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Abstract

Text-based models for multi-purpose inspection and evaluation are absent in the
mental health detection field. We propose a multilingual solution in the form of Multi-
choice Machine Reading Comprehension (MMRC) tasks combined with modification of
the network architecture, input format and training scheme for such a scenario. In our
solution, we 1) introduce extra tokens for the identification of different components of
an MMRC sample and reconstruct the whole sample as one input sequence, 2) insert
a small transformer encoder network to fuse the information from every option and 3)
transfer the modelling of relationships among all components obtained from high-resource
language to low-resource languages. Through the above modifications, we input the text
records, evaluation, and corresponding criteria in text form, and train the neural network
to output a valid assessment. Experiment results suggest our methods can be efficient in
the demand for adaptability and cross-language transfer.
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1 Introduction

Mental health care has been getting increasing attention in recent years due to the prevalence
of mental illness. According to the latest survey conducted by World Health Organization
(WHO), 970 million people worldwide had been living with mental disorders, accounting for
around 13% of the total population by 2019 [15].

Under this circumstance, the WHO report calls for wider support for mental health services,
including affordable and accessible mental health care for all. However, the growth of pro-
fessionals in this field relies on long-term training thus this situation can hardly be improved
shortly. Therefore, the development of automatic processing mechanisms, which can assist
medical professionals in diagnosing and treating, leads to a surge of machine learning application
research in such field [25].

Detection of mental health conditions is a crucial premise for mental health care, which
commonly relies on the manual analysis of free-text records and conversations between either
patients and professionals or users and conversational agents [29]. The popularity of smart
devices and online mental health support applications contribute to the formation
and easy acquisition of consultation records. Furthermore, in the context of public mental
health services, extra free-text resources including user-generated content on social media [1]
are also taken into account for public and private mental health tracking.

By reviewing previous studies, we found that machine learning methods have been introduced
to the detection and diagnosis phase such as intervening in suicide attempts based on notes
[16], evaluating depression and post-traumatic stress disorder based on self-report symptoms
[21], predicting mental conditions based on psychiatric notes [28] and diagnosing dementia
based on cognitive function tests records [2].

Most of these applications, however, rely on the analysis of processed structural data instead of
free-text format. Due to the difference in data processing and feature extraction methods for
various intents, both models and methods need to be designed specifically. In practice, casting
original text data into standardized evaluation forms (e.g. HAM-A [7], WHO-5 [27], Beck
Depression Inventory, etc) for direct or further evidence-based diagnosis requires additional work
for professionals, especially when they are collected from conversational agents and social media.

To alleviate this burden, we envision an automatic system that can directly process free-text
records and is adaptable for different evaluations (e.g. intensity, frequency, likelihood, etc) of
multiple inspections (e.g. anxiety, depression, suicidal thoughts, etc). Moreover, for different
inspections and evaluations, the corresponding criteria could also vary (e.g polarity, scoring,
etc) thus it is vital to enable the model to understand the measurement as well.

We propose a method for mental health detection problems in the form of MMRC (Multi-choice
Machine Reading Comprehension), as shown in Table 1 (right). By taking the free-text records



Consultation Record

MMRC Task

Record:

Agent: How are you today?

User: Not great...

Agent: Looks like you're having a rough
day. Tell me more about how you feel?
User: | went out and felt very uncomfor-
-table with so many people around.
Can't help feeling being gazed at.
Agent: As always, let's start by turning
our attention to our breath.

Agent: It happens to all of us. Here are
some techniques that can help.

Passage:

Until we went to a playdate two weeks
ago. Thea's mom is Serbian and crepes
are apparently as common in Serbia as
they are in France. We discussed the
batter, the texture, the cooking process,
the topping options and Dee generally
brought me up to speed. Being not brave
enough to just start throwing ingredients
in a bowl as she did, | got a recipe of the
internet for general proportions, ended
up not using nearly as much water as was
called for and successfully made crepes.

Inspection:
Indication of User’'s anxious mood.
(HAM-A item 1)

Question:
Why did they discuss crepes?

Measurement of Evaluation:
A.Not present.

B.Mild.

C.Moderate.

D.Severe.

E.Very severe.

Options:

A. Because Thea's mom is Serbian.

B. Because the writer got a recipe from
the internet.

C. Because the writer is interested in
learning how to cook crepes.

D. None of the above choices.

Table 1: An example of simulated consultation record (left) between a user and a conversational
agent for mental health support, Wysa', combined with a HAM-A evaluation item and its
corresponding measurement, and one MMRC task selected from the COSMOS-QA dataset

(right).

as passages, and explicitly declaring inspection and evaluation measurement in the text as
questions and options to formulate a complete sample, shown in Table 1 (left), we cast a
sample of mental health evaluation task into the MMRC task format and use pre-trained
language models to characterize the relationships within.

Previous methods for MMRC tasks are generally based on ptr-trained language
models. Language models are for modelling the semantic rationality of text segments,
where the semantic information of a text segment is contained in its words and word
order in the text. In the context of natural language processing, especially in the
language model based on neural networks, semantics are implied in the co-occurrence
of tokens and their specific positions in a sequence.

thttps:/ /www.wysa.com/



Pre-trained language model creates dense representations for tokens and aggregates
their information to evaluate the rationality of specific tokens appearing at specific
positions in a text segment by pre-training on massive open-domain text corpora
with the help of self-supervision characteristics in text data.[19, 6, 4]

We speculate that with the co-occurrences of records, inspection and evaluation
measurement, pre-trained language models could adaptively identify inspections and
measurements and directly model the relationships between them based on their
semantics.

Additionally, considering the imbalanced development of medical resources in various countries
and to respond to the call for affordable and accessible mental health care for all, we expect
a multilingual-friendly model for vulnerable people who cannot use dominant languages and
maximize the use of data in various languages through unified modelling.

Unfortunately, the datasets for mental health detection are mostly not publicly
available. Therefore, we will use the open-source MMRC datasets with similar char-
acteristics to our target data as an alternative and optimize the methods specifically
to adapt to these characteristics.

Our contribution is two-fold: 1) We modify the modelling method of the MMRC
task by introducing additional information through tag tokens and adding a fuser
network to enhance the comparison between options; 2) We decouple task format
from languages through the step-by-step training and enhance the performance of
the target task in low-resource languages by intermediate training with samples in
the identical format in high-resource language on pre-trained models.

In this thesis, we address the following research questions:

RQ-1 To what extent does the pre-trained language model establish relationships of all
components based on their semantics with explicit indication of boundary and category
information?

RQ-2 How much can a pre-trained multilingual language model learn relevant patterns from
English datasets and transfer such knowledge to low-resource languages and domains?

This section introduces the existing circumstances of the applications of machine learning meth-
ods in the field of mental health detection, as well as our research question and corresponding
solutions; In section 2, we will give a brief illustration of the related work on solving MMRC
tasks and multilingual language models; In section 3, we provide a detailed explanation of the
implementation of our methods; In section 4, we present our experiment data, settings and



results; In section 5, we discuss the reasons of some specific phenomena and results in the
experiment; The conclusion will be shown in section 6.



2 Related Work

2.1 Multilingual Pre-trained Language Models

Transformers [30] have brought a significant impact on the Natural Language Processing
(NLP) field since 2017, especially its parallel processing capabilities have allowed the surge
of large-scale pre-trained language models such as BERT [6], RoBERTa [14], ALBERT [13],
ELECTRA [4], GPT [19] etc. which are based on transformer architecture.
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Figure 1: Universal structure of transformer auto-encoder models. (A) Embeddings are learnable
and initialized in the pre-training process. (B) Each layer of the deep residual network is an
encoder block which consists of a multi-head attention network and a feed-forward network.
Images are collected from [6, 30]

These models mainly consist of two parts: 1) an embedding network for converting token
indexes into dense vectors conveying superficial features, position information, and, according
to the pre-training strategy, segment information; 2) a deep residual network for modelling
contextual features by attending all tokens in a text sequence with the multi-head self-attention
mechanism, as shown in Figure 1.

Among them, the multi-head self-attention endows the model with a strong ability
to aggregate contextual information. The self-attention mechanism reconstructs con-
textual representation for them with the linear combination of all their embeddings
by calculating scaled dot-product similarities between them as weights. In order to
enhance the expression capability of token features, the multi-head self-attention
method introduces different linear projections on top of self-attention, projecting
embeddings into different subspaces before calculating similarity. Afterwards, the



embeddings would be fed into one single-layer neural network, namely a feed-forward
network, for a non-linear transformation to refine their features.

Combined with residual connection and layer normalization, these structures form
an encoder block. Original tokens would be converted into dense vectors by em-
bedding network and processed by multiple stacked encoder blocks, in which they
would be reconstructed with context information. As a result, the final output token
embeddings could contain semantic information corresponding to the context they
are located.

Although the improvement on downstream tasks made by large language models is very gratify-
ing, the need for a massive amount of high-quality training samples obstructs the development
of such models in low-resource languages. In contrast, available low-resource language corpora
could hardly enable a monolingual model to achieve performance equivalent to high-resource
models such as the English model [12]. Furthermore, in the fine-tuning stage, due to ei-
ther the lack or the limited amount and size of MMRC datasets in low-resource languages, it
would be difficult to train a monolingual language model of low-resource language for our target.

