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Abstract

Over the past couple decades, the Covariance Matrix Adaptation Evolution Strat-
egy algorithm has been expanded and improved to solve more and more complex
problems. But there isn’t much account for researching its performance with the
concept of subpopulations. In this research, we investigate the effects that divid-
ing a population into subpopulations of varying sizes has on the performance of
CMA-ES. We extend the research to look at the potential benefits of different ini-
tialization techniques for the generation of subpopulations’ first center of mass. We
borrow from niching concepts to separate subpopulations on the search space and
explore population size adaptation strategies to further improve subpopulations.
We find that, when benchmarked on the BBOB test suite, subpopulations improve
the performance of CMA-ES for solving constrained problems in low dimensions,
especially when combined with population size adaptation.
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1 Introduction

The search for optimality is at the core of many principles of nature. Fauna and flora evolve
to their environment to maximize their survival, like bird beaks or tree leaves [45, 64].
Mankind naturally also searches for optimality when solving real-world problems. Before
computation was invented, simulation was a practical way of solving problems. But as
problems grow more and more complex, simulation of said problems can become unreal-
istic.
The development of optimization algorithms for solving complex problems, or optimiza-
tion heuristics, has been an ever-evolving field since its beginnings [23, 56, 24]. This
constant improvement and development led to the invention of many new techniques and
algorithms over the years, many still utilized today. One such concept is Evolutionary Al-
gorithms (EAs) [89], modelled after the theory of evolution, in which solutions are made
to represent individuals of a population, mimicking natural selection, genetic variation,
and survival of the fittest to find optimal solutions. Such algorithms usually consist of 4
phases; selection, crossover, mutation and evaluation. Evolutionary Strategies [67, 71, 7]
are a category of EAs that does not employ crossover to generate new individuals, instead
relying solely on mutation to generate new individuals.
A problem often attributed to population-based algorithms is their struggle to learn from
the search space, leading potential solutions to converge too fast and get stuck in local
optima. An issue made more obvious in non-convex problems. Due to the pressure of
selection, solutions with higher fitness are favoured, which hinders the possibility of leav-
ing a local optimum. There exist a few concepts to improve this problem. For example,
adaptive parameters like mutation rate can adjust the exploration-exploitation balance
as the evolution proceeds. Another concept is diversity maintenance, such as niching, or
what we employ in this research: subpopulations.
In this research, we investigate the following research questions:

• RQ1: What are the effects of using subpopulations with the algorithm Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [38]?

• RQ2: How do different initialization techniques impact the performance of subpop-
ulation CMA-ES?

Furthermore, we explore the application of promising concepts to CMA-ES when com-
bined with subpopulations:

• RQ3: How does enforcing separation of subpopulations across the search space
impact the performance of subpopulation CMA-ES?

• RQ4: How do adaptive population size techniques affect the performance of sub-
populations in CMA-ES?

The run configurations of each experiment are benchmarked on two multi-modal BBOB
problems [37]. We pick those two functions as they are among the most interesting func-
tions in the BBOB test suite, being highly multimodal, non-convex problems with a lot of
local optima. Finally, we benchmark the best/most promising configurations of previous
experiments on an extended test suite of BBOB problems.
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1.1 Related Works

The idea of dividing a population into smaller groups of individuals was proposed as early
as 1997 by Izumi et al. [41], who introduced competing subpopulations for Evolutionary
Strategies as a solution for population diversity. Finding the right population diversity is
crucial; if the population becomes too diverse, it will lead to inefficiency and slow con-
vergence by exploring irrelevant regions of the search space. On the other hand, if the
algorithm is too exploitative, it will become homogeneous and could lead to sub-optimal
solutions [55]. The concept of dividing a population into smaller groups stands at the
basis of many other algorithms, such as parallel genetic algorithm (PGA) [61] and is-
land models [79]. PGA divides a genetic algorithms population into separate parts that
will then be evolved in parallel, using multi-processing to explore the search space faster.
The idea of subpopulations was also applied to other algorithms to increase their per-
formance, such as Multi-Swarm Particle Optimization [39] (or the more efficient Niching
Migratory Multi-Swarm Optimizer (NMMSO) [28]), which uses a form of subpopulation
with Particle Swarm Optimization (PSO) algorithm. PSO models the behaviour of a flock
of birds, and Multi-Swarm PSO simply divides or adds multiple swarms evolving indepen-
dently. Niching methods are techniques employed to address the loss of solution diversity
in multimodal problems [88], finding a larger number of optimal solutions. Evolutionary
Algorithms tend to converge toward a single optimal solution, which can be problematic
when looking at multimodal problems [53, 78].

A lot of research has been conducted on the performance of Covariance Matrix Adapta-
tion [4, 5, 29] due to its capacity at solving black-box problems. It has been employed for
hyperparameter tuning of neural networks, whether that is for surrogate models [49, 48] or
for speech recognition [87]. Due to the nature of CMA-ES, the algorithm was quickly ap-
plied to solve multi-objective multimodal problems [69, 46, 40]. The use of subpopulations
with Evolutionary Algorithms has grown in the past three decades [90, 50, 68, 18]. In the
work by Ahrari et al. [1], the authors proposed a new algorithm in the form of covariance
matrix self-adaptation evolution strategy with repelling subpopulations (RS-CMSA), a
niching method using repelling subpopulations and taboo regions. Their algorithm, which
expands the pre-existing Covariance Matrix Self-Adaptation Evolution Strategy (CMSA-
ES ) [9], proved to perform well in the CEC2013 competition. The algorithm was further
improved in RS-CMSA-ESII [2]. In their research, Chen et al. [15] proposed a new algo-
rithm S 3-CMA-ES, using subpopulations to improve solving multi-objectives large-scale
problems.

We note a lot of research analyzing the effect of different population initialization meth-
ods on Evolutionary Algorithms [81, 43, 27], but little research focused on evaluating the
effect of those methods on the CMA-ES algorithm as it is designed to function almost
parameter-free. Furthermore, unlike a majority of Evolutionary Algorithms, CMA-ES
does not initialize the first population individually, but rather samples the individuals
from a centroid and sigma [38]. In recent years, de Nobel et al. [19] took inspiration from
modular Evolutionary Algorithms framework ModEA [82] to create a modular CMA-ES
framework. In their works, the authors assess the performance of individual algorithmic
ideas by performing hyperparameter tuning on the novel framework ModularCMAES.
We will extend this framework in our research to incorporate subpopulations. We note
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the research of Vermetten et al. [84] in which they investigate the effect of strict box-
constraints along with two separate initialization techniques; center (center of the search
space) and random (uniformly random in the domain). We aim to investigate the effect of
using different initialization methods to generate the subpopulations’ initialization points.

Other techniques and concepts have been invented and researched to improve the perfor-
mance of CMA-ES. As earlier mentioned, niching methods have shown to improve the
performance of CMA-ES, as shown in the work of Shir et al. [76], in which they explore
a novel ”adaptive niche radius” technique for solving the niche radius problem [75] and
achieve great results. RS-CMSA [1] similarly employ niching techniques for the core of
their algorithm to solve multimodal multi-objective problems. In our research, we look
into the concept of search space partition as a form of niching to maintain diversity of
solutions. The partitioning of the search space has been applied to a variety of problems.
While its main uses have been to decrease the complexity of high-dimensional problems
[70, 86]. El dor et al. [25] applied space partitioning to the multi-swarm PSO algorithm
to solve stagnating convergence to local optima, with the results showing great efficiency.

Another great improvement that CMA-ES has benefited from is population size adapta-
tion. Being a population-based algorithm, the population size is an important yet hard-
to-tune parameter. One solution is to employ population size adaptation. Algorithms such
as IPOP-CMA-ES [6], BIPOP-CMA-ES [33] or CMAES-APOP [58] are among the most
popular algorithms using a form of population size adaptation to improve on the per-
formance of CMA-ES. The many benchmarks on BBOB test suites often put CMA-ES
variants with adaptive population size among the best performing algorithm [36, 58, 33, 3].
In their research, authors Nishida and Akimoto [60] propose a CMA-ES variant with adap-
tive population size, showing competitive results against the BIPOP-CMA-ES algorithm
[59].

1.2 Structure

This thesis is divided into the following sections; firstly, in Section 2, we provide definitions
and background on concepts used, which are then explained in detail in Section 3. We then
cover the experimentation and results in Section 4. Finally, we discuss and summarise this
research in Section 5, and present directions for future work in Section 6.
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2 Definitions / Background

In this chapter, we provide extended definitions for concepts employed in this study.
We begin with an extended definition of the core algorithm used, Covariance Matrix
Adaptation Evolution Strategy. We then break down concepts relating to subpopulations,
search space partitioning and adaptive population size. Finally, we provide a background
on the tools and frameworks employed.

