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Abstract

Most modern speech recognition systems are developed for high-resource
languages. Low-resource language speech recognition refers to the challenge
of developing speech recognition systems for languages that have limited re-
sources, including training data, development tools, and computing resources.
Low-resource language speech recognition remains a challenging task, and more
research is needed to develop effective solutions for languages with limited re-
sources. The goal of this thesis is to study how languages from the same lan-
guage family can be used for improving low-resource language automatic speech
recognition. This thesis delves into the field of low-resource language speech
recognition, and we present three experiments aimed at studying the existing
limitations in this area. In the first experiment, we validate the performance
of Whisper. In the second experiment, we fine-tune a Whisper model for the
Frisian language, using different tokenizers from the same language family. Dur-
ing the last experiment, we build and evaluate a single-language speech recog-
nition model for the Frisian language.
Our proposed approaches involve utilizing both a large pre-trained multi-language
model, and a single-language model pretrained on a language from the same lan-
guage family. We aim to determine which of these proposals is a more effective
choice for the training of an ASR for a low-resource language. The primary con-
tribution of this work is in the comparative analysis of performance achieved
by utilizing the large pre-trained multi-language model versus utilization of the
pretrained single-language model for low-resource language speech recognition.
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Chapter 1

Introduction

"Hi, Siri!", every time you speak these words to your phone, and give your phone
commands to do something, a speech recognition system is converting your speech
to text so that it can be shown on your screen and analyzed for your query. Auto-
matic speech recognition(ASR) is a technology that automatically converts human
speech content into the corresponding text. It is used in many applications, such as
voice-actived commands, voice search, and automated customer services. ASR uses
algorithms to analyze audio signals and convert them into text. Due to the devel-
opment of novel deep learning techniques and the large amounts of training data
available, the accuracy of ASR systems has improved a lot during the last decade.

Advances in the performance of ASR systems have especially been made for lan-
guages for which huge training datasets are available. However, most of the existing
languages are low-resource languages, which means that fewer people speak these
languages, and often less high quality datasets exist. This makes it difficult to ef-
fectively train ASR systems for such low-resource languages. Currently, companies
and research institutions have been investing more in the study of high-resource
languages, such as Chinese, English and German. Much progress has been made
because huge amounts of labeled data are available. Using supervised learning,
ASR systems for these languages could lead to near human or even beyond human
performance (Ayvaz, 2022). In addition, unsupervised learning also may lead to
great performance for ASR, but it requires even bigger amounts of data. This is a
challenge for low-resource languages. In speech recognition, unsupervised learning
can generate excellent speech representations by identifying patterns and features
in the audio data without labeled data. However, unsupervised learning alone can-
not establish the mapping from speech to text, which is crucial for accurate speech
recognition (Aldarmaki, 2022). As a result, additional fine-tuning techniques, such
as supervised learning, are often necessary to achieve better performance in speech
recognition.

Low-resource language speech recognition researchers face two common choices:
using large-scale pre-trained models with various pre-training techniques or focus-
ing solely on a specific low-resource language and building a model primarily based
on different versions of for example Transformer models (Vaswani, 2017), from a lin-
guistic perspective. Both approaches offer their own benefits. One of the objectives
of this thesis is to analyze these two options, choose one exemplary method for each
of these approaches, compare the two methods, and provide our conclusions and
reasoning for our choices.

Sometimes there may even be many speakers of low resource languages, but of-
ten less high quality datasets are available. We suspect that similarities in languages
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of the same language family can be exploited, therefore in this thesis we propose to
use high-resource languages from the same language family as the low-resource lan-
guage, to help us improve ASR for low-resource languages. English, German and
Dutch all have high quality datasets, Frisian does not have a high quality dataset,
which is an example of a low-resource language. In our thesis, we focus on building
an ASR system for the Frisian language. The Frisian language belongs to the West
Germanic language family, which is close to English, Dutch and German. These are
medium to high resource languages. We will study how datasets and pre-trained
models can be used to improve ASR systems for the Frisian language.

The research questions and contributions of our thesis are:

Research Question 1: Can the resources of high-resource languages from the same
family as the low-resource language help to improve automatic speech recognition for this
language?

Our main contribution to this question is using different language tokenizers
(Choo, 2023) to recognize the Frisian language. The role of a language tokenizer
in speech recognition is to convert the speech signal into text data that can be pro-
cessed. Specifically, the tokenizer segments the speech signal into individual words
or phonemes and then converts them into numerical representations for further pro-
cessing by the model. The tokenizers we used are all for the West Germanic lan-
guage family, including English, German, and Dutch. We have fine-tuned the speech
recognition part of Whisper (Radford, 2022), which is to our knowledge the first time
Whisper is used in this way for the Frisian language. Additionally, Frisian has not
been used in the training of that specific pre-trained Whisper model.

Research Question 2: How effective is using a multi-language large pre-trained model
and a single-language model for low-resource language speech recognition?

Our main contribution to this question is by comparing the Conformer-based
(Gulati, 2020) model and the Whisper-based model to recognize the Frisian lan-
guage. Aside from the above contributions, we also tested the Whisper-based model
on the performance of transcribing audio. We use Connectionist Temporal Classifi-
cation (CTC) and a Transducer as the decoder of the Conformer (Gulati, 2020), which
is to our knowledge a first for automatic speech recognition of the low-resource lan-
guage Frisian.

