
Master Computer Science

Music Album Review Rating Prediction Using
Transformers

Name: Arvindeva Wibisono

Student ID: S3084736

Date: 12/07/2023

Specialisation: Computer Science: Data Science

1st supervisor: Dr. E.M. Bakker

2nd supervisor: Prof. Dr. M. S. K. Lew

Master’s Thesis in Computer Science

Leiden Institute of Advanced Computer Science
(LIACS)
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

Acknowledgement

I would like to extend my gratitude to my thesis supervisor, Dr. E.M. Bakker, for his

guidance in assisting the writing process of my master’s thesis. I would also like to thank

my father Ario Wibisono, my mother Burnelly Putnam, my brother Maztra Perdana, and

my sister-in-law Tania Hazzriandiba for their support and encouragement. Last, but

certainly-not-least, I would like to extend the biggest gratitude to my girlfriend Jana

Rumak for sticking with me through my effort in writing this thesis. It would not have

been possible without your support and encouragement.

Thank You.

2

Abstract

This research paper explores the task of predicting music album ratings based

on their corresponding text reviews using machine learning algorithms. Two

experiments are conducted to evaluate the performance of Support Vector

Machine, Random Forest, Recurrent Neural Network with Long Short-Term

Memory, BERT, and Longformer models in review rating prediction tasks.

The first experiment is done using a benchmark dataset for review rating pre-

diction. The second experiment is done using a novel dataset, the Pitchfork

Review Rating dataset, consisting of review-rating pairs from music album re-

views published by the online music publication Pitchfork. The results from

the experiments show that Longformer outperformed other algorithms in both

experiments. The results also indicate a high degree of correlation between

text reviews and their numerical ratings.

3

Contents

1 Introduction 5

2 Related Work 8

3 Fundamentals 10

3.1 Evaluation Metrics . 10

3.2 Traditional Machine Learning . 13

3.3 Deep Learning . 13

3.4 Attention Mechanism and Transformers . 14

4 Methodology 16

4.1 Support Vector Machine . 16

4.2 Random Forest . 16

4.3 Recurrent Neural Network . 17

4.4 BERT . 17

4.5 Longformer . 20

4.5.1 Architecture . 20

4.5.2 Implementations . 21

4.5.3 Hyperparameter Tuning . 22

5 Dataset 24

5.1 Yelp Dataset . 24

5.1.1 Yelp Data Preprocessing . 24

5.2 Pitchfork Dataset . 26

5.2.1 Pitchfork Dataset Collection . 27

5.2.2 Pitchfork Data Analysis . 28

5.3 Data Preprocessing . 30

6 Experiments and Results 32

6.1 Experiments . 32

6.2 Results: Yelp . 32

6.3 Results: Pitchfork . 34

7 Discussion 37

8 Conclusion and Future Work 39

4

1 Introduction

Countless pieces of music are released every day. The average music listeners only listen to

music that they are interested in. They discover new music in a variety of ways, such as by

word of mouth, hearing it in a public place, and getting recommendations from applications

like Spotify. For many music fans, reviews and ratings can be used to filter out new releases.

Music critics affect album sales (and streaming plays), as people are more likely to listen to

a particular song or album, if it has a good rating [1]. Critic ratings affect music artists,

especially smaller or upcoming artists, as their livelihood can depend on the sales numbers

of their musical output. With the availability of music critics on the internet, music reviews

are now more common than they used to be, yet there have been limited studies in this area.

In this paper, we present research on music album review rating prediction.

Review rating prediction is a Natural Language Processing (NLP) task that aims to

predict the rating of a review based on its corresponding textual content. Review rating

prediction can be seen as a part of sentiment analysis. Sentiment analysis, also called “opin-

ion mining”, is a task that aims to figure out how people feel about something by analyzing

and extracting subjective information from text. NLP techniques and machine learning al-

gorithms are used in sentiment analysis to figure out what words, phrases, and the context

of a text mean. Review rating prediction comes in a variety of forms, one active research

area is customer online review rating prediction, such as for Yelp. Yelp, founded in 2004, is

an online directory of business reviews where users can submit reviews of businesses, such

as restaurants. A review consists of a text review and a star rating. Yelp review rating

prediction is a task with the goal of predicting star ratings (1–5 stars) based on their corre-

sponding text reviews. Yelp is often used as a Benchmark dataset. We use several machine

learning algorithms and compare their performances by training them on the Yelp dataset,

a dataset published by the Yelp company as part of the Yelp Dataset Challenge. We include

traditional machine learning algorithms such as SVM and Random Forest, a deep Recurrent

Neural Network with LSTM, and two recent transformer based models, BERT and Long-

former.

While there has been research on online customer review rating prediction, there is lim-

ited research on music review rating prediction. With the algorithms used in the Yelp

experiment, we will retrain them for music review rating prediction purposes. To do so, we

train the algorithms on a dataset consisting of music reviews and their corresponding rat-

5

ings from Pitchfork. Pitchfork, founded in 1995, is an influential music publication and has

been described as “the most influential music publication to emerge in the internet age”[2].

They are known for their incisive reviews and ratings. The publication rates albums on

a scale from 0.0 to 10.0 with a precision up to a tenth of a point. As of 2021, they have

published over 27,000 reviews [3], and all of their reviews are archived online on their website.

Utilizing their archive, we collected more than 18,000 review and rating pairs. This new

dataset is then used to train machine learning algorithms, aiming to see how well these al-

gorithms can predict the rating of a music album based on its text review. While this is

a sentiment analysis task, there are minor differences from the Yelp experiment. Pitchfork

use different scales for numerical ratings. Yelp uses a star rating of 1 star to 5 stars, while

Pitchfork uses a numerical rating of 0.0 to 10.0 (up to one decimal point). Another difference

is in the length of the text reviews. On Yelp, the review lengths vary greatly as they are

user-generated and users are allowed to submit reviews of any length. On Pitchfork, the

reviews are written by professional critics and are generally longer than Yelp user reviews.

Due to the length of the reviews, we included Longformer in our experiment. Longformer is

a transformer-based neural network architecture that scales linearly with sequence length,

making it capable of processing review texts of thousands of tokens. This capability makes

Longformer a suitable algorithm for the Pitchfork dataset.

In this paper, the following research questions will be addressed:

1. To what extent are machine learning models able to predict a music album rating based

on its text review?

2. Is there a correlation between an album’s text review and its corresponding numerical

rating?

Contributions For this study, we constructed a new dataset, the Pitchfork Review Rating

dataset. This new dataset is built upon an existing Pitchfork dataset on Kaggle by Conaway

[4]. Conaway’s dataset provides us with Pitchfork review URLs, which are then used to

extract the review’s textual content. Furthermore, we present a novel experiment on a mu-

sic review rating prediction task, using Pitchfork’s reviews to evaluate the performance of

machine learning algorithms and see if the algorithms are able to predict Pitchfork’s ratings.

With this, we are able to compare the performances of state-of-the-art transformer-based

6

models such as BERT and Longformer, fine-tuned on a dataset of longer documents.

Structure The rest of the paper is organized as follows: In Section 2, we discuss previous

studies on review rating prediction. In Section 3, we provide background information on

the machine learning algorithms used in our experiments, as well as the definitions of the

measures we use to evaluate the performance of the algorithms. Section 4 describes the

methodology of our experiments, including the setup, hyperparameter tuning, and training

process. In Section 5, we describe the Yelp and Pitchfork datasets and provide information

regarding data collection, analysis, and preprocessing. Section 6 describes the two experi-

ments—the Yelp and Pitchfork experiments and their results, while also providing notable

observations from the results. In Section 7, the results will be discussed, answering our

research questions. And finally, in Section 8, the conclusions are given, summarizing this

paper and listing improvements that can be made for possible future work.

7

2 Related Work

This section discusses relevant previous research. There has been extensive research on sen-

timent analysis and review rating prediction, such as online retail product ratings prediction,

the mood of Twitter tweets prediction, movie recommendations, and many more. Neverthe-

less, research on music review rating prediction has been relatively sparse.