2.1 CMA-ES

Covariance Matrix Adaptation Evolutionary Strategy, more commonly known by its
acronym CMA-ES, is an algorithm developed by Hansen, Müller and Koumoutsakos in
2003 [38]. CMA-ES is a stochastic algorithm for optimization of non-linear, non-convex
functions. Being an evolution strategy [67, 71, 7], CMA-ES uses populations of individuals
to represent solutions, which are updated by the means of mutation and selection. The
Covariance Matrix is used by the algorithm to learn the landscape of the objective func-
tion, guiding the sampled individuals toward promising areas of the domain. CMA-ES is
considered by many to be a state-of-the-art algorithm [47, 42, 57, 74] particularly efficient
for black-box continuous optimization problems, which, unlike other powerful algorithms,
does not require extensive parameter tuning. Figure 1 shows effectively how CMA-ES
samples individuals toward the global optimum. The algorithm can be broken down into
the following steps [34].

2.1.1 Offspring Sampling

CMA-ES generates new points of a population (i.e. the offspring) by using multivariate
normal distribution. It uses the following equation to sample new search points at a
generation g:

xg+1
k ∼ mg + σgN

(
0, Cg

)
for k = 1,..., λ (1)

where:

xg+1
k ∈ Rn denotes the k-th offspring from generation g + 1.

mg ∈ Rn denotes the mean value of the search distribution at generation g.

σg ∈ R>0 denotes the standard deviation (or step-size) at generation g.

N
(
0, Cg

)
denotes the multivariate normal distribution (see 3.2.2) with zero mean

and covariance matrix Cg.

Cg denotes the covariance matrix at generation g.

From the above equation, we can gather that three parts have to be computed to generate
the next population of offspring; the mean mg+1, the covariance matrix Cg+1 and the
step-size σg+1. Note that this sampling also applies to the first population of individuals,
although for this first generation, the mean mg0 cannot be determined from a parent
population, and is instead specified (for example the center of the search space) or is
randomly placed on the search space.
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Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6

Figure 1: CMA-ES algorithm. The population is sampled from a multivariate distribution.
The distribution leads the population to the global optimum.

2.1.2 Selection (i.e. moving the mean)

The mean of the next generation is computed as a weighted average of µ selected points
from sample xg+1

1 , ..., xg+1
λ , using the following equation:

mg+1 =

µ∑
i=1

wix
g+1
i:λ (2)

where:

µ ≤ λ denotes the parent population size.

wi...µ ∈ R denotes the positive weight coefficients for recombination, such that w1 ≥

... ≥ wµ > 0 and
µ∑

i=1

wi = 1.

xg+1
i:λ denotes the i-th ranked individual in f(xg+1

i:λ ) where f is the objective function
to be minimized. f is defined by the BBOB problem, and can be bounded or un-
bounded. CMA-ES can handle both but will require a form of bound correction to
relocate individuals sampled outside bounds.
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2.1.3 Adapting the Covariance Matrix

CMA-ES’s covariance matrix adaptation amounts to learning a second-order model of
the underlying objective function, meaning the curvature of the gradient. The algorithm
learns the objection function’s optimization landscape, helping it reach faster and more
accurate results. The update method is a combination of multiple methods, mixing rank-µ
and rank-one updates.
Rank-µ update computes the weighted average of elite solutions as a reliable estimator
in the form of the following method:

Cg+1 = (1− cµ

λ∑
i=1

wi)C
g + cµ

λ∑
i=1

wiy
g+1
i:λ

(
yg+1
i:λ

)T
(3)

where:

cµ ≤ 1 denotes the learning rate for updating the covariance matrix.

w1...λ ∈ R denotes positive weight coefficient, such that w1 ≥ ... ≥ wµ > 0 ≥ wµ+1 ≥

wλ and usually
µ∑

i=1

wi = 1 and
λ∑

i=1

wi ≈ 0.

yg+1
i:λ = (xg+1

i:λ −mg)/σg.

Rank-one update on the other hand modifies the covariance matrix using the evolution
path across generations, exploiting the correlation between consecutive steps:

Cg+1 = (1− c1)C
g + c1p

g+1
c pg+1

c
T

(4)

Those two methods (Equations 3 and 4) are combined to form the following update rule:

Cg+1 = (1− c1 − cµ
∑

wj)C
g + c1 pg+1

c pg+1
c

T︸ ︷︷ ︸
rank-one update

+cµ

λ∑
i=1

wiy
g+1
i:λ

(
yg+1
i:λ

)T
︸ ︷︷ ︸

rank-µ update

(5)

2.1.4 Step-size control

To control step-size, CMA-ES uses Cumulative Step Length Adaptation (CSA), which
will adapt the step-size by exploiting the sum of successive steps that have been taken
beforehand. CSA tracks the progress of the evolution path and increases the step-size
when making progress, and decreases it when it stagnates. CMA-ES uses CSA in the
form of the following equation:

σg+1 = σg exp

(
cσ
dσ

(
∥pg+1

σ ∥
E∥N (0, I)∥

− 1

))
(6)

where:

σg denotes the step-size at generation g.

cg < 1 denotes a user-defined learning rate.
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cg ≈ 1 denotes a user-defined damping parameter.

pg+1
σ ∈ Rn denotes the evolution path at generation g + 1.

E∥N (0, I)∥ denotes an expectation of the Euclidean norm of a N (0, I), where I
represents an identity matrix.

2.2 Niching

In many cases involving a multitude of optima, Evolutionary Algorithms may struggle to
efficiently find that set of optima without resorting to multiple independent runs, which
is not computationally efficient [61, 78, 77]. One can consider running those processes
simultaneously on separate CPUs (as is the idea behind Parallel Genetic Algorithms [61]),
but this process still does not ensure finding all of the optima. A more efficient technique
comes in the form of niching methods.
Niching methods are techniques/concepts used by Evolutionary Algorithms to address the
loss of solution diversity when dealing with multimodal problems [78, 76]. A traditional
EA will only be able to find a single optimal solution from a problem with multiple
solutions. Niching addresses this issue by finding a set of optimal solutions. Individuals
of a population are separated in some way into different subgroups (i.e. niches) that will
focus on finding the optima of a specific area of the search space, discouraging convergence
toward a single region of the objective function. One such technique is fitness sharing,
where the fitness of individuals are scaled based on their relative proximity to other
individuals. This ensures that densely populated regions have a lower fitness value than
sparsely populated regions [53]. Another popular technique is crowding, which modifies
the selection scheme to decide which individual is going to survive to the next generation.
Crowding pairs up an individual from the offspring population with an individual from
the parent population using a crowding distance d. The strategy then chooses which
individual to choose based on its fitness. Deterministic crowding for example will keep
the individual with the best fitness [53, 13]. Niching has been applied to a multitude of
algorithms (GAs, PSO, ES, ...), proving to improve diversity and discovering a greater
set of optima for multimodal problems [53, 30, 78, 75]. While they borrow from similar
principles, it is important to note the difference between niching and subpopulation, and
their intended purposes. Niching methods aim to divide populations of individuals to
focus on specific sections of the search space, identifying global optima in that regions.
Subpopulations on the other hand enable groups of individuals to evolve independently,
resulting in more exploration of the search space and greater diversity. We provide a
summary of similarities and differences between methods that separate populations of
individuals to palliate specific issues in Table 1.

2.3 Island Models

As stated previously, three issues commonly attributed to Evolutionary Algorithms are
that they can be computationally expensive and take a long time to reach the optimal so-
lution, and they often converge and stall at a local optimum [31, 72]. Island models (IMs)
have been found to resolve those issues quite well, especially the former [79]. Island models
are models of Evolutionary Algorithms inspired by the concept of biogeography. In island
models, a population of candidate solutions is divided into multiple subpopulations called
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Table 1: Similarities and differences between cited algorithms using subpopulations

Name Similarities Differences

Parallel Genetic Algorithm
population-based, evolves populations
using selection, mutation and crossover

subpopulations are distributed over
separate processes to evolve popu-
lations simultaneously and are kept
strictly separate

Island Models
population-based, maintains diversity
withing subpopulations similarly to
niching

individuals often migrate between is-
land (i.e. subpopulations)

CMA-ES
population-based, uses evolutionary
principles (without crossover)

uses covariance matrix adaptation to
sample individuals from mutation, us-
ing CSA (equation 6) to control the mu-
tation step-size

Niching strategies
typically population-based, like island
models, maintains population diversity

primary focus is to address multimodal
problems, discouraging convergence to-
ward a single region of the objective
function

islands. Each island operates independently and runs its own evolutionary algorithm. Is-
lands can exchange knowledge periodically through a variety of different mechanisms, be
that through copying individuals, or performing mutation and crossover operations be-
tween islands.
The underlying idea behind island models is to introduce forced diversity and prevent
premature convergence to a local optimum, similarly to the concept of niching. Through
the use of parallelism borrowed from parallel GAs, island models can run each subpopu-
lation’s algorithm concurrently, reducing computation. By allowing islands to evolve in-
dependently and migrate individuals, the algorithm explores multiple areas of the search
space simultaneously.

2.4 Promising Concepts

Additionally, it is important to provide a background of the techniques that were re-
searched to further improve subpopulations and CMA-ES: search space separation and
adaptive population size control.