The rest of this paper organized as follows: In Section 2, we introduce the back-
ground information and theoretical foundations of automatic speech recognition
(ASR). In Section 3, we introduce the methods we used in this thesis, which con-
tains the basic architecture of Whisper, the large pre-trained model Whisper from
OpenAI. The datasets are described in Section 4. In Section 5, we give the details of
the experiments. In Section 6, the experimental results are given. In the final section,
we describe our conclusions and ideas for future research.
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Chapter 2

Related Research

Low-resource speech recognition systems often perform poorly in certain speech
recognition tasks due to insufficient training data or poor data quality. This sit-
uation is usually found for smaller language communities or dialect communities
where the amount of speech data is low and the data for training speech recogni-
tion models is correspondingly low. In addition, this situation can also occur in
non-standard speech scenarios, such as speech in noisy environments, with specific
microphones. To solve the low resource problem, researchers need to adopt some
special strategies, such as data augmentation, migration learning, transfer learning,
semi-supervised learning, etc.

In this section, we give an overview of the research on Automatic Speech Recog-
nition (ASR) and the state-of-the-art on ASR and low-resource ASR.

2.1 Classical methods

From the 1970s, the hidden markov model (HMM) (Jelinek, 1976) and gaussian
mixed model (GMM) (Juang, 1985) were the most successful methods for identi-
fying the audio frames of each phoneme. Where GMMs are used to model phoneme
audio features and HMMs are used to model the transition between phonemes,
which constitute the acoustic model and pronunciation lexicon. Together with a
language model, the whole speech recognition architecture is formed. Furthermore,
in most traditional speech recognition decoders, weighted finite-state transducers
WFST (Mohri, 2008), stores the predicted word sequences in a potentially compact
way to avoid taking up too much memory space.

These HMM-based methods ASR architectures constituted the state-of-the-art
during the first decade of this century.

2.2 Neural networks based methods

The training of acoustic models for speech recognition is done by supervised learn-
ing, which requires knowing the corresponding label for each frame in order to
train effectively. Two methods Connectionist Temporal Classification (CTC) (Graves,
2006) (Sak, 2015) (Miao, 2015) which may not know what label corresponds to each
acoustic feature and creates its own labels using alignment, and Transducers (Graves,
2012) (Battenberg, 2017) that introduce a branch of language model prediction net-
works, both combined through a joint feedforward neural network, which is able
to use both acoustic and linguistic feature information in predicting the final out-
put, lead to powerful ASR systems. When dealing with different languages, the
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shareable features can be divided into bottleneck features (Veselỳ, 2012). Essentially,
the model processes the raw speech signal through a series of "hidden" layers that
progressively abstract away from the raw signal and extract increasingly high-level
features. The bottleneck features are used as output of one of the middle layers of
the model, before the features become too abstracted to be useful for ASR. Also, ASR
for low-resource languages could use the knowledge learned from other languages
(Wang, 2015). For low-resource languages, two data enhancement methods are used,
semi-supervised learning and channel length perturbations (Ragni, 2014). Data aug-
mentation can further improve the generalization ability of a model by processing
the available, often limited amount of training data to generate more training data.

2.3 Transformer based methods

The Transformer model’s self-attention mechanism (Vaswani, 2017) is inspired by
human’s ability to focus only on important information while learning from input
sequences. To eliminate label bias (Guo, 2019), researchers have used conditional
random fields to define a conditional distribution over output sequences (Xiang,
2019). Additionally, combining acoustic and phonological features for multilingual
information sharing and migration (Zhu, 2021) has been successful in training mod-
els to recognize multiple languages and transfer phonological features to new lan-
guages. Self-supervised learning approaches, such as Wave2vec (Schneider, 2019)
(Baevski, 2020), have been used to learn audio representations. OpenAI’s Whisper
(Radford, 2022) is a state-of-the-art open-source Transformer based speech recogni-
tion model that has a performance similar to commercial speech recognition mod-
els. The Conformer model (Gulati, 2020) is currently one of the most popular speech
recognition models, which uses a convolution-enhanced Transformer. Both Whisper
and Conformer models will be used in our studies.

2.4 Low-resource ASR

The low resource problem is an important research direction in speech recognition
and requires researchers to employ various strategies to solve it. The goal of these
strategies is to improve the generalization ability of the model so that the model
can be better adapted to a variety of different speech scenarios. (Wang, 2020a)
presents an end-to-end approach based on the Transformer architecture for low-
resource speech recognition. By meta-learning the initialization parameters from
a variety of pretraining languages (Hsu, 2020), we achieve rapid adaptation to pre-
viously unseen target languages. Using high-resource language data to help low-
resource language ASR became an option (Zhang, 2021), it can enhance the repre-
sentation learning of multilingual unannotated data using a small amount of anno-
tated data from high-resource languages. But each input utterance contains numer-
ous sound units, a crucial aspect of this methodology (Hsu, 2021) involves solely
applying the prediction loss over the masked regions, which enforces the model to
learn an integrated acoustic and language model over the continuous inputs. Our
approach is to use pre-trained large models to train low-resource languages in the
presence of a shortage of datasets, with the help of connections between languages.
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Chapter 3

Fundamentals and Methods

In this chapter, firstly the fundamentals of automatic speech recognition (ASR) are
presented, followed by a detailed description of the state-of-the-art models used in
this research: Whisper and Conformer.

3.1 Fundamentals of Modern Speech Recognition

More than a decade ago, the state-of-the-art ASR used HMM models, where the
time-series speech signal would be used. The ability to effectively represent the dy-
namic information of a speech signal is crucial for improving the performance of
the model. As speech signals are time-series signals, models that can capture their
sequence information are particularly effective. The DNN-HMM model combines a
DNN with an HMM. While the RNN model is specifically designed for sequence-
to-sequence modeling using feedback connections in the hidden layer, allowing it to
make use of previous information, making it an ideal choice for processing speech
signals.