Sentiment analysis is one of the most extensively researched areas of NLP. Early ap-

proaches involved rule-based methods and traditional machine learning techniques. Turney

[5] introduced the idea of using unsupervised learning techniques to classify sentiment in text

reviews. Pang and Lee [6] used support vector machines (SVM) to predict the sentiment of

movie reviews. In 2013, Yelp officially released the Yelp Dataset [7]. The Yelp Dataset has

since become one of the benchmark datasets for various NLP tasks, including review rating

prediction. Other benchmark datasets include the IMDb movie reviews dataset [8] and the

Amazon online customer product reviews dataset [9]. The Yelp review rating prediction

task aims to predict the star rating of a Yelp review based on its text review. Zhang [10]

introduced a character-level convolutional neural network (CNN) and achieved 62% accuracy

in predicting the star ratings of Yelp reviews. Zhang showed that character-level convolu-

tional networks are capable of achieving comparable results to traditional models such as

bag of words, n-grams, and their TF-IDF variants. Johnson & Zhang [11] proposed the

use of LSTM units on top of CNN and achieved state-of-the-art results on four benchmark

datasets, including the Yelp Dataset. Johnson & Zhang [12] then proposed another method,

deep pyramid CNN, which outperformed their own previous work on benchmark datasets,

achieving 69.42% accuracy on the Yelp dataset. In 2018, Howard & Ruder [13] published

a paper in which they proposed Universal Language Model Fine-Tuning (ULMFiT), an ef-

fective transfer learning method that can be applied to any task in NLP, and introduced

techniques that are key for fine-tuning a language. At the time, the method outperformed

state-of-the-art methods on six text classification tasks, reducing the error by 18-24% on the

majority of datasets. Multiple other studies have been done on Yelp review rating prediction

[14][15].

In recent years, the transformer architecture has emerged as a groundbreaking approach

to NLP tasks. Vaswani et al. [16] introduced the original transformer model in the seminal

paper “Attention Is All You Need”, which outperforms previous state-of-the-art models in

machine translation tasks at a fraction of the training cost. The transformer model em-

8

ploys a self-attention mechanism to capture dependencies between tokens, allowing parallel

computation for training. Since then, different variants and improvements have been pro-

posed. Devlin et al. [17] introduced Bidirectional Encoder Representations from Transform-

ers (BERT), a large language model that is able to capture both the left and right contexts

of a token. BERT is pre-trained using a large amount of text data from the internet on two

tasks: masked language modeling and next sentence prediction. In 2019, Sun et al. [18]

conducted exhaustive experiments to investigate different fine-tuning methods of BERT on

text classification tasks and provide a general solution for BERT fine-tuning that achieves

new state-of-the-art results on eight widely studied text classification datasets, including

70.58% accuracy on the Yelp 5-class review rating prediction.

One limitation of BERT is that it can only take input sequences up to 512 tokens in

length. To process a sequence of more than 512 tokens, BERT truncates the input, which

may lead to information loss. Studies have been done to solve this limitation, and one of

them is Longformer, the long-document transformer. Proposed by Beltagy et al. [19] in

2020, The Longformer employs a sliding window attention mechanism. This mechanism is

used to handle longer sequences, up to a length of 4096 tokens, by approximating standard

self-attention with a computational complexity of O(n), compared to BERT’s O(n2), making

it more efficient for long documents. In 2022, Lyu et al. [20] used the Longformer in conjunc-

tion with user and product information on the Yelp dataset, achieving state-of-the-art results.

While benchmark datasets have been extensively used for review rating prediction, there

is limited research being done on music review rating prediction. Conaway [4] published the

Pitchfork dataset on Kaggle, consisting of more than 17,000 Pitchfork reviews metadata.

The dataset has since been extended by Pinter et al. [21] as P4KxSpotify, adding Spotify

audio features such as genre, energy, and tempo for each album. This paper builds upon

Conaway’s Pitchfork dataset by iterating through all review URLs and extracting the review

textual content.

9

3 Fundamentals

In this section, we give background information on deep learning and the attention mech-

anism in transformers, as well as the definitions of the measures we use to evaluate the

performance of our proposed methods.

3.1 Evaluation Metrics

Here we introduce and define the metrics that are used to evaluate the performance of the

machine learning models present in our experiments.

Accuracy

Classification accuracy is a metric that measures the ratio of correct rating predictions to

the total number of predictions. One disadvantage of accuracy is that it does not take into

account how close the prediction is to the actual value in the case of a wrong prediction.

Equation 1 shows the formula to calculate the accuracy for all classification models used.

Accuracy =
Number of correct predictions

Total number of predictions
(1)

Precision & Recall

Precision and recall are evaluation metrics commonly used in machine learning for assessing

the performance of classification models. They can provide more insights compared to ac-

curacy to evaluate a model’s performance, especially if there is a data imbalance.

Precision measures the proportion of true positive predictions (correctly identified posi-

tive instances) out of all positive predictions made by the model. Precision is important in

scenarios where false positives are costly or have serious consequences. Equation 2 shows

the formula to calculate the precision of a class.

Precision =
True Positive

True Positive + False Positive
(2)

10

Recall measures the proportion of true positive predictions out of all actual positive in-

stances in the dataset. It assesses the completeness of the model’s predictions and indicates

how well it avoids false negatives. Recall is important in scenarios where false negatives

are costly or could lead to missed opportunities or risks. Equation 3 shows the formula to

calculate the recall of a class.

Recall =
True Positive

True Positive + False Negative
(3)

F-score

The F-score, also known as the F1 score, is another metric used to evaluate the performance

of a classification model. It combines both precision and recall into a single value, providing

a balanced measure of a model’s accuracy. It is the harmonic mean of precision and recall

and is useful due to its interpretability as a single metric. Equation 4 shows the formula to

calculate the F-score of a model’s performance.

F1 = 2× Precision× Recall

Precision + Recall
(4)

Mean Absolute Error

Mean Absolute Error (MAE) is a metric to measure the average magnitude of errors between

predicted and actual values of a regression (or ordinal classification) model. It provides a

numerical value that represents the average absolute difference between the predicted and

actual values of a set of observations. Equation 5 shows the formula to calculate the MAE

of a model’s performance.

Mean Absolute Error =

∑
|Prediction− Actual|

Number of data points
(5)

11

Mean Squared Error & Root Mean Squared Error

Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) are two of the most

widely used metrics in machine learning to measure regression model performance. They

are the average squared difference between predicted and actual values, which is similar to

MAE except that all the errors are squared. RMSE is the square root of the MSE. MSE and

RMSE penalize bigger errors by squaring the errors and they are continuous and differen-

tiable. Equations 6 and 7 show the formulas to calculate MSE and RMSE, respectively.

Mean Squared Error =

∑
(Prediction− Actual)2

Number of data points
(6)

Root Mean Squared Error =
√
MSE (7)

Pearson Correlation Coefficient (r)

Pearson’s correlation coefficient, or Pearson’s r, measures the strength and direction of the

linear relationship between two variables. It ranges from -1 to +1, where a value of +1

indicates a perfect positive linear relationship, a value of -1 indicates a perfect negative

linear relationship, and a value of 0 indicates no linear relationship. Equation 8 shows the

formula to calculate Pearson’s correlation coefficient between two variables , where in the

context of this experiment, xi is the predicted value, x̂ is the predicted mean, yi is the actual

value, and ŷ is the actual mean.

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(8)

R-squared (R2)

R2, or R-squared, also known as the coefficient of determination, is a statistical measure

that assesses the goodness-of-fit of a regression model. It provides information about the

proportion of the variance in the dependent variable (the variable being predicted) that

can be explained by the independent variables (the predictors) included in the model. The

R-squared value ranges between 0 and 1, where 0 indicates that the independent variables

do not explain any of the variability in the dependent variable, while 1 indicates that the

12

independent variables perfectly explain the variability in the dependent variable. Equation

9 shows the formula to calculate R-squared in the context of this experiment.

