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Abstract

This paper investigates the effectiveness of neural network-based speech enhancement tech-
niques in reducing different noise types. Three variations of the ResUNet architecture, namely
Model 1(ResUNet), Model 2(ResUNet in GAN setup), and Model 3(ResUNet with attention
layers on the decoder layers), are evaluated for their denoising capabilities and speech quality
enhancement. The study employs a diverse dataset encompassing reverberation, white noise
and background noises such as talking, home and nature noises. Objective evaluation met-
rics, including PESQ, STOI, and SI-SDR are utilized to assess the models’ performance. The
results reveal that Model 1 achieves the highest overall performance, demonstrating superior
denoising capabilities and consistently delivering enhanced speech quality. Model 3 exhibits
competitive performance, while Model 2 showcases inconsistent results and suboptimal perfor-
mance, despite attempts to improve it through increased training iterations. The results also
revealed that there is a correlation between the noise intensities and the denoising capabilities.
As the noise intensity increases(SNR is higher, thus the amount of noise is lesser), there is a
decrease in L1 and L2 loss while we notice an increase in the values of the evaluation metrics.
Reverb distortion type consistently demonstrated the best performance, with a notable de-
crease in L1 and L2 loss and an improvement in perceived speech quality measured by PESQ.
We also noticed that Talking noise performed well compared to the remaining noise types
and the resulting audio revealed that the original speech was retained whereas the noises were
filtered out. In the case of White noise, Home and Nature noises, we see that they show similar
denoising capabilities. But since the implementation of noise addition is different for nature,
home noises and white noise, we see a slight difference in their loss values. Moreover, the
similarity in the noise types of nature and home noise contributes to the almost overlapping
loss values that we noticed. This research further allowed us to conclude that it is imperative
to find more sophisticated loss functions since although there is a high correlation between L1
loss and PESQ, unfortunately, L1 loss does not take into account the perceptual audio quality
and hence the resulting audio was of lower quality.
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Chapter 1

Introduction

The rapid improvements in machine learning and artificial intelligence have changed the course
of technology across various avenues, including everyday life in the world. One of the factors
that has helped improve this technology is the existence of vast amounts of data. One such
kind of data available is audio data. Audio data can be of various types such as music, envi-
ronmental sounds, noise data, biological sounds, speech data and so on. In this research, we
will focus on Speech data and investigate how deep learning models can be effectively used to
perform noise reduction on this data. We will further use audio quality assessment methods
to evaluate the performance of the models and understand their underlying behaviours. We
begin this section by detailing the background of audio technology and further delve into the
topics of audio enhancement and audio quality assessment.

Audio technology is a broad term used to describe all technologies and techniques used in
the production, manipulation, and transmission of audio signals. The earliest research into this
technology can be dated back to the 19th century, which saw the birth of instruments to record
and playback sound. The phonautograph, which was invented in 1857 by the French inventor
Édouard-Léon Scott de Martinville, transcribed sound waves as undulations or deviations in a
line traced on smoke-blackened paper or glass, but it could not playback the sound. Charles
Cros, a French poet and inventor, was the first person to propose a method to practically
reproduce recorded sound in 1877 and named it the Paleophone. In the same year, Thomas
Edison invented the phonograph, which is an instrument that reproduces sound through the
vibration of a pencil or needle following a slot in the rotating disc. His recordings were cracks
that were engraved on tin paper using a vibrating pencil. The tin paper was wrapped around
a cylinder that spun as the sound was recorded. The phonograph saw further improvements
when the cylinders were replaced with flat discs. This disc phonograph record was widely used
for audio recording throughout most of the 20th Century till the 8-track cartridges and cassette
tapes were invented. For the next few years, magnetic tape recording gained popularity due to
the advantages it provided, such as recording for a much longer duration and higher fidelity in
comparison to earlier and, moreover, the ability to manipulate sonically, edit, and combine in
ways that disc recording previously did not support. The audio signals thus far were analogous
in nature. The latter half of the 20th Century saw the rise of digital audio encoding with the
compact disc, invented by the Japanese company Sony in collaboration with Philips, being the
most widely used means of recording audio and then just a decade later, digital audio files
such as .wav, .mp3 and so on took over.
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This transformation in the recording and playback of audio resulted in further research into
signal processing techniques. The earliest motivation for this was to combat problems with
studio-to-transmitter links that were seen in radio broadcasting. A significant amount of re-
search on audio processing techniques was conducted in Bell Labs in the mid-20th century,
where the groundwork for the concepts of communication theory, sampling theory, and pulse-
code modulation was laid. Thus, audio signal processing can be defined as the sub-field of
signal processing that focuses on the electronic manipulation of audio signals. Audio signals
are the electronic representation of sound waves that are longitudinal waves that travel through
the air. The applications of audio signal processing include but are not limited to audio data
compression, active noise control, audio synthesis, speech processing, speech recognition, and
so on. Various factors have contributed to the increase in the availability of audio data, such
as the advancements in technology leading to the development and storage of digital record-
ings, the rise of platforms such as YouTube, SoundCloud, and Spotify, the growing number of
internet-connected devices such as smartphones, and smart home devices. This has led to a
huge amount of audio-related content being generated and shared across the internet. There
are also various applications of audio technology such as music production, broadcasting, film
and video production, and hearing aids. In this project, we specifically focus on voice audio
data, and some of the applications where this kind of data is useful are voice recognition and
transcription, voice command control, speech synthesis, and voice biometrics.

The recorded audio that is available for these applications is most often of poor quality.
Audio data often have unwanted sounds that contribute to the poor quality of the signal, such
as environmental noise, electronic noise, interference, mechanical noise, and audio artefacts.
This raised the question of how audio quality is measured and also how to enhance available
audio data. An important aspect of audio technology, and also the focus of this project, is
Audio Quality Assessment and Audio Enhancement techniques. Since this project specifically
focuses on voice recordings, we will specifically focus on Voice Audio Quality Assessment and
Enhancement. Voice audio quality assessment can be defined as the procedure for subjectively
or objectively determining the quality of audio signals in terms of accuracy, intelligibility, and
fidelity. Intelligibility is a measure of how comprehensible the speech is whereas fidelity is the
accuracy with which a copy reproduces its source. The Telecommunication Standardization
Sector of the International Telecommunication Union (ITU) has been researching a standard
quality assessment method for audio signals for decades. They have various recommendations
for assessing the quality of audio signals. Subjective methods primarily focus on having humans
score the audio, usually in reference to a modified version of the same audio, and the mean
score is computed based on the scores provided by multiple people which is then the quality
of the audio under test. This method to determine audio quality is time-consuming and thus
objective methods to determine audio quality are desired.

Speech enhancement is the process of improving speech quality through the improvement
in intelligibility and/or overall perceptual quality of the audio signal. There are many different
types of audio enhancement techniques, including noise reduction, equalization, and dynamic
range compression. Noise reduction is a process that aims to remove unwanted background
noise from an audio signal. Noise is any unwanted sound in the audio that is considered
unpleasant and is thus undesirable[10]. Noise reduction is accomplished through the use of
algorithms that identify and isolate the noise, allowing it to be reduced or removed without
affecting the desired audio. Equalization is a process that adjusts the balance of different fre-
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quencies in an audio signal. It can be used to boost or cut specific frequencies to improve the
overall tonal balance of the audio. Dynamic range compression is a process that reduces the
difference between the loudest and quietest parts of an audio signal. It can be used to make
audio more consistent in volume, making it easier to listen to in different environments.