2.4.1 Support Vector Machine for Separation

Support Vector Machines (SVMs) are supervised machine learning models most commonly
used for classification and regression analysis, proven to be effective for solving linear and
non-linear problems. The concept behind Support Vector Machines is to find an optimal
hyperplane that will separate different classes of data points.
Support Vector Machines can handle linear and non-linear machines through the use of
different types of kernels. The kernel transforms input data into a higher-dimensional
feature space that is easier to linearly separate. The open-source library scikit-learn

offers a variety of kernels, such as RBF, sigmoid, polynomial, and linear [65].
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2.4.2 CMA-ES with adapting population size

Population size is one of the core parameters of any evolutionary algorithm and can be
hard to properly tune. A population size larger than its default 4 + ⌊3 ln(n)⌋ can lead to
better results [6, 4, 5] of noisy multimodal problems, but it becomes on the same occasion
more computationally expensive.

IPOP-CMA-ES, which stands for Increased POPulation size CMA-ES, builds upon the
CMA-ES algorithm by incorporating the concept of increasing the population size at
restarts [6]. If CMA-ES stops before reaching the optimum target or/and before exceed-
ing the budget, a restart occurs. At each restart, the parent λ and offspring µ sizes are
increased by a set factor, typically between 1.5 and 5. Authors of the IPOP-CMA-ES
paper [6] found doubling the population up to 512 to be a good balance.
By increasing the population size, IPOP-CMA-ES aims to hop out of local optimum by
covering more of the search space, providing a good balance between exploration and
exploitation. IPOP-CMA-ES has proven to be quite effective on multimodal functions [3].

BI-Population CMA-ES, or BIPOP-CMA-ES, is another algorithm that uses increasing
population size at restarts [33]. Compared to IPOP-CMA-ES however, BIPOP-CMA-ES
switches between two different interlaced regime schemes using the regime with the lowest
budget of function evaluations. If the first regime is used, the population size is doubled
as λlarge = 2irestartλdefault up to a limit of 9 restarts (or λlarge = 512). Under the second
regime, CMA-ES is restarted with a smaller population size:

λsmall = ⌊λdefault(
1

2

λlarge

λdefault

)U [0,1]2⌋

where U [0, 1] is a uniform distribution in [0,1] and λsmall ∈ [λdefault, λ/2].
When benchmarked on BBOB noiseless and noisy functions, IPOP-CMA-ES and BIPOP-
CMA-ES have shown to perform quite well [4, 5].

CMA-ES-APOP is a variant of CMA-ES which uses adaptive population sizes to solve
noiseless multimodal functions [58]. The algorithm collects information on the parameter
nup, which is the number of times the median fitness of the current iteration is better
than the previous iteration for S := 5 consecutive iterations. The size is then adapted for
the next S iterations. CMA-ES-APOP was benchmarked on the BBOB test suite, and
showed good performance on well-structured multimodal functions, but performed poorly
on weakly-structured multimodal functions [58].

2.5 Frameworks

Additionally, we present a background to the resources and frameworks that are used to
conduct the research. This regards a summary of available CMA-ES frameworks available,
and the one selected. We also detail the platform used for experiments and the test suite
on which those experiments are benchmarked.
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2.5.1 ModularCMAES

There are a few frameworks available offering implementations of the CMA-ES algorithm,
such as pycma [35], a python implementation by N. Hansen, author of the CMA-ES
paper. We also note the python packages cmaes [73], which offers CMA-ES and some
of its variants (Warm-Starting, IPOP-CMA-ES, ...) and pymoo [10], which offers greater
support for multi-objective problems.
In this project, we used the python library ModularCMAES [83, 19]. This package offers a
modular implementation of CMA-ES algorithms, which allows for easy tuning and testing.
Furthermore, this package is built with the ioh package, which makes benchmarking on
the BBOB test suite more accessible.

2.5.2 IOHprofiler / IOH

IOHprofiler [21] is a benchmarking platform that offers a variety of tools for evaluating
iterative optimization heuristics. It can be broken down into multiple components han-
dling different purposes. Three of those components will be broken down in detail as they
will be used in this research.
IOHproblem offers the implementation of multiple benchmark problems, such as Pseudo-
Boolean problems (PBO) and Black-Box Optimization Benchmarking (BBOB), which is
used to benchmark this research. The BBOB test suite is an easy-to-use framework de-
signed by COCO for benchmarking black-box optimization algorithms. The framework
has been used for multiple workshops of different conferences, like GECCO (2009, 2010,
2012, 2013, 2015-2022) and CEC (2015) [4, 5, 37].
IOHanalyzer accepts benchmarked data from the user and provides detailed graphical
analysis back [85]. IOHanalyzer allows for the analysis of results in two ways: as fixed-
target results and as fixed-budget results. Fixed-target results encapsulate the running
time required to obtain a desired target value. Fixed-budget results encapsulate the ob-
jective function values obtained given a certain budget of function evaluations.
IOHdata contains an archive of selected sets of benchmarks of different sources, such as
COCO and Nevergrad. Using those recorded results, we are able to compare the perfor-
mance of our algorithms.

2.6 BBOB

As mentioned in the section above, the BBOB test suite is a powerful framework often
used to benchmark optimization algorithms [37]. The test suite covers a variety of func-
tions, separated into multiple categories. For this research, we used the standard test suite
of noiseless, single-objective and scalable test functions. This suite contains 24 functions,
available in variable dimensions (2, 3, 5, 10, 20 and 40), and 15 instances. Table 3 provides
a description of the functions available and their properties. While CMA-ES is able to
handle both constrained and unconstrained problems, we will only be using constrained
domains in our research. We bind the domain between -5 and 5.
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In our experiments (Sections 4.2, 4.3, 4.4 and 4.5), BBOB functions 3 (Equation 7) and
4 (Equation 8) were used to evaluate the performances of configurations. Those functions
are highly multimodal, with roughly 10D local optima (D is the dimension). The BBOB
Rastrigin function introduces a factor to alleviate the symmetry and regularity of the
original Rastrigin function.

f3(x) = 10

(
D −

D∑
i=1

cos(2πzi)

)
+ ∥z∥2 + fopt (7)

with z = Λ10T 0.2
asy(Tosz(x− xopt)) as disturbance factor

f4(x) = 10

(
D −

D∑
i=1

cos(2πzi)

)
+

D∑
i=1

z2i + 100fpen(x) + fopt (8)

• zi = siTosz(xi − xopt
i ) for i=1...D

• si =

{
10× 10

1
2

i−1
D−1 if zi > 0 and i = 1, 3, 5, ...

10
1
2

i−1
D−1 otherwise

for i=1...D

Rastrigin function (equation 7) Büche Rastrigin function (equation 8)

Figure 2: BBOB objection functions 3 and 4 taken from the BBOB function techreport
[29]. Both functions show high multimodularity, which complicates optimization.
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3 Methodology

In this section, we detail the methods and concepts that were investigated and experi-
mented on. We provide definitions of each technique or algorithm benchmarked in Section
4. The source code of our implementation is available in the project repository1.

3.1 Sub-population in CMA-ES

As mentioned earlier, we use the pre-existing python package ModularCMAES [19]. Subpop-
ulations are represented as identically initialized algorithms evolving together in a same
search space. The modularity of ModularCMAES enables us to create separate instances
of CMA-ES with independent variables, but share an IOH logger to record the results of
all subpopulations as one algorithm. This means that we are able to create instances with
exactly the same parameters (e.g. SP-CMA[10] which has 10 identical subpopulations, or
instances with different parameters (SP-CMA[MIXED] which has a big subpopulation along
with 5 smaller ones). We use the abbreviation SP-CMA[n] for subpopulation CMA-ES
configurations with subpopulations of n individuals. By making subpopulations identi-
cal, we posit that subpopulations are given equal chances of exploring and exploiting the
search space. The algorithm employs pseudo-parallelism to evolve populations one at a
time. Instead of using PGA’s parallelism on separate CPUs [61], each subpopulation takes
turn evolving on one shared CPU. The initialization point of a subpopulation, i.e. the first
population’s center of mass, is determined using uniform sampling as this is the default
setting for ModularCMAES and is the conventional initialization technique used by many
algorithms. While the subpopulations share the search space and may explore the same
areas of the domain, they do not interact with each other in any capacity. This makes
our algorithm a mix of island models and PGA, separating a population into subgroups
(i.e. subpopulations) and evolving them in pseudo-parallel, prohibiting any interactions
between the subpopulations.

3.2 Centroid initialization techniques

The performance of an Evolutionary Algorithm is greatly impacted by the initialization of
the first population, and while making good guesses can facilitate finding a local optimum
[66], one cannot make guesses about the search space in black-box problems [16]. For this
reason, many researchers employ pseudo-random number generators to initialize the initial
population (or population centroid for CMA-ES), and using a strong initialization method
can improve the performance of the algorithm [16, 51, 52]. When dealing with constrained
problems (as is the case in this study), points may be sampled outside of the bounds and
will need to be resampled or corrected to prevent the algorithm from exploring infeasible
solutions [84]. We use saturate correction, which corrects out-of-bounds points to the
nearest corresponding bound [84]. With limited population sizes, the chances of exploring
promising regions of the search space decrease as the dimensions of the search space
increase. The importance of generating an initial population covering the search space
effectively can thus result in higher solution quality. We break down a few techniques that
we used to initialize the initial centroid of subpopulations. Figure 3 displays how each
method described below affects the sampling of 100 points in 2 and 3 dimensions.