R2 =

∑
(Prediction− Actual)2∑

(Prediction −Mean of data points)2
(9)

Confusion Matrix

A confusion matrix is a useful tool for evaluating the performance of a classification model.

It provides a summary of the model’s predictions by comparing them to the actual classes

of the data. The matrix is typically represented as a square table with rows and columns

corresponding to the true and predicted classes, respectively. Each cell in the matrix repre-

sents the count or proportion of data points that fall into a particular combination of true

and predicted classes. The diagonal cells represent the correctly classified instances, while

the off-diagonal cells represent the misclassified instances.

3.2 Traditional Machine Learning

Traditional machine learning is a branch of artificial intelligence that focuses on algorithms

and statistical models to help computers learn and make guesses or decisions without being

explicitly programmed. It uses labeled training data to train models, which can then be used

to examine new data that has never been seen before. Traditional machine learning methods

usually require manual feature engineering, in which people pick out relevant features from

the data for the models to learn from, as not all data is useful. Naive Bayes, Logistic

Regression, SVM, and Random Forests are all examples of traditional machine learning

algorithms. [22]

3.3 Deep Learning

Deep learning is a field of study about deep neural networks. A neural network is a com-

putational model that is inspired by biological brains and how they work. It is made up of

interconnected nodes called neurons that are linked together and arranged in layers. A neu-

ral network is considered ‘deep’ when it has more than one hidden layer. Each neuron takes

in information, runs it through a mathematical function, and sends the result to another

neuron. By changing the weights and biases of the connections between neurons during a

13

process called training, neural networks are capable of learning and identifying patterns in

data. Most of the time, this training is done with the help of big data sets and optimiza-

tion tools. Neural networks can generalize from the training data, which lets them make

predictions or organize data they have never seen before. They have been used successfully

in many areas, such as speech recognition, image classification, natural language processing,

and self-driving systems. Neural networks can range in depth and complexity, from sim-

ple feedforward networks to more complicated ones like Generative Adversarial Networks

(GANs) and transformers. [22]

3.4 Attention Mechanism and Transformers

The attention mechanism is a key component in modern neural network architectures. It

lets the model focus on the parts of the data that are most important for the task at hand.

The basic idea behind attention is to give different parts of the input chain different weights.

This lets the model focus on or pay more attention to certain parts while making an output.

In the field of NLP, attention mechanisms have significantly improved the performance of

deep neural networks on machine translation, summarizing text, answering questions, and

other tasks. Attention weights are worked out by comparing how similar the current state

of the decoder is to each state of the encoder in the input sequence. The attention weights

are then used to figure out a weighted sum of the states of the encoder, which is sent to the

decoder so that it can make the output.

Transformer is a deep learning model architecture that revolutionized many NLP tasks

(and other fields like computer vision). Transformers use the attention mechanism to figure

out how words or tokens in an input sequence are related to each other. Transformers are

different from traditional recurrent neural networks (RNNs) because they can handle all of

the data at once. The encoder and the decoder are the two main parts of a transformer’s

design. The encoder takes the input order and makes a set of representations that show what

the words mean and how they relate to each other. With the aid of these representations and

the attention system, the decoder then creates the output sequence. A typical transformer

architecture is shown in Figure 1.

Transformer’s main innovation is the self-attention mechanism, which, for example, lets

NLP models figure out how words depend on each other no matter where they are in the

order. This makes it easier for transformers than RNNs to describe long-range dependencies.

14

Figure 1: The transformer model architecture. Source: Vaswani et al. [16]

Transformers have achieved state-of-the-art results in various NLP tasks, including machine

translation, text generation, sentiment analysis, and named entity recognition. One limita-

tion of the transformer architecture is its maximum input sequence token length (e.g. 512 for

BERT), which often leads to information loss when the input is longer than the maximum

number of tokens. A few workarounds have been developed, such as different truncation tech-

niques and the use of sliding attention windows, which is the main idea behind Longformer

[16] [17].

15

4 Methodology

This section discusses the methods that are used in the experiments, including Support

Vector Machine (SVM), Random Forest, Recurrent Neural Network (RNN), BERT, and

Longformer. All implementations used in our experiments are available on GitHub1.

4.1 Support Vector Machine

SVM is a supervised machine learning algorithm used for classification and regression tasks.

It creates a hyperplane that separates data points into different classes by maximizing the

margin between them. The algorithm finds the best hyperplane by identifying support

vectors, which are data points closest to the decision boundary. SVM can handle high-

dimensional data and works well with both linearly separable and non-linearly separable

datasets through the use of kernel functions. SVM is known for its effectiveness in handling

small to medium-sized datasets and its ability to generalize well to unseen data [23]. For

this research, the Python library scikit-learn is used, as it is currently the most widely used

library for traditional machine learning algorithms. Since the number of features is large,

we chose the linear kernel as our kernel function because it is the fastest to train and the

most suitable for text data [24]. Other functions, such as RBF and polynomial, are also

considered, but linear outperformed both. RBF might be able to perform better than linear

with the right values of C and γ, which we leave for future work.

4.2 Random Forest

Random Forest is an ensemble learning algorithm used for both classification and regression

tasks. It constructs multiple decision trees and combines their predictions to make a final

prediction. Each tree is built using a random subset of the training data and features,

ensuring diversity. During prediction, each tree’s output is aggregated to determine the

majority or average outcome. This method improves accuracy, handles missing data, and

reduces overfitting. Random Forest also provides feature importance, allowing identification

of influential variables [25]. We use the scikit-learn implementation of random forest. We

use the default parameter for the number of trees (100), as increasing it further will increase

training time, and there is no significant increase in performance when we increase the

number [26].

1Link to source code of implementations: https://github.com/arvindeva/p4k-rating-prediction

16

https://github.com/arvindeva/p4k-rating-prediction

4.3 Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a type of neural network specifically designed to pro-

cess sequenced data, such as time series or text, by allowing information to persist and flow

from one step to the next. Long short-term memory (LSTM), a variant of RNNs, addresses

the limitation of traditional RNNs in capturing long-term dependencies. LSTMs incorporate

memory cells and gates that regulate the flow of information, enabling the network to selec-

tively remember or forget information over time. This makes LSTMs particularly effective

in tasks involving long sequences and complex dependencies, and they were the de facto

state-of-the-art neural networks for NLP tasks until the transformers were introduced [22].

Figure 2: Architecture of our recurrent neural network with LSTM layer.

For the implementation, we use a modified RNN architecture from the official Tensor-

Flow documentation [27]. This architecture consists of an embedding layer, a LSTM layer

with 128 nodes, a 1D pooling layer, a dropout layer with a rate of 0.5, a dense layer with 50

nodes, another dropout layer with a 0.5 dropout rate, another denser layer with 50 nodes,

and finally an output layer. For the Yelp experiment, the output layer has 5 nodes as there

are 5 different classes using the softmax activation function. Since the Pitchfork experiment

is a regression task, a minor adjustment was made to the loss function, instead of cross

entropy, mean squared error was used. Figure 2 depicts the architecture of our recurrent

neural network.

4.4 BERT

In 2018, Google introduced BERT (Bidirectional Encoder Representations from Transform-

ers), a pre-trained language model. BERT revolutionized the field of NLP by achieving

state-of-the-art performance on a range of tasks, such as 80.5% GLUE score, 86.7% accuracy

in MultiNLI, and 93.2 F1 score in SQuAD [17]. The BERT architecture is based on the

transformer model; however, BERT uses a bidirectional approach for training, meaning that

BERT considers both left and right contexts of a given token during training and inference.

17

Figure 3: Pre-training and fine-tuning procedures for BERT. The same architecutres are
used in both pre-training and fine-tuning except for the output layers. Source: Devlin et al.
[17]

BERT has a few key components and steps to note, such as:

• Tokenization: The input text is split into individual tokens, such as words or subwords.