In this research, we use the ResUNet architecture as an enhancement method and train a
noisy dataset to determine its capability to denoise this data. We expand this study by in-
troducing variations of the architecture and comparing their performance to the baseline. We
evaluate the models by using audio quality assessment metrics to determine the quality of the
denoised audio signals. With this research, we aim to uncover the relationship between the
noise types and noise intensity levels to the denoising capabilities of the models. In Section 2,
we review the existing literature on speech quality assessment and speech enhancement tech-
niques, highlighting their limitations and challenges. We then introduce our proposed approach
for speech quality assessment using Residual UNet (ResUNet) 4 speech enhancement model.
We also use two variations of the ResUNet architecture namely, ResUNet with GAN setup and
ResUNet with attention layers in the decoder layers. We further discuss the loss functions and
evaluation metrics used in this study. In Section 5, we discuss the details of the Dataset used,
along with the augmentation and training process undertaken in this study. In Section 6 we
compare the performance of different ResUNet models for the task of speech enhancement.
We also investigate the impact of different loss functions on the performance of the models
and evaluate the quality of the predicted audio from these models. Finally, in Section 7 we
discuss the implications of our findings and suggest future directions for research in this area.
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Chapter 2

Motivation and Related Work

The motive behind this research is to perform a comparative analysis of the speech enhance-
ment models and further assess the quality of the speech data. High-quality speech signals
are essential for effective communication in a wide range of applications, including hearing
aids, telecommunication systems, and speech recognition. However, speech signals are often
degraded by various sources of noise, such as background noise and reverberation, which can
adversely affect the quality of the speech. While traditional methods for speech quality assess-
ment rely on subjective human evaluations, these evaluations can be time-consuming and may
not be practical for real-time applications. Therefore, there is a need for automated methods
that can accurately and efficiently assess the quality of speech signals. As a first step, we
explore speech enhancement models to determine their denoising capabilities and then expand
the study to understand the behaviour of the different noise types and noise intensities. We
also explore the potential of using these models for speech quality assessment, since better-
performing models can result in good quality audio and thus act as an assessment tool.

Voice audio quality assessment methods can be broadly classified into two categories - sub-
jective assessment and objective assessment of quality, and further classified into intrusive
and non-intrusive methods. The methods that require a reference signal and a distorted sig-
nal to perform comparisons and then determine the quality of the signals are called intrusive
or full-reference algorithms. The methods that work with only one signal and are capable of
assessing quality are called non-intrusive algorithms. Subjective quality assessment of audio
quality primarily focuses on having humans score the audio quality, usually by comparing the
original audio signal to the reference audio signal where the reference audio signal is distorted
by introducing noise. Mean Opinion Score (MOS) [5] is a subjective measure of audio quality
that is commonly used to evaluate the perceived quality of an audio signal. It is a numerical
score, typically on a scale of 1-5, that is based on the opinions of a group of listeners who
have evaluated the audio signal. A higher MOS score indicates that the audio is perceived
as having better quality, while a lower score indicates that the audio is perceived as having
lower quality. MOS scores are typically obtained by conducting listening tests in which a group
of listeners are asked to rate the audio quality of a given signal. The listeners are asked to
rate the audio quality on a scale, such as 1 (bad) to 5 (excellent), and their scores are then
averaged to obtain the MOS score. The ABX test (A-B Comparison Test) is used to determine
whether listeners can reliably distinguish between two audio signals, referred to as signal A
and signal B. In the ABX test, listeners are presented with a series of trials in which they are
asked to compare two audio signals, A and B, and determine which of the two is the original
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signal. The original signal is labelled as ”A” and the other signal can be either A or B, which
is chosen randomly and labelled as ”X”. The listeners are asked to identify whether X is the
same as A or B. The test is repeated multiple times with different selections of A, B and X,
and the results are recorded.

The focus of ITU recommendations with respect to subjective assessment primarily provides
guidelines on how the subjective quality assessment, or in other words, listening tests should
be organized. In ITU-R BS.1116 [4] which aims to identify the small impairments in audio
systems, a listener is provided with three audio signals named - ”A”, ”B” and ”C”. The ref-
erence signal(or the original audio signal) will always be available as ”A”, whereas ”B” and
”C” can correspond to either Hidden Reference Signal or the Signal Under Test. One of the
signals from ”B” or ”C” will not have any differences with ”A” while the other signal will
have some amount of impairments. The listener is then asked to compare the signals ”B” or
”C” with ”A” and provide a score based on the ITU-R five-grade impairment scale which is as
follows - Imperceptible, Perceptible but not annoying, Slightly annoying, Annoying and Very
Annoying. An important factor in this recommendation is with respect to the selection of the
listeners, where expert listeners who are capable of identifying these impairments are selected
for these tests. The major drawbacks of the subjective assessment are that it is expensive and
time-consuming since it involves using expert listeners to score the audio signals and thus is
not feasible in cases of large audio datasets.

This led to research into objective audio quality assessment techniques to evaluate audio
quality. Segmental Signal-to-Noise Ratio (SNR) [29] is an objective measure of the quality of
an audio signal that is used to evaluate the amount of noise present in the signal. Like the
traditional SNR, it’s the ratio of the desired signal power to the noise power. However, instead
of being calculated over the entire signal, the segmental SNR is calculated on a segmental
basis. The log-likelihood ratio (LLR) [26] is an objective measure of audio quality that is used
to evaluate the similarity between two audio signals. The first step is calculated by comparing
the likelihood of a given signal being a clean (original) speech signal or a degraded speech
signal. The LLR is then calculated as the logarithm of the ratio of the likelihood of the signal
being a clean audio signal to the likelihood of the signal being a degraded speech signal. The
LLR computation is performed in the time domain. A higher LLR value indicates that the
signal is more likely to be a clean audio signal, while a lower value indicates that the signal
is more likely to be a degraded speech signal. These methods did not take into consideration
the perception of audio by the human auditory system.

It is undeniable that the best way to determine audio quality is through subjective assessment,
thus objective methods that can analyze audio signals and assess their quality, and further
predict a score correlating to the scores of subjective tests is the ideal approach to assessing
audio quality. Perceptual Evaluation of Audio Quality(PEAQ) [1] is an algorithm proposed in
the ITU-R Recommendation BS.1387 for the perceptual evaluation of coded audio signals.
In this method, the reference signal and the test signal are converted to a psycho-acoustical
representation which is used to generate mid-level features called the Model Output Vari-
ables(MOVs). The MOVs are combined using a neural network to generate the Objective
Difference Grade(ODG) which corresponds to the scores obtained through the subjective lis-
tening tests as mentioned in ITU-R BS.1116. Perceptual Evaluation of Speech Quality(PESQ)
[2] is another algorithm proposed by ITU-R for estimating the quality of speech transmitted
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over telecommunication networks and also narrow-band speech codecs. PESQ is made up of
two models - a perceptual model and a cognitive model. In this method, we make use of two
signals - X(t) which is the reference signal, and Y(t) which is obtained by passing signal X(t)
through a communication system. The first step in this method is to compute a series of delays
between the reference signal X(t) and the distorted signal Y(t). PESQ then compares these
two signals based on the delays using a perceptual model. The perceptual model will generate
a psychophysical representation of the two signals to determine the differences between these
signals as perceived by the human auditory system. The cognitive model will generate two
error parameters, which are combined to predict the MOS. Perceptual Objective Listening
Quality Analysis(POLQA) is an improvement on the PESQ algorithm introduced in 2011 as
part of the ITU-T P.863 [3] recommendation. POLQA is designed to be used for the wideband
and super-wideband codec, unlike PESQ which only works for the narrowband codec. The
algorithm first analyses the original and degraded speech signals to extract a set of spectral
and temporal features. These features are designed to capture the essential characteristics of
the speech signal, such as the spectral shape, pitch, and temporal patterns. The algorithm
uses a model of the human auditory system to predict how the spectral and temporal features
of the speech signal will be perceived by listeners. The model takes into account the effects of
masking and loudness, as well as the characteristics of the human ear and the auditory nerve.
The algorithm calculates the quality score by comparing the predicted auditory perception of
the original and degraded speech signals. The quality score is based on the differences between
the two signals, taking into account the effects of speech distortion, noise, and intelligibility.
Since the PESQ algorithm was modelling the behaviour of subjective tests, it was designed in
such a way that the method for scoring the narrowband and wideband codec was the same,
which is incorrect in reality. This drawback was improved in the POLQA algorithm. POLQA
requires high-quality reference signals to make accurate predictions of MOS.

In 2015, A. Hines et al. proposed the Virtual Speech Quality Objective Listener (ViSQOL)
[12] algorithm that focuses on assessing the quality of VoIP transmissions. The authors used
audio signals to generate neurograms - an auditory neural response to an audio signal, for both
the reference and the distorted signal. Unlike most algorithms that compare the degradation
between the reference and distorted signals, ViSQOL computes the similarity between the
neurograms of the clean and distorted signals using a distance metric - Neurogram Similarity
Index Measure (NSIM). Manocha et al. proposed another approach - DPAM [16] where a
new audio metric based on just-noticeable differences(JND) - the minimal change at which
a difference is noticed, was proposed. The objective of the authors was to introduce a new
metric that is able to differentiate noticeable differences in audio signals that can be further
used in other speech-processing techniques, such as audio enhancement, as a feature of deep
learning methods. The major drawback of DPAM was that it required a large number of hu-
man annotations and also did not generalize well outside of the data that it was trained on.
This led to the introduction of CDPAM [17] which uses the concepts of contrastive learning
and multi-dimensional representations to build a robust model that performs relatively better
than DPAM. Representational learning can be used to learn a representation of audio signals
that captures the most important features of the audio, such as pitch, timbre, and rhythm.
Contrastive learning is used to learn a representation of audio signals by comparing different
variations of the same audio signal, such as different degraded versions of the same signal.
In this paper, in order to combine multi-dimensional representation with contrastive learning,
the audio encoder outputted two sets of embeddings - acoustic and content. In order to learn
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acoustic embeddings, the authors used data augmentation that takes the same acoustic per-
turbation parameters for different audio content, whereas to learn content embeddings, they
considered different acoustic perturbation parameters on the same audio content.