Currently, the most advanced speech recognition methods utilize deep neural
networks (DNNs) and their various network architectures. Among them, end-to-
end DNN speech recognition systems have proven to be particularly effective, out-
performing traditional methods. Unlike traditional approaches that break down
the speech recognition task into multiple subtasks, such as lexical model, acoustic
model, and language model, end-to-end systems generate the corresponding natu-
ral language text directly, which greatly simplifies the training process. Furthermore,
these systems have proven to be capable of achieving state-of-the-art speech recog-
nition performance, and have become an important tool for ASR.

In this section, we will introduce the fundamentals of modern speech recogni-
tion, including how to process speech signals, and introduce the Transformer archi-
tecture.

3.1.1 Mel spectrogram

Mel spectrograms see Fig 3.3 are a commonly used feature representation in speech
processing, particularly in the area of deep learning. The audio signal sample see
Fig 3.1 is usually digitally represented by a time series data. Time series data is
one-dimensional data. Using a fast Fourier transform (FFT) see Fig 3.2, the signal is
mapped from the time domain to the frequency domain. Using a sliding window
on the audio signal, the speech data is transformed from a one-dimensional format
into a two-dimensional format. The transcribed text of Figures 3.1-3.3 the depicted
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20471579.wav is "de untdekking fan it skaaltsje soarge foar in soad reaksjes".

These spectrograms capture both the time-varying nature of speech signals and
the energy-based (amplitude) characteristics of the signal. In machine learning, it is
crucial to represent data in a way that effectively captures the underlying patterns
and information. By using mel spectrograms as a feature representation, information
can be extracted at every timestamp, allowing for a detailed and accurate representa-
tion of the acoustic properties of the speech signal. This makes the mel spectrogram
a powerful feature for speech recognition and other speech processing applications.

3.1.2 Language model

The traditional speech recognition training and recognition process is divided into
four steps: feature extraction, training an acoustic model, training a language model,
and optimizing a decoding search. A language model is a model that analyzes and
scores the "plausibility" of a sentence in a certain language by means of some sets of
rules.

Ŵ = argmaxp(W | O) = argmax
p(W)p(O | W)

p(O)
(3.1)

In Formula 3.1, the goal of ASR is formalizing given the input observation se-
quence O, the speech recognition model finds the most likely word sequence Ŵ,
p(W | O) represents the acoustic model, and p(W) represents the language model.
Language models are used to obtain the probability values of certain word groups
here by dismissing unreasonable outputs. With the acoustic model and the language
model, we can estimate the probability of each phoneme in each frame and find the
higher probability phoneme sequence results in the recognition.

The language model helps ASR models to recognize the most likely transcription
of a spoken utterance. Language models can be based on statistical methods, such as
n-gram models, or more sophisticated neural network-based models, such as recur-
rent neural networks (RNNs) or transformers. By incorporating language knowl-
edge, the language model assists in selecting the most likely transcription among
a set of candidates that are generated by the acoustic model. This results in better
accuracy and performance in ASR systems.

3.1.3 Evaluation metric

In order to evaluate the speech recogntion model performance, we use Word Er-
ror Rate (WER) as evaluation metric. This is a key evaluation metric in the field
of speech recognition, with lower WERs indicating better results. The recognized
and transcribed text is compared to the original text. The WER is calculated by de-
termining the number of insertions, deletions, and substitutions, and subsequently
obtaining the percentage of text changed from the original reference text. But WER
has some limitations. For example, although its value has a lower limit of zero,
which indicates a perfect match between the recognized and the reference text, its
value has no upper limit, so it may be difficult to evaluate the performance of ASR
in an absolute way, and also the consistency between WER and human evaluation
is weak (Daniel Licht, 2022). Nevertheless, WER is the most important evaluation



Chapter 3. Fundamentals and Methods 7

metric used in ASR and the definition is given in Equation 3.2.

WER =
S + I + D

N
(3.2)

where S is the number of substitutions of a word, I is the number of insertions and
D equals to the number of deletions of a word. N is the number of words in the
reference sequence.

Furthermore, we use the Character Error Rate (CER), which is also an important
metric in the field of speech recognition.

CER =
S + I + D

N
(3.3)

where S, I, D stands for the number of character substitutions, character insertions
and character deletions. N is equal to the number of characters in the reference text.

FIGURE 3.1: The
utterance raw sig-
nal of the Frisian
20471579.wav in
CommonVoice, the
transcribed text is
"de untdekking fan it
skaaltsje soarge foar

in soad reaksjes"

FIGURE 3.2: The
FFT result of Frisian
20471579.wav raw
signal, the tran-
scribed text is "de
untdekking fan it
skaaltsje soarge foar

in soad reaksjes"

FIGURE 3.3: The mel spectrogram of 20471579.wav
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FIGURE 3.4: Historical progress of speech recognition word error
rate, which is not precise but cohesive from data scattered over a

number of published papers (Huang, 2014)

3.1.4 Convolutional neural network

The state-of-the-art model Conformer combines a CNN with a Transformer. DNNs
and CNNs were successfully introduced to the field of ASR a decade ago, where
the HMM-based ASR did not show any progress on challenging datasets, such as
switchboard (Huang, 2014). Here spectrograms are used to represent audio as a 2D
image, which can then be processed using CNNs.

The convolutional neural network is a network structure built by convolutional
layers. One of the main reasons why deep learning research exploded in such a
short period of time is the introduction of CNNs and their successful applications.
Thereby addressing one of the biggest problems of DNN - the explosion of param-
eters, which makes convergence difficult to obtain. The idea of CNN is that each
featuremap shares a common convolutional kernel, and the parameters of the con-
volutional kernel are independent between different layers.