1https://github.com/ernestvmo/ModularCMAES
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Figure 3: Sampling 100 points using different initialization methods.
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3.2.1 Uniform Sampling

Uniform sampling involves generating random points or samples within a given space, such
that each point has an equal probability of being selected. The distribution of points is
uniform, meaning they are evenly spread across the space. In uniform sampling, all values
within the range of the distribution have an equal chance of being sampled, resulting
in a flat or rectangular probability distribution. With CMA-ES, we uniformly sample n
number of points, with n representing the number of subpopulations. The points are used
for the first centroid of each subpopulation.

3.2.2 Gaussian Sampling

Gaussian sampling generates samples taken from the normal distribution. The distribution
is symmetric around its mean, showing that data occurs more frequently around the
mean. It is the core principle behind the probability bell curve. The distribution uses the
formula f(x) = 1

σ
√
2π
e−

1
2
(x−µ

σ
)2 , where µ represents the mean and σ represents the standard

deviation. This formula transforms a uniform distribution into a Gaussian distribution.
In a Gaussian distribution, 68.2% of the samples will be within ± one σ away from the
mean, 95.4% of the samples within ± two σ from the mean, and 99.7% of the samples
within ± three σ from the mean.

3.2.3 Poisson Disk Sampling

Poisson Disk sampling [12] generates sets of points that are uniformly distributed across a
given space while maintaining a minimum distance, known as radius, between two points.
Poisson Disk sampling ensures that newly generated points are placed at a safe distance
from existing points, resulting in well-distributed points while avoiding clustering. Taking
an n-dimensional space, the domain is divided into cells of size r/

√
n, where r is the

minimum distance between samples (radius), and each cell can only contain one sample.
The disadvantage of Poisson Disk is that it is quite dependent on finding the right radius
according to the number of points to generate. A smaller radius might lead to regions
of the search space not covered, while a bigger radius might lead to points outside the
search space. We found that using a radius of 0.2 provided a good distribution for the
different subpopulation configurations in 2 dimensions and 3 dimensions (see Poisson Disk
in Figure 3).

3.2.4 Latin Hypercube Sampling

Latin Hypercube sampling is a stratified-random procedure proposed in 1979 [54]. To
generate n points, Latin Hypercube sampling divides each dimension of the parame-
ter space into n equally spaced non-overlapping intervals and then samples points ran-
domly from each interval. This process ensures great coverage of the search space. While
Latin Hypercube is typically used to cut down computer processing time [62], its design
is compelling for population initialization. Furthermore, Latin Hypercube scales well to
higher-dimensional spaces by comparison to uniform sampling as dimensions are sampled
separately [63].
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3.2.5 Halton Sampling

Halton sampling is a low-discrepancy, deterministic quasi-Monte Carlo method that gen-
erates points based on the Halton sequence [32]. The Halton sequence uses specific sets
of coprime numbers, integers whose only common positive integer divisor is 1. The n-th
sample from the sequence is generated by using the coprime of each dimension to convert
n to base of the coprime. For example, consider the 10th point of the Halton sequence in
three dimensions. We use coprimes 2, 3 and 5 for each dimension respectively. We trans-
form 10 to base 2, ’1010’, invert it and add it behind the decimal point, 0.01012, which
results in 1 ∗ 2−1 + 0 ∗ 2−2 + 1 ∗ 2−3 + 0 ∗ 1−4 = 0.3125. Apply the same process on the
other dimensions (but with bases 3 and 5), we find that the 10th point of the sequence
is (0.3125, 0.37035, 0.08). While the Halton sequence performs well in low dimensions, it
is often modified to alleviate linear correlation in higher dimensions by using scrambled
Halton [11] or leaped Halton [44].

3.2.6 Sobol Sampling

Sobol sampling is a low-discrepency, deterministic quasi-Monte Carlo method that gen-
erates points using the Sobol sequence [80]. The Sobol sequence, first introduced by Ilya
M. Sobol in 1967, uses a combination of primitive polynomials, direction vectors and gray
code [17, 22] to generate uniform points on the search space with better coverage than
uniform sampling. Gray code is a form of binary that uses a different encoding method
to increment from one number to another, making the encoding less prone to errors [22].
Similar to Halton, variants have been researched to render Sobol less linearly correlated
[8].

3.3 Enforcing separability

As we mentioned earlier, evolutionary algorithms can be improved by applying a process
called niching. Niching aims to maintain diversity by leading individuals to explore differ-
ent regions of the search space [78]. While we do not employ niching to extract a multitude
of solutions from a multimodal problem, we explore the concept of niching through the
use of Support Vector Machines (SVM ) to enforce separability of the subpopulations. We

S1
S2

S3

S4

(a) Subpopulation centroids
and their SVM region

S1
S2

S3

S4

(b) Points sampled before
correction

S1
S2

S3

S4

(c) Points sampled after cor-
rection

Figure 4: Forced separation of subpopulations through the use of SVM regions
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coin the term centroid to represent a subpopulation’s initialization point, or its mean mg

if the algorithm is running. Using the subpopulations’ centroid, we can linearly separate
each subpopulation and restrict future sampled individuals to their respective regions.
The Support Vector Machine is initially trained on the initialization points. The SVM is
then retrained from the new centroid/mean of the sampled individuals. We define SVM
regions as the decision regions split from the decision boundaries of the SVM.
Due to the randomness of CMA-ES, individuals can be sampled outside of the dedicated
SVM region. Sampling those individuals until they fit the SVM bounds can lead the al-
gorithm to be stuck in a loop, which hinders the algorithm’s performance. An overview
of this process is shown in Algorithm 1. Instead, the individuals can be corrected back
to their dedicated SVM region. Figure 4 shows the process of assigning SVM regions to
each subpopulation and correcting out-of-bounds samples. Correction is only applied to
out-of-bounds points, and solutions are only evaluated after they have been corrected by
SVM correction and saturate correction. We recognize a drawback of this method being
that the algorithm can sample good points outside of their allocated SVM region, result-
ing in losing these points and potentially missing out on great solutions. We focus on the
potential benefits of restricting sampling to SVM regions. We discuss two methods that
were investigated to correct points.

Algorithm 1: SVM correction

Data: X = sampled individuals, coefs = decision boundaries, tsubpop =
subpop target, C = centroid

Result: X corrected individuals
while any x ∈ X not in tsubpop do

for h ∈ coefs do
intersect ← solve linearly for h and x

end
I ← closest intersect to C on vector v⃗ using Euclidean distance
if mode = orthogonal then

w⃗ ← vector from I to x

xproj ← h ∗ −h·w⃗
h·h + x

end
x← xproj

end

3.3.1 Correction at the Intersection with a decision boundary

With this method, points are corrected back to the SVM region by finding the intercept
between the hyperplane and the vector of the point and the centroid. We take h the
hyperplane that separates two points; point A the centroid of the supposed SVM region,
and point B the centroid of the SVM region in which sampled point P is incorrectly lo-
cated. The hyperplane is the decision boundary that separates the two regions. We define
a vector v⃗ as the vector leaving from point A and point P . Finally, we find the intercept
between the vector v⃗ and hyperplane h. This intercept is now the corrected individual.
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(b) Orthogonal Projection Correction

Figure 5: Support Vector Machine correction. Point P is supposed to be in the blue
region, but was sampled out of bounds in the red region. Both methods correct the point
back to Pcorr. For orthogonal projection, the process must be applied twice to bring the
point to the right region.

Consider the extreme scenario of Figure 5a. In this scenario, we have 4 different subpop-
ulations. Let’s assume that point P should be in the blue region, but was sampled out
of bounds in the red region, close to centroid S1.
We begin by identifying vector v⃗ starting from centroid S3 and ending at new point P .
Next, we need to extract the hyperplanes bounding centroid S3. n number of subpopula-

tions results in
n−1∑
i=1

1 total of decision boundaries. Extracting the decision boundary only

bounding S3, we are left with n− 1 decision boundaries.
Using linear algebra, we can find the intersection of a hyperplane and a vector. We trans-
form vector v⃗ to equation form, solving for each variable. We can then solve for t with the
hyperplane, and use the t value to find x, y and z. This operation is broken down below:

h→ ax+ by+ cz = d v⃗ = ⟨i, j, k⟩ P = (e, f, g)

x = i ∗ t+ e

y = j ∗ t+ f

z = k ∗ t+ g

t = a ∗ (i ∗ t+ e) + b ∗ (j ∗ t+ f) + c ∗ (k ∗ t+ g)− d

(9)

Since we can have multiple decision boundaries/hyperplanes intersecting with the vector,
we need to check all intersections and extract the one closest to the SVM region’s centroid.
This point is considered the corrected new point P ′.