As can be seen from above, many perceptual objective measures focused on generating an
output that correlates to the MOS score, but in [36], Serrà et. al, proposed that quality assess-
ment should consider other evaluation criteria for the audio signals. They proposed Pairwise
ranking and Score consistency along with the MOS score as a means to assess the quality
of two audio signals. Furthermore, many deep learning methods [28, 9] that involve predict-
ing MOS scores from labelled datasets have been proposed. The major drawback with these
methods is that the model does not generalize well on unseen data[8].

The lack of clean reference data led to the popularity of research into non-intrusive algo-
rithms. NORESQA [18] is a non-intrusive algorithm that makes use of Non-Matching Refer-
ences(NMRs) to assess audio quality. This method does not rely on any human-labelled data.
The model predicts a subjective relative score for a given speech signal by comparing it to the
provided reference, which doesn’t have to be a matching signal, without using any subjective
data. Here, Non-Matching References refer to audio signals that do not have the same content
as the audio signal under test.

Audio Quality
Assessment Method

Description

Segmental
Signal-to-Noise

Ratio

It is the ratio of desired signal power to the noise power
that provides a measure of the amount of noise in the signal.

Log likelihood-ratio
It is a measure of the similarity between two audio signals.
It is computed as the log of the ratio of the likelihood of a
signal being clean to the likelihood of a signal being noisy.

PEAQ
This metric aims to take into account the human perception
of audio and uses a psycho-acoustical model to predict a score
for the perceived audio quality.

PESQ
This metric is computed by making use of a perceptual model
and a cognitive model. The predicted score is correlated to
the MOS score and is in the range of 0 - 5.

ViSQOL
This metric is computed by using neurograms where the
similarity between the reference and distorted signal
is estimated.

DPAM
The metric aims to quantify perceptual differences between
audio signals based on just noticeable differences (JND) - the
minimal change at which a difference is noticed.

CDPAM
An improvement on DPAM which leverages contrastive
learning and multidimensional representations to predict
perceived audio quality.

Table 2.1: Audio Quality Assessment Methods

Recorded audio data commonly has various types of noise or distortions due to different con-
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ditions. The types of noises that are commonly seen in studio-recorded audio are reverb, back-
ground noise, white noise, clipping, and artefacts such as sibilance, plosives, pops, and smacks.
Speech enhancement is a technique used to improve the quality of speech signals and involves
removing unwanted noise and distortions from the signal, thereby improving the intelligibility
and perceptual quality of the signal. Speech enhancement methods can be broadly classified
into two categories: Digital Signal Processing(DSP)-based and machine learning-based. DSP-
based methods use signal processing techniques to enhance the quality of speech signals by
filtering out noise and other distortions. These methods rely on knowledge of the statistical
properties of the noise and signal and are typically based on adaptive filtering or spectral
subtraction. Machine learning-based methods, on the other hand, utilize artificial intelligence
and machine learning techniques to learn the mapping between noisy and clean speech signals.
These methods do not require prior knowledge of the statistical properties of the noise and
signal, making them more robust and adaptable to different noise environments.

Wiener filtering[40] is a classical method for speech enhancement that aims to estimate the
clean speech signal from a noisy observation. The method is based on the assumption that the
noisy signal can be modelled as a linear combination of the clean speech signal and additive
noise. The Wiener filter estimates the clean speech signal by minimizing the mean squared
error between the estimated and true signals. The filter uses two power spectral density (PSD)
functions: one for the clean speech signal and one for the noise. These PSD functions are used
to weigh the noisy observation to estimate the clean speech signal. The Wiener filter is a linear
filter, which means that it operates on each frequency component of the noisy observation
independently. The filter weights each frequency component based on its contribution to both
the clean speech and noise PSDs. One limitation of Wiener filtering is that it assumes that
both the speech and noise signals are stationary over time. However, in reality, speech signals
are non-stationary, which can lead to poor performance in some cases.

In Kalman filtering[21], which is an extension of Wiener filtering, the corrupted speech signal
is modelled as a linear combination of the clean speech signal and additive noise. The Kalman
filter estimates the clean speech signal by exploiting the statistical properties of both the clean
speech and noise signals. The Kalman filter is a recursive algorithm that estimates the state
of a dynamic system based on noisy measurements. In this case, the state is the clean speech
signal, and the measurements are the corrupted speech signal. The Kalman filter uses a pre-
diction step to estimate the current state based on previous states and a correction step to
update this estimate based on new measurements. The prediction step uses a state transi-
tion model to predict what the next state will be based on previous states. In this case, the
state transition model is based on the assumption that speech signals are slowly varying over
time. The correction step updates this prediction using new measurements from the corrupted
speech signal. The Kalman filter also uses two covariance matrices to estimate how much
uncertainty there is in both the predicted state and in new measurements. These matrices are
updated at each time step using information from both previous states and new measurements.

In [34], Sack et. al, proposed a method for noise reduction to enhance audio signals using
Online Non-negative Matrix factorization (ONMF). Non-negative Matrix factorization (NMF)
[42] has been a commonly used approach for noise reduction, where the algorithm uses two
types of audio signals to learn dictionaries for the true signal and the noise - a noiseless record-
ing, which is believed to be similar in structure to the signal of interest, and a pure-noise
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recording. The next step is to construct an approximation of the true signal by projecting
the corrupted recording onto the clean dictionary. The ONMF approach is built upon the
traditional NMF approach. Here, the spectrogram is considered a time-series vector which
allows the method to learn dictionaries that represent phenomes and musical chords. ONMF
does not work with the entire spectrogram, but instead on smaller matrices obtained from
subsampling the spectrogram. The focus of this algorithm was to handle streaming data or in
cases where the data set is too large to store in local memory and hence the name Online NMF.

Wavelet transform[11] is another interesting approach to performing speech enhancement
that is commonly used to transform a signal from the time domain to the frequency domain.
Unlike other transforms, such as the Fourier transform or the short-time Fourier transform
(STFT), which have fixed frequency and time resolution, the wavelet transform has variable
time and frequency resolution. This allows for a more flexible and efficient representation of
speech signals with varying time-frequency characteristics. The wavelet transform involves the
decomposition of a signal into a series of wavelet coefficients at different scales and positions.
The decomposition is performed by convolving the signal with a set of wavelet functions,
which are scaled and translated versions of a basic wavelet function. The resulting wavelet
coefficients represent the energy of the signal at different scales and positions. In speech en-
hancement, wavelet-based[19] methods are typically used to denoise the wavelet coefficients
by thresholding. The thresholding operation removes the wavelet coefficients that correspond
to noise or other unwanted components while preserving the coefficients that correspond to
the speech signal. The denoised wavelet coefficients are then reconstructed into a time-domain
signal using the inverse wavelet transform.

The availability of large amounts of data and improvements in the computational power of
computers paved the way for machine learning. This in turn influenced the development of
neural network-based speech enhancement methods. The deep neural network models are pro-
vided with the audio signals as input in either the frequency domain or the time domain.
The traditional approach to denoising involves learning the speech from the audio signals. In
[22], Parida et. al, proposed to model the noise instead of speech, thus helping to obtain a
speaker-independent denoiser. Here, the authors work with Mel spectrogram representation
of audio. The features of clean audio are obtained from the features of noisy/mixed audio
through feature disentanglement. The method initially extracts the noise features from the
mixed signal. It then embeds the mixed signal in the same feature space. The clean signal
features are then obtained by subtracting the projection of the noise features on the mixed
feature vector, from the mixed feature vector. The resulting vector is the clean speech feature,
which is used to estimate the clean speech signal, by first using a network to predict the Mel
spectrogram, followed by a pre-trained vocoder to predict the audio waveform.