3.1.5 Connectionist Temporal Classification(CTC)

In our third experiment, CTC acts as the decoder of Conformer. The Connectionist
Temporal Classification(CTC) (Graves, 2006) (Sak, 2015) (Miao, 2015) model is the
originator of end-to-end speech recognition, predating the Seq2Seq model, where its
modeling idea differs from the Seq2Seq model. Early CTC methods computed prob-
ability sums by exhaustively enumerating sequences of words (or phonemes) with
empty symbols to obtain text (or phoneme) sequences, and later using a forward-
backward algorithm similar to the Viterbi method to reduce the computation and
obtain the maximum probability path for the predicted sequence. However, since
the CTC method cannot adjust the current output by the above output, it often out-
puts repetitive text, so the general CTC method usually also needs to be followed by
a language model.

One of the innovations is to introduce blank symbols to make the far shorter out-
put y to align with input x (see Fig 3.5). Thus there is no need to align and label
data individually. The training of acoustic models in speech recognition is mostly
done using supervised learning, which needs to know the corresponding label for
each frame in order to train effectively, and the speech must be forced to be aligned
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FIGURE 3.5: CTC input audio and text correspondence(Graves, 2006)

in the data preparation stage of training. The introduction of CTC can relax this
requirement of one-by-one correspondence, and only an input sequence and an out-
put sequence are needed for training. The blank symbols and the predicted duplicate
symbols are finally eliminated.

In training CTC differs from the Seq2Seq model in the following ways:

• CTC can generate a corresponding subword for each frame when decoding, so
CTC supports streaming speech recognition better than Seq2Seq.

• The modeling of CTC does not directly model the dependencies between dif-
ferent words in Y, so the generated text is of poor quality from the perspective
of the language model. To solve this problem, CTC often has to be decoded
together with an external language model to generate better results.

3.1.6 Transducer

In our third experiment, a Transducer acts as the decoder of Conformer. Since the
CTC model cannot show the word-to-word dependencies in modeling Y, Transduc-
ers (Graves, 2012) (Battenberg, 2017) can be considered as an extension of the CTC
model such that it can model the language by a text prediction network, which com-
pensates for the shortcomings of CTC. Originally CTC works with the unreasonable
assumption that tags are independent of each other. We know that there are contex-
tual relationships in a language system, and the transducer structure can model and
thus compensate for this unreasonable assumption.

Moreover, Transducer supports multiple output units for the same frame, while
CTC does not. Since both CTC and Transducer are decoding frame by frame and
the decoding process ends at the end of speech, they are also known as frame syn-
chronized models. In contrast, the Seq2Seq model is decoding word-by-word. The
output of CTC at the current moment depends only on previous input information;
while the output of transducer at the current moment depends not only on previous
input information, but also on previous output information. But the training process
can be very inconsistent, and relies on many training strategies, further increasing
the difficulty of training.
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FIGURE 3.6: Trans-
ducer architec-

ture(Graves, 2012)

FIGURE 3.7: Trans-
ducer transition ma-

trix(Graves, 2012)

3.1.7 Transformer

In our experiments, we use Whisper and Conformer, which are based on Trans-
formers. The basic architecture of Transformer (Vaswani, 2017) (Bahdanau, 2015)
(Chorowski, 2015) is depicted in Fig 3.8. It consists of the following key components:

• Encoder: transforms the input speech into a higher-level representation. Plays
a role similar to that of an acoustic model.

• Attention: identify the encoded frames.

• Decoder: predict the output. Plays a role similar to that of a language model.

Transformers were initially successful in the field of machine translation. The Trans-
former establishes the sequence relationship between speech features and text sym-
bols, which is essentially a seq2seq structure containing multiple Encoders and De-
coders. Each layer of the encoder has three operations, namely, Self Attention, Layer
Normalization and Feed Forward, while each layer of the decoder has four opera-
tions, namely, Self Attention, Layer Normalization, Encoder-Decoder Attention and
Feed Forward.

The main problem it solves is to improve the parallelism of the encoder. Self-
Attention computes Attention for each separate word and all words, which can
capture long-distance dependencies. It captures a kind of spatial semantics, as it
can focus on different parts of the encoder output, and is believed to have a high
learning capability. It has shown to surpass previous end-to-end approaches using
random residual connections, greatly improving model generalization performance
and training efficiency. At the same time, after a series of explorations on Attention,
a number of optimization techniques have been identified: using large modeling
units, such as subwords or words, which are more stable and helpful for language
modeling.

3.2 Methods

In this section, we introduce the large language model (LLM), which is used in the
first part of the experiments. We study if a large pre-trained model can help us to
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FIGURE 3.8: The basic architecture of Transformer(Vaswani, 2017)
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improve the performance of low-resource language speech recognition. Then we
introduced the Conformer model used in the second part of our experiments. We
trained Conformer as a single low-resource language model.

3.2.1 Fine-tuning large pre-trained model Whisper with a low-resource
language

Large Language Model(LLM)
The main reasons why it can be challenging to apply deep learning comes from two
aspects: on the one hand, the limited total amount of training data for a specific
task. As the model capacity increases, it needs to be supported by a larger amount
of training data, otherwise even if the model has enough depth to model the task,
the task can not be effectively learned. And before the emergence of pre-trained
models like Bert (Devlin, 2019) and GPT (Brown, 2020), it is obvious that this is a
serious problem; another aspect is the LSTM/CNN feature extractor, which may not
be strong enough to express all the important features for the task.

