0. Each line shows the median and spread of 800 time trajectories from 16 variants, each comprising
50 runs.
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(m) Out-degree centralisation. (n) Spectral gap.

(o) Treeness.

Figure C.3: Median time trajectories for different mutation operators on random objective function
f0. Each line shows the median and spread of 800 time trajectories from 16 variants, each comprising
50 runs.
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C.4 Effect of Crossover

(a) Added fitness. (b) Algebraic connectivity.

(c) Average shortest path length. (d) Best subtree size.

(e) Betweenness centralisation. (f) Degree assorativity.

Figure C.4: Median time trajectories for different crossover operators on random objective function
f0. Each line shows the median and spread of 800 time trajectories from 16 variants, each comprising
50 runs.
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(g) Degree centralisation. (h) Fitness assorativity.

(i) Largest connected component size. (j) Longest shortest path length.

(k) Maximum leaf-leaf distance. (l) Mean leaf-leaf distance.

Figure C.4: Median time trajectories for different crossover operators on random objective function
f0. Each line shows the median and spread of 800 time trajectories from 16 variants, each comprising
50 runs.
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(m) Out-degree centralisation. (n) Spectral gap.

(o) Treeness.

Figure C.4: Median time trajectories for different crossover operators on random objective function
f0. Each line shows the median and spread of 800 time trajectories from 16 variants, each comprising
50 runs.
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C.5 Effect of Correction (Population Size 5)

(a) Added fitness. (b) Algebraic connectivity.

(c) Average shortest path length. (d) Best subtree size.

(e) Betweenness centralisation. (f) Degree assorativity.

Figure C.5: Median time trajectories for different correction strategies and population size 5 on
random objective function f0. Each line shows the median and spread of 400 time trajectories from
8 variants, each comprising 50 runs.
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(g) Degree centralisation. (h) Fitness assorativity.

(i) Largest connected component size. (j) Longest shortest path length.

(k) Maximum leaf-leaf distance. (l) Mean leaf-leaf distance.

Figure C.5: Median time trajectories for different correction strategies and population size 5 on
random objective function f0. Each line shows the median and spread of 400 time trajectories from
8 variants, each comprising 50 runs.
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(m) Out-degree centralisation. (n) Spectral gap.

(o) Treeness.

Figure C.5: Median time trajectories for different correction strategies and population size 5 on
random objective function f0. Each line shows the median and spread of 400 time trajectories from
8 variants, each comprising 50 runs.
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C.6 Effect of Correction (Population Size 20)

(a) Added fitness. (b) Algebraic connectivity.

(c) Average shortest path length. (d) Best subtree size.

(e) Betweenness centralisation. (f) Degree assorativity.

Figure C.6: Median time trajectories for different correction strategies and population size 20 on
random objective function f0. Each line shows the median and spread of 400 time trajectories from
8 variants, each comprising 50 runs.
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(g) Degree centralisation. (h) Fitness assorativity.

(i) Largest connected component size. (j) Longest shortest path length.

(k) Maximum leaf-leaf distance. (l) Mean leaf-leaf distance.

Figure C.6: Median time trajectories for different correction strategies and population size 20 on
random objective function f0. Each line shows the median and spread of 400 time trajectories from
8 variants, each comprising 50 runs.
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(m) Out-degree centralisation. (n) Spectral gap.

(o) Treeness.

Figure C.6: Median time trajectories for different correction strategies and population size 20 on
random objective function f0. Each line shows the median and spread of 400 time trajectories from
8 variants, each comprising 50 runs.
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C.7 Effect of Correction (Population Size 100)

(a) Added fitness. (b) Algebraic connectivity.

(c) Average shortest path length. (d) Best subtree size.

(e) Betweenness centralisation. (f) Degree assorativity.

Figure C.7: Median time trajectories for different correction strategies and population size 100 on
random objective function f0. Each line shows the median and spread of 400 time trajectories from
8 variants, each comprising 50 runs.
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(g) Degree centralisation. (h) Fitness assorativity.

(i) Largest connected component size. (j) Longest shortest path length.

(k) Maximum leaf-leaf distance. (l) Mean leaf-leaf distance.

Figure C.7: Median time trajectories for different correction strategies and population size 100 on
random objective function f0. Each line shows the median and spread of 400 time trajectories from
8 variants, each comprising 50 runs.
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(m) Out-degree centralisation. (n) Spectral gap.

(o) Treeness.

Figure C.7: Median time trajectories for different correction strategies and population size 100 on
random objective function f0. Each line shows the median and spread of 400 time trajectories from
8 variants, each comprising 50 runs.
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Appendix D Shuffled networks

(a) Added fitness. (b) Algebraic connectivity.

(c) Average shortest path length. (d) Best subtree size.

(e) Betweenness centralisation. (f) Degree assorativity.

Figure D.1: Median time trajectories for original network representations and their shuffeld counter-
parts on random objective function f0. Each line shows the median and spread of 30 time trajectories
from 1 variant, comprising 30 runs.
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(g) Degree centralisation. (h) Fitness assorativity.

(i) Largest connected component size. (j) Longest shortest path length.

(k) Maximum leaf-leaf distance. (l) Mean leaf-leaf distance.

Figure D.1: Median time trajectories for original network representations and their shuffeld counter-
parts on random objective function f0. Each line shows the median and spread of 30 time trajectories
from 1 variant, comprising 30 runs.
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(m) Out-degree centralisation. (n) Spectral gap.

(o) Treeness.

Figure D.1: Median time trajectories for oirigin network representations and their shuffled counter-
parts on random objective function f0. Each line shows the median and spread of 30 time trajectories
from 1 variant, comprising 30 runs.
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Appendix E Plots for Sphere Function f1

(a) Added fitness. (b) Algebraic connectivity.

(c) Average shortest path length. (d) Best subtree size.

(e) Betweenness centralisation. (f) Degree assorativity.

Figure E.1: Median time trajectories on objective functions f0 and f1. Each line shows the median
and spread of 198 time trajectories from 6 variants, comprising 33 runs.
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(g) Degree centralisation. (h) Fitness assorativity.

(i) Largest connected component size. (j) Longest shortest path length.

(k) Maximum leaf-leaf distance. (l) Mean leaf-leaf distance.

Figure E.1: Median time trajectories on objective functions f0 and f1. Each line shows the median
and spread of 198 time trajectories from 6 variants, comprising 33 runs.
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(m) Out-degree centralisation. (n) Spectral gap.

(o) Treeness.

Figure E.1: Median time trajectories on objective functions f0 and f1. Each line shows the median
and spread of 198 time trajectories from 6 variants, comprising 33 runs.
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Appendix F Optimum Coordinates of f1

The following coordinates were set using instance ID 1 for the sphere function in the BBOB suite
[28].

xopt =



0.2528
−1.1568
−0.7240
1.9264
−2.6808
0.4392
−0.1168
0.1200
−1.6376
−3.0512
−3.8536
2.0160
1.0864
−0.0864
3.6472
2.9088
−0.1248
−3.9280
2.3624
1.3584
0.3192
3.8304
1.1464
−1.2536
0.8568
−1.7824
1.9400
2.6976
2.0448
3.8568



, fopt = 79.48
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