The UNET architecture[30] was introduced in biomedical imaging, to improve the precision
and localization of microscopic images of neuronal structures. This architecture was further
expanded to perform speech enhancement[23] and works with the STFT representations of the
audio signal. The U-Net architecture consists of an encoder and a decoder. The encoder part
of the network uses a series of convolutional and pooling layers to reduce the dimensionality
of the input signal and extract high-level features. The decoder part of the network then uses
a series of deconvolutional and upsampling layers to reconstruct the enhanced signal. To train
the U-Net model, a loss function is used to compare the predicted enhanced audio signal with
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the ground truth audio signal. The most commonly used loss function for speech enhance-
ment tasks is the mean square error (MSE) loss function. In [24], Pascual et al. proposed
a U-Net-based generative adversarial network (GAN) for speech enhancement. This method,
called SEGAN, uses a generative adversarial network (GAN) architecture, which consists of a
generator and a discriminator network. The generator network takes noisy speech signals as
input and generates clean speech signals as output. The discriminator network tries to distin-
guish between the generated clean speech and the actual clean speech. The generator network
is trained to produce output that can fool the discriminator network into thinking that it is
real clean speech. During training, the generator network is optimized using an adversarial loss
and a mean squared error loss to ensure that the generated clean speech is perceptually similar
to the actual clean speech. SEGAN also takes as input the STFT spectrogram representation
of the audio signal.

One of the main downsides of using the magnitude spectrogram representation in speech
enhancement methods is the loss of phase information. This can lead to a loss of perceptual
quality in the enhanced speech signal, as the phase information is critical for the perception
of naturalness and intelligibility of speech[32]. This led to the research of performing speech
enhancement on audio signals in the time domain. In 2018, Stoller et al. proposed the Wave-
U-Net architecture[37] that takes as input the time domain representation of the audio signals.
Wave-U-Net is an improvement of the UNet architecture and consists of an encoder-decoder
architecture with skip connections. The skip connections allow the model to bypass the bot-
tleneck layer of the network, which helps preserve fine details in the audio signal. Wave-U-Net
uses a multi-scale approach, where the input audio signal is processed at multiple resolutions.
This helps capture both low and high-level features in the audio signal. Additionally, the model
uses dilated convolutions in the encoder stage to increase the receptive field without increasing
the number of parameters in the network. The model is trained on a dataset of audio mixtures
and corresponding clean audio sources or noise signals. The loss function used during training
is a combination of mean squared error and signal-to-distortion ratio (SDR) loss, which is a
measure of how well the separated audio sources match the ground truth.

There are two major challenges with working on time domain representations. The use of
time domain features in speech enhancement lacks a direct representation of the frequency
domain, which can result in difficulty capturing important phonetic details. As a result, recon-
structed speech using time-domain features often contains artefacts[6]. Furthermore, the raw
time domain waveform has a large input space, making it challenging to develop models that
can effectively capture the underlying dependencies. Therefore, models working with raw wave-
forms are often deep and complex, leading to significant computational requirements[7, 41].
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Chapter 3

Research Question

This research aims to study the behaviour of audio enhancement methods in denoising dif-
ferent noise types. Speech enhancement techniques are employed to mitigate various types
of noise and improve speech intelligibility in real-world scenarios. However, these techniques
may introduce certain artefacts or alter the characteristics of the speech signal, leading to a
potential loss of information. This research examines how the extent of this loss influences the
quality of the enhanced speech. By evaluating different speech enhancement algorithms and
considering objective quality assessment measures, the research aims to provide insights into
the trade-off between noise reduction and the preservation of natural speech characteristics.

We further investigate the influence of noise type and intensity on the aforementioned re-
lationship between input-output loss and speech quality in speech enhancement techniques.
Different types of noise, such as white noise, background chatter, or environmental sounds, can
vary in their spectral and temporal characteristics. Similarly, noise intensity can range from mild
to severe levels. It is crucial to understand how these factors interact with the input-output loss
and quality trade-off. By systematically evaluating various noise types and intensities, and their
effects on different speech enhancement algorithms, this study aims to uncover the complex
relationship between noise characteristics, input-output loss, and perceived speech quality.

Hypotheses

• The model when trained entirely on clean speech would have no loss since the model
has to copy the input signal.

• There exists a trade-off between input-output loss and perceived speech quality in the
speech enhancement model. It is expected that as the input-output loss decreases, the
perceived speech quality will improve.

• The impact of noise types on the relationship between input-output loss and speech
quality differs for each speech enhancement model. It is anticipated that certain noise
types may exhibit a stronger influence on input-output loss and quality compared to
other noise types.
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Chapter 4

Method

This section describes the procedures employed to investigate the relationship between input-
output loss, speech quality, and the impact of noise types and intensities in the context of
speech enhancement. The ResUNet architecture, a prominent deep learning approach specifi-
cally designed for speech enhancement tasks, is selected as the primary model for this study.
Additionally, two modified versions of ResUNet are also utilized to facilitate comparative anal-
ysis which is described in detail below. The dataset5.1 used is curated to encompass a diverse
range of speech samples contaminated with different types of noise, including white noise,
background chatter, and environmental sounds. Furthermore, the dataset incorporates varying
levels of noise intensities, to ensure a comprehensive examination of the model’s performance.
To train the ResUNet models, appropriate loss functions and optimization techniques are em-
ployed. The training process involves presenting the models with noisy speech samples. The
models learn to map the noisy input to an enhanced output that closely resembles the desired
clean speech.

Figure 4.1: The workflow of the Training, Validation and Inference procedure followed in
this project.
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4.1 Approach

This section describes the details of the ResUNet architecture and the variations of it used for
comparative analysis.

4.1.1 Model 1: ResUNet

ResUNet [43] is a type of convolutional neural network (CNN) architecture that is commonly
used for image segmentation tasks. It is an extension of the U-Net architecture[31], which
was originally introduced for biomedical image segmentation. The ResUNet architecture in-
corporates residual connections, which allow information to flow directly across the network
without being affected by the convolutional layers. This helps to mitigate the vanishing gra-
dient problem, which can occur when training deep neural networks. This architecture was
further extended to perform speech enhancement on noisy audio signals[25].

Figure 4.2: Architecture of ResUNet model

The ResUNet architecture is composed of an encoder and a decoder network, which are con-
nected by a bridge layer. The input to the ResUNet architecture is a noisy speech signal in
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the form of Mel Spectrograms. The encoder network is designed to extract high-level features
from the noisy speech signal, while the decoder network is designed to produce a denoised
speech signal. The encoder network can consist of a series of convolutional layers with batch
normalization and ReLU activations, followed by max pooling layers. The max pooling layers
reduce the spatial dimensions of the feature maps while increasing their depth. The decoder
network can consist of a series of upsampling layers with convolutional layers, batch normal-
ization, and ReLU activations. The upsampling layers increase the spatial dimensions of the
feature maps while decreasing their depth. The bridge layer can consist of a convolutional layer
with batch normalization and ReLU activations, and may also include residual connections to
improve the flow of information across the network. The ResUNet architecture is trained on
the L1 and L2 loss functions which compare the denoised speech signal produced by the model
to the ground truth clean speech signal. When the L1 loss is used, the model will measure the
overall difference between the denoised and original audio but all the differences are treated
equally irrespective of their magnitude. This leads to the optimization process to focus on
minimizing small to moderate errors. The L2 loss on the other hand is sensitive to outliers. So
when there is a larger difference between the enhanced and original audio, then it is penalized
more as compared to the smaller differences.
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4.1.2 Model 2: Generative Adversarial Network(GAN)

The use of GANs for image superresolution has been more commonplace since its first attempt
in [13]. The reason for this is due to the fact that when L2 loss is used, it produces blurry
outputs since there is an assumption that the data is a Gaussian distribution. That is, the
predictions tend to bias towards an average of all the possible predictions. Thus, the use of
GANs which are capable of handling diverse distributions and capturing high-level perceptual
features has been popular. This work further expanded to the field of audio superresolution[15]
where the focus was to increase the sampling rate of the audio signals. This approach was
further used for the task of audio enhancement to generate audio of better quality [38, 24, ?].
The approach undertaken here is inspired by the above-mentioned research, where we use a
GAN architecture consisting of a generator and discriminator network. The generator network
will generate enhanced speech from the noisy input while the discriminator network is trained
to distinguish between the enhanced speech generated by the generator network and the clean
speech from the training data.