BERT uses WordPiece tokenization, which further breaks down words into subword units.

BERT has a maximum sequence length of 512 tokens.

• Input Representation: Each token is represented as the sum of three embeddings:

– Token Embeddings: These are the initial word representations that are learned during

training.

– Segment Embeddings: BERT incorporates sentence-level information by assigning

different segment embeddings to tokens from different sentences.

– Position Embeddings: These embeddings encode the position of each token in the

input sequence.

• Transformer Encoder: BERT utilizes a stack of 12 transformer encoder layers. Each

encoder layer consists of a self-attention mechanism and a feed-forward neural network.

• Self-Attention: This mechanism allows each token to attend to other tokens in the in-

put sequence, capturing contextual relationships. BERT uses multi-head self-attention,

enabling the model to attend to different parts of the input simultaneously.

18

• Feed-Forward Neural Network: Following the self-attention layer, a feed-forward neural

network is applied to each token independently, transforming its representation.

• Pre-training: BERT is pre-trained on large amounts of unlabeled text data using two main

objectives:

– Masked Language Modeling (MLM): Randomly selected tokens in the input are

masked, and BERT aims to predict the original words based on their context.

– Next Sentence Prediction (NSP): BERT is trained to predict whether two input

sentences appear consecutively in the original text or are randomly chosen.

• Fine-tuning: After pre-training, BERT can be fine-tuned on specific downstream tasks

such as text classification, named entity recognition, question answering, etc. The model

is further trained on labeled task-specific data with a task-specific objective.

BERT’s bidirectional nature and pre-training on large amounts of data, such as the

entirety of the English Wikipedia and the Brown Corpus, enable BERT to capture deep con-

textual information, making it effective for a wide range of NLP tasks [28]. Figure 3 shows

the pre-training and fine-tuning processes of BERT. By fine-tuning BERT on specific tasks,

it can adapt and provide state-of-the-art performance on various natural language under-

standing and generation tasks, including sentiment analysis such as review rating prediction.

Figure 4: The Hugging Face transformer model. Each model is made up of a Tokenizer,
Transformer, and Head. The model is pre-trained with a fixed head and can be further
fine-tuned with alternate heads for different tasks. [29]

We use the BERT model implementation by Hugging Face, bert-base-uncased. Hug-

ging Face is a company that specializes in NLP, and they provide valuable tools to make

19

developing NLP models more accessible [29]. Their library, often called the “Huggingface

Transformers”, allows anyone to easily access and use pre-trained models. We fine-tuned the

model using Hugging Face’s trainer interface, which works seamlessly with their model by

freezing the first layers of BERT and training a fully connected layer attached at the end.

Figure 4 depicts the architecture of a Huggingface transformer model. Each model is made

up of a Tokenizer, Transformer, and Head. The model is pre-trained with a fixed head and

can be further fine-tuned with alternate heads for different tasks. For our BERT model, we

use the BertForSequenceClassification head.

4.5 Longformer

Introduced by Beltagy et al. [19] in 2020, the Longformer architecture is built upon the

foundations of the transformer architecture. Transformers rely on self-attention mechanisms

to capture the relationships between tokens in a sequence. This comes with a limitation: the

standard transformer’s computational complexity grows quadratically with sequence length.

Therefore, the required computational complexity might be too much for longer sequences.

The Longformer addresses this challenge by introducing a sliding window attention mecha-

nism, resulting in linear computational complexity.

4.5.1 Architecture

The sliding window attention mechanism in the Longformer operates in two key steps.

Firstly, the input sequence is divided into overlapping chunks of fixed length. For exam-

ple, if the sequence length is 1,000 tokens and the chunk length is 512, there would be three

chunks: [1–512], [256–768], and [512–1,000]. The overlapping regions allow tokens at the

boundaries of the chunks to be attended to by multiple chunks, ensuring comprehensive

information flow across the entire sequence.

Within each chunk, a modified self-attention mechanism is applied. In traditional trans-

formers, attention is calculated between all pairs of tokens in a sequence, resulting in a

quadratic number of computations. However, in Longformer, attention is only computed

within each chunk, reducing the complexity to a linear number of computations. This lo-

cal attention mechanism allows the model to capture dependencies within a limited context

window, enabling efficient computation while retaining the ability to understand local rela-

tionships between tokens.

20

Figure 5: The full self-attention pattern and the configuration of attention patterns in Long-
former. Source: Beltagy et al. [19]

To incorporate global information from the entire sequence, Longformer includes a global

attention head. This head attends to all tokens in the input sequence, allowing the model

to capture long-range dependencies that extend beyond the scope of the sliding window. By

combining local and global attention patterns, Longformer can effectively model both local

context and distant dependencies, providing a comprehensive understanding of the input

sequence.

During training, Longformer can be pre-trained in a similar manner to other transformer

models, such as BERT. Large-scale language modeling objectives, such as masked language

modeling or next sentence prediction, can be employed to learn general language represen-

tations. Once pre-trained, Longformer can be fine-tuned for specific downstream tasks using

task-specific labeled data. This fine-tuning process adapts the model to the specific require-

ments of the task at hand.

4.5.2 Implementations

We used the Longformer model from Hugging Face, longformer-base-4096, which is then

fine-tuned on the Yelp dataset and the Pitchfork dataset. Fine-tuning Longformer was done

the same way as fine-tuning BERT. See Figure 4 for a diagram depicting the Hugging Face

Longformer model. We use the LongformerForSequenceClassification head (provided

by the Hugging Face library) to fine-tune the pre-trained Longformer. For the Yelp experi-

ment, cross-entropy is chosen as the loss function as it is a classification task, while for the

Pitchfork experiment, mean squared error is chosen as it is a regression task.

21

4.5.3 Hyperparameter Tuning

The Hugging Face implementation of Longformer provides a set of recommended hyper-

parameters, which were provided by Devlin et al. [17] in the original BERT paper. This

provides a good starting points but it is optimized for BERT’s maximum sequence length

of 512. As longformer accepts longer sequences of up to 4096, an adjustment to the batch

size needs to be made to accommodate this. The recommended batch size values in the

recommended set have a minimum value of 16, which is not ideal for Longformer due to

memory limitations. Using a GPU card, a batch size of 16 with a 2048 input length would

require more than 40GB of GPU RAM. Hence, the candidates for batch sizes are adjusted

to a range of 1 to 8.

Parameter Values
Batch size 1, 2, 4, 8
Learning rate 5e-5, 3e-5, 2e-5
No. of epochs 2, 3, 4, 5

Table 1: Hyperparameter candidate values for grid search. Best results are shown in bold.

With the established candidates, as shown in Table 1, a simple grid search is performed

with a fixed random seed, and the best results are shown in bold. With the selected hyper-

parameters (in bold) and using Google Colab’s A100 GPU, the training for the Yelp dataset

takes 61 minutes, 73 minutes, and 145 minutes for Yelp-2013, Yelp-2014, and Yelp-all, re-

spectively. For the Pitchfork dataset, the training process takes 3 hours and 41 minutes.

Since there are five epochs, the average running time for a single epoch is about 44 minutes.

Table 2 shows the training duration of the Longformer.

Dataset Training Time
Yelp-2013 61 minutes
Yelp-2014 73 minutes
Yelp-All 145 minutes
Pitchfork 221 minutes

Table 2: Training duration of the fine-tuning process of the Longformer on all datasets.

During training, we set the random seed to a fixed value for reproducibility. Fine-tuning

Longformer (or any other neural network) requires weights to be initialized randomly. This

22

causes neural networks to produce different results every time they are trained, especially

for transformers, where the results may vary greatly with different random seeds as different

seeds have different effects on the behavior of attention [30]. As this is not the focus of

this research, five randomly selected seeds were used, and the one that produced the best

performance was picked.

23

5 Dataset

This section discusses the two datasets used in our experiments: the Yelp dataset and the

new Pitchfork Review Rating dataset.