The pleasant surprise is that in recent years, many cross-lingual pre-training strategies have
been proposed and validated that a language model can obtain multilingual capacity with
training on a combination of the monolingual corpora, which might have orders of magnitude
gap in size, from multiple different languages. These strategies require no modification of
previous language models architecture and have brought many pre-trained multilingual language
models to the stage such as mBERT [17] and XLMs [12, 5, 3], all trained on non-parallel data
for more than 100 languages.

More importantly, when these multilingual models are fine-tuned with monolingual datasets
of new tasks, they can transfer the task-relevant knowledge to other languages [17, 5]. This
might indicate that the knowledge related to the task format could be independent of the
languages. Therefore, training the multilingual models conforming to the target task format in
the high-resource language could help the subsequent low-resource language target task.

We adopt their idea of using rich-resource language to enhance the training efficiency of low-
resource language with a unified language-independent modelling method and apply multilingual
pre-trained language models to extract the semantic representation of tokens from text segments
in a multi-task fashion.

2.2 Multi-Choice Machine Reading Comprehension

MMRC is a subtask in Machine Reading Comprehension consisting of three main types of
components: passage p, question ¢ and answer options 0 = 01, 0o, ..., 0,,. | he purpose of such
a task is to select the best matching answer o; corresponding to question g from information
provided by p. Normally, the questions and corresponding candidate options would vary accord-



ing to the passages, which coincides with our expectation of modelling different measurements
for different evaluations and inspections.

Differing from Natural Language Inference(NLI) and other classification tasks at the sentence
or document level, the illustration of the task objectives and the meaning of the corresponding
class in MMRC tasks are expressed in explicit semantics by questions and options.

In 2019, Jin et al. [9] proposed a multi-stage multi-task training strategy and achieved state-
of-the-art performance in many MMRC datasets with coarse-tuning on an NLI dataset and
fine-tuning on supplement and target datasets in the form of multi-tasking with newly proposed
multi-step attention network classifier. Later in 2020, Zhang et al. [31] and Zhu et al. [33]
proposed DCMN+ and DUMA respectively, both focusing on modelling the relationship between
passages and question-option pairs with extra cross-attention mechanisms. This methodology
is brought to the ultimate attainment by Zhang [32] with HRCA+, which applied attention
mechanism to model all 9 types of the correspondence relationship between three components.

These methods concatenate the passage P = [pi,...pr,], question Q) = [q1,...,qz,] and one
of the candidate options O" = [0, ..., 0} ] as a sequence S’ = concat(P,Q,O"), where L,
L, and L, are the length of P, Q and O, and i = 1,2,..., N is the index of N candidate
options, and using each sequence to retrieve features representing the rationality of itself for the
downstream classifier to learn a probability distribution of P(S%|St, ..., SY), which is selecting
the best combination among N combinations.

[ [CcLS] I Passage content I [SEP] I Question content I [SEP] I Option 1 content I [SEP] ]_’ |\/|Ode|s

N sequences
for nns
N options

[ [cLs] I Passage content I [SEP] I Question content I [SEP] [ Option N content I [SEP] ]—b Models

Figure 2: Input sequences for conventional modality. Each sequence consists of only one
candidate option and it requires N sequences for tasks with N options.

This conventional modality, illustrated in Figure 2, which treats every permutation as a complete
sequence, has achieved good results, yet has some remaining problems. An important issue of
modelling every permutation respectively is the deficiency of semantically relevant information
between options.

This problem could be critical when there exist references between options (e.g. 'none of the
other options are correct’, 'all of the options are correct’, etc.), as shown in Table 1 (right).
More importantly, when options are in the form of scoring, the models need the implicit
semantics about intervals and gaps (e.g. In grades 1 to 5 and 1 to 10, the same grade 5 has
different meanings) which could be recognized only with the co-occurrence of all options.
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Although Ran et al. noticed this problem and proposed an Option Comparison Network [20],
which takes the correlation between options based on token-level embeddings into account
after retrieving each permutation respectively, this feature level aggregation still overlooked the
potential direct semantic relation between options.

For the above issue, we believe there is a solution which is feeding the model all components
of one MMRC task entry including passage, question, and all candidate options at once and
using its encoding ability to directly encode the full context of such task. Meanwhile, this
might require extra effort for the model to recognize different components and thus model the
relationships between them.
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3 Methods and Model
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Figure 3: Model architecture. The encoder network is a pre-trained language model, the fuser
network is a transformer encoder and the reasoning network is a multi-layer perceptron.

We propose a method, with extra tag tokens for introducing prior knowledge including compo-
nents’ boundaries and categories, to allow the models to read all components (passage, question,
and all options) at once and model the semantic relevance between options while processing
one sequence. The general architecture of our proposed method and model is illustrated in
Figure 3.

3.1 Tags for Full Context Input

There are three categories of components in MMRC tasks: passages, questions, and options,
while former methods allow only one component of each category in one sequence, as shown in
Figure 2, with a fixed order. Moreover, they use [C'LS] token and [SE P] token to mark the
boundary of different components and retrieve either the embedding of [C'LS] token or mean
pooling of the sequence as features for further processing.

Formally, the representations of these special tokens are contextualized and they jointly create
an explicit distribution pattern for the input sequence. This inspires us that additional prior
information could be added to the sequence by inserting particular special tokens in correspond-
ing positions.

12
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Figure 4: Tags have no actual semantics in human language and are added on both sides of
a component. Correspondingly, we add an equivalent number of embeddings for tags in the
embedding network of the pre-trained language model.

We expect that the model can identify different components and establish the semantic-based
relationship between them according to their categories, especially when all components are
fed together as one sequence. Hence we need identifiers to mark not only the boundary but
the category of components in the input sequence for there exists an indefinite number of
components from the options category, determined by the datasets. On account of the above-
mentioned issues, we design learnable extra tag tokens for indicating the model to recognize
the components, as shown in Figure 4.

We modify the modelling from P(S%|SY, ..., SV) to P(O!|P,Q, 0%, ...,ON), wherei = 1,2, ..., N
is the index of IV candidate options for corresponding passage P and question (), by allowing
the model to read all components at once to construct a full context with different start and
end tags identifying every component in it. Finally, the tagged full context components Srcc
would be:

SFCC = [[Pstart]; P7 [Pend]; [Qstart]; Q7 [Qend]; [Ostart]; 017 [Oend]; o3 [Ostar‘t]; ONa [Oend“ (1)

, where [Pyart], [Pendl, [@start], [Qend] [Ostart],[Oena] are tags for corresponding components and
;] indicates row-wise concatenation. It is worth mentioning that the tags for all options
are identical to ensure the impact of tags on each option is equivalent and it does
not require adjustment on the number of introduced extra tag tokens according to
the number of options.

In section 2, we have discussed how the pre-trained language models construct
token embeddings that can convey contextual information. Associating with the
application of special tokens, including [C'LS] for classification tasks, and [M ASK]
for cloze tasks, we can infer that the intrinsic information of the token itself could
be neglected by the network when it is trifling in downstream tasks while the task-
relevant context feature would be reinforced. Therefore, we can consider the output
embedding of each token to be a characterization of its context, rather than just its

13



own representation.

Similar to the usage of [CLS] and [M ASK] tokens, we assume that the embedding of tags
can represent the task-relevant information of each component in the input sequence and thus
retrieve them as component features in full context for the downstream classifier. The models
would be trained in a supervised manner which makes use of the labels as supervision
information.

Our goal is to create appropriate representations for components according to the context.
With extra knowledge about the boundaries and categories introduced by our tagging method,
we expect the model to have different concerns about the content that appears in different
components and aggregate the task-related features of them into the embeddings of tags.

3.2 Model Architecture

In addition to the above methods, we use neural networks to achieve our modelling goal. As
shown in Figure 3, our model consists of three parts: encoder network, fuser network, and
reasoning network.

3.2.1 Encoder Network

The Encoder network is originally a pre-trained language model, defined as fgyc. It would
become a tag-oriented feature extractor along with the training when we only retrieve the
embeddings of tags. These embeddings carry the task-relevant features at the semantic level
in the co-occurrences of full context components, which is enabled by the contextualized
representation capability of the pre-trained language model.

By feeding the tagged full context sequence S = concate(p,q, o1, ...,0,) into the encoder
network, we can obtain the corresponding contextual embedding of every token. Considering
the purpose of tag-oriented modelling, we retrieve only the embedding of tags as component
features for further processing, defined as follows:

EP EY = func(t?,t*]S), EY = avg(E?, EP) (2)
E' EY = func(t?,t7]S), EQ = avg(E9, ET) (3)
B¢ EY = fenc(t0,t7]S), EC = avg(E?, EY) (4)

, where the 7, "' are start and end tag of passage component, t9,t? are start and end tag of
question component and t?, t;" are start and end tag of the i-th option component. Based on
our previous discussion, we adopt the representation of tags as features for different
components and take the mean value of the tag embeddings on both sides to align

the features of each dimension.

14
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Figure 5: lllustration of embedding composition in fuser network. The network itself is a
multi-layer transformer encoder.