The generator that will be used in this variation is the ResUNet architecture. The discrimina-
tor utilizes multiple GLU (Gated Linear Unit) blocks, each composed of a 2D convolutional
layer, batch normalization, and a gated linear unit activation function, to extract features from
mel-spectrogram representations of audio signals. These GLU blocks capture complex depen-
dencies in the data and contribute to the discriminative power of the model. The discriminator
further incorporates a final convolutional layer and average pooling to process and reduce the
dimensionality of the features. The design decision in selecting this discriminator was to have
a convolutional neural network with enough receptive field to distinguish between the real
and fake mels. If the receptive field is small then the model will focus on local details and
short-term dependencies. Whereas when we have a large receptive field, the model captures
long-term dependencies and temporal patterns in the audio data.

The goal of the speech enhancement model, i.e. the generator, is to generate enhanced speech
that is similar enough to clean speech to fool the discriminator. At the same time, the goal of
the discriminator network is to correctly identify the enhanced speech generated by the speech
enhancement model as different from the clean speech. The generator is trained on the L1 and
L2 loss functions along with the Mel Generator loss. The discriminator is trained on a feature
mapping loss and a hinge loss. The generator network is trained to minimize the loss function,
while the discriminator network is trained to maximize the loss function. By optimizing for the
adversarial loss, the speech enhancement model can learn to generate enhanced speech that is
more similar to clean speech and less distinguishable from clean speech by the discriminator.
This can lead to higher quality enhanced speech that is more natural sounding.
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4.1.3 Model 3: ResUNet with Attention Layers

This variation introduces an attention mechanism into the ResUNet architecture. This modifi-
cation aims to enhance the model’s ability to selectively focus on relevant features at different
levels of abstraction during the speech enhancement process.

The attention layer is integrated into the ResUNet architecture by introducing an additional
module after the output of each layer. This attention module utilizes the concept of self-
attention, which enables the model to learn and emphasize the most informative and discrim-
inative features within each layer’s output. This mechanism allows the model to dynamically
allocate attention to different parts of the input signal, highlighting salient speech components
while suppressing noise and irrelevant information.

Figure 4.3: Architecture of ResUNet model with attention layers on the decoder.

The attention layer consists of several key components. Firstly, it employs a set of learnable
parameters, such as weights and biases, to calculate attention weights for each spatial location
within the layer’s output. These weights capture the importance of each location in contribut-
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ing to the final enhanced speech representation. Secondly, a normalization step is performed
to ensure that the attention weights sum up to unity, facilitating an interpretable attention
distribution. Finally, the attention weights are applied to the layer’s output using element-wise
multiplication, emphasizing the informative regions while attenuating the less relevant ones.

By incorporating the attention layer into the ResUNet architecture, the model gains the ability
to adaptively focus on crucial speech features at different hierarchical levels. We hypothesized
that this attention mechanism facilitates the suppression of noise and enhances the represen-
tation of clean speech components, leading to improved speech enhancement performance.
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4.1.4 Vocoder

To train the ResUNet architecture for speech enhancement, the model operates in the fre-
quency domain, specifically on the Mel spectrogram representation of the speech signals. The
Mel spectrogram provides a compact and perceptually relevant representation of the audio
signal, which facilitates the extraction of relevant features for enhancement.

However, since the enhanced speech is obtained in the frequency domain, it needs to be
converted back to the time domain to generate the corresponding audio waveform. For this
purpose, a pre-trained vocoder is employed, and in this study, the CARGAN (Conditional
Auto-Regressive Generative Adversarial Network) [20] vocoder is utilized. It consists of three
main components. First, an autoregressive conditioning stack summarizes the previous k sam-
ples of the waveform into a fixed-length embedding. This embedding is concatenated with
the conditioning information and provided as input to the generator network. The generator
network converts this input into a waveform representation. Second, a series of discriminators
is employed to provide adversarial feedback. These discriminators classify between real audio
and generated audio, helping to improve the quality of the generated waveforms. Importantly,
the previous k samples are also included when evaluating the generated audio, allowing the dis-
criminators to distinguish between the autoregressive and generated portions of the audio. This
step helps prevent artefacts and boundary issues in the generated waveforms. Third, the model
utilizes various loss functions for training. These include a differentiable mel-spectrogram loss,
discriminator losses for adversarial learning, and a feature matching loss to align intermedi-
ate representations of the generated and real audio. By jointly optimizing these loss terms,
CARGAN learns to generate waveforms that closely match the desired spectral characteris-
tics while exhibiting high audio quality. The pre-trained CARGAN vocoder was obtained from
https://daisys.ai and the pre-training was done on English ebooks.

Figure 4.4: The architecture of the CARGAN vocoder[20].
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4.2 Measures

4.2.1 Loss functions

The following loss functions have been used to optimize all three models.

• L1 Loss (Mean Absolute Error): It measures the average absolute difference between the
enhanced speech and the corresponding clean reference speech. L1 loss is beneficial as
it penalizes both small and large deviations between the enhanced speech and the clean
reference speech.

L1Loss =
n∑

i=1

|Atrue − Apredicted| (4.1)

where Atrue is the ground truth clean speech and Apredicted is the corresponding enhanced
audio from the model.

• L2 Loss (Mean Squared Error): It calculates the average squared difference between the
enhanced speech and the clean reference speech. The use of L2 loss emphasizes larger
deviations between the enhanced speech and the clean reference speech, as the squared
differences amplify the impact of outliers.

L2Loss =
n∑

i=1

(Atrue − Apredicted)
2 (4.2)

where Atrue is the ground truth clean speech and Apredicted is the corresponding enhanced
audio from the model.

In the case of ResUNet in a GAN setup (Model 2), we use three additional loss functions along
with the L1 and L2 loss which are described below.

• Mel Discriminator Loss: This loss function computes the adversarial loss for a discrimina-
tor network in a generative adversarial network (GAN). It encourages the discriminator
to classify fake samples as negative and real samples as positive. It uses the hinge loss
formulation with ReLU activation.

MelDiscriminatorLoss =
∑
r,f

(ReLU(1 + f) +ReLU(1− r)) (4.3)

where f is the discriminator’s output for a fake mel spectrogram, whereas r represents
the discriminator’s output for a real mel spectrogram.

• Mel Generator Loss: This loss function calculates the adversarial loss for the generator
network in a GAN. It aims to generate samples that the discriminator classifies as real
(positive). The loss is computed as the negative mean of the discriminator output for
the generated samples.

MelGeneratorLoss = −
∑
i∈f

mean(i) (4.4)

where f is the tensor of discriminator outputs for the fake mel spectrograms.
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• Mel Discriminator Feature Loss [35]: This loss function measures the feature-level dif-
ference between the discriminator’s intermediate feature maps for real and fake samples.
It uses the L2 loss to compare the feature maps. The idea behind this loss function is to
stabilize the GAN by specifying a new objective for the generator and thus preventing
it from overtraining the discriminator. The new objective here focuses on the generator
being used to generate data that matches the statistics of the ground truth data, while
the discriminator is used to specify the statistics that are worth matching.

MelDiscriminatorFeatureLoss =
∑
r,f

1

N

∑
i,j

|rij − fij| (4.5)

where r and f represent the real and fake mel spectrograms from the discriminator
output. While rij, fij represent the values of the feature maps at position (i, j) for the
real and fake samples, respectively.

4.2.2 Evaluation Metrics

The following audio quality evaluation metrics have been used to determine the performance
of the models for the various noise types of different intensities.

• PESQ (Perceptual Evaluation of Speech Quality)[2]: PESQ operates by simulating the
behaviour of the human auditory system to assess the degradation introduced by the
speech enhancement process. It takes into account factors such as distortion, noise, and
speech intelligibility. PESQ produces a score ranging from -0.5 to 4.51, where higher
scores indicate better perceptual quality. It serves as a benchmark for evaluating the
effectiveness of speech enhancement algorithms.

• SI-SDR (Scale-Invariant Signal-to-Distortion Ratio)[33]: SI-SDR is a metric commonly
used to evaluate the source separation performance, including speech enhancement. It
quantifies the quality of the enhanced speech by measuring the ratio between the target
speech signal and the distortion caused by the enhancement process. SI-SDR takes into
account both the energy of the target speech and the interference introduced by the
enhancement process. It is designed to be scale-invariant, meaning it does not depend on
the amplitude scaling of the enhanced speech. SI-SDR provides a quantitative measure
of the signal-to-distortion ratio, reflecting the quality of the enhanced speech.