3.3.2 Correction using Orthogonal Projection onto a decision boundary

This method extends the intersection correction with a few more additional steps. Instead
of correcting the point to the intersection of the vector and the hyperplane, the point is
corrected to the orthogonal projection of the point onto the hyperplane. Let the intersec-
tion between the vector v⃗ and the hyperplane be point I, we establish vector w⃗ starting
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from intersection I and ending at new point P . We then compute the projection of point
P through vector w⃗ onto hyperplane h using the following operation:

Pproj = h ∗ −h · w⃗
h · h

+ P (10)

The projection Pproj may get corrected outside the dedicated region, in which case the
process is repeated until the point is accurately corrected (see Figure 5b).

3.4 Population Size Adaptation

Additionally, we consider the method at the core of the IPOP-CMA-ES algorithm [6].
IPOP-CMA-ES increases population size at local restarts. We apply this process of in-
creasing the population size to the concept of subpopulations. After a user-defined t
iterations, we order the subpopulations in order of overall fitness progress, meaning the
value by which the fitness of the subpopulation has improved. That best subpopulation’s
population size is then increased by a user-defined r rate. After trial and error, we found
that increasing the population size by 10% and 20% every 500 or 1000 iterations provided
the algorithm with a good balance.
We also decided to investigate the effect of maintaining the overall individuals count the
same at restarts, opting for resource re-allocation rather than increased population size.
For this method, the subpopulation with the lowest increase in fitness of a t period is given
a population decrease identical to the increase provided to the best-performing subpopu-
lation. A subpopulation’s size can be decreased up to 2, to ensure that this subpopulation
can still evaluate. Furthermore, as the subpopulation’s population size is modified by a
percentage, we ensure that the total added and removed is even and thus not lower than
2. This is most prominent when dealing with subpopulations of smaller population sizes.
This process is broken down in Algorithm 2.

Algorithm 2: Population Size Adaptation

Data: t = iteration period, r = increment rate, S = subpopulations
Result: X corrected individuals
if t time for restart then

Ssorted ← sort subpopulations by fitness improvement over t iterations
Sbest ← best performing subpopulation
Sworst ← worst performing subpopulation
increment = maxmax(2 ∗ ⌊(λSworst ∗ r)÷ 2⌋, 2)
Sbest ← update (λSbest

+ increment)
if mode = ipop then

Sworst ← (update λSworst− increment)
end

end

21



4 Experiments

In the following section, we provide a detailed explanation of the experiments and the
research questions they aim to solve (Table 2 provides a summary of the experiments run
and the research question they address). The results are plotted and analyzed for further
comprehension.
Unless stated otherwise, the configurations use default parameters described in Table 4.
In our experiments, the search space of each problem was bounded between -5 and 5,
so as to help the optimizer avoid infeasible solutions [84]. The initialization centroid of
subpopulations are sampled in the same range of -5 and 5. We used saturate correction
[14], which set out-of-bounds coordinates to the boundary.
Experiments 1 (see Section 4.2), 2 (see Section 4.3), 3 (see Section 4.4) and 4 (see Section
4.5) were run on on a AMD Ryzen 5 3600 CPU with 16GB of RAM. Experiment 5 (see
Section 4.6) was run on the LIACS mithril server, which has 64 Intel Xeon E5-4667v3
CPUs and 1TB of RAM.

4.1 Metrics

Experiments are evaluated using two performance indicators: Fixed-Target results and
Fixed-Budget results. The Fixed-Target results provide important information on the
number of function evaluations required to achieve a certain target value, which is taken
from the real values of the objective function. The Fixed-Budget results provide a quan-
tified metric on the quality of an algorithm at a given budget. Additionally, we look at
the Empirical Cumulative Distribution function [20] (Equation 11) for analyzing the per-
formance of configurations over all functions. The cumulative distribution estimates the
proportion of runs that satisfy the algorithms finding the best solution within the given
budget:

F̂T (t;A, f, d, v) =
r∑

i=1

(T (A, f, d, v, i) ≤ t) (11)

where T (A, f, d, v, i) is the fixed target result. It denotes the number of function eval-
uation needed for algorithm A to reach, in its i-th run, for the f problem variant in d
dimensions, a solution that satisfies f(x) ≥ v, within a budget B.

Table 2: Summary of Experiments and Parameter Settings

Experiment Research Question Configuration parameters

Default Parameters Table 4
1 (see Section 4.2) RQ1 (see Section 1) Table 5
2 (see Section 4.3) RQ2 (see Section 1) Table 6
3 (see Section 4.4) RQ3 (see Section 1) Table 7
4 (see Section 4.5) RQ4 (see Section 1) Table 8

5 (see Section 4.6)
Extended benchmark of

Table 9
promising configurations
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IOH also offers the aggregation of ECDF over a set of target values V (Equation 12),
and/or over a set of functions F (Equation 13):

F̂T (t;A, f, d,V) =
1

r|V|
∑
v∈V

r∑
i=1

(T (A, f, d, v, i) ≤ t) (12)

F̂T (t;A,F , d,V) =
1

r|V||F|
∑
f∈F

∑
v∈V

r∑
i=1

(T (A, f, d, v, i) ≤ t) (13)

4.2 Experiment 1 - Baseline Comparison

To establish a baseline result, we compare the performance of ModularCMA against a
few different configurations of subpopulation CMA-ES. We establish two baseline perfor-
mances of CMA-ES. The first baseline initializes the first population at the center of the
search space, as Vermetten et al. [84] found that initializing at the center of the search
space resulted in fewer infeasible solutions. The other baseline uniformly places the initial-
ization centroid of the first population in the search space. In all the other configurations,
the subpopulations’ initialization points are uniformly distributed. We investigate the im-
pact of using different initialization strategies for the first population in experiment 2.

We used four different subpopulation setups; SP-CMA[50], SP-CMA[20], SP-CMA[10] and
SP-CMA[MIXED], along with two configurations of ModularCMAES that do not employ sub-
populations and are setup using the parameters of Table 4. ModCMA-[0] is initialized at
the center of the domain, where ModCMA is initialized uniformly. The configurations are
broken down in Table 5. Those configurations also serve as baseline configurations for
experiments 2, 3 and 4. Each configuration is benchmarked on the BBOB test suite, using
functions 3 and 4, ran for 15 different instances of each problem, for dimensions 2, 5, 20
and 40.

In the Fixed-Target results (Figures 6 and 7), configurations have relatively similar perfor-
mances, other than ModCMA[0] which is able to find better results faster, but is eventually
caught up by other configurations.
In the Fixed-Budget results (Figures 8 and 9), the impact of dimensionality on the perfor-
mance of subpopulations is greater. In D = 5, we see that SP-CMA-[10] and SP-CMA-[20]

are able to reach better results around 1000 function evaluations, with SP-CMA-[10]

clearly reaching the best results. While SP-CMA-[MIXED] is not able to reach the same
results as SP-CMA-[10] and SP-CMA-[20], it outperforms the other configurations. The
opposite is seen in D = 20, where SP-CMA-[10] is not able to reach the same results
as configurations with bigger population sizes. SP-CMA-[20], SP-CMA-[50], ModCMA and
ModCMA-[0] arrive to similar performances, with SP-CMA-[50] slightly outperforming the
others.
The impact of dimensions is further demonstrated in the ECDF Figures 10a and 10b,
where configurations using subpopulation, more specifically SP-CMA-[10] and SP-CMA-[20],
outperform the default CMA-ES configurations in lower dimensions. In D = 20 however,
SP-CMA-[10] and SP-CMA-[20] are unable to reach the target value as often as the other
configurations, leaving SP-CMA-[50] with a slightly better ratio.
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Figure 6: Experiment 1 Fixed-Target Results on F3 and F4 in 5 dimensions

From the experiment results, we understand that subpopulations help to improve CMA-
ES. We posit that this is due to the ability of subpopulations to cover a wider area of
the domain. As seen with low dimensions results, the higher the number of subpopu-
lations, the better the results. But although subpopulations improve CMA-ES in lower
dimensions, they hinder the performance in higher dimensions, suffering from the curse
of dimensionality.
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Figure 7: Experiment 1 Fixed-Target Results on F3 and F4 in 20 dimensions
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Figure 8: Experiment 1 Fixed-Budget Results on F3 and F4 in 5 dimensions
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Figure 9: Experiment 1 Fixed-Budget Results on F3 and F4 in 20 dimensions
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Figure 10: Aggregated Empirical Cumulative Distribution of Experiment 1 over all func-
tions
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4.3 Experiment 2 - Initialization Method

Following the results of experiment 1, we investigate the effects of different initializa-
tion methods on the performance of subpopulations CMA-ES (see Table 6 for run con-
figurations). Borrowing from experiment 1, we use 3 different subpopulation setups;
SP-CMA[50], SP-CMA[20] and SP-CMA[10], as those configurations showed the most po-
tential in experiment 1. Each configuration is tested on six different initialization method;
uniform, Gaussian, Poisson disk, Halton, Sobol and Latin Hypercube sampling. The con-
figurations are tested on 15 instances of problems 3 and 4, for dimensions 5 and 20, and
the results are reported in Figures 11, 12, 13, 14. Note that Poisson Disk sampling was not
tested for dimension 20 as the sampling algorithm cannot scale to this dimension. Poisson
disk sampling falls victim to the curse of dimensionality and cannot satisfy the minimum
distance between points as those distances become extremely large in high dimensions [12].