3.2.2 Fuser Network

On top of the pre-trained language model, we insert another transformer encoder
network to model the relationship between all options at the feature level, as shown
in Figure 5, where we take the embeddings of E¥, E9 and E° to reconstruct the
representation of every option by modifying their embedding compositions as follow:
E{™ = E* + E? + EY (5)

3
E;°™ is the new embedding of option i and we can have a new representation for all options
O = [E{""™, E"™ ..., E¢°™P]. These component embeddings are the result of the same trans-
formation thus they are in the same subspace having a common basis and it is plausible to

assume they are additive.

In particular, we removed the position embedding in this module since the option sets are in fact
permutation-invariant and the transformer encoder is position-independent if position encoding
is avoided. We use it to strengthen the discrimination between options and directly for-
mulate a new representation in consideration of the whole option set for each of them:

E;O = fFUSE(Eicomp|O) (6)

Based on the structure of the transformer encoder, we can assume that this network
can create representations of each option by attending to the representation of other
options in the option set. Henceforth, we refer to this module as a fuser network while it
fuses the information of different options.

3.2.3 Reasoning Network

Afterwards, we generate logit values for options as a confidence level with a multi-layer percep-
tron and apply softmax smoothing on them to obtain the probability distribution:

15



LY = fr(E°) (7)
P(oilp, g, 01, ..., 0,) = ~n 10 (8)

Finally, we can regard the probability distribution of options are conditioned to all components
in the corresponding MMRC task including passage, question, and all options on the semantic
level, noted as P(o;|p, q, 01, ..., 0n).

3.3 Unified Tuning

Previous research suggests further tuning pre-trained language models on similar tasks, in
domains and forms, to target tasks is more conducive to their adaptation in the context of
transfer learning. This method is known as intermediate task fine-tuning [18].

Due to the absence of publicly available mental health detection datasets and the anticipation
of a shortage of collectable data, we propose to decouple the task format from our target and
post-pre-train a language model that would be capable of solving tasks of the same form and
scalable for new coming low-resource target data. For this, we construct a two-stage training
which includes an intermediate tuning stage for format adaptation and a further fine-tuning
stage for language and domain adaptation.

The encoder network would function as a tag-oriented feature extractor with our tagging
method. In order to facilitate this transformation and adapt it to our target task, we construct
our intermediate fine-tuning task with MMRC datasets which cover the different formal char-
acteristics we emphasize for our target task in addition to ordinary MMRC tasks, including
option semantic reference and dialogue format text. While there is not any single MMRC task
that could contain all these characteristics, we would use a multi-task fashion training scheme
in our intermediate fine-tuning phase to assemble the task-relevant knowledge.

This transformation and adaptation would be achieved via monolingual intermediate tuning on
a multilingual model with high-resource language. As mentioned in section 2, the task-relevant
formal characteristic learned from high-resource language datasets could be directly shared and
could also be improved by further fine-tuning with target languages.

Our setting is based on the small number of our target task samples and the use of low-resource
languages. In extreme cases, we expect our methods and model to have sufficient generalization

ability only based on formal characteristics to adapt to zero-shot scenarios.

We assemble all datasets with different characteristics as one and construct every
batch by sampling training data from it, illustrated as Figure 6, with a smoothing
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Figure 6: Batch construction for unified tuning. Each batch is constructed with samples collected
from all available datasets.

method from applications in the previous study [12] of language sampling for
multilingual models:
«
= N—Ia with r; = AI;I—Z
D k1 TH D ket Tk
, where n;, n; is the number of training samples in the original corpus ¢ and &, r;,
denotes the ratio of sample amount in corpus 7 and k& to the overall sample amount
in all corpora, and ¢; denotes the chance of sample in corpus i being sampled. In our
experiments, we set o = 0.5.

(9)

C;

This sampling scheme eases the exposure bias of different formal characteristics. It significantly
reduces the magnitude gap of their training samples. At the same time, its construction depends
on our tagging method for full context input and can process tasks with different numbers of
options without distinction.

We regard the unification of formal characteristics between intermediate tuning and the follow-

up fine-tuning, and the indiscriminate sampling method for assembling these characteristics, for
applying task-relevant knowledge to target tasks independent of languages as unified tuning.
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4 Experiments

4.1 Datasets

Datasets Intermediate Tasks Target Tasks

RACE COSMOS-QA DREAM C3? SweQUAD-MC MuSeRC
# of train 87,866 25,262 6,116 11,869 962 5,380
# of validation 4,887 2,985 2,040 3,816 126 993
# of test 4,934 6,963 2,041 3,892 102 -
Avg. P length 321.9 70.3 85.9 116.9 379.4 203.9
Avg. Q length 10.0 10.6 8.6 12.2 7.8 7.6
Avg. O length 53 8.1 5.3 55 4.3 5.3
Language English English English  Chinese Swedish Russian
Characteristics ~ Ordinary Reference  Dialogue Dialogue Ordinary  Ordinary

Table 2: Statistics of datasets involved.

As mentioned in the previous section, we construct our intermediate task with high-resource
language datasets which consist of the formal characteristics we need. Firstly, considering the
consultation record we will process in our target task, we need MMRC datasets with dialogues.
Secondly, for adaptively recognizing the evaluation measurements, we would like to introduce
datasets with semantic references between options to reinforce the modelling of their relationship.

Datasets with our required characteristics are rare even in English, a high-resource language. We
filtered two datasets: DREAM [23], a multiple-choice dialogue-based reading comprehension ex-
amination dataset and COSMOS-QA [8], a commonsense-based reading comprehension dataset
with option semantic references, to include the required formal characteristics. In addition, we
entail a more general dataset collected from English examinations in China designed for middle
school and high school students, RACE [11], to expand the sample capacity and thus improve
the generalization ability in MMRC tasks.

To validate the effect of cross-lingual transfer, we selected three datasets with relatively
low-resource language under the MMRC scenario including C? [24] which contains dialogues
and more formally written mixed-genre texts in Chinese, SweQUAD-MC [10] which has very
limited sample capacity in Swedish, and MuSeRC [22] which requires multi-sentences reason-
ing in Russian. For the record, MuSeRC is designed initially as a binary classification task
defining whether the options are true or false according to passage and question. Since each pas-
sage and question pair corresponds to multiple options, we cast this dataset into MMRC format.

Statistics of these datasets are shown in Table 2. Examples are provided in Appendix A, Table
7,8, 9, 10, 11 and 12. Our methods for full context components mainly focus on modelling
the relevance of options, hence the performance of models on COSMOS-QA would be followed
with the most interest. For unified tuning, we pay balanced attention to each target dataset.

18



4.2 Experiment Settings

Over Length Passage

“Until we went to = = 5
a playdate two Question <> <GB Option 1 </0> vor| <o Option N </o>
weeks ago content content content

ended up not

using nearly as
much water as was

called for and Question </Q> <GB Option 1 e o Beos Option N B
successfully made content content content

crepes.”

Figure 7: lllustration of truncation for over-length passages. The attached question and options
for every segment are complete.

In all experiments, we set the maximum sequence length to 512 tokens including passage,
question, all options, and extra tags to match the settings of selected pre-trained models. We
truncate the passage which exceeds the length limit into segments and each of them is attached
with corresponding question and options as input, as shown in Figure 7, and the statistics of
truncation is shown in Table 3. The extracted features of passage, question, and options from
different segments would be averaged.

Split Statistics \ RACE COSMOS-QA DREAM Cc3 SewQUAD-MC  MuSeRC
Full 68648 25262 5855 11219 461 4897
Train Truncated 19218 0 261 650 506 483
Avg. truncation count 1.14 0 1.6 1.12 2.11 1.39
Max. truncation count 6 0 4 3 14 5
Full 3839 2985 1962 3574 66 883
Eval Truncalted 1048 0 78 242 61 110
Avg. truncation count 1.12 0 1.42 1.12 1.79 1.22
Max. truncation count 4 0 4 2 13 3
Full 3983 6963 1943 3709 42 -
Test Truncated 951 0 98 183 60 -
Avg. truncation count 1.16 0 1.52 1.07 1.6 -
Max. truncation count 4 0 3 2 9 -

Table 3: Statistics of truncation in all involved datasets.

We apply the AdamW optimizer and adopt the warming up and linear learning rate decay
strategy in our training. Besides, our models are trained with automatic mixed precision provided
by PyTorch, and we modify some hyperparameters of the optimizer accordingly to prevent
value overflow.

We load only the pre-trained weights for the encoder network from Transformers® and initialize
the weights of the fuser network and reasoning network for every training. For evaluation, we
use accuracy as the indicator to measure the performances of our methods and models for all

2https://huggingface.co/
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tasks, as common in MMRC tasks.

4.3 Results

Method Intermediate Tasks Target Tasks
RACE COSMOS-QA* DREAM c3 SweQUAD-MC  MuSeRC*
Single-Tasking
baseline
79.44 73.79 73.33 79.34 87.60 91.72
+FCC and Tagging
78.36 74.15 71.42 76.85 89.58 91.38

+Fuser Network
(Full Methods) 78.56 74.69 72.75 77.58 91.89 91.78
Unified Tuning

Full Methods
78.68 75.33 81.80 78.17/82.73 92.16/98.29 86.61/94.39

Table 4: Result of the XLM-RoBERTa experiments. The number in this table represents the
accuracy in percentage achieved on datasets with specific settings. The result of target tasks in
unified tuning contains zero-shot/fine-tuning accuracy. Mark * indicates the result is evaluated
on the development set since their test sets are hosted3.