Many ASR and Natural Language researches have switched to two-phase mod-
els: model pre-training phase + application fine-tuning after the introduction of
Transformers. Current research shows that for many language-related tasks, the ef-
fectiveness improves dramatically as the LM model grows in size. Linguistic knowl-
edge refers to lexical, syntactic, semantic, and other knowledge that helps humans
or machines understand natural language. LM can learn linguistic knowledge of
various hierarchical types, which is one of the most important reasons why various
language-comprehension-like natural language tasks get a substantial improvement
after using pre-trained models (Tamborrino, 2020) (Yu, 2010) (Wang, 2020b).

Fine-tuning
Given a pre-trained model, the model can be fine-tuned on a new task. Compared
with training a model from scratch, fine-tuning saves a lot of computational re-
sources and computational time, improves computational efficiency, and often can
even increases accuracy. The common pre-trained model is characterized by the fact
that a large dataset is used for training, and has the ability to extract both shallow
basic features as well as powerful deep abstract features.

Often after a few epochs and updating the parameters, it could achieve good
performance. However, fine-tuning tends to cause over-fitting to specific data and
poor generalization.

Whisper
OpenAI proposed Whisper (Radford, 2022) is a large-scale pre-trained model based
on weakly supervised learning. OpenAI built speech datasets consisting of 68,000
hours, but in this paper, it is not mentioned which training dataset is used. Accord-
ing to the results of the subsequent experiments, the data were most likely obtained
from video sites or music sites. The data set was poorly labeled, and in the choice
between quality and quantity, the authors chose quantity. Based on the results, sim-
ple models with large amounts of data can also yield amazing results.

The architecture of Whisper
Since whisper is a multi-task pre-trained model, in this section, we only introduce
the speech recognition related part. The architecture of Whisper is a very standard
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FIGURE 3.9: The basic architecture of Whisper

TABLE 3.1: #parameters of different sizes of Whisper models

tiny base small medium large
parameters 39M 74M 244M 769M 1550M

Transformer architecture, which has been explained previously. In this section, we
introduce the encoder module of Whisper depicted in Fig 3.9. Shallow linguistic
knowledge such as lexical and syntactic knowledge is stored in the lower and mid-
dle layers of the Transformer, while abstract linguistic knowledge such as semantic
class knowledge is widely distributed in the middle and upper layers of the Trans-
former structure.

3.2.2 Conformer

Conformer (Gulati, 2020) is the abbreviation of Convolution-augmented Transformer.
In fields such as machine vision, convolutional networks have an inherent advantage
for local feature acquisition and utilization, while Attention can acquire global de-
pendencies over longer distances, so combining the two together is ideal for speech,
because the short-time temporal features of speech determine the sound of speech,
while the long-time temporal features determine the meaning of speech. The com-
bination of the two makes it possible to jointly determine the sound and meaning of
speech.

Transformer allows for better modeling of content-based global interactions.
CNNs can make better use of local features. Combining the two allows for better-
unified modeling of local and global features in speech sequences and streamlines
the parameter size as much as possible. Although transformers have achieved some
good results in the ASR domain, they have difficulties with extracting fine-grained,
localized features. The CNN network can model the local area very well based on
the size of the window, but for a global perspective (large pictures, or, long speech
signals), very deep CNN layers need to be stacked, which to some extent weakens
the ability of CNN to express global information.
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FIGURE 3.10: The basic architecture of Conformer encoder

The architecture of Conformer
The structure of the Conformer is based on Transformer, with the Encoder part im-
proved as shown in Fig 3.10, retaining the multi-headed attention module and ef-
fectively interspersing the residual connection and feedforward layer in it, with the
difference that it adds downsampling in the embedding layer and the convolution
module in the core block. The input vector first passes through spectral enhance-
ment, downsampling of the embedding layer, etc., and then enters the Conformer
module, which is a layered structure with a convolutional and multi-headed atten-
tion module in the middle, sandwiched by two feedforward modules at the top and
bottom, and finally a Layer Norm normalization for convergence. The Decoder part
of the original Conformer uses a single LSTM layer.

The original Conformer model is divided into the following main parts:

• Spectrum Enhancement: The original Conformer model first does a spectral
enhancement of the input vector, which is not internal to the model and be-
longs to the pre-processing of the data. The spectral enhancement is performed
in three ways: time warping, frequency masking and time masking.

• Embedding Layer: In the Conformer model, the input vector embedding layer
no longer contains position encoding, the position information is implemented
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FIGURE 3.11: The architecture of Feedforward module

FIGURE 3.12: The architecture of Multi-head self-attention module

in the encoder using relative position encoding. The embedding layer convo-
lutes and downsamples the data to reduce the dimensionality, and then passes
it through a linear layer. The linear layer is to further linearly transform the
downsampled feature dimension to ensure that it is equal to the specific di-
mension encoders, which can be chosen as 1024 or 2048, etc. The model will
be selected later after experimentation, and the dropout mechanism to obtain
robustness improvements.

• Encoder module: The encoder is a Conformer module, which is divided into
five submodules: the feedforward module (FFN), the multi-headed self-attentive
module (MHSA), convolution module (Conv), feedforward module (FFN), and
layer normalization (Layernorm).

To be specific, in the encoder module, in the feedforward module, the data is first
normalized by layer normalization to accelerate convergence, which means that the
data of a sample is normalized to have mean 0 and variance 1. This operation is
applied to each sample. Then it is dimensioned by a linear layer with an expansion
factor of 4, and then Swish activation is performed.

Swish function is:
f (x) = x · sigmoid(βx) (3.4)

β is a trainable parameter or a constant determined by grid search. Experiments
show that it performs better than the Relu function on deep models, as well as being
smooth, and non-monotonic (ramachandran2017swish).

After activation, the dimensions are then projected back to the original dimen-
sions of the model through a linear layer, and another dropout. Finally it is multi-
plied by 1/2 and the previous residuals are summed.