Looking at the results of experiment 2 (Figures 11, 12, 13, 14, 15a, 15b), we observe a
similar impact of dimension on the performance of configurations, although not as great
as experiment 1.
Looking at the Fixed-Target results, there does not seem to be a clear best initialization
method outperforming the others, other than for D = 20, where configurations using
Gaussian sampling were able to improve the fitness faster than the others.
In the Fixed-Budget results, we see the same trend as experiment 1, with configurations
using lower population sizes outperforming others. We also find that some initialization
methods help configurations improve their performance. For example, in function 3, Hal-
ton and Latin Hypercube improves SP-CMA[10], or Halton and Gaussian for SP-CMA[20].
We can observe that the initialization methods did not have a great impact on the per-
formance of a configuration as is prominent in Figure 14. Figure 14 shows 3 different
groupings of results. We see that the initialization methods did not have an impact on the
performance of a subpopulation over the others, as they are all grouped by subpopula-
tions count. We see from the ECDF Figure15a that in lower dimensions, the initialization
method has a greater impact on smaller subpopulations. We posit that initialization meth-
ods are typically used for sampling a greater number of points than were used here (2, 5
or 10), which could render initialization techniques less effective.

We can gather from the experiment results that the initialization method of subpopula-
tions’ initialization point has little to no effect on the performance of CMA-ES. We posit
that this is due to the number of points that need to be generated. Since the highest num-
ber of subpopulations present only goes as high as 10, the algorithm cannot benefit from
the advantages (or suffer from the disadvantages) of a specific initialization technique.
Generated points seem closer to random distribution than their respective distribution
pattern, which for certain techniques (namely Poisson, Halton, Sobol or LHS) renders the
method pointless.
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Figure 11: Experiment 2 Fixed-Target Results on F3 and F4 in 5 dimensions
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Figure 12: Experiment 2 Fixed-Target Results on F3 and F4 in 20 dimensions
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Figure 13: Experiment 2 Fixed-Budget Results on F3 and F4 in 5 dimensions
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Figure 14: Experiment 2 Fixed-Budget Results on F3 and F4 in 20 dimensions
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Figure 15: Aggregated Empirical Cumulative Distribution of Experiment 2 over all func-
tions
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4.4 Experiment 3 - Enforced Separation

We follow up experiment 2 by testing the enforced separation of subpopulations through
Support Vector Machines (see Table 7 for run configurations). SP-CMA[50], SP-CMA[20]
and SP-CMA[10] were compared against configurations using Support Vector Machine
corrections and against configurations not using any correction. We compare the perfor-
mance of using intersection correction, orthogonal projection correction and no correction
in Figures 16, 17, 18, 19 and 20. Furthermore, we combine the initialization techniques
Latin Hypercube with Support Vector Machine corrections to evaluate the performance
of combining both techniques. Configurations are tested on 15 instances of problems 3
and 4, for dimensions 5 and 20.

Looking at the results of Figures 16, 17, 18, 19 and 20, we can see that notice that forcing
separation does not improve or lead to any improvement, but instead hinders the perfor-
mance of subpopulations. Fixed-Target results show that while high subpopulation count
configurations are faster at reaching good fitness, they are quickly caught up by lower sub-
populations configurations. Combining SP-CMA[50] with orthogonal correction and Latin
Hypercube sampling did result in better performance, especially for lower dimensions,
and while its ECDF score is not far from the correction-free configuration, it does not
improve the overall performance. Looking closely at function 3 of Fixed-Budget results,
we note that SVM correction ends up hurting low dimensionality results of SP-CMA[10].

We can gather from the experiment results that using forced separation through Support
Vector Machine failed to improve CMA-ES, and overall hinders the capacity of CMA-
ES to solve complex optimization problems. We posit that this is most likely due to a
separation too strict, which prevents the algorithm from being able to explore areas of
the domain with good solutions. The algorithm may also be losing out on good guesses
made by the algorithm by correcting the points back to a worse location.
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Figure 16: Experiment 3 Fixed-Target Results on F3 and F4 in 5 dimensions
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Figure 17: Experiment 3 Fixed-Target Results on F3 and F4 in 20 dimensions
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Figure 18: Experiment 3 Fixed-Budget Results on F3 and F4 in 5 dimensions
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Figure 19: Experiment 3 Fixed-Budget Results on F3 and F4 in 20 dimensions
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Figure 20: Aggregated Empirical Cumulative Distribution of Experiment 3 over all func-
tions
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4.5 Experiment 4 - Population Size Adaptation

In this experiment, we look at the performance of adapting the population sizes of well-
performing subpopulations of the CMA-ES configurations. We test the 3 subpopulation
setups SP-CMA[50], SP-CMA[20] and SP-CMA[10], and test t iteration period (i.e. the
number of iterations between two restarts) [500, 1000] and population change rate r [0.1,
0.2]. Additionally, we compare the performance of using resource re-allocation against
only increasing the population size (see Table 8 for run configurations). We denote con-
figurations using resource re-allocation, meaning individuals added to a subpopulation
will need to be removed from another, as RA, with configurations only increasing the
best subpopulation’s size denoted with IPOP. Configurations are tested on 15 instances of
problems 3 and 4, for dimensions 5 and 20.

From Figures 21 and 22, we can see that using adaptive population size is not as greatly
impacted by dimensionality as previous experiments. Looking at function 3, we can see
that using size adaptation improved the ERT of SP-CMA[20] and SP-CMA[50] to beat
their adaption-free counterparts. The Fixed-Budget (see Figures 23 and 24) and ECDF
(see Figure 25) results further demonstrate that using size adaptation improves the per-
formance of subpopulations, with the impact being greater in smaller dimensions. Fixed-
Budget results (Figure 23) of function 3 show that, in lower dimensions, using a lower rate
r = 0.1 with a high t delay outperforms SP-CMA[10]. In higher dimensions (Figure 24),
adapting the population size also leads to some configurations with adaptive size control
to improve from configurations without it (SP-CMA[10] or SP-CMA[50]). From the results,
we could not find that population re-allocation nor population size increase was better
than the other.

We can gather from the experiment results that adding adaptive population control to
CMA-ES with subpopulation succeeded in improving the overall performance of the al-
gorithm. Although it is difficult to find whether population size re-allocation (RA) or
population size increase (IPOP) is better than the other, we prove that a population in-
crease of well-performing subpopulations (whether that is from re-allocating from poorly
performing subpopulations or simple population size increase), helps CMA-ES improve
its performance for configurations that use subpopulations of lower initial population size.
This enables the algorithm to start off evenly distributed and focus attention on promising
areas.
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Figure 21: Experiment 4 Fixed-Target Results on F3 and F4 in 5 dimensions
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Figure 22: Experiment 4 Fixed-Target Results on F3 and F4 in 20 dimensions
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Figure 23: Experiment 4 Fixed-Budget Results on F3 and F4 in 5 dimensions
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Figure 24: Experiment 4 Fixed-Budget Results on F3 and F4 in 20 dimensions
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Figure 25: Aggregated Empirical Cumulative Distribution of Experiment 4 over all func-
tions
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4.6 Experiment 5 - Extended Benchmark

Finally, we benchmark some of the configurations from previous experiments on an ex-
tended test suite. More specifically, we extend the experiments on BBOB noiseless func-
tions 3, 4, 15, 16, 17, 19, 20 and 24. The additional functions tested are all highly mul-
timodal functions, with functions 15, 16, 17, and 19 possessing adequate global struc-
ture, while functions 20 and 24 possess weak global structure. Those functions are tested
with the most promising or interesting configurations from previous experiments for 15
instances, in dimensions 5 and 20. Table 9 displays the configurations run for this exper-
iment. The results are plotted in Figures 26, 27, 28, 29 for Fixed-Target results, Figures
30, 31, 32, 33 for Fixed-Budget results. The ECDF results are plotted in Figure 34.