We apply our methods step by step on a pre-trained multilingual language model, XLM-
RoBERTa, to assess their impact on all selected datasets respectively as the experiment
results shown in Table 4. Note that in unified tuning, the model is jointly post-trained on all
intermediate datasets and then fine-tuned on each target dataset respectively.

Taking full context components as input directly improves the model performances on COSMOS-
QA and SweQUAD-MC compared to the baseline method by 0.36% point and 1.98% point.
Semantic- and feature-level characteristics are both taken into account when a fuser network is
added and it improves the performance compared to simply converting the input format as full
context components on all selected datasets.

For full methods single-tasking, the improvement of accuracy on COSMOS-QA by 0.90% point
and SweQUAD-MC by 4.29% point are also substantial, while the impact on DREAM and
MuSeRC is relatively inconspicuous. However, it impairs the performances compared to the
baseline method on RACE by 0.88% point and C? by 1.76% point.

We notice when DREAM is jointly trained with RACE and COSMOS-QA as an intermediate
task, it achieves the most salient accuracy improvement compared to the single-tasking. For
RACE and COSMOS-QA, their performances are also improved in joint training.

3https://leaderboard.allenai.org/cosmosqa/submissions/public,https: / /russiansuperglue.com /tasks/task_info/MuSeRC

20



Prominent zero-shot transfer capability emerges while unified tuning is applied. We notice on
two of the three target datasets, C® and SweQUAD-MC, the zero-shot accuracy has exceeded
their single-task performance. With further fine-tuning, a striking improvement arises on all
target datasets of unified tuning, significantly surpassing their single-task results of baseline
and full methods.

To assess the impact of the encoder network and compare our methods to previous research,
we also experiment with our methods on the different encoders pre-trained merely in English,
which have different pre-training strategies and architecture. From the results shown in Table
5, we can see another particular situation, which is our methods impairs the performances of
all selected English datasets on BERT-Large. While on RoBERTa-Large and ALBERT-xxLarge,
they can improve the performance of RACE and COSMOS-QA.

Model RACE COSMOS-QA DREAM
Baselines

BERT-large 72.0 67.1 66.8
RoBERTa-large 83.2 80.6 85.0
ALBERT-xxlarge 86.5 82.3 88.5
Our Methods

BERT-large 68.8(-3.2) 63.2(-3.9) 55.1(-11.7)
RoBERTa-large 84.1(+0.9) 83.9(+3.3) 84.0(-1.0)
ALBERT-xxlarge 87.2(+0.7) 86.0(+3.7) 87.9(-0.6)
Human Performance 94.5 94.0 95.5

Table 5: Accuracy on RACE, COSMOS-QA, and DREAM. Baseline performances on RACE are
from the previous research papers of language models [13, 14]. COSMOS-QA baselines are
provided by its original paper [8] and Tian et al. [26]. DREAM baselines are from Jin et al. [9]

The performance variation on BERT, RoBERTa, and XLM-RoBERTa reflects the impact
of pre-training tasks and data on our methods since all these three encoders have identical
architecture (24 layers, 16 attention heads, and 1024 hidden dimensions) but different sizes of
the vocabulary (30k on BERT, 50k on RoBERTa, and 250k on XLM-RoBERTa). From the
overall trend represented by experiments of English encoders, the higher the training quality,
the more suitable the model is for our method.

The results of current experiments suggest that in most cases our method can improve the
performance of COSMOS-QA, which has obvious option relevance, and it is affected by the
pre-training tasks and data of encoders. Besides, by comparing the result of English encoders
and the multilingual encoder, taking full context components has an inconsistent impact on
RACE. For DREAM, our methods always have a negative impact on single-tasking.

As for our target datasets, unified tuning can improve the performances of them all on XLM-

RoBERTa. Compared to the baseline in single-tasking, it improves the accuracy of C* by
3.39% point, SweQUAD-MC by 10.69% point, and MuSeRC by 2.67% point. Additionally, the

21



performance of RACE, COSMOS-QA and DREAM are improved compared to applying our
methods in single-tasking when they are jointly trained as an intermediate task, which is most
outstanding on DREAM.
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5 Discussion

Although we see the influence of full context components in previous experiment results,
we cannot conclude that the improvement and deterioration of performances are caused by
introducing option relations and cannot explain the decline of accuracy on DREAM and C? in
single-tasking. In this section, we discuss the phenomenon that occurred in previous experiments
and try to give explanations for them with extra experiments.

5.1 Visualization of Inferences

To analyze the modelling of options relations, we apply Integrated Gradients(IG) to our fine-
tuned model and input samples for analyzing the contribution of tokens to the likelihood of
options. This is accomplished by Captum®* library based on PyTorch and we use its default vi-
sualization scheme. In our implementation, we select the embedding of [P AD] token as baseline.

Legend: B Negative O Neutral B Positive
True  Predicted  Attribution  Attribution
Label Label Label Score Word Importance
=P | polis hed some silver . | shower ed and attempt ed to beau tif y myself for my day de spite my obvious lack of beauty sleep .
o DA m oz | accepte d my fate of scary dark under - eye circles . | am right now , to put it as suc cin ct ly as possible, a complete zombie . #/P
#Q What may happen if you miss your beauty sleep ? -=/Q|=O | would still look good .=/O|
#0 I would n ' t be able to get anything done that day . #/0 #O | would have to polis h silver . #/0O #0O No ne of the above choice s. #/0

#P | polis hed some silver . | shower ed and attempt ed to beau tif y myself for my day de spite my obvious lack of beauty sleep .
5 06D Qer | accepte d my fate of scar y dark under - eye circles . | am right now , to put it as suc cin ct ly as possible, a complete zombie . /P
=Q What may happen if you miss your beauty sleep ? #/Q #0 | would still look good . #/0
I=O | would n * t be able to get anything done that day . ='/O|=O | would have to polis h silver . #0 #O No ne of the above choice s. #/0

#P | polis hed some silver . | shower ed and attempt ed to beau tif y myself for my day de spite my obvious lack of beauty sleep .
| accepte d my fate of scar y dark under - eye circles . | am right now , to put it as suc cin ct ly as possible, a complete zombie . #/P

D D (0.67) -0.58 s R ;
#Q What may happen if you miss your beauty sleep ? #/Q #0 | would still look good . #/0

#0 | would n ' t be able to get anything done that day . =/C|=O | would have to polis h silver. =/O|=O No ne of the above choice s. #/0

#P | polis hed some silver . | shower ed and attempt ed to beau tif y myself for my day de spite my obvious lack of beauty sleep .

I = s = I - | accepte d my fate of scar y dark under - eye circles . | am right now , to put it as suc cin ct ly as possible, a complete zombie . #/P

#Q What may happen if you miss your beauty sleep ? #/Q #O | would still look good . #/0O
#0 I would n ' t be able to get anything done that day . #/0 O | would have to polis h silver . =/'O|=O No ne of the above choice s . =,/O|

Figure 8: Attribution for all options of a sample from COSMOS-QA. Tokens marked in green
indicate positive and in red indicate opposite for the option. We use coloured boxes to indicate
the attribution target option and their corresponding text.

An example is shown in Figure 8. In this example, the total attribution score reveals the overall
propensity of all components towards the corresponding option and the correct option, option
D in this case, has the highest score. When we look into the word importance, which is the
contribution of each token, we notice not only the tokens in the passage and question but also
the tokens in other options are supplementing the result.

“https://captum.ai/
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From the attribution of options A, B, and C, we can see that except for themselves, tokens in
other options generally provide a negative contribution. As for correct option D, tokens in the
passage, question, and other options would mostly contribute positively. This could be a piece
of evidence for proving taking full context components could be beneficial to modelling option
relevance where all options are contributing to the answer formation.

When we apply IG on more samples to all models from previous experiments, the
tokens in each option still show a supplement to the result. This phenomenon is
independent of the option characteristics of involved training data and the training
schemes (single-tasking and unified tuning). From this, we can conclude that our
method indeed introduces a comparison of information between options and can
model the option relevance.

5.2 Effect of Unified Tuning

The result of unified tuning from the previous section suggests that it can decouple task format
from specific task contents. Although the languages and genres are different in the intermediate
task and target task, it still presents gratifying transfer capability.

This would be meaningful when we apply our methods to mental health detection scenarios.
Predictably, the data under this scenario is typically low-resource and may span multiple
languages in practice. After we have obtained the post-pre-trained model on the intermediate
task, we could directly deploy it and optimize it in the mental health detection scenario with a
modest amount of data.

The abrupt accuracy improvement of DREAM in the intermediate training stage is unexpected.
We figure it might be related to its conversation format or test set partitioning. Considering C*
also contains dialogue text as passages, we investigate the impact of such kind of textual form.