• STOI (Short-Time Objective Intelligibility)[39]: STOI is an objective metric used to
evaluate the intelligibility of speech signals. STOI operates by comparing the short-time
magnitude spectra of a clean reference speech signal and a degraded speech signal.
It takes into account factors such as temporal masking, spectral masking, and phase
information. STOI estimates the intelligibility of the degraded speech signal by quanti-
fying the level of information preserved from the reference signal. The output of STOI
is a score between 0 and 1, where 1 indicates perfect intelligibility and 0 represents no
intelligibility.

1The PyTorch implementation produces a score in this range.
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Chapter 5

Experimental Setup

5.1 Dataset

The dataset used for this project is the Microsoft Scalable Noisy Speech Dataset (MS-SNSD)
[27]. The dataset contains 23075 clean audio files of approximately 3 seconds in length, a
variety of environmental noises in .wav format, with all of them having a sampling rate of
16kHz. In section 5.1 we describe in detail how the dataset has been modified in order to be
used in this research.

Noises and distortions

This section lists the various types of noises and sound artefacts that will be considered for
this project.

1. Reverb is the sound of reflections of sound waves bouncing off surfaces in an enclosed
space, creating the illusion of sound continuing after the initial sound has stopped.

2. Background noise, although not common in professionally recorded audio, is any ambient
noise present in the recording environment, like people talking. In this project, we have
considered three categories of background noises - Home, Talking, and Nature which
includes sound generated from air conditioners, babble, vacuum cleaners etc.

3. White noise is a signal that contains all frequencies in equal amounts thus resulting in
flat power spectral density.

The noises available in the dataset indicated their source, such as air conditioners, airport
announcements etc. These files were categorized into one of three groups - Home, Talking
and Nature. Home noises comprised of noises generated by vacuum cleaners, air conditioners,
and washing machines to name a few. The Talking noises consisted of airport announcements,
neighbour talking, restaurant etc and Nature noises included babble.

Data Augmentation

This dataset needs further modification to use in the ResUNet architecture. We first gener-
ate noisy audio files from the available clean files. We perform data augmentation for speech
enhancement tasks by adding five types of noises to the dataset: nature noise, talking noise,
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home noise, white noise, and reverb. We use PyTorch to implement the augmentation pipeline,
and the user has the choice to apply noise before training or use existing noisy data as well.

The first step in this process is to select a subset of the noise files available in MS-SNSD
and categorize them into home, nature or talking noise types. The next step is to split the
clean speech files into train, validation and test split. The noise intensities that we consider here
are -10, -5, 0, 5, and 10, which in total gives us 25 combinations for noise type-noise intensity
(including white noise and reverb). The value for noise intensity here indicates the amount of
noise present in the augmented audio files. In the case of white noise and background noises,
the noise intensity refers to the Signal-to-Noise ratio(SNR) measured (in dB) between the
augmented audio and the clean audio. Higher noise intensity, or SNR, is an indication of lesser
noise in the augmented audio. The dataset is then split into training, validation, and test sets
with a ratio of 70:15:15. For each file in the split, we generate degraded speech by adding the
noise file of specific intensity to the clean file. Similarly, we add white noise to the clean audio
files for each noise intensity. The reverberation effect is applied to the audio files using the
Pedalboard1 by varying the room size and wet level attributes. The wet level attribute refers to
the level of reverberation present in the output signal. For the reverb effect, the noise intensity
does not refer to SNR but instead is an indication of the room size and wet level attributes
that were used. Here, the reverb effect is the highest when these two values are set to 1 while
it is the lowest at 0.1. We used a similar representation to indicate the noise intensity for
reverb as we did for the other noise types for easier comparison purposes amongst the noise
types. The translation of the noise intensity referred to in this paper in comparison to actual
values used for the reverb effect is −10 → 1,−5 → 0.75, 0 → 0.5, 5 → 0.25, 10 → 0.1. The
outcome of this augmentation process yields 25 variations of noisy audio files for every clean
audio file. Thus, the total number of files that we will use for each experiment is 5999502.

Dataset Variations

In order to understand the behaviour of the model with respect to noise types, we used three
different variations of the dataset as input to the model.

• Dataset 1: Noisy dataset - The model input comprised of only noisy audio files. Thus,
for each file in the split, we have 25 different variations of the degraded audio file.

• Dataset 2: Partial Noisy dataset - Along with the noisy versions of the audio file, the
clean audio file was also provided as input to the model. Here, we end up with 26
variations of the audio file, where one of them is the original clean speech itself.

• Dataset 3: Clean dataset - There was no augmentation performed on the dataset, i.e.,
the model was trained on clean audio files to determine the input-output loss that would
be yielded, if any.

These variations allow us to understand how the model learns from different augmentation
scenarios. We can determine whether there is a need for a combination of noisy and clean
speech in the dataset for the model to learn or whether only noisy speech is enough.

1https://spotify.github.io/pedalboard/
2In the case of Dataset variation 1, the total number of files is 576875
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5.2 Materials

The hardware and software materials that were used in this project have been specified in the
below table.

Hardware Specifications

- CPU: Intel Core i7-9700K

- RAM: 32 GB

- GPU: Nvidia GeForce RTX 2080 Ti

- 6 TB Hard drive space

Software Specifications

- Ubuntu 18.04.6

- CUDA 10.2

- Python 3.9

- Pytorch 1.12.1

- Tensorflow 2.12

Table 5.1: This table lists the hardware and software materials that were used in this
project.
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Model 1 Model 2 Model 3
Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3

Dataset Noisy
Noisy
+

Clean
Clean Noisy

Noisy
+

Clean
Clean Noisy

Noisy
+

Clean
Clean

Iterations 12000 12000 6000 12000 12000 6000 12000 12000 6000
Training
Time

6 to 7
hrs

6 to 7
hrs

1 hr
6 to 7
hrs

6 to 7
hrs

1 hr
6 to 7
hrs

6 to 7
hrs

1 hr

Loss
functions

L1 and L2 Loss
L1, L2, Mel feature
loss, Mel discriminator
and Mel generator loss

L1 and L2 Loss

ResUNet
LR

1e-4 1e-4 1e-4

Discrim
-inator
LR

N/A 1e-3 N/A

Table 5.2: An overview of all the experiments that were conducted as part of this research.

5.3 Training

The codebase for the ResUNet model that was used in this project was developed by Daisys.ai3.
The code for the attention block used in Model 3 was inspired by [14]. Each of the models was
trained on the three different dataset variations[5.1]. Thus resulting in overall 9 experiments.
An overview of all the experiments is provided in Table 5.2
The details of the training process for each model are described below.

• Dataset: The Mel Spectrogram representation of the audio files were used to train the
model.

• Optimizer and Learning Rate: The models were optimized using the Adam optimizer
with an initial learning rate of 1e-4 and was decayed by a factor of 1e-6. In the case of
Model 2, the learning rate for the discriminator was 1e-3 with a weight decay of 1e-6.

• Training Procedure: The model was trained using mini-batch stochastic gradient de-
scent. A batch size of 32 was used, and the model was trained for a total of 12000
iterations. During training, the backpropagation algorithm computed the gradients of
the loss function with respect to the model parameters, and the optimizer updated the
parameters accordingly.

• Regularization: To prevent overfitting, several regularization techniques were applied.
These included batch normalization, which normalized the activations of each layer,
reducing internal covariate shifts and stabilizing the training process.

• Monitoring and Evaluation: The training process was monitored by evaluating the model
on the validation set after every 2000 iterations.

3https://daisys.ai/
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Chapter 6

Results

The results of the models were determined by running inferences on the test set using the
trained model. These results primarily contain the average values for the L1 and L2 losses.
Furthermore, we make use of the following audio evaluation metrics to determine the perfor-
mance of the model in audio enhancement - PESQ, STOI and SI-SDR.
There are a number of observations that were made based on the results we obtained. To
establish a performance baseline, we define the upper bound and lower bound for each of
the metrics. The details of the upper bound and lower bound have been described in 6.1.
These values help us specify the range in which the metrics should fall and thus help us better
understand the performance of the models. In the case of L1 and L2 loss, a lower loss value
indicated better denoising. Whereas for the other evaluation metrics, a higher score indicated
better audio quality thus indicating better model performance.