After analyzing the results of other functions, we see a similar trend observed from func-
tion 3 and function 4 on the other functions. The ERT Figures 26, 27, 28 and 29 show that
while the default ModCMA configuration is faster at reaching a certain target, it gets caught
up by other configurations in bigger budgets (see functions 17, 20 and 24 in Figures 26
and 27).
Looking closely at functions 19 and 24’s Fixed-Budget results (Figure 30), we see that
ModCMA, although it outperforms other configurations initially, it gets outperformed by all
configurations after the 500 function evaluation mark. It must be said however that the
configurations are compared against a default ModCMA baseline, which could be optimized
through hyperparameter optimization.
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Figure 26: Experiment 5 Fixed-Target Results on F3, F4, F15 and F16 in 5 dimensions
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Figure 27: Experiment 5 Fixed-Target Results on F17, F19, F20 and F24 in 5 dimensions
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Figure 28: Experiment 5 Fixed-Target Results on F3, F4, F15 and F16 in 20 dimensions
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Figure 29: Experiment 5 Fixed-Target Results on F17, F19, F20 and F24 in 20 dimensions

51



5

0.1

2

5

1

2

5

10

2

5

100

2

5

1e+3

2

1 10 100 1e+3 1e+4 1e+5 1e+6

1e−6

1e−4

0.01

1

100

1

2

5

10

2

5

100

2

5

1e+3

2

5

1 10 100 1e+3 1e+4 1e+5 1e+6

1e−6

1e−4

0.01

1

100

ModCMA ModCMA-[0] SP-CMA[10] SP-CMA[10]-LHS SP-CMA[10]-LHS-SVMi SP-CMA[10]-LHS-SVMo

SP-CMA[10]-RA(1000x.1) SP-CMA[10]-RA(500x.2) SP-CMA[10]-SVMi SP-CMA[10]-SVMo SP-CMA[20]

SP-CMA[20]-LHS SP-CMA[20]-LHS-SVMi SP-CMA[20]-LHS-SVMo SP-CMA[20]-RA(1000x.1) SP-CMA[20]-RA(500x.2)

SP-CMA[20]-SVMi SP-CMA[20]-SVMo SP-CMA[50] SP-CMA[50]-LHS SP-CMA[50]-LHS-SVMi

SP-CMA[50]-LHS-SVMo SP-CMA[50]-SVMi SP-CMA[50]-SVMo

Function Evaluations Function Evaluations

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

F3F3F3 F4F4F4

F15F15F15 F16F16F16

Figure 30: Experiment 5 Fixed-Budget Results on F3, F4, F15 and F16 in 20 dimensions
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Figure 31: Experiment 5 Fixed-Budget Results on F17, F19, F20 and F24 in 20 dimensions
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Figure 32: Experiment 5 Fixed-Budget Results on F3, F4, F15 and F16 in 20 dimensions
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Figure 33: Experiment 5 Fixed-Budget Results on F17, F19, F20 and F24 in 20 dimensions
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Figure 34: Aggregated Empirical Cumulative Distribution of Experiment 5 overall func-
tions
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5 Conclusion

In this project, we set out to investigate the effects of applying the principle of subpopu-
lations, along with a few other methods, to the Covariance Matrix Adaptation Evolution
Strategy algorithm. We looked into the effect of incorporating subpopulations of different
sizes, analyzing the performance of a higher count of smaller subpopulations to a lower
count of bigger subpopulations (RQ1). Configurations were benchmarked on the popular
BBOB test suite [37] in multiple dimensions. We found that in lower dimensions, smaller
subpopulations are more efficient and outperform bigger subpopulations, even outper-
forming the default CMA-ES.
The results imply a great potential for employing subpopulations to improve the perfor-
mance of the CMA-ES algorithm, with some configurations outperforming the default
CMA-ES benchmark. Through the use of subpopulations, CMA-ES is able to explore a
wider range of solutions in the search space, ultimately finding better solutions. We also
find that while this is true for a lower dimensionality, subpopulations did not improve
CMA-ES in larger dimensions. Still, we did not extend this research to cover large-scale
performance, which opens the door for future research.

We then looked at the effect different population initialization methods have on the per-
formance of subpopulations (RQ2). We could not find any concrete evidence that a specific
initialization method improves the performance of subpopulations in CMA-ES. Instead,
we posited that due to the low number of points being generated for the subpopulations’
initialization centroid, CMA-ES cannot benefit from the sampling method used. We did
not observe any run clearly outperforming others, although we note that Gaussian is able
to reach better results faster than other methods, most likely due to the nature of the
objective functions benchmarked.

Additionally, we looked at the potential benefit of combining promising concepts with
CMA-ES and the idea of subpopulations. We borrow from the concept of niching to pro-
pose a novel strategy of separating subpopulations on the search space using Support
Vector Machines (RQ3). While we theorized that this could enable subpopulations to
explore a more diverse set of solutions, we found that this strategy proved to hinder the
performance of CMA-ES, enforcing boundaries too strict preventing the algorithm from
exploring areas of the search space where optimal solutions might be. Future research
exploring a relaxation of the boundaries might lead to better results. Furthermore, this
technique was not explored to extract more than one optimal solution, which could be
realized in future works.

We also analyzed the effects of adaptive population size with subpopulation (RQ4), as this
concept has already been extended to the CMA-ES algorithm and has proved to improve
its performance [3, 58]. We explored the concept of increasing the population size, bor-
rowing from IPOP-CMA-ES [6], and a novel technique for re-allocating population size to
better-performing subpopulations. We found this technique to improve the performance
of small subpopulations. Increasing population at specified t intervals improved results
in lower dimensions, while reallocating individuals between subpopulations showed better
performances in higher dimensions.
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We find that the use of subpopulations in CMA-ES is a field that shows a lot of potential
for future research and improvements. We successfully found that employing subpopula-
tions improves the performance of the CMA-ES algorithm in low dimensions, especially
when coupled with population size adaptation. We also discovered that the initialization
method of subpopulations was not an important factor of performance. While other meth-
ods tested in this research leave much to be desired, they also open the door for future
research, which is further discussed in Section 6.

6 Future Works

The results obtained by this project have shown interesting results, and open the door
for further research in a variety of aspects. We were successfully able to improve the
performance of CMA-ES using subpopulations in low dimensions, but unsuccessful when
looking at high-dimensional problems. We did not extend this research to investigate
large-scale problems, suggesting a trial on the large-scale BBOB test suite [26] in future
works. Furthermore, ModularCMAES [83, 19] possesses a lot of parameter settings that
were not tuned or tested for this research. An extensive study could be performed to tune
the performance of subpopulations and CMA-ES.

We also noted the unsuccessful attempt at using search space partitioning to improve the
diversity of solutions in subpopulation CMA-ES. While we did not find any benefit of
using SVM separation, we suggest the possibility of improving the technique to extract
a multitude of solutions, better mimicking the concept it is modelled after: niching. In
our works, we borrowed from niching to model this separation technique, but we did not
use it as a niching method and instead only extracted a single optimal solution. We also
propose that looser restrictions, or updating the SVM boundaries less regularly could help
the algorithm.

Finally, we found that combining population size adaptation, an already successful con-
cept for CMA-ES [6, 3], improved the performance of subpopulations. In our research
however, we were unable to properly tune this configuration and found that no technique
of population size adaptation (resource re-allocation RA or population size increase IPOP)
was better than the other. We suggest repeating the experiment after a more thorough
tuning could lead to an even greater improvement.
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Appendix

BBOB Functions

Table 3: 24 noiseless BBOB functions and their properties

Function ID Objective Function Properties

1 Sphere unimodal, highly symmetric
2 Ellipsoidal unimodal, conditioning is about 106

3 Rastrigin
highly multimodal, regular placement of
local optimas, roughly 10D local optimas

4 Büche-Rastrigin
highly multimodal, asymmetric placement of
local optimas, roughly 10D local optimas

5 Linear linear function, xopt is on domain boundary

6 Attractive Sector unimodal, highly asymmetric
7 Step Ellipsoidal unimodal, highly asnon-separable
8 Rosenbrock unimodal, highly tri-band dependency structure
9 Rosenbrock (rotated) rotated version of function 8

10 Ellipsoidal
unimodal, quadratic ill-condition function with smooth
local irregularities, non-separable version of function 2

11 Discus unimodal, quadratic function with local irregularities
12 Bent Cigar unimodal, rotated
13 Sharp Ridge unimodal, high-conditioning
14 Different Powers unimodal, high-conditioning

15 Rastrigin
highly multimodal, non-separable less regular

counterpart of function 3, roughly 10D local optimas

16 Weierstrass
highly rugged and moderately repetitive landscape,

locally irregular, non-unique global optimum
17 Schaffers F7 highly multimodal, asymmetric, low conditioning
18 Schaffers F7 (ill-conditioned) moderately ill-conditioned counterpart of function 17

19
Composite

resembles function 8 but highly multimodal
Griewank-Rosenbrock

20 Schwefel
prominent 2D minima are located close
to corners of the unpenalized search area

21
Gallagher’s Gaussian consists of 101 optimas with unrelated

101-me Peaks position and height randomly chosen

22
Gallagher’s Gaussian consists of 21 optimas with unrelated position and height

21-hi Peaks randomly chosen, higher conditioning than function 21

23 Katsuura
highly rugged and repetitive,
more than 10D global optimas

24 Lunacek bi-Rastrigin
highly multimodal, constructed to be

deceptive to EAs with larger populations
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Default Experiments Parameters

Table 4: Default Experiment Parameters

Parameter Value

ub 5

lb -5

budget dimension ∗ 10000
target -inf

iterations 10000
x0 uniform distribution

sigma0 0.2

bound correction ”saturate”
step size adaptation ”csa”

base sampler ”gaussian”
active False
elitist False

sequential False
threshold convergence False

orthogonal False
local restart None
mirrored ”mirrored”

weights option ”default”
ps factor 1.0

Experiment 1

Table 5: Experiment 1 runs configurations. Sn = subpopulations count

Configurations
Name Sn λ µ Initilization
ModCMA n/a 100 50 uniform

ModCMA-[0] n/a 100 50 center of search space
SP-CMA[50] 2 [50] ∗ 2 [25] ∗ 2 uniform
SP-CMA[20] 5 [20] ∗ 5 [10] ∗ 2 uniform
SP-CMA[10] 10 [10] ∗ 10 [5] ∗ 2 uniform