5.3 Impact of Dialogue Text

We conduct an extra experiment on C? to see the impact of our method on dialogue text.
We use its two original subsets: dialogue set and mixed-genre text set to conduct
experiments to see how their performance change while they are trained separately
and jointly.

The results shown in Table 6 suggest that modelling dialogue text would be harder for both
methods. We look into the difference between baseline and our methods, we notice joint
training might expand the performance difference between the two methods on dialogue text
from 1.00% point to 2.14% point while reducing it on mixed-genre text from 1.65% point to
1.40% point. Based on this result, we believe it is appropriate to conclude that the performance
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Separate Joint

Split Dialogue Mixed-genre Dialogue Mixed-genre
Ours

72.78 76.52 76.25 78.83
Baseline

73.78 78.17 78.39 80.23

Table 6: Accuracy of C® subsets with separate and joint training on XLM-RoBERTa.

difference on the whole C® dataset is mainly caused by the dialogue text.

When the dialogue subset is trained with the mixed-genre subset, the performance gap between
them is reduced with both methods from 3.74% point to 2.58% point and from 4.39% point
to 1.84% point respectively. This result agrees with the situation on DREAM, which could
obtain a great improvement with joint training with RACE and COSMOS-QA.

Meanwhile, we notice that when COSMOS-QA is jointly trained with DREAM and RACE, its
performance is also improved compared to all methods in single-tasking. This means that our
method may still have positive benefits when applied to datasets containing dialogue text and
option relevance.

5.4 Investigation of The Fuser Network

We can expect the depth of the fuser network to have a certain influence on the
result, while the relationship between depth and effect is uncertain. To further investi-
gate its influence, we explore the relationship between its depth and impact on performances.
The performance change on the COSMOS-QA dataset caused by its depth is shown in Figure
9.

As we can see from the result, there is no clear pattern in either accuracy or standard deviation
for deepening the fuser network. This result is frustrating since it could not give much informa-
tion about the setting of it and the depth of it would remain a hyperparameter which needs to
be adjusted according to the dataset.

The only thing we can be sure of is that adding a fuser network can indeed improve the model
performance under full context components input. From a practical perspective, adding a
single-layer fuser network ensure improved performance.

5.5 Reduction of Memory Occupancy

In forward propagation, the memory occupancy of all intermediate computation results could
be regarded as linear to the length of the input token sequence. For a sample with n options
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Accuracy Changing with the Depth of Fuser Network

0.830
Avg.Perf.
std

0.825 -
0.820 -
g(l 0.815 -
0.810-

0.805 -

0.800 - T T T T |
1 2 3 4 5 6
Layer Num.

Figure 9: Accuracy on COSMOS-QA validation set with different depth of Fuser Network.

and the length of the passage, question, and each option is p;, ¢;, and o;, we can have the
total memory occupancy caused by this sample is linear to n * (p; + ¢; + 0;) when the baseline
method is applied.

As for full context components input, the memory consumption would be reduced to linear
to p; + q + n * 0;. We roughly apply the average length of all components to this equation
and we can have a cursory estimation of diminution: 74% for RACE, 68% for COSMOS-QA,
63%for DREAM, 72% for C?3, 74% for SweQUAD-MC, and 73% for MuSeRC.

This means that taking the full context components as input could significantly reduce memory
occupancy, especially when the samples have long passage text. It would be meaningful for
expanding the batch size with limited memory capacity while having long text input. As a
result, with full context components input format, the RoBERTa-Large model could be trained
on the COSMOS-QA dataset with batch size 16 on a single RTX3090 GPU without any other
memory trick.
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6 Conclusions

In this work, we analyze the data processing requirements in the mental health detection scenario,
including adaptability in multiple inspections and evaluations, capability in low-resource settings,
and usability in cross-lingual. For the above analytical demands, we propose a multilingual
solution in the form of an MMRC task and introduce new methods, including inserting extra
tags and applying a transformer encoder network to fuse information of options
set, for identifying components of inputs to enable the model to attentively recognize the
inspections and corresponding evaluation criteria with explicit semantics. Moreover, by adopting
a stepwise training scheme, we decouple the knowledge related to task format from languages
and genres to make use of high-resource language data and transfer it to the low-resource
scenarios.

As a result, our methods can be applied to MMRC tasks and improve over the performances of
prior methods on datasets with similar characteristics to our target mental health detection
data on pre-trained language models in most cases. It indicates that our methods help the
models understand the relations among all the components of input, which can be regarded as
beneficial to the modelling of evaluation criteria. Furthermore, the results of unified tuning
show our methods can transfer the knowledge of the task format to other datasets, which
complies with our demand.

Due to the absence of open-source mental health detection datasets in the expectation of
our needs, all our experiments are conducted on available MMRC datasets. Although our
results cannot be directly evaluated as valid for mental health detection, observations based on
experimental phenomena indicate that they can meet some of the requirements for such tasks.
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A Data Examples

Passage

When you buy a T-shirt, or a fur coat in a store, it often carries a label telling who made it or from what
store it was bought. Indeed, some labels show the dress is famous and it is very expensive, so buyers who
deal with the cheapest products would be pleased to do away with labels entirely. However, there is another
label more important than the one showing from which store the dress was bought. When a person buys a
fur coat, or a jacket, from a store, a label telling what the product is made of should be carried to it. This
label is required by law. Besides telling what the product on show is made of, the label should be in clear
English and be where one can find it easily. The information on the label must be the truth. The reason for
this label is that most buyers today aren’t expert enough to know exactly what kind of fur or material they
are buying. The buyer must believe in the store that sells the products or in what the labels say.

Question
Which of the following is true?

Options

A. Not all buyers know the materials they are buying. v/
B. A fur coat with a high price often carries a false label.
C. A label only says what material the product is made of.
D. A T-shirt seldom carries a label.

Table 7: An example of RACE dataset.

Passage

| polished some silver . | showered and attempted to beautify myself for my day despite my obvious lack of
beauty sleep. | accepted my fate of scary dark under-eye circles. | am right now, to put it as succinctly as
possible, a complete zombie .

Question
What may happen if you miss your beauty sleep?

Options

A. | would still look good.

B. | wouldn't be able to get anything done that day.
C. I would have to polish silver.

D. None of the above choices. v/

Table 8: An example of COSMOS-QA dataset, with option relevance.
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Passages

M: Good evening, Madam. Could you do me a favor?

W: Of course. What can | do for you?

M: | am looking for a hotel. Are there any hotels near here?

W: Yes, there are some in this street. The nearest one is next to the bank. It's quite modern.

M: You see. I'm leaving tomorrow morning. Do you think there're any hotels not too expensive?

W: Yes. Drive on for five minutes and you'll find a yellow building on your left. It's a family-style hotel, very
comfortable, and the price is quite reasonable.

M: It sounds nice. Thank you very much for your help.

W: You are welcome.

Question
What can you learn from the conversation?

Options

A. The man has lost his way home.

B. The woman knows the place very well. v
C. The woman works in a modern hotel.

Table 9: An example of DREAM dataset, with dialogue passage.

Passages

2. PRHORFERE—T LRI -

(Woman: Come out and help me get something.)

B BLRKRXLE?

(Man: Why do you buy so much?)

2 SRBBEGIEE X EE, MEZXT R

(Woman: Today's dishes are fresh and cheap, so | bought more.)
B XAER, HHARHERERZER?

(Man: There are so many dishes, when can we finish eating?)

Question
LRI B A7

(What do women ask men to do?)

Options

A. K3

(A. grocery shopping)
B. ERIV

(B. take things)

C. 3%

(C. eat dishes)

Table 10: An example of C? dataset, with dialogue passage. English translation attached.
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Passages

Miljo - och halsoskyddsinspektor (Environmental and health protection inspector)

De allra flesta inspektorerna ar anstallda i kommunerna. En del arbetar dven pa lansstyrelser eller pa
myndigheter som Livsmedelsverket, Jordbruksverket och Naturvdrdsverket.

(The vast majority of inspectors are employed by the municipalities. Some also work at county administrative
boards or at authorities such as the Swedish Food Agency, the Swedish Agency for Agriculture and the
Swedish Environmental Protection Agency.)

Arbetsuppgifter (Job duties)

Miljo- och halsoskyddsinspektorer har en naturvetenskaplig utbildning och den kunskapsgrunden ar viktig i
yrket. Men arbetet har ett ocksd ett mycket stort fokus pa juridik och forvaltning.

(Environmental and health protection inspectors have a natural science education and that knowledge base
is important in the profession. But the work also has a very large focus on law and administration.)
Arbetet handlar om att kontrollera att lagar och forordningar foljs inom till exempel miljobalken, livsmedel-
slagen eller i EU-forordningar. Miljo- och halsoskyddsinspektorer besoker och utdvar tillsyn bland annat pa
restauranger, industrier, bostader, vattenverk och enskilda avloppsanlaggningar.

(The work involves checking that laws and regulations are followed within, for example, the Environmental
Code, the Food Act or EU regulations. Environmental and health protection inspectors visit and supervise,
among other things, restaurants, industries, homes, waterworks and individual sewage plants.)

| sma kommuner arbetar inspektorerna ofta med storre delar av ansvarsomradet. | storre kommuner ar de
ofta mer specialiserade.