L1 Loss and L2 Loss
The evaluation of Model 1 using L1 loss revealed interesting findings. Across various noise
types and intensities, L1 loss consistently falls within the range defined by the upper and lower
bounds, which can be seen in Figure 6.1. Surprisingly, for Dataset 3 where the model was
trained only on clean data, some loss was still observed, contradicting the initial hypothesis.
This loss can be attributed to the introduction of artefacts by Model 1 during the prediction
process.
We also observe that the denoising capability of the model differs for each of the noise types.

Metric Upper Bound Lower Bound

L1 Loss
Average loss for all noise
types at each noise intensity

Average loss obtained when
model was trained on Dataset 3

L2 Loss
Average loss for all noise
types at each noise intensity

Average loss obtained when
model was trained on Dataset 3

PESQ
Average score obtained when
model was trained on Dataset 3

Average score for all noise
types at each noise intensity

STOI
Average score obtained when
model was trained on Dataset 3

Average score for all noise
types at each noise intensity

SI-SDR
Average value obtained when
model was trained on Dataset 3

Average value for all noise
types at each noise intensity

Table 6.1: The interpretations for the upper and lower bounds for each metric.
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Notably, the ”Reverb” noise type demonstrated the best performance, as evidenced by a sig-
nificant drop in the loss, indicating a higher degree of denoising when compared to the other
noise types. The Talking, Home and Nature noises which we will refer to as background noises,
exhibit close loss values for all the intensities. Whereas White Noise has slightly higher loss
values than these background noises. This proves our third hypothesis that denoising capability
differs across noise types and thus some noises are filtered much better than others.
The behaviour of Model 3 is similar to our observations in Model 1, the major difference being
that the loss values are higher in this case than what we see for Model 1, but they still fall
below the value of 1.
However, for Model 2, the observed loss value surpasses the upper bound and deviates sig-
nificantly from the expected range, indicating a notable decrease in performance compared
to the other models. This prompted us to further investigate the cause for such a significant
difference in the performance. After extending the training duration to 36000 iterations, it was
observed that the L1 loss values for Model 2 fell within the acceptable range defined by the
upper and lower bounds.
In Figure 6.2, we show the average L2 loss across noise types and intensities for the test
dataset. We can see that L2 loss exhibits a similar behaviour as L1 loss. Except in the case of
Model 2, where the loss values are within the defined upper and lower bounds.

PESQ, STOI and SI-SDR
In the case of Model 1 and Model 3, we see that the PESQ score and SI-SDR values fall within
the limits defined by the upper and lower bounds. These can be observed below in Figure 6.3
and Figure 6.5 respectively. We see a significant rise in the average PESQ score and SI-SDR
for each of the noise types, as the SNR increases. Thus proving our second hypothesis where
with an increase in SNR, the L1 loss decreases whereas the audio quality increases. Similar
to L1 loss, the Reverb noise type shows a much higher score than what is seen for the other
noise types. We can see from Figure 6.5 that the distortion in the predicted data decreases
with the increase in SNR(higher SNR indicates that there is lesser noise in audio). This is in
line with our assumption that when the model denoises the audio, the amount of distortion
present decreases. Although for lower noise intensities, the STOI score is within the upper and
lower bound, we do see that for higher noise intensities such as 5 and 10, it does fall below
the lower bound as can be seen in Figure 6.4.
Model 2 fails to stay within the range of upper and lower bound even when the model is trained
for a longer duration. This indicates that although the L1 values may have improved when
trained for a longer duration, the quality of the audio predicted by the models is not desirable
when compared to the other models. But we also notice slight improvements when comparing
the model trained for 12000 iterations and the model trained for 36000 iterations. This does
tell us that the GAN setup requires longer training in order for the model to converge.

6.1 Discussion

We notice a slight disparity when comparing Dataset 1 with Dataset 2. For all the noise types,
Dataset 2 consistently displayed marginally higher L1 loss values compared to Dataset 1. How-
ever, for the clean dataset, Dataset 1 exhibited higher loss, indicating that Model 1 struggled
to make accurate predictions when tested with clean data since the model lacked any clean
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Figure 6.1: Average L1 Loss computed for the test set for each noise type across different
noise intensities.

data samples for training. This behaviour is consistent across the three models. For the PESQ
score, Model 1 yields a higher score for Dataset 2 rather than for Dataset 1. This suggests that
the model interpreted the clean data well and was able to use this information to make better
predictions resulting in audio with better quality. This observation is noticeable for Model 2
as well but is not present for Model 3.

We hypothesised that as the SNR increases, that is, as the amount of noise in the audio
decreases, the capability to denoise these audio files is better. This is because we expect that
it should be easier for the model to denoise when there is lesser noise in the audio.
We know that Reverb is much better filtered than the other noise types. An important factor
to note here is that the augmentation of clean audio data with reverb is accomplished by
using the PedalBoard Python library where a simple stereo reverb algorithm is used. The effect
that this reverb algorithm has is that it manages to generate augmented audio with different
acoustic settings. But the audio itself is still audible and intelligible even with lower intensities,
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Figure 6.2: Average L2 Loss computed for the test set for each noise type across different
noise intensities.

where the effect of reverb is higher. This explains why it is easier for the model to generate
better-quality audio when augmented with reverb.
As mentioned earlier, the background noises exhibit similar loss values, whereas white noise
has slightly higher loss values. On further investigation, we identified that this is mainly due
to the implementation of adding white noise and background noises being different. For every
audio file, we add every noise type with every noise intensity(SNR). The augmented audio
obtained after adding noise has the same signal-to-noise ratio as defined previously. But in the
case of background noises, we see that the resulting audio does not have the same SNR as
initially intended. This is due to the power of the noise itself which impacts the SNR of the
augmented audio.

A key observation that we noticed when listening to the predicted audio is that for Talk-
ing noise types, the model is able to distinguish that there is more than one speaker and
also identify the correct source that needs to be preserved. The model is able to filter out
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Figure 6.3: Average PESQ computed for the test set for each noise type across different
noise intensities.

the ”noisy” talking source and retain only the original speech. This explains why the loss for
Talking is lower and the PESQ is higher amongst the background noises. Another observation
we made was that the loss and metric values for Home and Nature noises very were similar.
This is because the noises that we apply to generate Home and Nature are closely related and
thus explaining why we notice this similarity. We wanted to identify the minimal noticeable
difference in L1 loss that is perceptually audible. On listening to the predicted audio files we
determined that the minimum noticeable L1 loss is 0.11 ≈ 0.12.

In Figure 6.6, we show the PESQ score obtained when the three models are trained on Dataset
3, that is, only clean data. We also show the PESQ score for the clean data that has not been
processed through any of the models, but instead, the target audio is converted to Mel Spec-
trogram and then vocoded using the CARGAN vocoder. Since the PESQ score is computed on
the time-domain waveform of the audio data, it is imperative to generate the corresponding
waveform from the Mel Spectrograms. This is of relevance to understanding if the conversion
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Figure 6.4: Average STOI score computed for the test set for each noise type across
different noise intensities.

from Mel Spectrogram to waveform is introducing any degradation to the audio quality. It
can be seen from the figure that it is indeed true that some amount of artefacts has been
introduced by the vocoder which is ≈ 0.0114.

The observation mentioned earlier regarding the STOI score falling below the lower bound in
case of higher noise intensities, such as 5 and 10, led us to research further. This was not in
line with our assumptions and hence we decided to compare the audio samples after obtaining
them from the vocoder. We discovered that in the case of noise intensities of 5 and 10 a certain
amount of distortion is introduced on the predicted data. Whereas the noisy input, although
has the presence of some noise in it, doesn’t impact the intelligibility of the original audio. We
noticed that for these intensities, the original speech is intelligible irrespective of the presence
of noise since the noise level is actually lower in these cases. But with predicted audio, we
see that there is some amount of distortion introduced which does affect the intelligibility and
thus results in a lower STOI score than compared to the noisy audio. Further investigations are
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Figure 6.5: Average SI-SDR computed for the test set for each noise type across different
noise intensities.

needed to determine whether these distortions are introduced by our models or if they come
from the vocoder when converting the Mel Spectrograms to the audio waveform.