5.1 Yelp Dataset

Yelp is an online platform for users to write reviews and give star-ratings to businesses such

as restaurants, retail stores, or any other form of business. The platform was primarily used

for restaurants before it expanded to include other categories, and it was one of the first

user-reviewed online platforms. The Yelp dataset [7], published by the company itself, is a

large collection of data consisting of around 150,000 businesses, almost 7 million reviews,

200,000 pictures, and user information from 11 metropolitan areas. It contains information

about businesses in various categories, such as restaurants, shopping, entertainment, and

more. The dataset includes details about the businesses, such as their names, locations,

operating hours, and other attributes. The dataset also includes a substantial number of

user reviews, which provide insights and opinions about the businesses. Each review contains

information about the user who wrote it, the business being reviewed, the review text itself,

and various ratings, such as the overall rating, food quality, service, and more. The dataset

is frequently used for various research and analysis purposes, such as studying consumer

behavior, sentiment analysis, recommendation systems, and understanding the dynamics of

online reviews [31]. It offers a rich resource for exploring relationships between businesses,

users, and reviews and for developing machine learning models and algorithms in the domain

of online reviews, such as review rating prediction.

5.1.1 Yelp Data Preprocessing

We use three different subsets of the whole dataset: reviews from 2013, 2014, and a random

undersampling of the whole dataset. The 2013 and 2014 subsets of reviews are also used

by Lyu et al. [20] since Yelp used to organize the Yelp Dataset Challenge in those years.

The average word count of the review column is 60 words, substantially smaller than the

Pitchfork dataset’s average word count. While the dataset provides a lot of information

about a business, not all of it is useful for the purpose of this research; only the review

texts and the star ratings are used in our experiments. This dataset suffers from data im-

balance; as observed in Figure 6, 5-star ratings dominate the distribution with more than

24

Figure 6: Star distribution of all Yelp reviews. Source: Yelp [32]

50%. A random undersampling process was done to aid with the imbalance. The process is

done individually for each subset. Table 3 shows the size and star-rating distributions of the

subsets of the Yelp dataset used in our experiment before the train, test, and validation split.

Subset ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Total
Yelp-2013 2500 2500 2500 2500 2500 12500
Yelp-2014 2500 2500 2500 2500 2500 12500
Yelp-All 5000 5000 5000 5000 5000 25000

Table 3: Size and star-rating distribution of all subsets of the Yelp dataset before train, test,
and validation split

For experiments using traditional machine learning, the preprocessing is done using the

Natural Language Toolkit (NLTK) [33]. NLTK is a widely used library for text preprocess-

ing in Python. The NLTK tokenizer and lemmatizer are used to retrieve the list of tokens

for each text review in the dataset. The review texts are then converted into numerical

feature vectors. While there are many methods to do this, the most popular one is the

“term frequency-inverse document frequency”, also known as TF-IDF. TF-IDF gives a score

to every token, and it aims to highlight words that are more interesting. For the RNN

experiment, we used the Keras tokenizer to tokenize the texts. For the experiments that

use the Hugging Face library (BERT and Longformer), we use the Hugging Face WordPiece

25

tokenizers. The tokenization and lemmatization steps are the same for both the Yelp and

Pitchfork experiments. Lastly, we split the dataset into train, test, and validation sets, with

a split of 80% for training, 10% for test, and 10% for the validation set.

5.2 Pitchfork Dataset

Pitchfork, formerly known as Pitchfork Media, is one of the most influential online music

publications that came out in 1995. Since then, it has become a major influence in the music

business, focusing on independent and alternative music. Pitchfork’s reviews and scores can

boost or hinder an album’s sales numbers [1]. Beyond music, they have had an effect on

movies, literature, and society. It is a place where new artists can be found and promoted.

One thing to note is that the word ’album’ is used loosely here; it can mean any kind of

musical project that Pitchfork chooses to review, such as a full-length LP, EP, LP reissue,

CD, or other formats.

26

Figure 7: A screenshot of Pitchfork Album Review page of the album “Merriweather Post
Pavilion” by the American experimental pop band Animal Collective, only the first para-
graph of the text review is shown due to space constraints.

5.2.1 Pitchfork Dataset Collection

Ever since its inception in 1995, Pitchfork has reviewed more than 27,000 albums, and all

reviews are archived on the publication’s website. As with the Yelp dataset, for our research,

two things are needed from each review: the review text and its corresponding numerical

rating. Conaway created a Pitchfork dataset on Kaggle in 2018 [4]. Conaway’s dataset,

collected by means of webscraping, consists of multiple tables, and the ‘reviews’ table is

where all the reviews (from 2000–2017) are stored. This table has useful information such

as the album name, the review date of publication, the URL, and the numerical rating (0.0

27

− 10.0). While this information is useful, it is missing the text review itself. Using the URL

column from Conaway’s dataset, we iterate over all URLs using a crawler script written with

Beautiful Soup, a Python package for parsing HTML documents [34]. As there are more

than 18,000 reviews, the script takes more than 5 hours to complete as it has to visit each

of the 18,000 review pages. The review text is then saved in a Python list, which then gets

stored as a pickle file. This Pitchfork Review Rating dataset has been made available on

GitHub2.

Figure 8: Review text length (in word count) distribution of the Pitchfork Review Rating
dataset.

5.2.2 Pitchfork Data Analysis

The Pitchfork Review Rating dataset consists of two columns: the review text and its corre-

sponding numerical rating. There are more than 18,000 reviews in the dataset, and the total

word count of the whole dataset (corpus) is around 12 million, where the average length

(mean) of a review (document) is 710 words, almost 10 times longer than Yelp’s dataset

average review text length. As BERT can only accept up to 512 sequence lengths, which

2Link to dataset: https://github.com/arvindeva/p4k-rating-prediction

28

https://github.com/arvindeva/p4k-rating-prediction

is less than the length of an average review, it is expected that in many cases the review

text has to be truncated before BERT is applied, which might lead to information loss [35].

Longformer can handle longer texts and thus does not have to cope with any such infor-

mation loss. Figure 8 shows the distribution of word counts for all reviews. We observe

that some of the reviews go beyond 2048 words, which is more than half of the Longformer

limit, before they get tokenized into subwords. Compared to other big music publications,

Pitchfork review lengths are longer than average. For example, the average word count of

music album reviews in Rolling Stone and NME is 312 and 403, respectively.

Figure 9: Score distribution of the Pitchfork Review Rating dataset.

Pitchfork is known for their opinionated rating scores, so it is worth looking at how their

ratings are distributed. Figure 9 shows the distribution of scores for all Pitchfork reviews in

the dataset. We can observe that the majority of their reviews fall between 6.5 and 8.3. It is

interesting to see that there are reviews below 3.0, albeit not that many, because this rarely

happens in other publications. Other major music publications rarely rate an album a 5.0 or

less (on a 0.0 - 10.0 scale). The mean rating of all reviews is 7.0. The most frequent score is

7.0, and the median score is 7.2. Their status as “opinionated” is also why Pitchfork is one of

the most influential review publications, and why they have an effect on their readers’ deci-

sions to listen to a certain music album. As there is so much music being released every day, it

29

is impossible for Pitchfork to review every album in existence, so they need to have a certain

degree of selectiveness in choosing which album to review. They tend to gravitate toward

certain genres. Figure 10 depicts the distribution of the album genres that they reviewed.

Rock is the most represented genre, and this is because originally Pitchfork was more fo-

cused on reviewing alternative rock albums before branching out and reviewing other genres.

Figure 10: Album genre distribution of Pitchfork reviews dataset.

5.3 Data Preprocessing

After scraping the Pitchfork dataset, we removed any null values, such as empty strings. A

total of 323 empty strings were removed. This was caused by our scraper occasionally failing

to find and extract the right HTML tags of the review texts from the review web page.