SP-CMA[MIXED] 6 [50,10,10,10,10,10] [25,5,5,5,5,5] uniform

67



Experiment 2

Table 6: Experiment 2 runs configurations. Sn = subpopulations count

Configurations
Name Sn λ µ Initilization

SP-CMA[50]-UNIF 2 [50] ∗ 2 [25] ∗ 2 uniform
SP-CMA[50]-GAUSSIAN 2 [50] ∗ 2 [25] ∗ 2 gaussian
SP-CMA[50]-POISSON 2 [50] ∗ 2 [25] ∗ 2 poisson disk
SP-CMA[50]-HALTON 2 [50] ∗ 2 [25] ∗ 2 halton
SP-CMA[50]-SOBOL 2 [50] ∗ 2 [25] ∗ 2 sobol
SP-CMA[50]-LHS 2 [50] ∗ 2 [25] ∗ 2 latin hypercube
SP-CMA[20]-UNIF 5 [20] ∗ 5 [10] ∗ 2 uniform

SP-CMA[20]-GAUSSIAN 5 [20] ∗ 5 [10] ∗ 2 gaussian
SP-CMA[20]-POISSON 5 [20] ∗ 5 [10] ∗ 2 poisson disk
SP-CMA[20]-HALTON 5 [20] ∗ 5 [10] ∗ 2 halton
SP-CMA[20]-SOBOL 5 [20] ∗ 5 [10] ∗ 2 sobol
SP-CMA[20]-LHS 5 [20] ∗ 5 [10] ∗ 2 latin hypercube
SP-CMA[10]-UNIF 10 [10] ∗ 10 [5] ∗ 2 uniform

SP-CMA[10]-GAUSSIAN 10 [10] ∗ 10 [5] ∗ 2 gaussian
SP-CMA[10]-POISSON 10 [10] ∗ 10 [5] ∗ 2 poisson disk
SP-CMA[10]-HALTON 10 [10] ∗ 10 [5] ∗ 2 halton
SP-CMA[10]-SOBOL 10 [10] ∗ 10 [5] ∗ 2 sobol
SP-CMA[10]-LHS 10 [10] ∗ 10 [5] ∗ 2 latin hypercube

Experiment 3

Table 7: Experiment 3 runs configurations. Sn = subpopulations count

Configurations
Name Sn λ µ Initilization SVM correction

SP-CMA[50] 2 [50] ∗ 2 [25] ∗ 2 uniform none
SP-CMA[50]-SVMi 2 [50] ∗ 2 [25] ∗ 2 uniform intersection correction

SP-CMA[50]-LHS-SVMi 2 [50] ∗ 2 [25] ∗ 2 latin hypercube intersection correction
SP-CMA[50]-SVMo 2 [50] ∗ 2 [25] ∗ 2 uniform orthogonal projection

SP-CMA[50]-LHS-SVMo 2 [50] ∗ 2 [25] ∗ 2 latin hypercube orthogonal projection
SP-CMA[20] 5 [20] ∗ 5 [10] ∗ 2 uniform none

SP-CMA[20]-SVMi 5 [20] ∗ 5 [10] ∗ 2 uniform intersection correction
SP-CMA[20]-LHS-SVMi 5 [20] ∗ 5 [10] ∗ 2 latin hypercube intersection correction

SP-CMA[20]-SVMo 5 [20] ∗ 5 [10] ∗ 2 uniform orthogonal projection
SP-CMA[20]-LHS-SVMo 5 [20] ∗ 5 [10] ∗ 2 latin hypercube orthogonal projection

SP-CMA[10] 10 [10] ∗ 10 [5] ∗ 10 uniform none
SP-CMA[10]-SVMi 10 [10] ∗ 10 [5] ∗ 10 uniform intersection correction

SP-CMA[10]-LHS-SVMi 10 [10] ∗ 10 [5] ∗ 10 latin hypercube intersection correction
SP-CMA[10]-SVMo 10 [10] ∗ 10 [5] ∗ 10 uniform orthogonal projection

SP-CMA[10]-LHS-SVMo 10 [10] ∗ 10 [5] ∗ 10 latin hypercube orthogonal projection
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Experiment 4

Table 8: Experiment 4 runs configurations. Sn = subpopulations count

Configurations
Name Sn λ µ buffer t rate r mode

SP-CMA[50] 2 [50] ∗ 2 [25] ∗ 2 n/a n/a n/a
SP-CMA[50]-RA(500x.1) 2 [50] ∗ 2 [25] ∗ 2 500 0.1 none

SP-CMA[50]-IPOP(500x.1) 2 [50] ∗ 2 [25] ∗ 2 500 0.1 ipop
SP-CMA[50]-RA(500x.2) 2 [50] ∗ 2 [25] ∗ 2 500 0.2 none

SP-CMA[50]-IPOP(500x.2) 2 [50] ∗ 2 [25] ∗ 2 500 0.2 ipop
SP-CMA[50]-RA(1000x.1) 2 [50] ∗ 2 [25] ∗ 2 1000 0.1 none

SP-CMA[50]-IPOP(1000x.1) 2 [50] ∗ 2 [25] ∗ 2 1000 0.1 ipop
SP-CMA[50]-RA(1000x.2) 2 [50] ∗ 2 [25] ∗ 2 1000 0.2 none

SP-CMA[50]-IPOP(1000x.2) 2 [50] ∗ 2 [25] ∗ 2 1000 0.2 ipop
SP-CMA[20] 5 [20] ∗ 5 [10] ∗ 5 n/a n/a n/a

SP-CMA[20]-RA(500x.1) 5 [20] ∗ 5 [10] ∗ 5 500 0.1 none
SP-CMA[20]-IPOP(500x.1) 5 [20] ∗ 5 [10] ∗ 5 500 0.1 ipop
SP-CMA[20]-RA(500x.2) 5 [20] ∗ 5 [10] ∗ 5 500 0.2 none

SP-CMA[20]-IPOP(500x.2) 5 [20] ∗ 5 [10] ∗ 5 500 0.2 ipop
SP-CMA[20]-RA(1000x.1) 5 [20] ∗ 5 [10] ∗ 5 1000 0.1 none

SP-CMA[20]-IPOP(1000x.1) 5 [20] ∗ 5 [10] ∗ 5 1000 0.1 ipop
SP-CMA[20]-RA(1000x.2) 5 [20] ∗ 5 [10] ∗ 5 1000 0.2 none

SP-CMA[20]-IPOP(1000x.2) 5 [20] ∗ 5 [10] ∗ 5 1000 0.2 ipop
SP-CMA[10] 10 [10] ∗ 10 [5] ∗ 2 n/a n/a n/a

SP-CMA[10]-RA(500x.1) 10 [10] ∗ 10 [5] ∗ 2 500 0.1 none
SP-CMA[10]-IPOP(500x.1) 10 [10] ∗ 10 [5] ∗ 2 500 0.1 ipop
SP-CMA[10]-RA(500x.2) 10 [10] ∗ 10 [5] ∗ 2 500 0.2 none

SP-CMA[10]-IPOP(500x.2) 10 [10] ∗ 10 [5] ∗ 2 500 0.2 ipop
SP-CMA[10]-RA(1000x.1) 10 [10] ∗ 10 [5] ∗ 2 1000 0.1 none

SP-CMA[10]-IPOP(1000x.1) 10 [10] ∗ 10 [5] ∗ 2 1000 0.1 ipop
SP-CMA[10]-RA(1000x.2) 10 [10] ∗ 10 [5] ∗ 2 1000 0.2 none

SP-CMA[10]-IPOP(1000x.2) 10 [10] ∗ 10 [5] ∗ 2 1000 0.2 ipop
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Experiment 5

Table 9: Experiment 5 runs configurations

Name Configuration Settings
ModCMA see Table 5

ModCMA-[0] see Table 5
SP-CMA[50] see Table 5

SP-CMA[50]-LHS see Table 6
SP-CMA[50]-SVMi see Table 7

SP-CMA[50]-LHS-SVMi see Table 7
SP-CMA[50]-SVMo see Table 7

SP-CMA[50]-LHS-SVMo see Table 7
SP-CMA[20] see Table 5

SP-CMA[20]-LHS see Table 6
SP-CMA[20]-SVMi see Table 7

SP-CMA[20]-LHS-SVMi see Table 7
SP-CMA[20]-SVMo see Table 7

SP-CMA[20]-LHS-SVMo see Table 7
SP-CMA[10] see Table 5

SP-CMA[10]-LHS see Table 6
SP-CMA[10]-SVMi see Table 7

SP-CMA[10]-LHS-SVMi see Table 7
SP-CMA[10]-SVMo see Table 7

SP-CMA[10]-LHS-SVMo see Table 7
SP-CMA[20]-RA(500x.2) see Table 8
SP-CMA[20]-RA(1000x.1) see Table 8
SP-CMA[10]-RA(500x.2) see Table 8
SP-CMA[10]-RA(1000x.1) see Table 8
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