(In small municipalities, the inspectors often work with larger parts of the area of responsibility. In larger
municipalities, they are often more specialized.)

Arbetet ar sjalvstandigt och innebar mycket kontakter med olika manniskor. Miljo- och halsoskyddsinspektorer
samarbetar till exempel med andra tjansteman inom kommuner, foretag och myndigheter. Ibland arbetar
man ensam och ibland i arbetslag.

(The work is independent and involves a lot of contact with different people. Environmental and health
protection inspectors collaborate, for example, with other officials within municipalities, companies and
authorities. Sometimes you work alone and sometimes in teams.)

Radgivning och information ar en viktig del av arbetet. Inspektoren informerar om de bestammelser som
galler och ger rad, bade till foretag, myndigheter och allmanheten.

(Advice and information is an important part of the work. The inspector informs about the regulations that
apply and gives advice, both to companies, authorities and the public.)

Miljo- och halsoskyddsinspektoren gor aven utredningar och bereder arenden som politiska namnder ska
fatta beslut om. Det ingdr ofta att foredra arendet for politikerna.

(The environmental and health protection inspector also conducts investigations and prepares cases for
political committees to decide on. It often includes preferring the matter to the politicians.)

Arbetsmiljé (Working environment)

Arbetet ar omvaxlade och innebar bade kontorsarbete och besok ute hos de verksamheter som man ska gora
tillsyn pa. Det finns oftast mojlighet att sjalv planera och strukturera sitt arbete.

(The work is varied and involves both office work and visits to the businesses that are to be supervised.
There is usually the opportunity to plan and structure your work yourself.)

Question
Var ar de flesta miljo- och halsoskyddsinspektorer anstallda?
(Where are most environmental and health protection inspectors employed?)

Options

A. enskilda avloppsanlaggningar
(A. individual sewage plants)

B. i kommunerna v/

(B. in the municipalities)

C. p3 restauranger

(C. in restaurants)

Table 11: An example of SweQUAD-MC dataset. English translation attached.
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Passages

C cornacus rocnoxu e Ppatvsanb Banbmon yBo3ut IJxkeHu, Ho PpaHBanb JOroHsieT nx n ybusaert
BanbmoHa.

(With the consent of Madame de Franval, Valmont takes Eugenie away, but Franval overtakes them and
kills Valmont.)

3atem, fabbl nsbexaTs kapbl npasocyausi, PpaHeans 6eXnT B OANH M3 CBOUX YAANEHHLIX 3aMKOB U bepeT
C coboii XeHy U JoYb.

(Then, in order to avoid the punishment of justice, Franval runs to one of his remote castles and takes his
wife and daughter with him.)

v3HaB, 4TO 3)KeHI/I 6b|f|a noxnuweHa ¢ BeAOMa €ro »XeHbl, OH peLlaeT OTOMCTUTb roCnoXxe ae chaHBaJ'Ib n
nopy4aeT fO4Yepy OTPaBUTb MaTb.

(Learning that Eugenie was kidnapped with the knowledge of his wife, he decides to take revenge on Madame
de Franval and instructs his daughter to poison her mother.)

Cam e oH BbIHYXAeH bexxaTb 3a rpaHuy, bo emMy BbIHECEH CMEPTHbIW NMPUroBop.

(He himself is forced to flee abroad, for he has been sentenced to death.)

Mo popore Ha ®paHBans HanagatoT pasbORHUKM 1 OTOMPAOT Y HEro BCE, YTO OH WME.

(On the way, robbers attack Franval and take from him everything that he had.)

VI3paHeHHbIii n namyydeHHblii PpanBanb BcTpedaeT Knepeuas: OCTONHOMY CBSILLEHHUKY Y4A0Ch BbIOPATHCS
N3 3aCTEHKOB HErogss.

(Wounded and exhausted, Franval meets Clairville: the worthy priest managed to get out of the dungeons of
the scoundrel.)

OAHaKo, UCMOMHEHHBIA XPUCTUAHCKOrO CMUpeHnsi, Knepeusb rotoB noMoYb CBOEMY MYHUTENHO.
(However, filled with Christian humility, Clairville is ready to help his tormentor.)

Mo popore ®paHBanb n Knepenib BCTPeYatoT MpaYvHYO NPOLECCUIO — XOPOHST rocnoxy e ®PpaHeanb n
DKeHu.

(On the way, Franval and Clairville meet a gloomy procession - they bury Madame de Franval and Eugenie.)
OTpaBuB MaTb, I>KEHN BHE3AMHO MOYYBCTBOBAA CTOJIb XKIyYee packasiHie, YTO B OAHOYACLE yMepsia BO3/e
X/lafHOrO Tena MaTepu.

(Having poisoned her mother, Eugenie suddenly felt such burning remorse that she died overnight near the
cold body of her mother.)

Bpocuewince Ha rpob xeHbl, PpaHBanb 3aKkasbiBaeT cebsi KMHXKANOM.

(Throwing himself on his wife's coffin, Franval stabs himself with a dagger.)

TakoBO MpecTynieHne N «yXacHbl€ MNOA4bl Ero...

(Such is the crime and "the terrible fruits of it” ...)

Question
Kto oTpasun xeny ®@pansans?
(Who poisoned Franval's wife?)

Options

A. MaTb

(A. Mother)

B. Jliogosuk

(B. Louis)

C. Cam ®patBanb
(C. Franval himself)
D. Ero goub v/

(S. His daughter)

Table 12: An example of MuSeRC dataset. English translation attached.
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A Solution for Mental Health Evaluation with Full Context Components

Anonymous EMNLP submission

Abstract

Text-based models for multi-purpose inspec-
tion and evaluation are absent in the mental
health detection field. We propose a solution
in the form of Multi-choice Machine Reading
Comprehension (MMRC) tasks combined with
modification of the input format and network
architecture for such a scenario. In our solution,
we 1) introduce extra tokens for the identifica-
tion of different components of an MMRC sam-
ple and reconstruct the whole sample as one in-
put sequence, and 2) insert a small transformer
encoder network to fuse the information from
every option. Through the above modifications,
we input the text records, evaluation, and corre-
sponding measurement in text form, and train
the neural network to output a valid assessment.
Experiment results suggest our methods can
be efficient in MMRC tasks especially when
option relevance exists.

1 Introduction

In 2019, the World Health Organization conducted
an investigation on the global mental health care
situation and revealed the universally scarce re-
sources in mental support (Osborn et al., 2022).
From the released data, only 2% of the total health
budget goes to mental health care, two-thirds of
countries are short of funds and human resources
for implementing their mental health policy or plan,
and around 970 million people, accounting for 13%
of the population in the world could have suffered
from a mental disorder during a certain period of
their life. Moreover, there is a severe regional im-
balance in the resources of mental health support,
especially between developed and less developed
regions. Henceforth, the WHO calls for wider sup-
port for mental health services, including afford-
able and accessible mental health care for all.

In addition to the efforts in the medical field, the
development of applications on smart devices, espe-
cially online consultations and chatbots for mental

care (Vaidyam et al., 2019) contribute to the ac-
cessibility of mental health support. Nevertheless,
the evaluation of mental condition requires stan-
dardisation of these textual records in the form of
standard scales such as the Hamilton Anxiety Rat-
ing Scale (HAM-A) (Hamilton, 1959), the World
Health Organization 5 indicators for physical and
mental health (WHO-5) (Topp et al., 2015), and
the Beck Depression Inventory. Some of these
standard scales need to be completed manually by
professionals based on the conversation during the
consultation, which requires additional human re-
sources costs.

The surge of machine learning techniques has
brought many automated applications to mental
health evaluation, diagnosis and therapy. Beyond
Al-based chatbots, regarding public mental health
services, there are models for identifying specific
symptoms in social media posts (Almeida et al.,
2017). In medical scenarios, models work as an
auxiliary to process the featured data and give diag-
nostic suggestions (Pestian et al., 2010; Ross et al.,
2015; Tran and Kavuluru, 2017; Bhagyashree et al.,
2018). Although these applications cover the eval-
uation of various mental conditions, the existing
models always require a specific design for every
specific inspection, while every standard scale con-
sists of multiple different items corresponding to
different inspections.

We propose a method for mental health detec-
tion problems in the form of MMRC (Multi-choice
Machine Reading Comprehension), as shown in
Table 1, to enable a model to process multiple in-
spections in standard scales. By taking the free-text
records as passages, and explicitly declaring in-
spection and evaluation measurement in the text as
questions and options to formulate a complete sam-
ple, shown in Table 2, we cast a sample of mental
health evaluation task into the MMRC task format
and use pre-trained language models to character-
ize the relationships within.



Passage:

Until we went to a playdate two weeks ago.
Thea’s mom is Serbian and crepes are
apparently as common in Serbia as they are
in France. We discussed the batter, the texture,
the cooking process, the topping options and
Dee generally brought me up to speed.
Being not brave enough to just start throwing
ingredients in a bowl as she did, I got a
recipe of the internet for general proportions,
ended up not using nearly as much water as
was called for and successfully made crepes.
Question:

Why did they discuss crepes?