Secondly, we handled the data imbalance issue present in the dataset. As observed in Figure

9, the majority classes far outnumber the minority classes. This imbalance negatively affects

the performance of some of the models, especially the RNN, BERT, and Longformer, while

the effect on traditional machine learning methods is negligible. To remedy the imbalance,

30

the same method as the Yelp dataset, random undersampling, is used. All the majority

classes are randomly undersampled until they have a maximum frequency of 60. 60 is

obtained by running training runs with candidates from the set {40, 50, 60, 70, 80}, where 60
comes out with the best result. The distribution of ratings in the undersampled dataset is

shown in Figure 11. This undersampling process reduces the number of reviews from 17,420

to 3,869. Finally, the 3,869 reviews are then split into three categories, the training set, the

validation set, and the test set, with a ratio of 80:10:10, respectively, amounting to 3095 data

points for the training set, 387 for the validation set, and 387 for the test set.

Figure 11: Score distribution of Pitchfork reviews after undersampling the majority classes
to be inline with other classes.

31

6 Experiments and Results

In this section, we present our experiments and their results, followed by notable observations.

The most relevant information is displayed in the figures and tables.

6.1 Experiments

Two different experiments are conducted: one for the Yelp dataset and one for the Pitchfork

dataset. For both experiments, the same set of algorithms are used: SVM, Random Forest,

RNN + LSTM, BERT, and Longformer. The Yelp experiment is a multiclass ordinal clas-

sification task where the classes are the number of assigned stars, ranging from 1 star to 5

stars. The Pitchfork experiment is a regression task where the output is a numerical rating

between 0.0 and 10.0.

6.2 Results: Yelp

The results of the Yelp experiment are displayed in Table 4. It is observed that Longformer

outperforms other methods in every subset of the Yelp dataset. For the Yelp-All dataset,

Longformer outperformed the next best model, BERT, by 3.5% accuracy. Our results are

comparable to state-of-the-art results from Sun et al. [18] and Lyu et al. [20].

Method
Yelp-2013 Yelp-2014 Yelp-All

Acc. (%) RMSE Acc. (%) RMSE Acc. (%) MAE RMSE
Random Forest 52.2 0.902 54.5 0.898 55.6 0.622 0.893
SVM 56.4 0.914 56.7 0.926 60.2 0.618 0.885
RNN+LSTM 63.6 0.675 62.3 0.678 62.3 0.426 0.677
BERT 68.7 0.619 69.1 0.622 69.3 0.371 0.614
Longformer 71.0 0.578 72.4 0.575 72.8 0.269 0.570

Table 4: Results of the test set of Yelp-2013, Yelp-2014, and Yelp-All. Experiments were run
once to obtain Accuracy (↑) and RMSE (↓). MAE (↓) is shown for Yelp-All for the purpose
of comparison to the result of the Pitchfork experiment. Best values are shown in bold.

.

The results show that neural network models perform better than traditional machine

learning methods and that attention mechanisms improve the quality of a neural network

for a review rating prediction task. As the performance gets better, the accuracy increases

while the RMSE decreases.

32

Precision Recall F1 support
⋆ 0.76 0.67 0.71 432
⋆⋆ 0.66 0.77 0.71 526
⋆ ⋆ ⋆ 0.72 0.73 0.73 555
⋆ ⋆ ⋆ ⋆ 0.73 0.69 0.71 518
⋆ ⋆ ⋆ ⋆ ⋆ 0.81 0.77 0.79 469

Macro Avg. 0.73 0.73 0.73 2500
Weighted Avg. 0.73 0.73 0.73 2500
Accuracy 0.73 2500

Table 5: Classification results of the fine-tuned Longformer model trained on the Yelp-All
Dataset. Best values are shown in bold.

While accuracy is a sufficient metric to evaluate a classifier’s performance, it does not

provide information about the model’s performance for each class present in the data (star

ratings). Taking a closer look at the best-performing model, Table 5 shows a more detailed

information to analyze the performance of the fine-tuned Longformer. The results show

that Longformer has the best performance when predicting 5-star reviews, reaching 0.81

precision, 0.77 recall (tied with 2-star), and 0.79 F1. 1-star, 2-star, and 4-star reviews are

harder to classify correctly as they have the lowest F1 score.

We observed that 1-star reviews have the second highest precision while having the lowest

recall, in contrast to 2-star reviews, which have the highest recall while having the lowest

precision, which means the model is most likely to get confused when predicting between

1-star and 2-star reviews. Figure 12 shows the confusion matrix of the predictions made by

the fine-tuned Longformer. The highest confusion rate occurs when the model predicts a

1-star review as 2-stars. The second most confused prediction is when the model predicts a

5-star review as a 4-star.

33

Figure 12: Confusion matrix of the predicted and actual stars by the Longformer model
trained on the Yelp-All dataset

6.3 Results: Pitchfork

Method MAE MSE RMSE r R2

Random Forest 0.947 1.734 1.317 0.775 0.601
SVM 0.959 1.756 1.325 0.772 0.599
RNN+LSTM 0.887 1.556 1.247 0.801 0.643
BERT 0.823 1.237 1.097 0.842 0.711
Longformer 0.689 0.829 0.910 0.902 0.799

Table 6: Performance of machine learning models on the test set of the balanced Pitchfork
Review Rating dataset. Experiments were run once to obtain MAE (↓), MSE (↓), RMSE
(↓), and R2 (↑). Best values are shown in bold.

The results of the Pitchfork experiment are shown in Table 6. It can be observed that

transformers perform better than RNNs and that neural networks in general perform better

than traditional machine learning algorithms. Longformer is the best-performing model,

outperforming BERT by about 0.134 in MAE. It also has the best R2 value, meaning Long-

34

former is able to account for a significant amount of the variation in the data and provides a

good fit. Longformer is also the best performing model in capturing the correlation between

predicted rating (based on review text) and actual rating, since it has the highest value

of the Pearson correlation coefficient. Pearson’s r does not show how good a model is at

predicting, as it only shows the linear relationships between two variables (in this case, the

review text and its corresponding rating).

The result of training for the Longformer model is shown in Figure 13, where it can be

observed that the validation loss follows the training loss’ trend, indicating that there is

no overfitting during training. The best-performing model is deployed and has been made

available for inference on Hugging Face 3 for anyone to try out.

Figure 13: Validation and training loss (MSE) for Longformer trained on the balanced
Pitchfork dataset.

A confusion matrix of the predicted and actual values could establish more information;

however, as this is a regression problem where the ratings are continuous, it is not straight-

forward to form a confusion matrix. To create a corresponding confusion matrix, the results

could be transformed into a kind of classification problem. To do so, all the prediction and

real rating values will be rounded to the nearest integer, between 0-10, and as such, the

3Inference link: https://huggingface.co/spaces/Rveen/p4k-longformer

35

https://huggingface.co/spaces/Rveen/p4k-longformer

results can be treated as a classification problem with 10 different classes. The resulting

confusion matrix can be seen in Figure 14. It is crucial to note that this confusion matrix is

not a good representation of the model’s performance due to the rounding method used, and

is only generated to provide more insights on which ratings raise any confusion for the model.

The matrix shows that the model never predicted a 1, 2, or 10, meaning that our fine-tuned

Longformer never learned to give an album a rating of less than 2.5. The confusion matrix

could also be formed by fine-tuning the Longformer neural network for a classification prob-

lem of 5 classes, which we leave for future work.

Figure 14: Confusion matrix of the predicted and actual stars by the fine-tuned Longformer
model trained on the Pitchfork dataset.

36

7 Discussion

This section provides a discussion of the results obtained from the Yelp and Pitchfork ex-

periments.

With the results obtained from the Yelp and Pitchfork datasets, we answer the first re-

search question: “To what extent are machine learning algorithms able to predict a music

album rating based on its text review?”. As observed in the results, Longformer is the

best-performing model for predicting music album ratings, outperforming all other methods

in the Pitchfork experiment. Furthermore, it achieves 0.799 R2, indicating that the model

seems to be able to explain a significant amount of the variation in the data.