The multi-head self-attention module is similar to the feedforward module, it
first imposes layer normalization on each sample, then computes multi-headed q, k,
v for the in put multiple sample features, and then calculates their correlation scores
with each other after getting them, then transforms them into weights by softmax,
sums and superimposes the result vectors of multi-headed.
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FIGURE 3.13: The architecture of Convolution module

The convolution module is depicted in Fig 3.13, it consists of a one-dimensional
convolution by depth, batch normalization by BatchNorm, activation by Swish func-
tion, another convolution by point before dropout, and then summed with the pre-
vious input residuals for final output.
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Chapter 4

Datasets

In total, there are nearly 7,000 language varieties spoken in the world, but most
of them, due to the labor intensity of corpus acquisition and formation, lack suf-
ficient annotated data, which makes it very difficult to develop good performing
speech recognition systems using a general end-to-end training approach to these
languages. Especially in the era of the deep learning, the DNN models are very
data-demanding. This lack of data is also the case for Frisian language. In our ex-
periments, we use Frisian language datasets from CommonVoice Corpus 11.0 ver-
sion 2022-9-21. It contains 130 hours of Frisian speech, of which 50 hours are an-
notated. After pre-processing, only close to 15 hours of useful annotated data re-
main. For each audio file, which has an average of 6 secs, it contains text, up_votes,
down_votes, age, gender, duration, accents and client_id.

The Common Voice datasets are a collection of publicly contributed recordings
of text passages from Wikipedia in various languages. For this thesis, we will be
utilizing Common Voice version 11.0, which includes roughly 15 hours of labeled
Frisian data after pre-processing. Most ASR datasets typically offer audio samples
and their transcribed text, CommonVoice provides additional metadata, including
accent and locale, that is not related to our ASR task. We will only utilize the audio
samples and corresponding text transcriptions for fine-tuning, omitting any extrane-
ous metadata information. After pre-processing, we have for example as annotation
for 20760163.wav, the text is "ik ha al de hiele dei ofgryslike pineholle", up_votes is 2,
down_votes is 0, and the duration is 9.024. In the test set, we have for example
28364002.wav, the text with "hoe let komt de trein oan", up_votes is 2, down_votes is
0, and the duration is 4.464. An example from the validation set is 23770516.wav,
where the text is "de feestlikheden geane tebek op in tradysje fan iuwen", up_votes is 2,
down_votes is 1, and the duration is 5.232.

The Whisper pre-trained model probably used 680000 multitask hours datasets
(Radford, 2022), note that this is a speculation as in this paper, the training data is
never specified. To our knowledge, in the CommonVoice, the English dataset con-
tains 3209 hours. The German dataset contains 1340 hours. Whereas the Dutch
dataset contains 115 hours. All these three languages are members of the West Ger-
manic language family are represented by datasets that are much larger than the

TABLE 4.1: The basic information of CommonVoice 11.0-Frisian

train test validation
#audio files 3702 3027 3027
total duration 5h 5h 5h
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FIGURE 4.1: Some examples of the multi-task training data of Whis-
per (Radford, 2022)

TABLE 4.2: The CommonVoice datasets for English, German and
Dutch compared to the Frisian datasets we used

English German Dutch Frisian
training set (hours) 1440 720 60 5
test set (hours) 480 240 20 5
validation set (hours) 480 240 20 5
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Frisian datasets we used.

For our experiments, we used the mel-specrogram of the audio signal as input.
We used the transformer-based pre-trained Whipser model for our experiments. We
then also trained a transformer-based Conformer model for our experiments with
CTC and a Transducer as the decoder of the Conformer model.
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Chapter 5

Experimental Setup

In our thesis, we did three experiments, first as a reference, we test the Whisper
performance on a selected sample of 10 minutes. In the second experiments, we
fine-tune the Whisper model with the Frisian language dataset from CommonVoice.
During the final experiment a Conformer speech recognition model is trained with
different loss function, CTC and Transducer.

5.1 Experiment I: Performance test of Whisper

The goal of this experiment is to conduct a small test with different sized pre-trained
Whisper models with respect to WER and computational requirements. Following
the instructions on the Whisper website, we installed different sized model from the
repository, we used PYTHON 3.9.9 and PYTORCH 1.10.1 to run the models. We used
an audio file of 10 minutes in length containing a conversation, and used the differ-
ent sized Whisper models to transcribe these audio files.

Usage of the Python package WHISPER for speech recognition:
(1) First load a pre-trained model named "base" using the WHISPER.LOAD_MODEL

function. Use AUTOCUT to automatically generate subtitles for 10 minutes audio
files.

(2) Load an audio file using the WHISPER.LOAD_AUDIO function and pads or
trims it to fit 30 seconds slides using the WHISPER.PAD_OR_TRIM function.

(3) A log-Mel spectrogram is created from the audio using the
WHISPER.LOG_MEL_SPECTROGRAM function, and it is moved to the same device as
the model using .TO(MODEL.DEVICE).

(4) The MODEL.DETECT_LANGUAGE function is then used to detect the spoken
language in the audio, and the result is printed using a print statement.

(5) The WHISPER.DECODINGOPTIONS() function is used to set decoding options,
and the WHISPER.DECODE function is applied on the model, the mel spectrogram
and the decoding options to recognize the text in the audio. Finally, the recognized
text is printed using print statement.
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TABLE 5.1: The config of Conformer-CTC and Conformer-Transducer

model d_model n_heads n_layers
Small(14M) 176 4 16

Medium(32M) 256 4 16
Large(120M) 512 8 17

5.2 Experiment II: Fine-tuning Whisper model for the Frisian
language

In this experiment the Whisper model is fine-tuned for the Frisian language, using
different tokenizers from the same language family, for example, English, German
and Dutch tokenizers. The goal of this experiment is to study if languages from the
same language family can help the performance of a low-resource language speech
recognition model. We also hope to get new insights in the relation between lan-
guages for future directions in low-resource language ASR research.