In Table 6.2, we capture Pearson’s correlation between the L1 Loss and the PESQ score for
each noise type. We see that the L1 and PESQ are highly but negatively correlated. This
means that when L1 loss decreases, PESQ increases. Although we see such a high correlation,
it raises the question regarding the effectiveness of using the L1 loss function during training.
As we know, L1 loss captures the discrepancy between the predicted data and the target data.
This in reality isn’t as helpful to determine the perceptual audio quality of the predicted data.
Because even though we see in Figure 6.1 that the loss is very small, the PESQ score is not
very high, with an upper bound ≈ 2.08. Furthermore, we see that for L2 loss which has a
similar correlation as L1 loss, especially in the case of Model 2, the loss values were contained
within the specified bounds. This indicates that the model is performing fairly well, but when
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Figure 6.6: PESQ Score for the three models when trained on Dataset 3 along with the
PESQ score obtained when the clean audio is processed through CARGAN vocoder.

Pearson’s
Correlation

Nature Talking Home Reverb
White
Noise

L1 loss and
PESQ

-0.98517 -0.98852 -0.98557 -0.99612 -0.99720

L2 Loss and
PESQ

-0.97186 -0.97542 -0.97134 -0.98257 -0.99216

Table 6.2: Pearson’s correlation between L1 Loss and PESQ score and L2 Loss and PESQ
score.

we look at PESQ scores, we can conclude that the performance of Model 2 is not satisfactory,
in spite of what we see in L2 results. This was further proved by listening to the audio samples,
where in spite of noise removal, the quality of the enhanced audio was not up to par, and we
noticed significant distortion in the resulting audio. Thus, further investigation is needed to
use a more sophisticated loss function that is more in line with the perceptual audio quality.

Another aspect that we wanted to explore was to determine whether an enhancement model
by itself can be used as an audio quality assessment tool. During our research, we realised that
there is no single audio quality assessment metric that has been deemed the most effective in
determining audio quality. This poses a challenge since there is no general consensus regarding
the most appropriate way to determine audio quality and continuous research has been going
on in this regard. The idea behind this thought was that enhancement models that focus on
denoising of audio data essentially aim to remove the noise thus resulting in better audio qual-
ity. So, we could in turn use them to systematically measure the quality of the resulting audio.
In other words, enhancement models that are highly effective in denoising the data can be in
turn used as an indicator of the quality of the enhanced audio, thus behaving as audio quality
assessment tools. In order to investigate this, we captured the difference in the loss between
the noisy audio and the enhanced audio for each of the noise types at every SNR level, for
each of the models. This information is seen in Figure 6.7. We can note that the difference in
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loss between the noisy input and enhanced output reduces with higher SNR for all the noise
types. In Table 6.3 we also capture Pearson’s correlation between this difference in loss and
the PESQ score. Based on these results, we can conclude that it is indeed possible to use
the enhancement method as an assessment tool. The drawback of the current implementation
is that although the enhancement models serve as assessment tools, they fail to capture the
perceptual quality of the enhanced audio. On listening to the denoised audio, we noticed that
although noise was effectively removed, there was some amount of distortion in the speech thus
affecting the intelligibility. Further research needs to be performed to understand the reason
for these distortions, and if they can be resolved then we can effectively use the enhancement
models by themselves to determine the audio quality which also takes into consideration the
perceptual quality.

(a) Model 1 - ResUNet
(b) Model 2 - ResUNet with discrimi-
nator

(c) Model 3 - ResUNet with attention
layers

Figure 6.7: The difference in L1 loss between the noisy audio and the enhanced audio for
each noise type at different SNR levels.

Pearson’s
Correlation

Nature Talking Home Reverb
White
Noise

L1 loss and
PESQ

-0.994121 -0.996499 -0.995832 -0.899269 -0.928719

Table 6.3: Pearson’s correlation between the difference in L1 Loss of the noisy and en-
hanced audio files and PESQ score.

34



Chapter 7

Conclusion and Further Research

In this project, we explored the application of neural network-based audio enhancement tech-
niques and investigated the impact of various noise types on the enhancement process. By
utilizing the ResUNet architecture and experimenting with different variations, we aimed to
reduce noise and generate audio of better quality.

Through this study, we confirmed that the ResUNet architecture showed promising results
in reducing different noise types, including reverb, white noise and background noise(talking,
home and nature). Among the different noise types examined, it was observed that the models
excelled in reducing reverberation, followed closely by denoising talking noise.

The evaluation of the three models in speech enhancement revealed interesting findings. The
standard ResUNet architecture exhibited the highest overall performance, and ResUNet with
attention layers followed closely behind. On the other hand, ResUNet with additional GAN loss
displayed less desirable outcomes, with unpredictable results and comparatively lower perfor-
mance in terms of denoising and speech enhancement. The inconsistent performance of Model
2 suggests the need for further investigation and improvements to enhance its effectiveness.

Furthermore, the project examined the effectiveness of different objective metrics, such as
scale-invariant signal-to-distortion ratio (SI-SDR), short-time objective intelligibility (STOI)
and perceptual evaluation of speech quality (PESQ), to quantify the performance of the audio
enhancement process. These investigations allowed us to identify gaps in using L1 and L2
loss functions in training the neural network models for the purpose of audio enhancement.
We learnt that although these loss functions exhibit a high correlation with audio evaluation
metrics, they are not ideal to obtain audio of higher quality since they fail to capture the
perceptual quality. This led to the conclusion that it is highly important to design a more
sophisticated loss function that can capture the perceptual quality of audio, thus resulting in
better model performance.

While this project has yielded interesting results in neural network-based audio enhancement,
there are several avenues for future exploration and improvement. Some potential directions
for future work include:

• Evaluate Vocoders: We have noticed that the vocoders also introduce artefacts in the re-
sulting audio, thus impacting quality. It could be interesting to explore different vocoders
to determine how they impact the audio quality. It would also help to understand in depth

35



the reason for reduced audio quality when the Mel Spectrograms are passed through the
vocoder.

• Explore Different Language Dataset: Another research track would be to explore how the
models behave for different language datasets. This would help provide us with insights
into the generalizability of the audio enhancement techniques across different languages.

• Evaluate with other Quality Assessment Techniques: The quality assessment metrics we
used were PESQ, STOI and SI-SDR, of which both PESQ and STOI are not differ-
entiable metrics. Since a key conclusion of this study showed that the L1 and L2 loss
functions were not ideal for audio enhancement techniques, we could explore the usage of
differentiable quality metrics to train our models, which could result in better-performing
models. We could also extend this to further study other quality metrics such as VisQOL
that have been known to outperform metrics such as PESQ.

• Incorporate Noise Files in Training: One of the observations we had in this study is how
the presence of clean audio files led to better denoising capability which was seen in the
higher values for PESQ in the case of dataset 2. It would be interesting to see how the
models would behave when they have noise files also in the training process. The idea is
to use the noise files in the training process such that the model can identify the noise
from the original audio, thus providing better denoising capability. We could use a loss
function that would be heavily penalized when the enhanced audio contains noise, thus
enabling the model to effectively denoise the audio.
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Appendix A

Use of ChatGPT as a writing aid

ChatGPT has been a useful tool that has played an important role in my thesis project. I
primarily used ChatGPT as a writing aid, specifically for help in structuring the sections. In
order to obtain a good outline for the sections where I present my information in a logical and
continuous manner, ChatGPT was immensely useful.
For example, in the case of the Abstract, I provided ChatGPT with all the information re-
garding my project, including the main objective and the results of my study. I was provided
with a sample Abstract section with a good flow of information that summarized the project.
The sample structure was as follows - it started with what is the main objective of the paper
and was followed by the three ResUNet variations we used. Then it mentioned the noise types
and the evaluation metrics used, and the results of each of the models. It finally concluded
with the noise type that was denoised best and also another important conclusion from the
study regarding the correlation between L1 loss and PESQ. I used this sample as a baseline to
further build my Abstract section. Since my focus was more on the noise types and the noise
intensities, I shortened the information about the models. I added more details for the noise
types and intensities and discussed the most important aspects of my thesis instead. Thus,
ChatGPT helped me immensely in defining the flow of the information and worked as an initial
baseline which I then improved to include relevant information.
Similarly, for the Conclusion section, I used ChatGPT to define an outline for the information
flow. I retained the structure but provided the information that was relevant to my thesis.
For the Future Research section, I used ChatGPT to generate headings for the possible future
work by providing information on each of the future work topics that I had in mind.
Overall, ChatGPT has been immensely helpful as a writing aid for my Master’s thesis project.
Especially in helping me structure all my thoughts to allow for a more natural flow of infor-
mation.
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Appendix B

Audio Samples

Home Nature Talking White Noise Reverb

-10
Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

-5
Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

0
Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

5
Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

10
Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Input
Prediction
Target

Table B.1: A link to the audio samples, including the input, predicted and target audios
for each noise type of every intensity.
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