While Longformer achieves the highest performance for both datasets, one thing worth

noting is how much it outperforms the other methods. In the Yelp experiment, Longformer

outperforms the second best performing method, BERT, by 0.102 MAE. In the Pitchfork

experiment, it outperformed BERT by 0.134. MAE is used here due to its simplicity of

interpretation. While 0.102 is close to 0.134, the two datasets have different scales for the

ratings. In the Yelp experiment, the range of ratings is between 1 and 5, while in the Pitch-

fork experiment, the range of ratings is between 0.0 and 10.0. This means that the difference

in MAE is more significant in the Pitchfork dataset. We expect that the reason for this is

that the two datasets have different review text lengths. As mentioned in Section 5, the

Yelp dataset review texts have an average length of 60 words, whereas the Pitchfork reviews

have an average length of 700 words. With the Pitchfork reviews having longer reviews, the

performance of Longformer is expected to outperform BERT by a greater margin than on a

dataset with a shorter average length, such as Yelp.

Looking at the confusion matrix of the Pitchfork dataset (See Figure 14), it can be ob-

served that the model never made a 1-star or 2-star prediction. The lowest prediction the

model made was 2.6, which got rounded to 3 in the confusion matrix. This means that

the model never learned the capability of rating an album higher than a 2.6. Either this

is caused by a data imbalance (not enough data points with lower ratings) or it is because

these areas of low ratings are difficult to distinguish between each other; hence, the model

failed to learn to differentiate between albums with low ratings.

With the results from our experiments, we are able to answer our second research ques-

37

tion: “Is there a correlation between an album’s text review and its corresponding numerical

rating?”. The results of the Pitchfork experiment show that models with better performance

also have a higher Pearson’s r, with Longformer having an r value of 0.9, indicating that

there is a high degree of correlation between the predicted and actual ratings (as the pre-

dicted rating increases, so does the actual). Another important observation can be made by

looking at the R2 scores. Longformer achieved an R2 score of 0.799, indicating that a large

proportion of the variability in the actual score can be explained by the prediction score,

which is obtained from the text review. In other words, while the coefficient of determi-

nation is not a metric of accuracy, it tells us that our Longformer model is able to show a

high degree of correlation between text review and numerical rating since almost 80% of the

variation in the dependent variable (ratings) can be attributed to the independent variable

(reviews).

The result of the Pitchfork experiment tells us that well-performing models are able to

‘understand’ the sentiments of music reviewers, but only to a certain degree. As we can see,

the best MAE the model achieved is 0.689, which means, on average, the model’s prediction

is off by 0.7 (on Pitchfork’s rating scale). The quality of the prediction is highly subjective,

as there is no quantifiable way to tell whether missing a prediction by 0.7 is good or not. This

comes back to the concept of music criticism itself, which by itself is also highly subjective.

The numerical ratings are something that reviewers come up with, including their personal

biases, and a computer may not be able to replicate them. Even humans might have a

hard time predicting a numerical rating based on its review text. For example, how can

one distinguish between a 4.0 and 4.5 rating when it is highly subjective? This experiment

tells us that while there is a positive correlation, it is only up to a certain point. With

this knowledge, people should not blindly trust music critics, as reviews and ratings are just

opinions and highly biased.

38

8 Conclusion and Future Work

In this paper, we present two experiments in review rating prediction, a sentiment analysis

task of predicting a numerical rating based on its text review. For our experiments, two

datasets are used: the Yelp dataset, a benchmark dataset for review rating prediction, and

the Pitchfork Review Rating dataset, a new dataset consisting of text reviews and numerical

ratings of Pitchfork’s album reviews.

Our first experiment uses several machine learning algorithms, SVM, Random Forest,

RNN with LSTM, BERT, and Longformer, to predict the rating of a Yelp review based on

its text review. The second experiment is a novel experiment in music review rating predic-

tion, utilizing our new Pitchfork Review Rating dataset. The first research question, “To

what extent are machine learning algorithms able to predict a music album rating based on

its text review?”, can be answered from this experiment, as the results show that Longformer

achieved a mean absolute error of 0.689.

The results of our Pitchfork dataset experiment can also answer the other research ques-

tion of whether there is a correlation between an album’s text review and its numerical

rating. The results show that Longformer achieved 0.902 Pearson’s r and 0.799 R2 values.

This indicates that while a correlation does exist, it is only up to a certain degree, and that

80% of the variability in the actual score can be explained by the prediction score that is

obtained from the text reviews.

This study extends the research on NLP tasks in the field of review rating prediction by

presenting a novel experiment using a music review dataset. With the results of our experi-

ments, we hope to give music listeners new insights on how they perceive music reviews; for

example, they should not treat the ratings given by music critics as a definite value, as there

are always personal biases behind a rating, since neither computers nor humans can predict

numerical ratings based on the text reviews perfectly.

There are improvements that can be made to this study. Since we chose Longformer

as our main model, it would be better to compare it to other models that were designed

specifically for longer documents, as BERT does not accept longer sequences. This made

Longformer the obvious winner since that’s what Longformer is for: longer documents. An-

other model that we considered was GPT, another large language model, but due to time

39

constraints, we opted not to use the model.

Another improvement that could be made is in how we evaluate the performance of our

models. It was hard to evaluate the performance of our model due to the lack of comparable

studies in the domain of music album review-rating prediction. One way to make this better

is to incorporate human evaluations. For example, we can have human predictors so that

a comparison between the model and humans can be observed, giving further insights on

the performance of the model. We could also do the Pitchfork review rating prediction

experiment as a 5-class classification task to make it more similar to our Yelp review rating

prediction experiment.

40

References

[1] M. B. Briskin, “Quantifying the pitchfork effect.” [Online]. Available: https:

//blogs.brown.edu/econ-1400-s01/files/2015/01/ECON1400 MichaelBriskin.pdf

[2] S. Kornhaber, “Pitchfork, the reluctant men’s magazine,” 2015. [On-

line]. Available: https://www.theatlantic.com/entertainment/archive/2015/10/

conde-nast-buys-pitchfork-for-the-millennial-men/410341/

[3] K. Borovinsky, “Pitchfork’s reviews section by the num-

bers.” [Online]. Available: https://pitchfork.com/features/lists-and-guides/

25-years-of-pitchfork-reviews-by-the-numbers/

[4] N. Conaway, “18,393 pitchfork reviews,” 2017. [Online]. Available: https:

//www.kaggle.com/datasets/nolanbconaway/pitchfork-data

[5] P. D. Turney, “Thumbs up or thumbs down? semantic orientation applied

to unsupervised classification of reviews,” in Proceedings of the 40th Annual

Meeting on Association for Computational Linguistics, ser. ACL ’02. USA:

Association for Computational Linguistics, 2002, p. 417–424. [Online]. Available:

https://doi.org/10.3115/1073083.1073153

[6] B. Pang and L. Lee, “A sentimental education: Sentiment analysis using

subjectivity summarization based on minimum cuts,” in Proceedings of the 42nd

Annual Meeting on Association for Computational Linguistics, ser. ACL ’04. USA:

Association for Computational Linguistics, 2004, p. 271–es. [Online]. Available:

https://doi.org/10.3115/1218955.1218990

[7] Yelp, “Yelp dataset,” 2016. [Online]. Available: https://www.yelp.com/dataset

[8] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning

word vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human Language Technologies. Portland,

Oregon, USA: Association for Computational Linguistics, Jun. 2011, pp. 142–150.