5.2.1 Environment

We used DATASETS functionality and TRANSFORMERS functionality from HUGGING-
FACE to prepare the data and model. Also, we used JIWER functionality and EVALU-
ATE functionality to evaluate the performance after fine-tuning.

5.2.2 Load data

First, we load Frisian dataset from CommonVoice(CV), where the language code is
fy-NL. As mentioned before, CommonVoice also has other information besides text,
such as gender and accent. We removed these columns not related to the fine-tuning.
Then, we process the raw audio input to generate a series of audio samples with 30s
input length. If the audio samples are shorter than 30s, we will make it 30s by adding
more zeros. Next, Whisper feature extractor converts the audio samples to log-Mel
spectrograms, which is used as input by Whisper model.

5.2.3 Build feature extractor and tokenizer

In the second experiment, we tested different tokenizers for languages related to
Frisian, specifically languages in the West Germanic language family. For using the
Whisper model, we also had to downsample the audio file from 48kHz to 16kHz. We
used the feature extractor from TRANSFORMERS, from HUGGINGFACE to produce the
log-mel spectrograms. A word list containing all basic characters can also be very
large, for example, if all unicode characters are considered as basic characters.

5.2.4 Training and evaluation

For the training part, we use AdamW as the optimizer, the hyperparameter β1 is
set to 0.9, the hyperparameter β2 is set to 0.999, the hyperparameter ϵ is set to 1e-8,
the learning rate is 1e-5. In our experiment, AdamW converges faster when dealing
with large amounts of data. We use WER as the evaluation metric.
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5.3 Experiment III: Frisian speech recognition with Conformer

The goal of this experiment was to build a single-language speech recognition model,
and compare it with the results of Experiment II, in which Whisper represented the
multi-languages speech recognition model.

5.3.1 Data preprocessing

In this experiment, we make use of the NEMO TOOLKIT from NVIDIA. During
the preprocessing part, we convert the .tsv file into .json manifests. Similar to the
downsample operation in Whisper, the audio samples were downsampled sample
rate 16kHz. Furthermore, text preprocessing is important, which helps us reduce
ambiguity. In this step, we have chosen very conventional methods that should not
greatly affect the results of performance, such as replacing all punctuations with
spaces, delete apostrophes, make all characters lowercase ,merge multiple spaces.
Furthermore some characters, like â, ê, ô and û, which appear often in the Frisian
language are replaced with a, e, o and u, respectively.

5.3.2 Build tokenizer

We use Byte-pair encoding as our tokenizer algorithm. Byte-Pair Encoding (BPE) is
proposed in (Sennrich, 2016). BPE first needs to rely on a tokenizer that can pre-slice
the training data into words, they can be some simple space-based tokenizer. After
using these tokenizers, we can obtain a collection of words that have appeared in the
training data and their corresponding frequencies. Next, BPE uses all the symbols
in this set (splitting words into letters) to create a base word list, and then learns the
merge rule to update the base word list by forming a new symbol from two symbols
in the base word list. It will continue this operation until the size of the word list
reaches a preset size.

5.3.3 Training and evaluation

For the training part, we again use AdamW as the optimizer. Furthermore, we
choose CTC and Transducer as decoder of Conformer, which is to our knowledge
the first time that using two conventional decoders are combined with Conformer
for low-resource speech recognition.
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Chapter 6

Experimental Results

Experiment I Performance test of Whisper, we recorded the running time for a
10 minutes audio file contains a Chinese conversation based on different sizes of
Whisper. Whisper was used on a machine with a GPU (one 3080ti). In Table 6.1, as
for the differences in computation time are small. Computation time is listed for the
different sized models of Whisper. We omitted the tiny Whisper model, the WER of
tiny Whisper model over 30% on a 10 minutes Chinese conversation audio file. In
the second experiment and use the other four sizes of Whisper.

Experiment II Fine-tuning the Whisper model for the Frisian language, First,
we fine-tune different sizes of the Whisper model using the cross-entropy objective
function, after that we test the performance of different sizes of the Whisper model
on the speech recognition task for Frisian language. In Table 6.4, we test 4 different
sizes of the Whisper model, with the results as listed. We fine-tune these four mod-
els in 3 epochs. As we can see, the WER of the base model is 34.086, the WER of the
small model is 33.303, as for the medium model, the WER is 32.309, and for the large
model, the WER is 32.819. We can see that the difference in performance is not very
large. According to the size of different model, a bigger difference in performance
would be expected, but the results from the medium to large model, we observe only
a 0.5 percent difference as listed in WER.