Options:

A. Because Thea’s mom is Serbian.

B. Because the writer got a recipe from

the internet.

C. Because the writer is interested in
learning how to cook crepes.

D. None of the above choices.

Table 1: An example MMRC task from the COSMOS-
QA dataset.

Unfortunately, the datasets for mental health de-
tection are mostly not publicly available. Therefore,
we will use the open-source MMRC datasets with
similar characteristics to our target data as an al-
ternative and optimize the methods specifically to
adapt to these characteristics.

Our contribution can be summarized as introduc-
ing additional information through tag tokens and
adding a fuser network to enhance the comparison
between options to allow the model to recognize
the measurement of mental health evaluation, or
the option relevance in the context of the MMRC
task.

2 Related work

MMRC is a subtask in Machine Reading Compre-
hension consisting of three main types of compo-
nents: passage p, question q and answer options
0 = 01,02, ...,0,. The purpose of such a task is
to select the best matching answer o; correspond-
ing to question q from information provided by p.
Normally, the questions and corresponding candi-
date options would vary according to the passages,
which coincides with our expectation of modelling
different measurements for different evaluations

"https://www.wysa.com/

Record:

Agent: How are you today?

User: Not great...

Agent: Looks like you’re having a rough
day. Tell me more about how you feel?
User: I went out and felt very uncomfor-
-table with so many people around.
Can’t help feeling being gazed at.
Agent: As always, let’s start by turning
our attention to our breath.

Agent: It happens to all of us. Here are
some techniques that can help.
Inspection:

Indication of User’s anxious mood.
(HAM-A item 1)

Measurement of Evaluation:
A.Not present.

B.Mild.

C.Moderate.

D.Severe.

E.Very severe.

Table 2: An example of simulated consultation record
between a user and a conversational agent for mental
health support, Wysa', combined with a HAM-A evalu-
ation item and its corresponding measurement.

and inspections.

In 2019, Jin et al. (Jin et al., 2019) pro-
posed a multi-stage multi-task training strategy
and achieved state-of-the-art performance in many
MMRC datasets with coarse-tuning on an NLI
dataset and fine-tuning on supplement and target
datasets in the form of multi-tasking with newly
proposed multi-step attention network classifier.
Later in 2020, Zhang et al. (Zhang et al., 2020) and
Zhu et al. (Zhu et al., 2020) proposed DCMN+ and
DUMA respectively, both focusing on modelling
the relationship between passages and question-
option pairs with extra cross-attention mechanisms.
This methodology is brought to the ultimate attain-
ment by Zhang (Zhang and Yamana, 2022) with
HRCA+, which applied attention mechanism to
model all 9 types of the correspondence relation-
ship between three components.

The conventional methods or models for MMRC
tasks take only the triple of passage, question and
one of the options as a sequence and most of the
previous efforts focus on the enhancement of mod-
elling the triple. It could cause critical problems
when there exist references between options (e.g.



"none of the other options are correct’, *all of the op-
tions are correct’, etc.), as shown in Table 1. More
importantly, when options are in the form of scor-
ing, the models need information about intervals
and gaps (e.g. In grades 1 to 5 and 1 to 10, the
same grade 5 has different meanings) which could
be recognized only with the co-occurrence of all
options.

Although Ran et al. noticed this problem and
proposed an Option Comparison Network (Ran
et al., 2019), which takes the correlation between
options based on token-level embeddings into ac-
count after retrieving each permutation respectively,
this feature level aggregation still overlooked the
potential direct semantic relation between options.

For the above issue, we believe there is a solution
which is feeding the model all components of one
MMRC task entry including passage, question, and
all candidate options at once and using its encoding
ability to directly encode the full context of such
task. Meanwhile, this might require extra effort for
the model to recognize different components and
thus model the relationships between them.

3 Methods and Model
3.1 Tags for Full Context Input

There are three categories of components in
MMRC tasks: passages, questions, and options,
while former methods allow only one component of
each category in one sequence. Moreover, they use
[CLS] token and [SE P] token to mark the bound-
ary of different components and retrieve either the
embedding of [C'LS] token or mean pooling of the
sequence as features for further processing.

Formally, the representations of these special to-
kens are contextualized and they jointly create an
explicit distribution pattern for the input sequence.
This inspires us that additional prior information
could be added to the sequence by inserting partic-
ular special tokens in corresponding positions.

We expect that the model can identify differ-
ent components and establish the semantic-based
relationship between them according to their cat-
egories, especially when all components are fed
together as one sequence. Hence we need identi-
fiers to mark not only the boundary but the category
of components in the input sequence for there ex-
ists an indefinite number of components from the
options category, determined by the datasets. On
account of the above-mentioned issues, we design
learnable extra tag tokens for indicating the model

to recognize the components.

We modify the modelling to be in the form of
P(OY|P,Q,0',...,ON), where i = 1,2,..., N is
the index of N candidate options for correspond-
ing passage P and question @, by allowing the
model to read all components at once to construct a
full context with different start and end tags identi-
fying every component in it. It is worth mentioning
that the tags for all options are identical to ensure
the impact of tags on each option is equivalent and
it does not require adjustment on the number of in-
troduced extra tag tokens according to the number
of options.

Associating with the application of special to-
kens, including [C'LS] for classification tasks, and
[MASK] for cloze tasks, we can infer that the
intrinsic information of the token itself could be
neglected by the network when it is trifling in down-
stream tasks while the task-relevant context feature
would be reinforced. Therefore, we can consider
the output embedding of each token to be a char-
acterization of its context, rather than just its own
representation.

Similar to the usage of [C'LS] and [M ASK] to-
kens, we assume that the embedding of tags can rep-
resent the task-relevant information of each compo-
nent in the input sequence and thus retrieve them
as component features in full context for the down-
stream classifier. The models would be trained in a
supervised manner which makes use of the labels
as supervision information.

Our goal is to create appropriate representations
for components according to the context. With ex-
tra knowledge about the boundaries and categories
introduced by our tagging method, we expect the
model to have different concerns about the content
that appears in different components and aggregate
the task-related features of them into the embed-
dings of tags.

3.2 Model Architecture

In addition to the above methods, we use neural net-
works to achieve our modelling goal. As shown in
Figure 1, our model consists of three parts: encoder
network, fuser network, and reasoning network.
The Encoder network is originally a pre-trained
language model, defined as fpyc. It would be-
come a tag-oriented feature extractor along with
the training when we only retrieve the embeddings
of tags. These embeddings carry the task-relevant
features at the semantic level in the co-occurrences
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Figure 1: Model architecture. The encoder network is a pre-trained language model, the fuser network is a
transformer encoder and the reasoning network is a multi-layer perceptron.

of full context components, which is enabled by
the contextualized representation capability of the
pre-trained language model.

By feeding the tagged full context sequence
S = concate(p, q, 01, ..., 0,) into the encoder net-
work, we can obtain the corresponding contextual
embedding of every token. Considering the pur-
pose of tag-oriented modelling, we retrieve only
the embedding of tags as component features for
further processing. Based on our previous discus-
sion, we adopt the representation of tags as features
for different components and take the mean value
of the tag embeddings on both sides to align the
features of each dimension.

On top of the pre-trained language model, we in-
sert another transformer encoder network to model
the relationship between all options at the feature
level, where we take the embeddings of EF, E€
and E? to reconstruct the representation of every
option by adding their embeddings. These embed-
dings are the result of the same transformation thus
they are in the same subspace having a common
basis and it is plausible to assume they are additive.

In particular, we removed the position embed-
ding in this module since the option sets are in
fact permutation-invariant and the transformer en-
coder is position-independent if position encoding
is avoided. We use it to strengthen the discrimina-
tion between options and directly formulate a new

representation in consideration of the whole option
set for each of them.

Based on the structure of the transformer en-
coder, we can assume that this network can create
representations of each option by attending to the
representation of other options in the option set.
Henceforth, we refer to this module as a fuser net-
work while it fuses the information of different
options.

Afterwards, we generate logit values for options
as a confidence level with a multi-layer perceptron
and apply softmax smoothing on them to obtain the
probability distribution. Finally, we can regard the
probability distribution of options are conditioned
to all components in the corresponding MMRC
task including passage, question, and all options on
the semantic level, noted as P(o;|p, ¢, 01, ..., 0p).

4 Experiment

4.1 Datasets

Datasets with our required characteristics are rare
even in English, a high-resource language. We
filtered two datasets: DREAM (Sun et al., 2019),
a multiple-choice dialogue-based reading compre-
hension examination dataset and COSMOS-QA
(Huang et al., 2019), a commonsense-based read-
ing comprehension dataset with option semantic
references, to include the required formal character-
istics. In addition, we entail a more general dataset



Datasets RACE COSMOS-QA DREAM Method RACE COSMOS DREAM
# of train 87,866 25,262 6,116 Single-Tasking
# of validation 4,887 2,985 2,040 baseline
# of test 4,934 6,963 2,041 79.44 73.79 73.33
Avg. P length 3219 70.3 85.9 +FCC and Tagging
Avg. Q length 10.0 10.6 8.6 78.36 74.15 71.42
Avg. O length 5.3 8.1 53 +Fuser Network
Language English English English (Full Methods) 78.56 74.69 72.75
Characteristics ~ Ordinary Reference  Dialogue Joint-Training
Full Methods
Table 3: Statistics of datasets involved. 78.68 75.33 81.80

collected from English examinations in China de-
signed for middle school and high school students,
RACE (Lai et al., 2017), to expand the sample ca-
pacity and thus improve the generalization ability
in MMRC tasks.