[Online]. Available: https://aclanthology.org/P11-1015

[9] A. Bhatt, A. Patel, H. Chheda, and K. Gawande, “Amazon review classification

and sentiment analysis,” International Journal of Computer Science and Information

Technologies, vol. 6, no. 6, pp. 5107–5110, 2015. [Online]. Available: https:

//ijcsit.com/docs/Volume%206/vol6issue06/ijcsit2015060652.pdf

41

https://blogs.brown.edu/econ-1400-s01/files/2015/01/ECON1400_MichaelBriskin.pdf
https://blogs.brown.edu/econ-1400-s01/files/2015/01/ECON1400_MichaelBriskin.pdf
https://www.theatlantic.com/entertainment/archive/2015/10/conde-nast-buys-pitchfork-for-the-millennial-men/410341/
https://www.theatlantic.com/entertainment/archive/2015/10/conde-nast-buys-pitchfork-for-the-millennial-men/410341/
https://pitchfork.com/features/lists-and-guides/25-years-of-pitchfork-reviews-by-the-numbers/
https://pitchfork.com/features/lists-and-guides/25-years-of-pitchfork-reviews-by-the-numbers/
https://www.kaggle.com/datasets/nolanbconaway/pitchfork-data
https://www.kaggle.com/datasets/nolanbconaway/pitchfork-data
https://doi.org/10.3115/1073083.1073153
https://doi.org/10.3115/1218955.1218990
https://www.yelp.com/dataset
https://aclanthology.org/P11-1015
https://ijcsit.com/docs/Volume%206/vol6issue06/ijcsit2015060652.pdf
https://ijcsit.com/docs/Volume%206/vol6issue06/ijcsit2015060652.pdf

[10] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text

classification,” in Advances in Neural Information Processing Systems, C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates,

Inc., 2015. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/2015/

file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf

[11] R. Johnson and T. Zhang, “Supervised and semi-supervised text categorization using

lstm for region embeddings,” in Proceedings of The 33rd International Conference on

Machine Learning, ser. Proceedings of Machine Learning Research, M. F. Balcan and

K. Q. Weinberger, Eds., vol. 48. New York, New York, USA: PMLR, 20–22 Jun 2016,

pp. 526–534. [Online]. Available: https://proceedings.mlr.press/v48/johnson16.html

[12] ——, “Deep pyramid convolutional neural networks for text categorization,” in

Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). Vancouver, Canada: Association for

Computational Linguistics, Jul. 2017, pp. 562–570. [Online]. Available: https:

//aclanthology.org/P17-1052

[13] J. Howard and S. Ruder, “Universal language model fine-tuning for text

classification,” in Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia:

Association for Computational Linguistics, Jul. 2018, pp. 328–339. [Online]. Available:

https://aclanthology.org/P18-1031

[14] N. Asghar, “Yelp dataset challenge: Review rating prediction,” 2016. [Online].

Available: https://arxiv.org/abs/1605.05362

[15] Z. Liu, “Yelp review rating prediction: Machine learning and deep learning models,”

2020. [Online]. Available: https://arxiv.org/abs/2012.06690

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.

Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural

Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,

R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,

Inc., 2017. [Online]. Available: https://papers.nips.cc/paper files/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the 2019

42

https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.mlr.press/v48/johnson16.html
https://aclanthology.org/P17-1052
https://aclanthology.org/P17-1052
https://aclanthology.org/P18-1031
https://arxiv.org/abs/1605.05362
https://arxiv.org/abs/2012.06690
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).

Minneapolis, Minnesota: Association for Computational Linguistics, Jun. 2019, pp.

4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[18] C. Sun, X. Qiu, Y. Xu, and X. Huang, “How to fine-tune bert for text classification?”

in Chinese Computational Linguistics: 18th China National Conference, CCL 2019,

Kunming, China, October 18–20, 2019, Proceedings 18. Springer, 2019, pp. 194–206.

[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-030-32381-3 16

[19] I. Beltagy, M. E. Peters, and A. Cohan, “Longformer: The long-document

transformer,” 2020. [Online]. Available: https://arxiv.org/abs/2004.05150

[20] C. Lyu, L. Yang, Y. Zhang, Y. Graham, and J. Foster, “Exploiting rich textual

user-product context for improving sentiment analysis,” 2022. [Online]. Available:

https://arxiv.org/abs/2212.08888

[21] A. T. Pinter, J. M. Paul, J. Smith, and J. R. Brubaker, “P4kxspotify: A dataset

of pitchfork music reviews and spotify musical features,” 2020. [Online]. Available:

https://ojs.aaai.org/index.php/ICWSM/article/view/7355

[22] A. Geron, Hands-on machine learning with Scikit-Learn and TensorFlow : concepts,

tools, and techniques to build intelligent systems. Sebastopol, CA: O’Reilly Media,

2017.

[23] S. Guido, Introduction to Machine Learning with Python. O’Reilly Media, 2016.

[24] C.-J. L. C.-W. Hsu, C.-C. Chang, “A practical guide to support vector classification,”

Department of Computer Science, National Taiwan University, Tech. Rep., 2003.

[25] S. C. Gopinath Rebala, Ajay Ravi, An Introduction to Machine Learning. Springer,

2019.

[26] E. S. Gérard Biau, “A random forest guided tour,” Springer, 2016. [Online]. Available:

https://doi.org/10.1007/s11749-016-0481-7

[27] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,

R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,

43

https://aclanthology.org/N19-1423
https://link.springer.com/chapter/10.1007/978-3-030-32381-3_16
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2212.08888
https://ojs.aaai.org/index.php/ICWSM/article/view/7355
https://doi.org/10.1007/s11749-016-0481-7

I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:

Large-scale machine learning on heterogeneous systems,” 2015, software available from

tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[28] A. Merchant, E. Rahimtoroghi, E. Pavlick, and I. Tenney, “What happens to

BERT embeddings during fine-tuning?” in Proceedings of the Third BlackboxNLP

Workshop on Analyzing and Interpreting Neural Networks for NLP. Online:

Association for Computational Linguistics, Nov. 2020, pp. 33–44. [Online]. Available:

https://aclanthology.org/2020.blackboxnlp-1.4

[29] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,

R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu,

C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers:

State-of-the-art natural language processing,” in Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing: System Demonstrations. Online:

Association for Computational Linguistics, Oct. 2020, pp. 38–45. [Online]. Available:

https://aclanthology.org/2020.emnlp-demos.6

[30] P. Madhyastha and R. Jain, “On model stability as a function of random seed,”

in Proceedings of the 23rd Conference on Computational Natural Language Learning

(CoNLL). Hong Kong, China: Association for Computational Linguistics, Nov. 2019,

pp. 929–939. [Online]. Available: https://aclanthology.org/K19-1087

[31] X. Lei, X. Qian, and G. Zhao, “Rating prediction based on social sentiment from

textual reviews,” IEEE Transactions on Multimedia, vol. 18, no. 9, pp. 1910–1921,

2016. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7484319

[32] Yelp, “Fast facts.” [Online]. Available: https://www.yelp-press.com/company/

fast-facts/default.aspx

[33] E. Loper and S. Bird, “Nltk: The natural language toolkit,” 2002.

[34] L. Richardson, “Beautiful soup documentation,” April, 2007. [Online]. Available:

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[35] M. A. Mutasodirin and R. E. Prasojo, “Investigating text shortening strategy in

bert: Truncation vs summarization,” in 2021 International Conference on Advanced

44

https://www.tensorflow.org/
https://aclanthology.org/2020.blackboxnlp-1.4
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/K19-1087
https://ieeexplore.ieee.org/abstract/document/7484319
https://www.yelp-press.com/company/fast-facts/default.aspx
https://www.yelp-press.com/company/fast-facts/default.aspx
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Computer Science and Information Systems (ICACSIS), 2021, pp. 1–5. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/9631364

45

https://ieeexplore.ieee.org/abstract/document/9631364

	Introduction
	Related Work
	Fundamentals
	Evaluation Metrics
	Traditional Machine Learning
	Deep Learning
	Attention Mechanism and Transformers

	Methodology
	Support Vector Machine
	Random Forest
	Recurrent Neural Network
	BERT
	Longformer
	Architecture
	Implementations
	Hyperparameter Tuning

	Dataset
	Yelp Dataset
	Yelp Data Preprocessing

	Pitchfork Dataset
	Pitchfork Dataset Collection
	Pitchfork Data Analysis

	Data Preprocessing

	Experiments and Results
	Experiments
	Results: Yelp
	Results: Pitchfork

	Discussion
	Conclusion and Future Work