The other experiment is to verify how different tokenizers will affect the fine-
tuning process and the performance of the fine-tuned model on recognizing the
Frisian language. In this experiment, we choose the base Whisper model and 4 dif-
ferent tokenizers, English, Dutch, German, and Hindi. The first three languages are
in the same family as the Frisian language, i,e., the West Germanic language family.
The final language Hindi, which is from the Indo-European language family, which
is not closely related to Frisian. The tokenizer could help us construct a sentence
that can deeply reflect the characteristics of the language. In Table 6.3 we see that
when using the Dutch tokenizer, and trained for 3, 5 and 10 epochs, the WER results

TABLE 6.1: The results of Experiment I, including the number of pa-
rameters, the running time and the WER of transcribing a selected 10

minutes audio

Whisper model #parameters time(sec) WER
large 1550M 78 3
medium 769M 60 7
small 244M 30 13
base 74M 30 22
tiny 39M 30 36
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TABLE 6.2: The language proximity between Frisian and West Ger-
manic language family, Hindi

Dutch English German Hindi
proximity 22.0 25.2 27.2 67.6

TABLE 6.3: The Frisian language WER results of fine-tuning base
Whisper model, using different language tokenizers after 3, 5 and 10

epochs

Dutch English German Hindi
3 epochs 33.471 34.086 34.601 38.468
5 epochs 31.898 31.725 32.617 36.243
10 epochs 30.263 31.606 32.529 35.009

are 33.471, 31.898, and 30.263. When using the German tokenizer, the WER results
are 34.601, 32.617, and 32.529, respectively. When using the English tokenizer, the
WER results are 34.086, 31.725, and 31.606, respectively. As for the Hindi tokenizer,
we found a very large gap with the other three language tokenizers. The WER re-
sults are 36.468, 36.243, and 35.009, when training for 10 epochs, the performance
becomes even worse than training for only three epochs with the English tokenizer.
In Table 6.2, the proximity (Beaufils, 2020) between Frisian and other languages are
listed, lower means more related to Frisian. The table 6.3 clearly reflects the fact that
Hindi is from a different language family and performs worse than the other three
languages from the same language family.

Experiment III Frisian speech recognition with Conformer, we test the perfor-
mance of Conformer with different loss functions, CTC and Transducer as decoders.
The different configuration of these two models are listed in Table 5.1. And we run
these two models in 10 epochs. The results are listed in Table 6.5. In this experiment,
we built a real Frisian tokenizer, without using other similar languages. In contrast,
when using Transducer as loss function, the performance is better than CTC, but us-
ing CTC is computationally less demanding than using a Transducer. The WER of
Conformer using CTC as decoder, are 38.42 for Small, 33.76 for Medium, and 29.32
for Large. The CER of Conformer using CTC as decoder, are 11.50 for Small, 10.10 for
Medium, and 8.78 for Large. The WER of Conformer using Transducer as decoder,
are 35.60 for Small, 29.19 for Medium, and 23.48 for Large. The CER of Conformer
using Transducer as decoder, are 10.53 for Small, 10.07 for Medium, and 8.26 for
Large.

Training and fine-tuning a large Whisper model for 10 epochs needs around 2
hours. Training Conformer for 10 epochs from scratch requires 13 hours, the train-
ing is often not very stable. The more attention heads are available, the more they
will divide and distract the truly meaningful attention head, making attention less

TABLE 6.4: The Frisian language WER results of fine-tuning different
sized Whisper models, using the English tokenizer after 3 epochs

base small medium large
WER 34.086 33.303 32.309 32.819
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TABLE 6.5: The Frisian language WER and CER results of Conformer
with different loss function, CTC and Transducer, respectively

Model WER CER
Conformer+CTC Small 38.42 11.50

Medium 33.76 10.10
Large 29.32 8.78

Conformer+Transducer Small 35.60 10.53
Medium 29.19 10.07
Large 23.48 8.26

effective. It is probably not better to have a deeper or wider network, probably be-
cause the depth of error backpropagation is more costly. Training a single-language
Conformer model costs more time than training and fine-tuning a large Whisper
model.
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Chapter 7

Conclusion and Future Research

7.1 Conclusion

In this thesis, we have explored the area of low-resource language speech recogni-
tion through three experiments. To address the challenges of low-resource language
speech recognition, we propose two related methods, using a large pre-trained multi-
language model and using single-language models, and try to answer which is the
better choice. The main contribution of this thesis is the performance compari-
son of using a large pre-trained multi-language model to using the single-language
model for low-resource language speech recognition, thereby, addressing two re-
search questions.

Research Question 1: Can high-resource languages from the same family as the low-
resource language help to improve automatic speech recognition for low-resource language?

We evaluated the results of using different tokenizers, and find that, if two lan-
guages are closer to each other, the tokenizer could help speech recognition more,
obtaining a lower WER. Our experimental results support the idea that tokenizers
indeed reflect the inherent language information and when using tokenizers from
related or even less related languages, this could help low-resource language speech
recognition. When building a large pre-trained model, this was only observed when
using languages in the same family.

Research Question 2: How effective is using a multi-language large pre-trained model
and a single-language model for low-resource language speech recognition?

By comparing the WER results in our experiments, using Conformer with a
Transducer decoder showed the best results, but for low-resource language speech
recognition. A fine-tuned Whisper model for a low-resource language is more con-
venient to train in practice. In a large speech recognition model, usually the training
set is very large, and at the same time the number of parameters is very large. The
potential ability to extract language features inside large models, especially when
there are similar languages appearing in the training set is a very powerful mecha-
nism. For low-resource languages, using a pre-trained model is a convenient choice
when the WER differences are expected to be small.
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7.2 Future direction

After exploring the area of low-resource speech recognition, we point out some fu-
ture directions in low-resource speech recognition.

(1) Speech recognition technology relies excessively on supervised learning and
large amounts of manually labeled data. How to make use of available data more ef-
ficiently is very critical. We observed this need when collecting the Frisian datasets.
From more than 100 hours of available data, only a small part was useful for our
study.

(2) Design new evaluation metrics, WER or CER hardly reflects the accuracy of
speech recognition in real life, since mispronounced and even semantically wrong
words do not always affect people’s understanding of a spoken text.

(3) Find the relation between languages, and make better use of related lan-
guages in the same family. For instance, train a multilingual speech recognition
model, only using languages that have close relations. And try to find and exploit
the intrinsic connections between them.
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