Statistics of these datasets are shown in Table
3. Examples are provided in Appendix A. Our
methods for full context components mainly focus
on modelling the relevance of options, hence the
performance of models on COSMOS-QA would
be followed with the most interest.

4.2 Experiment Settings

In all experiments, we set the maximum sequence
length to 512 tokens including passage, question,
all options, and extra tags to match the settings of
selected pre-trained models. We truncate the pas-
sage which exceeds the length limit into segments
and each of them is attached with corresponding
question and options as input. The extracted fea-
tures of passage, question, and options from differ-
ent segments would be averaged.

We apply the AdamW optimizer and adopt the
warming up and linear learning rate decay strategy
in our training. Besides, our models are trained
with automatic mixed precision provided by Py-
Torch, and we modify some hyperparameters of the
optimizer accordingly to prevent value overflow.

We load only the pre-trained weights for the en-
coder network from Transformers® and initialize
the weights of the fuser network and reasoning net-
work for every training. For evaluation, we use
accuracy as the indicator to measure the perfor-
mances of our methods and models for all tasks, as
common in MMRC tasks.

4.3 Results

We apply our methods step by step on a pre-trained
multilingual language model, XLM-RoBERTa, to
assess their impact on all selected datasets respec-

“https://huggingface.co/

Table 4: Result of the XLM-RoBERTa experiments.
The number in this table represents the accuracy in
percentage achieved on datasets with specific settings.

tively as the experiment results shown in Table 4.
Note that in unified tuning, the model is jointly
post-trained on all intermediate datasets and then
fine-tuned on each target dataset respectively.

Taking full context components as input directly
improves the model performances on COSMOS-
QA compared to the baseline method by 0.36%
point. Semantic- and feature-level characteristics
are both taken into account when a fuser network is
added and it improves the performance compared
to simply converting the input format as full context
components on all selected datasets.

For full methods single-tasking, the improve-
ment of accuracy on COSMOS-QA by 0.90% point
is also substantial, while it impairs the perfor-
mances compared to the baseline method on RACE
by 0.88% point and DREAM by 1.76% point.

We notice when DREAM is jointly trained with
RACE and COSMOS-QA as an intermediate task,
it achieves the most salient accuracy improvement
compared to the single-tasking. For RACE and
COSMOS-QA, their performances are also im-
proved in joint training.

To assess the impact of the encoder network and
compare our methods to previous research, we also
experiment with our methods on the different en-
coders, which have different pre-training strategies
and architecture. From the results shown in Table
5, we can see another particular situation that our
methods impair the performances of all selected
datasets on BERT-Large. While on RoBERTa-
Large and ALBERT-xxLarge, they can improve
the performance of RACE and COSMOS-QA.

The performance variation on BERT, RoBERTa,
and XLM-RoBERTa reflects the impact of pre-
training tasks and data on our methods since all
these three encoders have identical architecture (24
layers, 16 attention heads, and 1024 hidden dimen-



Model RACE COSMOS DREAM
Baselines

BERT-large 72.0 67.1 66.8
RoBERTa-large 83.2 80.6 85.0
ALBERT-xxlarge 86.5 82.3 88.5
Our Methods

BERT-large 68.8(-3.2)  63.2(-3.9) 55.1(-11.7)
RoBERTa-large 84.1(+0.9) 83.9(+3.3) 84.0(-1.0)
ALBERT-xxlarge 87.2(+0.7) 86.0(+3.7)  87.9(-0.6)
Human 94.5 94.0 95.5

Table 5: Accuracy on RACE, COSMOS-QA, and
DREAM. Baseline performances on RACE are from
the previous research papers of language models (Lan
etal., 2019; Liu et al., 2019). COSMOS-QA baselines
are provided by its original paper (Huang et al., 2019)
and Tian et al. (Tian et al., 2020). DREAM baselines
are from Jin et al. (Jin et al., 2019)

sions) but different sizes of the vocabulary (30k
on BERT, 50k on RoBERTa, and 250k on XLM-
RoBERTa). From the overall trend represented by
experiments of English encoders, the higher the
training quality, the more suitable the model is for
our method.

The results of current experiments suggest that
in most cases our method can improve the perfor-
mance of COSMOS-QA, which has obvious option
relevance, and it is affected by the pre-training
tasks and data of encoders. Additionally, the per-
formance of RACE, COSMOS-QA and DREAM
are improved compared to applying our methods in
single-tasking when they are jointly trained, which
is most outstanding on DREAM.

5 Discussion

Although we see the influence of full context com-
ponents in previous experiment results, we cannot
conclude that the improvement and deterioration of
performances are caused by introducing option re-
lations. In this section, we discuss the phenomenon
that occurred in previous experiments and try to
give explanations for them with extra experiments.

5.1 Visualization of Inferences

To analyze the modelling of options relations, we
apply Integrated Gradients(IG) to our fine-tuned
model and input samples for analyzing the
contribution of tokens to the likelihood of options.
This is accomplished by Caprum* library based
on PyTorch and we use its default visualization
scheme. In our implementation, we select the

“https://captum.ai/

embedding of [P AD] token as baseline.

An example is shown in Figure 2. In this exam-
ple, the total attribution score reveals the overall
propensity of all components towards the corre-
sponding option and the correct option, option D
in this case, has the highest score. When we look
into the word importance, which is the contribution
of each token, we notice not only the tokens in the
passage and question but also the tokens in other
options are supplementing the result.

From the attribution of options A, B, and C, we
can see that except for themselves, tokens in other
options generally provide a negative contribution.
As for correct option D, tokens in the passage, ques-
tion, and other options would mostly contribute
positively. This could be a piece of evidence for
proving taking full context components could be
beneficial to modelling option relevance where all
options are contributing to the answer formation.

5.2 Investigation of The Fuser Network

We can expect the depth of the fuser network
to have a certain influence on the result, while
the relationship between depth and effect is un-
certain. To further investigate its influence, we
explore the relationship between its depth and im-
pact on performances. The performance change on
the COSMOS-QA dataset caused by its depth is
shown in Figure 3.

As we can see from the result, there is no clear
pattern in either accuracy or standard deviation for
deepening the fuser network. This result is frus-
trating since it could not give much information
about the setting of it and the depth of it would re-
main a hyperparameter which needs to be adjusted
according to the dataset.

The only thing we can be sure of is that adding a
fuser network can indeed improve the model perfor-
mance under full context components input. From
a practical perspective, adding a single-layer fuser
network ensure improved performance.

5.3 Reduction of Memory Occupancy

In forward propagation, the memory occupancy of
all intermediate computation results could be re-
garded as linear to the length of the input token se-
quence. For a sample with n options and the length
of the passage, question, and each option is py, q;,
and o;, we can have the total memory occupancy
caused by this sample is linear to n x (p; + q; + 0;)
when the baseline method is applied.
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Figure 2: Attribution for all options of a sample from COSMOS-QA. Tokens marked in green indicate positive
and in red indicate opposite for the option. We use coloured boxes to indicate the attribution target option and their

corresponding text.
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Figure 3: Accuracy on COSMOS-QA validation set
with different depth of Fuser Network.

As for full context components input, the mem-
ory consumption would be reduced to linear to
P+ q +n*0;. We roughly apply the average
length of all components to this equation and
we can have a cursory estimation of diminution:
74% for RACE, 68% for COSMOS-QA, 63%for
DREAM, 72% for C3, 74% for SweQUAD-MC,
and 73% for MuSeRC.

This means that taking the full context compo-
nents as input could significantly reduce memory
occupancy, especially when the samples have long
passage text. It would be meaningful for expand-
ing the batch size with limited memory capacity
while having long text input. As a result, with full
context components input format, the RoOBERTa-
Large model could be trained on the COSMOS-QA

dataset with batch size 16 on a single RTX3090
GPU without any other memory trick.

6 Conclusions

In this work, we analyze the data processing re-
quirements in the mental health detection scenario,
especially the adaptability in multiple inspections
and evaluations. For the above analytical demands,
we propose a solution in the form of an MMRC
task and introduce new methods, including insert-
ing extra tags and applying a transformer encoder
network to fuse information of options set, for iden-
tifying components of inputs to enable the model
to attentively recognize the inspections and corre-
sponding measurement with explicit semantics.

As a result, our methods can be applied to
MMRC tasks and improve over the performances
of prior methods on datasets with similar charac-
teristics to our target mental health detection data
on pre-trained language models in most cases. It
indicates that our methods help the models under-
stand the relations among all the components of
input, which can be regarded as beneficial to the
modelling of option relevance.

Due to the absence of open-source mental health
detection datasets in the expectation of our needs,
all our experiments are conducted on available
MMRC datasets. Although our results cannot be di-
rectly evaluated as valid for mental health detection,
observations based on experimental phenomena in-



dicate that they can meet some of the requirements
for such tasks.
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